

000 001 002 003 004 005 CRYoSPLAT: GAUSSIAN SPLATTING FOR CRYO-EM 006 HOMOGENEOUS RECONSTRUCTION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034

ABSTRACT

035 As a critical modality for structural biology, cryogenic electron microscopy (cryo-
036 EM) facilitates the determination of macromolecular structures at near-atomic res-
037 olution. The core computational task in single-particle cryo-EM is to reconstruct
038 the 3D electrostatic potential of a molecule from noisy 2D projections acquired
039 at unknown orientations. Gaussian mixture models (GMMs) provide a continu-
040 ous, compact, and physically interpretable representation for molecular density
041 and have recently gained interest in cryo-EM reconstruction. However, existing
042 methods rely on external consensus maps or atomic models for initialization, lim-
043 iting their use in self-contained pipelines. In parallel, differentiable rendering
044 techniques such as Gaussian splatting have demonstrated remarkable scalability
045 and efficiency for volumetric representations, suggesting a natural fit for GMM-
046 based cryo-EM reconstruction. However, off-the-shelf Gaussian splatting meth-
047 ods are designed for photorealistic view synthesis and remain incompatible with
048 cryo-EM due to mismatches in the image formation physics, reconstruction ob-
049 jectives, and coordinate systems. Addressing these issues, we propose cryoSplat,
050 a GMM-based method that integrates Gaussian splatting with the physics of cryo-
051 EM image formation. In particular, we develop an orthogonal projection-aware
052 Gaussian splatting, with adaptations such as a view-dependent normalization term
053 and FFT-aligned coordinate system tailored for cryo-EM imaging. These innova-
054 tions enable stable and efficient homogeneous reconstruction directly from raw
055 cryo-EM particle images using random initialization. Experimental results on real
056 datasets validate the effectiveness and robustness of cryoSplat over representative
057 baselines. The code will be released upon publication.
058
059

1 INTRODUCTION

060 Single particle cryogenic electron microscopy (cryo-EM) has emerged as a transformative tool in
061 structural biology, enabling visualization of macromolecular complexes at atomic or near-atomic
062 resolution without crystallization (Kühlbrandt, 2014; Nogales, 2016; Renaud et al., 2018). Central
063 to cryo-EM is the computational task of reconstructing a 3D volume from a large collection of
064 2D projection images, each corresponding to a different, unknown viewing direction of identical
065 particles embedded in vitreous ice.

066 This inverse problem is inherently ill-posed and computationally challenging. First, cryo-EM im-
067 ages are severely corrupted by noise due to the low electron dose required to prevent radiation dam-
068 age. For experimental datasets, the signal-to-noise (SNR) could be as low as around -20 dB (Bendory et al., 2020; Bepler et al., 2020). Second, the orientations (poses) of individual particles are
069 unknown and must be inferred jointly with the 3D structure. Third, many biological samples exhibit
070 structural heterogeneity, with multiple conformational states coexisting in the same dataset.

071 These difficulties underscore two central objectives in cryo-EM image analysis: *ab initio* recon-
072 struction, which aims to estimate both the 3D structure and particle poses directly from raw data
073 without prior models, and heterogeneous reconstruction, which seeks to disentangle and reconstruct
074 multiple structural states from the dataset. Both objectives fundamentally rely on the availability of
075 a robust and efficient homogeneous reconstruction method, which assumes all particles correspond
076 to a single structure and serves as a building block for more complex inference.

Approaches to homogeneous reconstruction include methods based on backprojection, iterative expectation-maximization with voxel-based volumes (Tang et al., 2007; Scheres, 2012; Punjani et al., 2017; Shekarforoush et al., 2024), and more recently, neural representation learning (Zhong et al., 2021a;b), which models the 3D volume using coordinate-based networks. In parallel, Gaussian mixture models (GMMs) have received attention for their continuous, compact, and physically interpretable parameterization of molecular density (Chen & Ludtke, 2021; Chen et al., 2023a). Notably, GMMs offer a natural connection to atomic models and can represent fine structural details using fewer parameters (Chen et al., 2023b; Li et al., 2024; Schwab et al., 2024; Chen, 2025).

Despite their conceptual appeal, existing GMM-based methods (Chen & Ludtke, 2021; Chen et al., 2023a;b; Li et al., 2024; Schwab et al., 2024; Chen, 2025) for cryo-EM reconstruction rely on non-trivial prerequisite steps. They typically rely on consensus volumes from external pipelines, or even atomic models, for initialization, and have not demonstrated stable convergence when directly optimizing from experimental images. In fact, no prior method achieves reliable GMM-based reconstruction even under known particle poses, due to the inherent difficulty of optimizing mixture parameters in extreme noise. As a result, GMMs lack a self-contained and stable formulation that can serve as a backbone for broader reconstruction workflows.

In this work, we propose cryoSplat, a GMM-based homogeneous reconstruction method that fills this foundational gap. Given known particle poses, cryoSplat performs stable and efficient reconstruction directly from raw cryo-EM projection images, starting from random initialization and requiring no external priors. Inspired by recent advances in 3D Gaussian Splatting (3DGS) by Kerbl et al. (2023), we model the 3D density as a mixture of anisotropic Gaussians and project them into 2D using a novel differentiable orthographic splatting algorithm consistent with cryo-EM physics. To support practical scalability and training efficiency, we develop a CUDA-accelerated real-space renderer that enables fast rasterization and optimization of the GMM.

Our contributions can be summarized as follows:

- A self-contained GMM-based reconstruction method: We present cryoSplat as the first method capable of performing cryo-EM homogeneous reconstruction from a randomly initialized Gaussian mixture model without an external prior, thereby establishing the missing foundation needed to develop GMMs into standalone reconstruction tools.
- A physically accurate projection model: We design a splatting algorithm under orthogonal projection tailored to cryo-EM image formation, enabling differentiable projection of anisotropic Gaussians in real space.
- An efficient implementation: We adapt the CUDA tile-based framework of 3DGS to cryo-EM imaging, introducing modified forward equations and re-derived gradients, which enables fast optimization of GMMs with tens of thousands of Gaussians.
- Experimental validation: We demonstrate the effectiveness of cryoSplat on real datasets, showing that it converges reliably from random initialization and achieves reconstruction quality outperforming state-of-the-art methods.

2 RELATED WORK

2.1 VOLUME REPRESENTATION IN CRYO-EM

In cryo-EM experiments, purified biomolecules are rapidly frozen in a thin layer of vitreous ice, where each particle adopts a random orientation. A high-energy electron beam passes through the specimen, interacts with the electrostatic potential of the particles, and is recorded on a detector as a 2D projection image (Singer & Sigworth, 2020). The goal of cryo-EM reconstruction is to recover the 3D electrostatic potential, i.e., the volume, from a large set of such noisy and randomly oriented 2D projections. Central to cryo-EM reconstruction is the choice of volume representation.

2.1.1 VOXEL-BASED REPRESENTATION

Voxel-based representations are the most widely used in conventional cryo-EM software, e.g., RELION (Scheres, 2016b), cryoSPARC (Punjani et al., 2017) and EMAN2 (Tang et al., 2007). The 3D

108 volume is discretized into a regular grid of density values, enabling fast projection and reconstruction
 109 via FFT-based algorithms. Despite their practical success, voxel grids are memory-intensive,
 110 which limits their compatibility with modern learning-based analysis frameworks.
 111

112 2.1.2 NEURAL FIELD

113
 114 Neural fields represent the volume as a continuous function parameterized by neural networks.
 115 These methods (Zhong et al., 2021a;b; Levy et al., 2022a;b; 2025) offer differentiability, implicit
 116 smoothness, and natural compatibility with learning-based heterogeneous analysis. However, the
 117 implicit nature of neural fields often comes at the cost of interpretability, and such models are typi-
 118 cally slow to train and difficult to constrain with biological priors.
 119

120 2.1.3 GAUSSIAN MIXTURE MODEL

121 Gaussian mixture models have a long history in structural biology, with early uses for molecular ap-
 122 proximation (Grant & Pickup, 1995; Grant et al., 1996; Kawabata, 2008). E2GMM (Chen & Ludtke,
 123 2021) was among the first to apply GMMs to cryo-EM heterogeneous reconstruction. Like neural
 124 fields, GMMs can approximate any smooth density function and support differentiable optimization.
 125 More importantly, GMMs provide an explicit and interpretable representation that naturally links to
 126 atomic structures. Recent studies (Chen et al., 2023a;b; Li et al., 2024; Ducrocq et al., 2024; Schwab
 127 et al., 2024; Chen, 2025; Shekarforoush et al., 2025) have shown that GMMs can capture molecu-
 128 lar flexibility by modeling atomic motion directly, making them highly suitable for heterogeneous
 129 reconstruction and downstream structural analysis.

130 However, existing GMM-based methods typically require initialization from an externally recon-
 131 structed consensus map or even an atomic model. Without such guidance, random initialization
 132 leads to unstable optimization and poor reconstruction quality. Our work addresses this limitation
 133 by introducing a GMM-based reconstruction pipeline that can be stably trained from scratch.
 134

135 2.2 GAUSSIAN SPLATTING

136
 137 3DGS (Kerbl et al., 2023) is a recent differentiable rendering technique developed for real-time
 138 novel view synthesis. It represents a 3D scene as a collection of anisotropic Gaussians and ren-
 139 ders images via rasterization-based accumulation and alpha blending (Zwicker et al., 2002). While
 140 3DGS achieves high visual fidelity in synthetic and real-world RGB datasets, as a volume rendering
 141 method, it is not a physically accurate model of natural image formation (Huang et al., 2024).

142 Although the original 3DGS formulation is not physically consistent with natural image formation,
 143 its volume rendering framework closely aligns with the cryo-EM imaging model, where each image
 144 arises from an orthographic line integral of electrostatic potential modulated by the contrast transfer
 145 function (CTF). Leveraging this alignment, we adapt splatting to cryo-EM by rederiving the pro-
 146 jection of anisotropic Gaussians under cryo-EM physics, replacing heuristic alpha blending with
 147 physically accurate line integrals and incorporating CTF modulation.
 148

149 3 METHOD

150 3.1 OVERVIEW

151 Our goal is to achieve physically accurate and computationally efficient cryo-EM reconstruction by
 152 leveraging a Gaussian Mixture Model (GMM). To this end, we propose cryoSplat, a differentiable
 153 framework that represents the 3D electrostatic potential of a specimen as a set of anisotropic Gaus-
 154 sians and directly simulates the cryo-EM image formation process in real space, faithfully adhering
 155 to the physics of transmission electron microscopy.
 156

157 Building upon recent progress in differentiable volume rendering, particularly the Gaussian splatting
 158 framework by Kerbl et al. (2023), we adopt a tile-based rasterization strategy for scalable and effi-
 159 cient computation. However, the original 3DGS formulation is not directly applicable to cryo-EM
 160 due to several fundamental mismatches: **(i)** it employs perspective projection consistent with a pin-
 161 hole camera model, in contrast to the orthographic projection in cryo-EM imaging; **(ii)** it is tailored

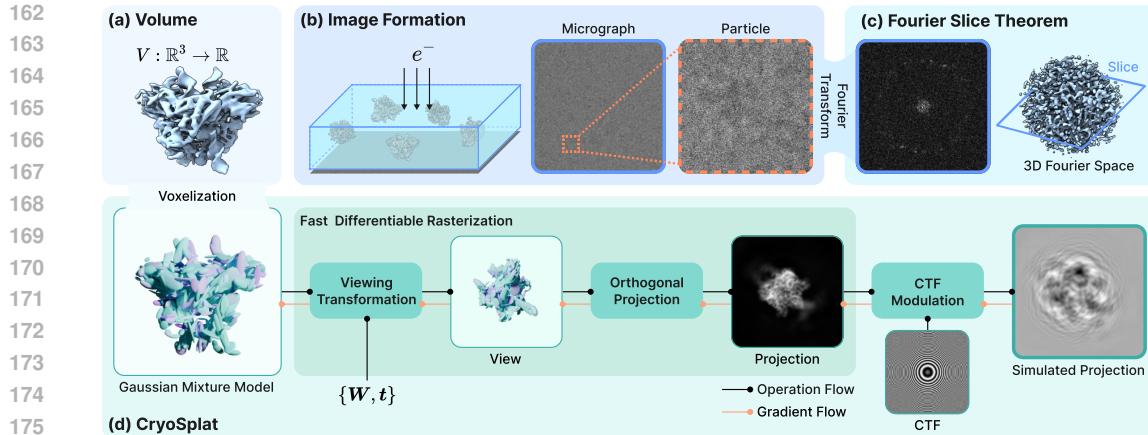


Figure 1: Cryo-EM reconstruction aims to recover a 3D volume (a) from a large set of 2D particle images (b). (b) Purified biomolecules with random orientations are embedded in a thin layer of vitreous ice. The electrostatic potential of the sample interacts with transmitted electrons, forming a micrograph that contains 2D projections of the molecules. Individual particle images are extracted from the micrograph; they are extremely noisy and modulated by highly oscillatory CTFs. (c) Fourier slice theorem: the 2D Fourier transform of a particle image corresponds to a central slice of the 3D Fourier transform of the volume. (d) Overview of cryoSplat. An anisotropic GMM representing the 3D volume is transformed to the projection direction, orthogonally projected onto a 2D image plane using a fast differentiable rasterizer, and modulated by the oscillatory CTF to simulate a physically accurate projection. The GMM parameters are optimized via gradients propagated from the discrepancy between the simulated and observed particle images. The resulting GMM can be voxelized to obtain the final 3D volume.

for novel-view synthesis (i.e., photorealistic 2D appearance) rather than for physical 3D density reconstruction required in cryo-EM; and (iii) its image-centered coordinate system is incompatible with the FFT-aligned conventions assumed in cryo-EM reconstruction.

To address these issues, cryoSplat introduces several key adaptations: (i) we replace heuristic alpha blending with physically grounded line integrals to reflect the transmission nature of electron imaging; (ii) we fix the normalization between 3D-to-2D transformation and apply consistent learning rates across all parameters to ensure stable optimization; and (iii) we align the rasterization coordinate system with the FFT grid, allowing accurate gradient propagation through CTF modulation.

These modifications collectively enable cryoSplat to perform stable, end-to-end differentiable reconstruction from raw cryo-EM particle images, starting from random initialization without relying on externally provided volumes or atomic models.

3.2 IMAGE FORMATION

As shown in Fig. 1(b), electrons traverse a vitrified specimen, and the transmitted wavefronts undergo phase shifts due to the specimen’s electrostatic potential (Singer & Sigworth, 2020). Under the weak phase approximation, the phase shifts are linearly related to the 3D potential (volume), and the image formed at the detector is a line integral (projection) of this potential along the beam direction, further convolved with $H : \mathbb{R}^2 \rightarrow \mathbb{R}$, the point spread function (PSF) of the imaging system.

In homogeneous reconstruction, it is assumed that all particle images $Y : \mathbb{R}^2 \rightarrow \mathbb{R}$ correspond to identical copies of a single 3D volume $V : \mathbb{R}^3 \rightarrow \mathbb{R}$, and that any conformational or compositional heterogeneity is negligible. Under this assumption, the image formation model can be expressed as:

$$Y(r_x, r_y) = H(r_x, r_y) * \int_{\mathbb{R}} V(\mathbf{W}^\top \mathbf{r} + \mathbf{t}) dr_z + \epsilon, \quad (1)$$

where $\mathbf{r} = [r_x, r_y, r_z]^\top$ are the 3D Cartesian coordinates in real space, $\mathbf{W} \in \text{SO}(3)$ is the 3D pose of the particle, and $\mathbf{t} = [t_x, t_y, 0]^\top$ is the in-plane translation, accounting for imperfect centering during particle cropping. The noise term ϵ is modeled as independent, zero-mean Gaussian noise.

216 3.3 CRYoSPLAT
217218 3.3.1 ANISOTROPIC GMM
219220 Anisotropic GMMs are developed to represent the volume, which can be written in the form
221

222
$$V(\mathbf{r}) = \sum_{i=1}^N A_i G_i(\mathbf{r}), \quad (2)$$

223

224 where N denotes the Gaussian count and A_i is the amplitude of the i -th normalized Gaussian $G_i(\mathbf{r})$.
225226 By substituting Eq. (1), we obtain the full forward process of cryoSplat. Specifically, we apply a
227 viewing transformation to align the GMM to the target orientation, orthographically project each
228 Gaussian along the z -axis to form a 2D image, and convolve the result with the PSF:
229

230
$$X(r_x, r_y) = H(r_x, r_y) * \sum_{i=1}^N A_i \int_{\mathbb{R}} G_i(\mathbf{W}^\top \mathbf{r} + \mathbf{t}) dr_z. \quad (3)$$

231

232 Since the integral is linear, each Gaussian contributes independently to the final image. We thus
233 focus on a single Gaussian and omit the subscript i in the following discussion. A normalized 3D
234 Gaussian is defined as:
235

236
$$G(\mathbf{r}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{\frac{3}{2}} |\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp \left(-\frac{1}{2} (\mathbf{r} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1} (\mathbf{r} - \boldsymbol{\mu}) \right), \quad (4)$$

237 where $\boldsymbol{\mu} \in \mathbb{R}^3$ and $\boldsymbol{\Sigma} \in \mathbb{R}^{3 \times 3}$ denote the mean (position) and the covariance matrix (shape),
238 respectively. The determinant $|\boldsymbol{\Sigma}|$ ensures proper normalization. Following Kerbl et al. (2023), to
239 guarantee the positive semidefinite property, we construct the covariance matrix as:
240

241
$$\boldsymbol{\Sigma} = \mathbf{R} \mathbf{S} \mathbf{S}^\top \mathbf{R}^\top, \quad (5)$$

242 where $\mathbf{S} = \text{diag}(\mathbf{s})$ is a diagonal scaling matrix and $\mathbf{R} \in \text{SO}(3)$ is a rotation matrix. In our
243 implementation, we store the scaling vector $\mathbf{s} = [s_x, s_y, s_z]^\top$ and parameterize \mathbf{R} using a quaternion
244 $\mathbf{q} = [q_w, q_x, q_y, q_z]^\top$. To ensure positivity and stable gradients during optimization, we apply a
245 softplus function to both the amplitude A and the scaling vector \mathbf{s} . The quaternion \mathbf{q} is normalized
246 to ensure it represents a valid rotation. Altogether, each anisotropic Gaussian is parameterized by
247 the 11-dimensional set $\{\mu_x, \mu_y, \mu_z, s_x, s_y, s_z, q_w, q_x, q_y, q_z, A\}$.
248249 3.3.2 VIEWING TRANSFORMATION
250251 The viewing transformation is the first step in simulating image formation, aligning each Gaussian
252 with a given projection direction. Since the parameters $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ describe Gaussians in world
253 coordinates, we must transform them into the image-space coordinates before projection.
254255 According to the derivation in Zwicker et al. (2002), applying an affine transformation to a Gaussian
256 results in another Gaussian with appropriately transformed parameters. In our case, the transformation
257 consists of a rotation $\mathbf{W} \in \text{SO}(3)$ and a 2D in-plane translation $\mathbf{t} \in \mathbb{R}^3$, leading to:
258

259
$$\dot{G}(\mathbf{r}|\dot{\boldsymbol{\mu}}, \dot{\boldsymbol{\Sigma}}) = G(\mathbf{W}^\top \mathbf{r} + \mathbf{t}|\boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad (6)$$

260 where the transformed mean and covariance are given by $\dot{\boldsymbol{\mu}} = \mathbf{W}(\boldsymbol{\mu} - \mathbf{t})$ and $\dot{\boldsymbol{\Sigma}} = \mathbf{W} \boldsymbol{\Sigma} \mathbf{W}^\top$.
261262 3.3.3 ORTHOGONAL PROJECTION
263264 The orthogonal projection closely aligns with the physical principles of cryo-EM. Mathematically,
265 it corresponds to a line integral of a 3D Gaussian along the z -axis, resulting in a 2D Gaussian,
266 hereafter referred to as a splat, $\tilde{G}(\tilde{\mathbf{r}}|\tilde{\boldsymbol{\mu}}, \tilde{\boldsymbol{\Sigma}})$:
267

268
$$\tilde{G}(\tilde{\mathbf{r}}|\tilde{\boldsymbol{\mu}}, \tilde{\boldsymbol{\Sigma}}) = \int_{\mathbb{R}} \dot{G}(\mathbf{r}|\dot{\boldsymbol{\mu}}, \dot{\boldsymbol{\Sigma}}) dr_z. \quad (7)$$

269

270 This operation effectively integrates the 3D Gaussian along the projection axis, preserving its Gaussian
271 form in 2D. The resulting closed-form expression is:
272

273
$$\tilde{G}(\tilde{\mathbf{r}}|\tilde{\boldsymbol{\mu}}, \tilde{\boldsymbol{\Sigma}}) = \frac{1}{2\pi|\tilde{\boldsymbol{\Sigma}}|^{\frac{1}{2}}} \exp \left(-\frac{1}{2} (\tilde{\mathbf{r}} - \tilde{\boldsymbol{\mu}})^\top \tilde{\boldsymbol{\Sigma}}^{-1} (\tilde{\mathbf{r}} - \tilde{\boldsymbol{\mu}}) \right), \quad (8)$$

270 where $\tilde{\mathbf{r}} = [r_x, r_y]^\top$ denotes the 2D Cartesian coordinates in real space.
 271

272 In prior works, such as 3DGS, the normalization term $1/(2\pi|\tilde{\Sigma}|^{\frac{1}{2}})$ is often omitted, as their primary
 273 focus is on photorealistic novel view synthesis rather than the physical fidelity of the underlying
 274 3D representation. However, in cryo-EM reconstruction, the ultimate goal is to recover the correct
 275 3D volume. Omitting this view-dependent normalization introduces bias in amplitude and leads to
 276 incorrect reconstructions. Therefore, unlike 3DGS, we retain the normalization term to preserve the
 277 quantitative correctness of the model.
 278

279 After projection, the final image is constructed by summing the weighted contributions of all splats
 280 and applying the PSF:
 281

$$X(r_x, r_y) = H(r_x, r_y) * \sum_{i=1}^N A_i \tilde{G}_i(\tilde{\mathbf{r}}). \quad (9)$$

284 3.3.4 FAST DIFFERENTIABLE RASTERIZATION

285 We adopt the efficient tile-based rasterization framework from Kerbl et al. (2023), which enables
 286 scalable and differentiable processing of tens of thousands of Gaussians via per-tile accumulation.
 287 Unlike 3DGS, which uses alpha blending for photorealistic rendering, we modify the rasterization to
 288 directly sum contributions of splats, in accordance with the physical transmission model in cryo-EM.
 289

290 For an image $\mathbf{X} \in \mathbb{R}^{D \times D}$, the original 3DGS implementation places the continuous coordinate center
 291 at $[(D-1)/2, (D-1)/2]^\top$, i.e., halfway between two discrete pixels. In contrast, FFT-based
 292 image formation assumes the origin is located at the integer grid point $[(D/2), (D/2)]^\top$. To ensure
 293 compatibility with FFT-based forward and backward modeling, we shift the rasterization coordinates
 294 by half a pixel so that the image center aligns with the FFT grid. This alignment eliminates phase
 295 inconsistencies and enables accurate electron projection simulation, while preserving the computational
 296 efficiency of the 3DGS architecture. Let $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{D \times D}$ be the matrices representing the
 297 GMM-based projection X and the observed image Y after rasterization, respectively.
 298

299 3.3.5 LOSS FUNCTION

300 Unlike previous GMM-based methods that rely on specially designed losses with complex regularization
 301 or constraints to ensure stable optimization, we adopt a much simpler formulation. Specifically,
 302 we directly apply the mean squared error (MSE) loss between the GMM-based projection \mathbf{X}
 303 and the observed image \mathbf{Y} : $\mathcal{L} = \|\mathbf{X} - \mathbf{Y}\|_2^2$. Despite its simplicity, this loss formulation leads to
 304 stable and fast convergence in practice, without requiring additional regularization terms.
 305

306 4 EXPERIMENT

309 4.1 EXPERIMENTAL SETTINGS

311 **Datasets.** We evaluate our method on four publicly available cryo-EM datasets from the Electron
 312 Microscopy Public Image Archive (EMPIAR) (Iudin et al., 2016): EMPIAR-10028 (*Pf80S* ribo-
 313 some) (Wong et al., 2014), EMPIAR-10049 (RAG complex) (Ru et al., 2015), EMPIAR-10076 (*E.*
 314 *coli* LSU assembly) (Davis et al., 2016), and EMPIAR-10180 (pre-catalytic spliceosome) (Plaschka
 315 et al., 2017). These datasets span a range of structural complexity and image quality, from rigid
 316 assemblies with high contrast to highly heterogeneous macromolecular machines. For each dataset,
 317 we use the provided particle images, consensus pose estimates, and CTF parameters. All reconstruc-
 318 tions are performed under the homogeneous assumption.
 319

320 **Evaluation metrics.** Since ground truth volumes are unavailable for real datasets, we follow stan-
 321 dard practice and assess reconstruction quality using the gold standard Fourier Shell Correlation
 322 (FSC) (Van Heel & Schatz, 2005). Each dataset is split evenly into two halves, and the method is
 323 applied independently to each. Reconstructed volumes are compared in Fourier space by comput-
 324 ing FSC as a function of spatial frequency, quantifying their consistency across frequency shells.
 Resolution is defined as the spatial frequency where the FSC curve drops below the 0.143 threshold.
 325

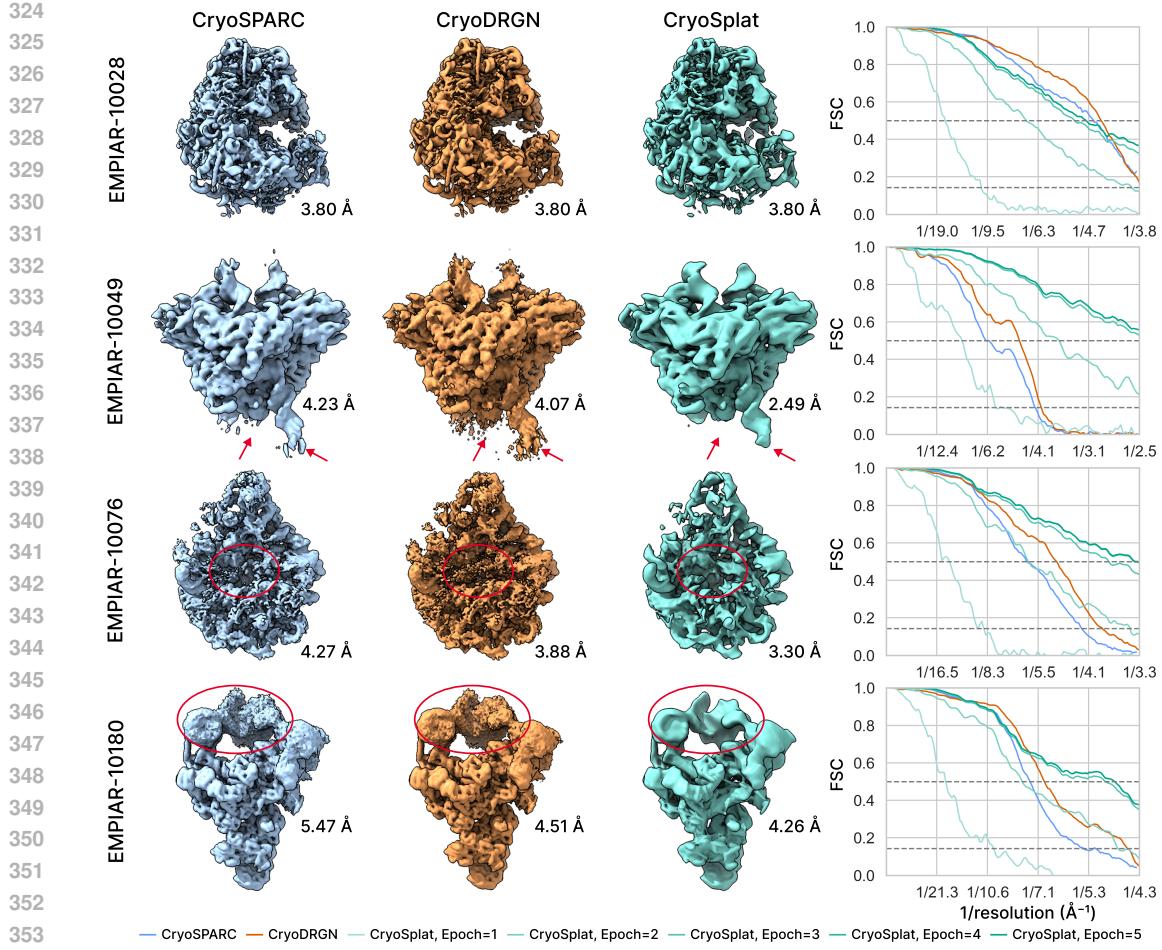


Figure 2: Qualitative and quantitative comparison of voxel-based, neural, and GMM-based representations. **(Left)** Final 3D reconstructions on four real datasets visualized with ChimeraX (Pettersen et al., 2021). **(Right)** FSC curves are plotted for quantitative evaluation. Gray dashed lines indicate the standard resolution thresholds of 0.5 and 0.143, reported in Angstroms (Å). CryoSplat consistently achieves higher resolution across all datasets.

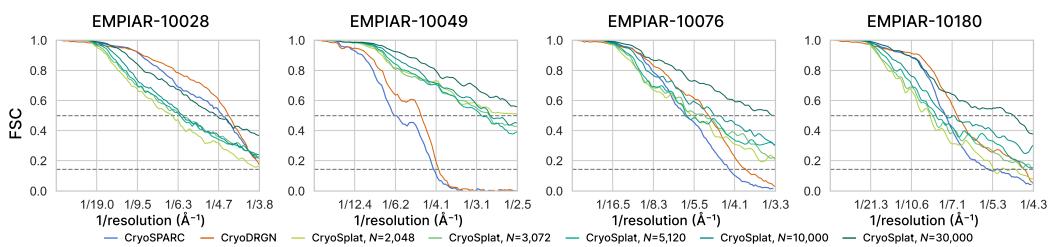
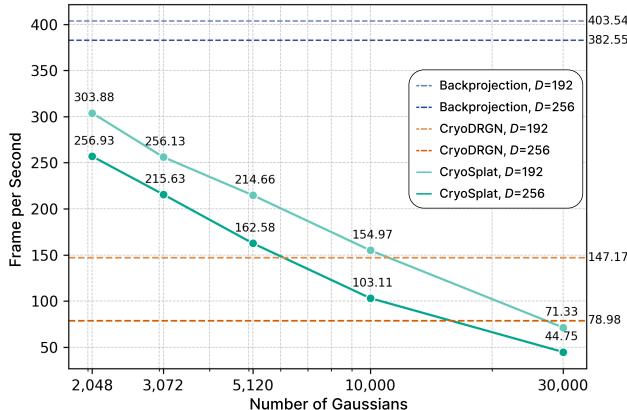


Figure 3: Reconstruction performance with varying numbers of Gaussians. Increasing the number improves accuracy and robustness.

Implementation details. For all experiments, particle images from EMPIAR-10028, 10076, and 10180 are downsampled to 256×256 , while EMPIAR-10049 is used at its original 192×192 resolution. Published particle translations are applied to the observed images via phase shifting in Fourier space prior to reconstruction, rather than through the GMM viewing transform. We do not apply any windowing to the observed particle images during preprocessing. The 3D volume is defined over the domain $[-E, E]^3$, and each 2D projection is assumed to lie within $[-E, E]^2$ in the image plane, where $E = 0.5$ defines the spatial extent. Gaussians are initialized with random means

378
379
380
381
382
383
384
385
386
387
388
389
390
391



392 Figure 4: Runtime efficiency across reconstruction methods at different resolutions ($D = 192$ and
393 $D = 256$). Frame rates (FPS) are measured under increasing numbers of Gaussians (log-scaled).

394
395 $\mu \sim \mathcal{N}(\mathbf{0}, 0.075^2 \mathbf{I})$, isotropic scales $s_x = s_y = s_z = 0.0075$, identity quaternion $\mathbf{q} = [1, 0, 0, 0]^T$,
396 and amplitude $A = 1/(2N)$, where N is the number of Gaussians. This initialization reflects the
397 empirical prior that most particle density lies within a spherical region of radius $E/2$. The variance
398 0.075^2 is chosen, following the standard three-sigma rule, ensuring that most Gaussians start within
399 the high-density region. A small initial scale further encourages localized support. We provide
400 additional discussion in Appendix D. All parameters are trainable. We use Adam (Kingma & Ba,
401 2014) with batch size 1, learning rate 0.001, and exponential decay ($\gamma = 0.1$) at each epoch. All
402 GMMs are trained for 5 epochs. For the voxel-based baseline, we run cryoSPARC’s “Homogeneous
403 Reconstruction Only” job using the same poses and CTF parameters. For neural representation
404 learning, we follow cryoDRGN’s default configuration: three 1,024-node layers, trained for 50
405 epochs. All experiments are run on a single NVIDIA GeForce RTX 3090.

4.2 EVALUATION ON REAL DATASETS

406 We evaluate the performance of different volume representations on real cryo-EM datasets under
407 a homogeneous reconstruction setting. To ensure a fair comparison focused solely on the choice
408 of volume representation, all methods reconstruct consensus maps using the same set of published
409 particle poses, without performing pose estimation. Our evaluation focuses on two aspects: (i) the
410 ability to reconstruct high-quality consensus maps, and (ii) robustness to noise and imperfect pose
411 assignments. Since related methods (Zhong et al., 2021a;b; Levy et al., 2022a;b; 2025) adopt cryo-
412 DRGN’s neural field implementation and differ mainly in pose estimation, we focus our comparison
413 on cryoDRGN. Accordingly, we evaluate three representative approaches: voxel-based backprojec-
414 tion cryoSPARC (Punjani et al., 2017), the neural representation method cryoDRGN (Zhong et al.,
415 2021a), and our proposed GMM-based method cryoSplat. Visualizations of the reconstructed vol-
416 umes are shown in Fig. 2, and spatial resolution is quantified using gold-standard FSC curves. Each
417 volume of cryoSplat is represented using 30,000 Gaussians.

418 The *Pf80S* ribosome (EMPIAR-10028) is relatively easy to reconstruct due to its high-contrast im-
419 ages and structurally stable particles. All methods achieve high-resolution results (3.80 Å) and
420 strong FSC agreement across the spectrum. cryoDRGN yields slightly higher FSC values at inter-
421 mediate frequencies, while cryoSplat outperforms all baselines at high spatial frequencies, demon-
422 strating its ability to recover fine structural details.

423 The RAG complex (EMPIAR-10049) poses greater challenges due to symmetry-induced pose de-
424 generacy and flexible regions such as the DNA elements and the nonamer binding domain (NBD),
425 indicated by arrows. CryoSplat outperforms the baselines with a higher FSC, achieving a resolution
426 of 2.49 Å. Unlike the baselines, cryoSplat reconstructs the DNA elements and the NBD with mini-
427 mal density fragments. Its FSC curve remains consistently above those of other methods across all
428 spatial frequencies, highlighting its robustness to pose degeneracy and structural variability.

429
430 This LSU assembly dataset (EMPIAR-10076) contains substantial compositional and confor-
431 mational heterogeneity, making consensus reconstruction particularly challenging. Both FSC analysis

432 and visualization show that cryoSplat is more resilient under such conditions, achieving a resolution
 433 of 3.30 Å with fewer fragments than voxel-based or neural methods, as indicated by the red circle.
 434

435 The spliceosome dataset (EMPIAR-10180) features large-scale motions of the SF3b indicated by
 436 the red circle, making consensus reconstruction particularly challenging. The reconstructions from
 437 cryoSPARC and cryoDRGN show pronounced high-frequency spurious spikes in this region, while
 438 cryoSplat is more robust to such motions and achieves a resolution of 4.26 Å. FSC analysis further
 439 confirms that cryoSplat significantly outperforms the baselines across the frequency range.

440 CryoSplat consistently converges within 5 epochs, with FSC curves from the 4th and 5th epochs
 441 tightly overlapping, indicating stable optimization and improved generalization.

442 4.3 ABLATION STUDIES

443 This section reports ablation studies of our approach. More results can be found in Appendix E.

444 **Number of Gaussians.** Fig. 3 shows the FSC curves for cryoSplat with varying numbers of Gaussians.
 445 In general, increasing the number of Gaussians leads to improved FSC, as a denser GMM
 446 provides greater representational capacity. While cryoSplat performs well on most datasets, its rel-
 447 ative performance varies due to differences in structural complexity and dataset-specific challenges.
 448 On EMPIAR-10028, cryoSplat reaches a resolution of 3.8 Å under all settings. While configura-
 449 tions with fewer than 10,000 Gaussians exhibit lower FSC values than cryoDRGN and cryoSPARC
 450 across most frequencies, the curves intersect at the highest frequency, indicating comparable final
 451 resolution. For EMPIAR-10049, all cryoSplat settings significantly outperform both cryoSPARC
 452 (4.23 Å) and cryoDRGN (4.07 Å), achieving a resolution of 2.49 Å. Moreover, the FSC curves of all
 453 cryoSplat variants remain consistently above those of the two baselines across the entire frequency
 454 range. For EMPIAR-10076, the 30,000-Gaussian model clearly outperforms other settings; even
 455 with fewer Gaussians, cryoSplat still surpasses the baselines, reaching 3.3 Å. For EMPIAR-10180,
 456 the models with 10,000 and 30,000 Gaussians achieve the best FSC, reaching 4.3 Å, while sparser
 457 GMMs remain competitive at high spatial frequencies. Overall, we observe that using 10,000 Gaus-
 458 sians is sufficient to provide a robust improvement in FSC-derived resolution metrics over baseline
 459 methods across most datasets. Associated qualitative comparisons are provided in Appendix E.

460 **Runtime efficiency.** We compare the runtime efficiency of cryoSplat with other representation base-
 461 lines, as shown in Fig. 4. Backprojection is the fastest, as it generates projections by directly index-
 462 ing and interpolating from a dense voxel grid, but its cubic scaling makes it unsuitable for modern
 463 non-linear heterogeneous analysis. For such tasks, neural representations and GMMs offer greater
 464 flexibility. Under commonly used settings in heterogeneous reconstruction (e.g., 2,048–3,072 Gaus-
 465 sians (Chen & Ludtke, 2021; Chen et al., 2023a;b)), cryoSplat achieves 2–3× higher FPS than cry-
 466 oDRGN. Moreover, cryoSplat typically converges within 5 epochs, compared to 50 epochs required
 467 by cryoDRGN, providing an overall speedup up to 30×. As discussed above, using 10,000 Gaus-
 468 sians allows cryoSplat to consistently outperform baseline methods in FSC across most datasets,
 469 while still maintaining a higher FPS than cryoDRGN. Even with an extremely large number of
 470 Gaussians (e.g., 30,000), cryoSplat provides reasonable runtime performance for orthogonal projec-
 471 tion operations. Overall, as shown in Fig. 4, cryoSplat demonstrates sub-linear time complexity with
 472 respect to the number of Gaussians, offering a favorable trade-off between accuracy and efficiency.

473 5 CONCLUSION

474 We present cryoSplat, a novel GMM-based framework that integrates Gaussian splatting with the
 475 physics of cryo-EM image formation. CryoSplat enables stable and efficient homogeneous recon-
 476 struction directly from raw cryo-EM particle images, starting from random initialization without
 477 relying on consensus volumes. Experimental results on real datasets demonstrate the effectiveness,
 478 robustness, and faster convergence of cryoSplat compared to representative baselines.

479 **Limitation and future work.** While our current method assumes known poses and thus does not
 480 qualify as an *ab initio* approach, cryoSplat establishes a principled foundation for future GMM-
 481 based methods that aim to tackle *ab initio* and heterogeneous reconstruction. We believe cryoSplat
 482 provides a missing piece in the broader goal of integrating GMMs into scalable and self-contained
 483 cryo-EM reconstruction pipelines. These directions are left for future work.

486 ETHICS STATEMENT
487488 This work does not involve human subjects, personally identifiable information, or sensitive data.
489 All datasets used in our experiments are either synthetic or publicly available from established com-
490 munity repositories (e.g., EMPIAR). The research aims to improve cryo-electron microscopy recon-
491 struction methodology and does not present foreseeable risks of misuse. We believe this work raises
492 no additional ethical concerns beyond standard practices in computational structural biology.493
494 REPRODUCIBILITY STATEMENT
495496 We have taken extensive steps to ensure the reproducibility of our results. Sections 3 and A provide
497 complete forward and backward pass derivations of our method. Sections 4.1 and D specify all
498 hyperparameters and include pseudocode sufficient to reproduce our experiments. Additionally,
499 sections 4.1 and B describe the datasets used and their preprocessing parameters in detail. Together,
500 these materials should allow independent researchers to fully replicate our results.501
502 THE USE OF LARGE LANGUAGE MODELS
503504 We acknowledge GPT-5 for its assistance with grammar correction, sentence shortening, and lan-
505 guage polishing. No part of the research design, analysis, or conclusions was generated by LLMs.
506507 REFERENCES
508

509 Tamir Bendory, Alberto Bartesaghi, and Amit Singer. Single-particle cryo-electron microscopy:
510 Mathematical theory, computational challenges, and opportunities. *IEEE signal processing mag-
511 azine*, 37(2):58–76, 2020.

513 Tristan Bepler, Kotaro Kelley, Alex J Noble, and Bonnie Berger. Topaz-denoise: general deep
514 denoising models for cryoem and cryoet. *Nature communications*, 11(1):5208, 2020.

515 Ronald N Bracewell. Strip integration in radio astronomy. *Australian Journal of Physics*, 9(2):
516 198–217, 1956.

518 Muyuan Chen. Building molecular model series from heterogeneous cryoem structures using gaus-
519 sian mixture models and deep neural networks. *Communications Biology*, 8(1):798, 2025.

520 Muyuan Chen and Steven J Ludtke. Deep learning-based mixed-dimensional Gaussian mixture
521 model for characterizing variability in cryo-EM. *Nature Methods*, 18(8):930–936, 2021. URL
522 <https://doi.org/10.1038/s41592-021-01220-5>.

524 Muyuan Chen, Michael F. Schmid, and Wah Chiu. Improving resolution and resolvability of single
525 particle cryoem structures using Gaussian mixture models. *Nature Methods*, 21:37–40, 2023a.

527 Muyuan Chen, Bogdan Toader, and Lederman Roy. Integrating molecular models into cryoem
528 heterogeneity analysis using scalable high-resolution deep Gaussian mixture models. *Journal of
529 Molecular Biology*, 435(9):168014, 2023b.

530 Shaoxia Chen, Greg McMullan, Abdul R Faruqi, Garib N Murshudov, Judith M Short, Sjors HW
531 Scheres, and Richard Henderson. High-resolution noise substitution to measure overfitting and
532 validate resolution in 3d structure determination by single particle electron cryomicroscopy. *Ul-
533 tramicroscopy*, 135:24–35, 2013.

534 Joseph H Davis, Yong Zi Tan, Bridget Carragher, Clinton S Potter, Dmitry Lyumkis, and James R
535 Williamson. Modular assembly of the bacterial large ribosomal subunit. *Cell*, 167(6):1610–1622,
536 2016.

538 Gabriel Ducrocq, Lukas Grunewald, Sebastian Westenhoff, and Fredrik Lindsten. cryosphere:
539 Single-particle heterogeneous reconstruction from cryo em. *arXiv preprint arXiv:2407.01574*,
2024.

540 J Andrew Grant and BT Pickup. A gaussian description of molecular shape. *The Journal of Physical*
 541 *Chemistry*, 99(11):3503–3510, 1995.

542

543 J Andrew Grant, Maria A Gallardo, and Barry T Pickup. A fast method of molecular shape compari-
 544 son: A simple application of a gaussian description of molecular shape. *Journal of computational*
 545 *chemistry*, 17(14):1653–1666, 1996.

546 Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian splatting
 547 for geometrically accurate radiance fields. In *ACM SIGGRAPH 2024 conference papers*, pp.
 548 1–11, 2024.

549 Andrii Iudin, Paul K Korir, José Salavert-Torres, Gerard J Kleywegt, and Ardan Patwardhan. Em-
 550 piar: a public archive for raw electron microscopy image data. *Nature methods*, 13(5):387–388,
 551 2016.

552

553 Takeshi Kawabata. Multiple subunit fitting into a low-resolution density map of a macromolecular
 554 complex using a gaussian mixture model. *Biophysical journal*, 95(10):4643–4658, 2008.

555 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler, and George Drettakis. 3D Gaussian splat-
 556 ting for real-time radiance field rendering. *ACM Transactions on Graphics (Proc. SIGGRAPH)*,
 557 2023.

558

559 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *Int. Conf. on*
 560 *Learning Representations (ICLR)*, 2014.

561 Werner Kühlbrandt. The Resolution Revolution: Advances in detector technology and image pro-
 562 cessing are yielding high-resolution electron cryo-microscopy structures of biomolecules. *Sci-
 563 ence*, 343(6178):1443–1444, 2014.

564 Axel Levy, Frédéric Poitevin, Julien Martel, Youssef Nashed, Ariana Peck, Nina Miolane, Daniel
 565 Ratner, Mike Dunne, and Gordon Wetzstein. Cryoai: Amortized inference of poses for ab initio
 566 reconstruction of 3d molecular volumes from real cryo-em images. In *European Conference on*
 567 *Computer Vision*, pp. 540–557. Springer, 2022a.

568

569 Axel Levy, Gordon Wetzstein, Julien NP Martel, Frederic Poitevin, and Ellen Zhong. Amortized
 570 inference for heterogeneous reconstruction in cryo-EM. *Advances in Neural Information Pro-
 571 cessing Systems*, 35:13038–13049, 2022b.

572 Axel Levy, Rishwanth Raghu, J Ryan Feathers, Michal Grzadkowski, Frederic Poitevin, Francesca
 573 Vallese, Oliver B Clarke, Gordon Wetzstein, and Ellen D Zhong. Cryodrgn-ai: Neural ab initio
 574 reconstruction of challenging cryo-em and cryo-et datasets. *bioRxiv*, pp. 2024–05, 2025.

575

576 Yilai Li, Yi Zhou, Jing Yuan, Fei Ye, and Quanquan Gu. Cryostar: leveraging structural priors and
 577 constraints for cryo-em heterogeneous reconstruction. *Nature Methods*, 21(12):2318–2326, 2024.

578

579 Eva Nogales. The development of cryo-em into a mainstream structural biology technique. *Nature*
 580 *methods*, 13(1):24–27, 2016.

581

582 Eric F Pettersen, Thomas D Goddard, Conrad C Huang, Elaine C Meng, Gregory S Couch, Tris-
 583 tan I Croll, John H Morris, and Thomas E Ferrin. Ucsf chimera: Structure visualization for
 584 researchers, educators, and developers. *Protein science*, 30(1):70–82, 2021.

585

586 Clemens Plaschka, Pei-Chun Lin, and Kiyoshi Nagai. Structure of a pre-catalytic spliceosome.
 587 *Nature*, 546(7660):617–621, 2017.

588

589 Ali Punjani, John L Rubinstein, David J Fleet, and Marcus A Brubaker. CryoSPARC: Algorithms
 590 for rapid unsupervised cryo-em structure determination. *Nature Methods*, 14:290–296, 2017.

591

592 Jean-Paul Renaud, Ashwin Chari, Claudio Ciferri, Wen-ti Liu, Hervé-William Rémigy, Holger
 593 Stark, and Christian Wiesmann. Cryo-em in drug discovery: achievements, limitations and
 594 prospects. *Nature reviews Drug discovery*, 17(7):471–492, 2018.

595

596 Heng Ru, Melissa G Chambers, Tian-Min Fu, Alexander B Tong, Maofu Liao, and Hao Wu. Molec-
 597 ular mechanism of v (d) j recombination from synaptic rag1-rag2 complex structures. *Cell*, 163
 598 (5):1138–1152, 2015.

594 S. H. Scheres. Processing of structurally heterogeneous cryo-em data in RELION. *Methods Enzy-*
 595 *mol.*, 579:125–157, 2016a.
 596

597 Sjors H. W. Scheres. RELION: Implementation of a Bayesian approach to cryo-em structure deter-
 598 mination. *Journal of Structural Biology*, 180(3):519 – 530, 2012.
 599

600 Sjors H W Scheres. Processing of structurally heterogeneous cryo-em data in RELION. In R A
 601 Crowther (ed.), *The Resolution Revolution: Recent Advances In cryoEM*, volume 579 of *Meth-
 602 ods in Enzymology*, pp. 125–157. Academic Press, 2016b. doi: <https://doi.org/10.1016/bs.mie.2016.04.012>. URL <https://www.sciencedirect.com/science/article/pii/S0076687916300301>.
 603

604 Johannes Schwab, Dari Kimanis, Alister Burt, Tom Dendooven, and Sjors H. W. Scheres. Dy-
 605 naMight: Estimating molecular motions with improved reconstruction from cryo-em images. *Nature
 606 Methods*, 21:1855–1862, 2024.
 607

608 Shayan Shekarforoush, David B Lindell, Marcus A Brubaker, and David J Fleet. CryoSPIN: Im-
 609 proving ab-initio cryo-em reconstruction with semi-amortized pose inference. *NeurIPS*, 2024.
 610

611 Shayan Shekarforoush, David B Lindell, Marcus A Brubaker, and David J Fleet. Reconstructing
 612 heterogeneous biomolecules via hierarchical gaussian mixtures and part discovery. *arXiv preprint
 613 arXiv:2506.09063*, 2025.
 614

615 Amit Singer and Fred J Sigworth. Computational methods for single-particle electron cryomi-
 616 croscopy. *Annual review of biomedical data science*, 3(1):163–190, 2020.
 617

618 G. Tang, L. Peng, P. R. Baldwin, D. S. Mann, W. Jiang, I. Rees, and S. J. Ludtke. Eman2: an
 619 extensible image processing suite for electron microscopy. *J. Struct. Biol.*, 157:38–46, 2007.
 620

621 Marin Van Heel and Michael Schatz. Fourier shell correlation threshold criteria. *Journal of struc-
 622 tural biology*, 151(3):250–262, 2005.
 623

624 Wilson Wong, Xiao-chen Bai, Alan Brown, Israel S Fernandez, Eric Hanssen, Melanie Condron,
 625 Yan Hong Tan, Jake Baum, and Sjors HW Scheres. Cryo-em structure of the plasmodium falci-
 626 parum 80s ribosome bound to the anti-protozoan drug emetine. *elife*, 3:e03080, 2014.
 627

628 Ellen D. Zhong, Tristan Bepler, Bonnie Berger, and Joseph H. Davis. CryoDRGN: Reconstruction
 629 of heterogeneous cryo-em structures using neural networks. *Nature Methods*, 18:176–185, 2021a.
 630

631 Ellen D Zhong, Adam Lerer, Joseph H Davis, and Bonnie Berger. CryoDRGN2: Ab initio neural
 632 reconstruction of 3d protein structures from real cryo-EM images. In *IEEE International Confer-
 633 ence on Computer Vision*, pp. 4066–4075, 2021b.
 634

635 Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross. Ewa splatting. *IEEE
 636 Transactions on Visualization and Computer Graphics*, 8(3):223–238, 2002.
 637

638

639

640

641

642

643

644

645

646

647

648 APPENDIX
649650 A DETAILS OF METHOD
651652 A.1 REAL SPACE RECONSTRUCTION
653

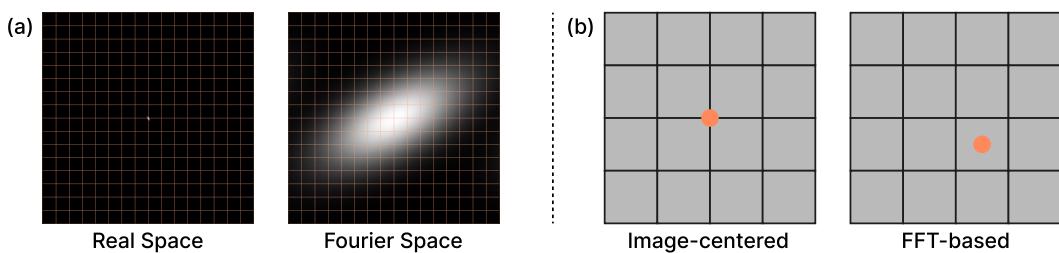
654 According to the Fourier slice theorem (Bracewell, 1956), illustrated in Fig. 1(c), the 2D Fourier
655 transform of a projection corresponds to a central slice of the 3D Fourier transform of the volume,
656 orthogonal to the projection direction and passing through the origin. Based on this property, an
657 alternative and widely adopted formulation models reconstruction directly in the Fourier domain,
658 where the image formation model becomes:

$$659 \quad \hat{Y}(k_x, k_y) = \hat{H}(k_x, k_y) \cdot \hat{V}(\mathbf{W}^\top \mathbf{k}) \cdot e^{-2\pi i \mathbf{k}^\top \mathbf{t}} + \hat{\epsilon}, \quad (10)$$

660 where $\mathbf{k} = [k_x, k_y, 0]^\top$ denotes the Cartesian coordinates in Fourier space, and the 2D spectrum \hat{Y} ,
661 the CTF \hat{H} and the 3D spectrum \hat{V} denote the Fourier transform of Y , H and V , respectively. The
662 noise term $\hat{\epsilon}$ is similarly modeled as independent, zero-mean Gaussian noise in the Fourier domain.
663

664 In this work, departing from most existing approaches that adopt Eq. (10), we instead build our
665 pipeline on Eq. (1), performing homogeneous reconstruction directly in real space.
666

667 A key reason we choose to operate in real space is that it allows us to fully exploit the fast rasteriza-
668 tion strategy from 3DGS. In high-resolution reconstructions, individual Gaussians in real space have
669 small spatial scales and affect only a few nearby tiles, as shown in Fig. 5(a). This locality means
670 that each GPU thread is responsible for a single pixel and only needs to process a small subset of all
671 Gaussians. In contrast, Gaussians in Fourier space become broad as resolution increases, leading to
672 near-global support. As a result, each pixel in the frequency domain must aggregate contributions
673 from nearly all Gaussians, making fast rendering impractical.
674



683 Figure 5: Rasterization details. (a) A Gaussian with small spatial scales in real space during high-
684 resolution reconstruction overlaps at most four tiles, while in Fourier space it exhibits nearly global
685 support. Tile boundaries are indicated by lines. (b) For a 4×4 image, the origin of the continu-
686 ous coordinate system during rasterization is defined differently: FFT-based coordinates place it at
687 $[2, 2]^\top$, whereas image-centered coordinates place it at $[1.5, 1.5]^\top$. The origin is marked by a dot.
688 Image-centered coordinates induce a phase error of $-\pi \mathbf{k}/D$, up to $\pm\pi/2$ at the Nyquist frequency,
689 degrading reconstruction at high frequency. The effect diminishes with larger D but never vanishes.
690

691 A.2 COMPUTATIONAL DETAILS
692

693 Section 3.3.3 describes how a 3D Gaussian is projected along the z -axis to form a splat. As discussed
694 in Zwicker et al. (2002), the splat can be computed analytically by removing the z -axis components
695 from the mean and covariance:
696

$$697 \quad \begin{cases} \dot{\mu} = [\dot{\mu}_x, \dot{\mu}_y, \dot{\mu}_z]^\top \Rightarrow [\dot{\mu}_x, \dot{\mu}_y]^\top = \tilde{\mu} \\ 698 \quad \dot{\Sigma} = \begin{bmatrix} \dot{\sigma}_{xx} & \dot{\sigma}_{xy} & \dot{\sigma}_{xz} \\ 699 \quad \dot{\sigma}_{xy} & \dot{\sigma}_{yy} & \dot{\sigma}_{yz} \\ 700 \quad \dot{\sigma}_{xz} & \dot{\sigma}_{yz} & \dot{\sigma}_{zz} \end{bmatrix} \Rightarrow \begin{bmatrix} \dot{\sigma}_{xx} & \dot{\sigma}_{xy} \\ \dot{\sigma}_{xy} & \dot{\sigma}_{yy} \end{bmatrix} = \tilde{\Sigma} \end{cases} \quad (11)$$

701 thereby enabling an efficient computation of Eq. (7).

As discussed in Sec. 3.3.4 and shown in Fig. 5(b), when a continuous image $X : \mathbb{R}^2 \rightarrow \mathbb{R}$ is rasterized onto pixels $\mathbf{X} \in \mathbb{R}^{D \times D}$, the origin of the continuous coordinate system should be aligned with $[\lfloor D/2 \rfloor, \lfloor D/2 \rfloor]^\top$ to match the FFT-based coordinate convention used in cryo-EM. Formally,

$$X_{i,j} = X \left((j - \lfloor \frac{D}{2} \rfloor) \frac{2E}{D}, -(i - \lfloor \frac{D}{2} \rfloor) \frac{2E}{D} \right), \quad (12)$$

where $X_{i,j}$ denotes (i, j) -th entry of matrix \mathbf{X} . Note that the row and column indices correspond to the y - and x -axes, respectively, with the y -axis flipped during this rasterization.

In practice, since the PSF corresponds to a large convolution kernel, we apply the contrast transfer function (CTF) in the Fourier domain after rasterization for efficiency:

$$X_{i,j} = \mathcal{F}^{-1} \left(\widehat{\mathbf{H}} \odot \mathcal{F} \left(\sum_{i=1}^N A_i \tilde{G}_i \left((j - \lfloor \frac{D}{2} \rfloor) \frac{2E}{D}, -(i - \lfloor \frac{D}{2} \rfloor) \frac{2E}{D} \right) \right) \right), \quad (13)$$

where $\mathcal{F}(\cdot)$ and $\mathcal{F}^{-1}(\cdot)$ denote the Fourier and inverse Fourier transform operators, respectively. $\widehat{\mathbf{H}}$ is the rasterized CTF \tilde{H} and \odot denotes element-wise (Hadamard) product.

Before deriving the gradients, we first define

$$Q(r_x, r_y) = \sum_{i=1}^N A_i \tilde{G}_i(\tilde{\mathbf{r}}), \quad (14)$$

which is the pre-rasterization continuous image. For clarity, we omit the Gaussian index i in the following derivations, as the gradients are computed independently for each Gaussian. We denote by \mathbb{P} the set of 2D coordinates corresponding to the centers of rasterized pixels. When $\tilde{\mathbf{r}} \in \mathbb{P}$, the coordinate $\tilde{\mathbf{r}} = [r_x, r_y]^\top$ refers to a discrete sampling location in the image plane. The gradients used in the backward pass can be summarized as

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial A} = \sum_{\tilde{\mathbf{r}} \in \mathbb{P}} \frac{\partial \mathcal{L}}{\partial Q(\tilde{\mathbf{r}})} \frac{\partial Q(\tilde{\mathbf{r}})}{\partial A} \\ \nabla_{\mu} \mathcal{L} = \sum_{\tilde{\mathbf{r}} \in \mathbb{P}} \frac{\partial \mathcal{L}}{\partial Q(\tilde{\mathbf{r}})} \nabla_{\mu} Q(\tilde{\mathbf{r}}) \\ \nabla_s \mathcal{L} = \sum_{\tilde{\mathbf{r}} \in \mathbb{P}} \frac{\partial \mathcal{L}}{\partial Q(\tilde{\mathbf{r}})} \nabla_{\Sigma} Q(\tilde{\mathbf{r}}) \circ \frac{\partial \Sigma}{\partial s} \\ \nabla_q \mathcal{L} = \sum_{\tilde{\mathbf{r}} \in \mathbb{P}} \frac{\partial \mathcal{L}}{\partial Q(\tilde{\mathbf{r}})} \nabla_{\Sigma} Q(\tilde{\mathbf{r}}) \circ \frac{\partial \Sigma}{\partial q} \end{cases} \quad (15)$$

where \circ denotes the composition of Jacobian operators (chain rule). The derivation of gradients with respect to the amplitude A and mean μ is trivial, which can be given directly by

$$\frac{\partial Q}{\partial A} = \tilde{G}(\tilde{\mathbf{r}}), \quad (16)$$

and

$$\begin{cases} \nabla_{\tilde{\mu}} Q = A \tilde{G}(\tilde{\mathbf{r}}) \tilde{\Sigma}^{-1} (\tilde{\mathbf{r}} - \tilde{\mu}) \\ \nabla_{\mu} Q = W [\nabla_{\tilde{\mu}} Q^\top \ 0]^\top \end{cases} \quad (17)$$

where $[\nabla_{\tilde{\mu}} Q^\top \ 0]^\top$ embeds the 2D gradient into 3D space by padding the z -component with zero.

For completeness, we provide the derivation of the covariance gradients $\nabla_{\Sigma} Q$, noting that our formulation retains the normalization term, which is omitted in 3DGS (Kerbl et al., 2023). Remember

$$\begin{aligned} \tilde{G}(\tilde{\mathbf{r}} | \tilde{\mu}, \tilde{\Sigma}) &= \frac{1}{2\pi |\tilde{\Sigma}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\tilde{\mathbf{r}} - \tilde{\mu})^\top \tilde{\Sigma}^{-1} (\tilde{\mathbf{r}} - \tilde{\mu})\right) \\ &= \frac{|\tilde{\Sigma}^{-1}|^{\frac{1}{2}}}{2\pi} \exp\left(-\frac{1}{2}(\tilde{\mathbf{r}} - \tilde{\mu})^\top \tilde{\Sigma}^{-1} (\tilde{\mathbf{r}} - \tilde{\mu})\right). \end{aligned} \quad (18)$$

756 We can first compute
 757

$$\begin{aligned}
 758 \nabla_{\tilde{\Sigma}^{-1}} Q &= A \exp\left(-\frac{1}{2}(\tilde{r} - \tilde{\mu})^\top \tilde{\Sigma}^{-1}(\tilde{r} - \tilde{\mu})\right) \frac{1}{4\pi} |\tilde{\Sigma}^{-1}|^{-\frac{1}{2}} |\tilde{\Sigma}^{-1}| \tilde{\Sigma}^\top \\
 759 &\quad + A \frac{|\tilde{\Sigma}^{-1}|^{\frac{1}{2}}}{2\pi} \exp\left(-\frac{1}{2}(\tilde{r} - \tilde{\mu})^\top \tilde{\Sigma}^{-1}(\tilde{r} - \tilde{\mu})\right) \left(-\frac{1}{2}(\tilde{r} - \tilde{\mu})(\tilde{r} - \tilde{\mu})^\top\right) \\
 760 &\quad = \frac{1}{2} A \tilde{G}(\tilde{r})(\tilde{\Sigma} - (\tilde{r} - \tilde{\mu})(\tilde{r} - \tilde{\mu})^\top), \\
 761 &\quad \text{and then } \nabla_{\tilde{\Sigma}} Q = -\tilde{\Sigma}^{-\top} \nabla_{\tilde{\Sigma}^{-1}} Q \tilde{\Sigma}^{-\top}. \text{ Finally,} \\
 762 &\quad \nabla_{\tilde{\Sigma}} Q = \begin{bmatrix} \nabla_{\tilde{\Sigma}} Q & \mathbf{0} \\ \mathbf{0}^\top & 0 \end{bmatrix}. \\
 763 &\quad \text{The subsequent derivations of } \nabla_s \mathcal{L} \text{ and } \nabla_q \mathcal{L} \text{ follow exactly the formulation in Kerbl et al. (2023).}
 764
 \end{aligned} \tag{19}$$

B DATASET DETAILS

765 We provide detailed statistics and characteristics of the cryo-EM datasets used in our experiments:
 766

- 767 • EMPIAR-10028 (*Plasmodium falciparum* 80S (*Pf80S*) ribosome) (Wong et al., 2014):
 768 105,247 particle images of size 360×360 pixels at a sampling rate of 1.34 \AA/pixel . This
 769 is a widely used benchmark with high-contrast images and a static structure.
- 770 • EMPIAR-10049 (RAG1-RAG2 complex) (Ru et al., 2015): 108,544 particles of size $192 \times$
 771 192 pixels at 1.23 \AA/pixel . This dataset is considered more challenging due to its lower
 772 contrast and flexibility in some regions.
- 773 • EMPIAR-10076 (*E. coli* large ribosomal subunit undergoing (LSU) assembly) (Davis et al.,
 774 2016): 131,899 particles of size 320×320 pixels at 1.31 \AA/pixel . This dataset contains
 775 substantial conformational and compositional heterogeneity, which poses a challenge to
 776 homogeneous modeling.
- 777 • EMPIAR-10180 (Pre-catalytic spliceosome) (Plaschka et al., 2017): 327,490 particles of
 778 size 320×320 pixels at 1.69 \AA/pixel . It samples a continuum of conformations, particularly
 779 involving large-scale motions of the SF3b subcomplex.
- 780 • Synthetic 80S ribosome: We construct a synthetic dataset of the 80S ribosome with 100,000
 781 particles using Relion (Scheres, 2016a), following the protocol of Levy et al. (2022a). The
 782 electron scattering potential is derived in ChimeraX (Pettersen et al., 2021) at a resolution
 783 of 6.0 \AA/pixel , based on two atomic models: the small subunit (PDB 3J7A) and the large
 784 subunit (PDB 3J79) (Wong et al., 2014). Each particle image is 128×128 pixels with a
 785 pixel size of 3.77 \AA/pixel . Orientations are uniformly sampled over $\text{SO}(3)$, and all images
 786 are centered without translations. Defocus values for the CTF are randomly drawn from
 787 log-normal distributions following Levy et al. (2022a), and zero-mean white Gaussian noise
 788 with varying signal-to-noise ratios (SNRs) is added.

C FOURIER SHELL CORRELATION

798 To evaluate reconstruction quality on real datasets without ground truth volumes, we adopt the gold
 799 standard Fourier Shell Correlation (FSC) (Van Heel & Schatz, 2005), following established proto-
 800 cols. Each dataset is randomly split into two halves, and the reconstruction algorithm is applied
 801 independently to each subset. Let the resulting volumes be $\hat{V}_a(\mathbf{k})$ and $\hat{V}_b(\mathbf{k})$, representing their
 802 Fourier transforms. The FSC is computed as a function of frequency k using the following formula:
 803

$$\text{FSC}(k) = \frac{\sum_{\|\mathbf{k}\|_2=k} \hat{V}_a(\mathbf{k}) \cdot \hat{V}_b(\mathbf{k})^*}{\sqrt{\left(\sum_{\|\mathbf{k}\|_2=k} |\hat{V}_a(\mathbf{k})|^2\right) \left(\sum_{\|\mathbf{k}\|_2=k} |\hat{V}_b(\mathbf{k})|^2\right)}}. \tag{21}$$

808 This metric quantifies the correlation between two independently reconstructed volumes within
 809 concentric shells in Fourier space. The spatial resolution is defined as the frequency where the FSC
 810 curve drops below the 0.143 threshold, indicating the limit of reproducible structural detail.

810 D MORE IMPLEMENTATION DETAILS
811812 D.1 INTUITION BEHIND INITIALIZATION
813

814 The values used in initialization are fixed but grounded in straightforward statistical intuition. We
815 observe that most particles are concentrated within a spherical region of radius $E/2$, where $E = 0.5$
816 defines the spatial extent as mentioned in Sec. 4.1. To reflect this prior and accelerate convergence,
817 we initialize the Gaussian means within this region.

818 Moreover, based on the three-sigma rule for Gaussian distributions $\mathcal{N}(\mu, \sigma^2)$, where 99.7% of sam-
819 ples fall within $[\mu - 3\sigma, \mu + 3\sigma]$, we obtain $\sigma = E/6$ from $3\sigma = E/2$. To slightly tighten the
820 spread, we apply a scaling factor and use $\sigma = 0.9 \cdot E/6 = 0.075$ to initialize the means. The initial
821 scale of each Gaussian is set to $0.1 \times 0.075 = 0.0075$, encouraging localized support. Finally, to
822 maintain consistent overall energy across varying numbers of Gaussians, we initialize the amplitude
823 as $A = 1/(2N)$, where N is the total number of Gaussians.

824 D.2 INTUITION BEHIND LEARNING RATE
825

826 In the original 3DGS (Kerbl et al., 2023), different learning rates are assigned to different types of
827 Gaussian parameters (means, scales, rotations, opacities). While this works well in novel view
828 synthesis, it introduces instability in cryo-EM reconstruction. Let the full parameter vector be
829 $\theta = [\mu_x, \mu_y, \mu_z, s_x, s_y, s_z, q_w, q_x, q_y, q_z, A]^\top$. In gradient descent optimization, the direction of
830 parameter updates is determined by the gradient $\nabla_\theta \mathcal{L}$. Unequal learning rates distort this direction
831 by scaling different components unequally, which can lead to divergence. We observe that such prac-
832 tice causes Gaussians to spread uncontrollably in early iterations and finally diverge. To avoid this,
833 we adopt a single unified learning rate across all parameter types, preserving the intended descent
834 direction and ensuring stable convergence.

835 D.3 OPTIMIZATION ALGORITHM
836

837 Our optimization algorithm is summarized in Algorithm 1. Unlike Kerbl et al. (2023), which uses
838 gradient magnitude as the criterion for splitting and cloning Gaussians, we observe that gradients
839 are not a reliable indicator for densification in cryo-EM reconstruction. Furthermore, elaborate
840 densification schemes are generally unnecessary, as our method seldom suffers from significant
841 local minima owing to its close consistency with cryo-EM imaging physics. Nevertheless, we retain
842 a simple densification option to balance efficiency and resolution: fewer Gaussians enable faster
843 training, whereas more Gaussians yield higher-resolution reconstructions, as demonstrated in Fig. 4.

844
845 **Algorithm 1** Optimization and Densification846 N : number of Gaussians847 D : side length of the observed particle images

848 $\Theta \leftarrow \text{InitAttributes}(N)$ 849 $i \leftarrow 0$ 850 while not converged do 851 for (Y, W, t, \widehat{H}) in Dataloader() do 852 $Y \leftarrow \text{FourierShift}(Y, t)$ 853 $Q \leftarrow \text{Rasterize}(\Theta, W, D)$ 854 $X \leftarrow \text{ApplyCTF}(Q, \widehat{H})$ 855 $\mathcal{L} \leftarrow \text{Loss}(X, Y)$ 856 $\Theta \leftarrow \text{Adam}(\nabla \mathcal{L})$ 857 end for 858 if IsDoubleGaussians(i) then 859 for all Gaussian(μ, s, q, A) in Θ do 860 SplitGaussian(μ, s, q, A) 861 end for 862 end if 863 $i \leftarrow i + 1$ 864 end while	<div style="display: flex; justify-content: space-between;"> <div style="flex: 1;"> <div style="display: flex; justify-content: space-between;"> <div style="flex: 1;"> <div style="margin-right: 10px;">▷ Positions, Scales, Quaternions, Amplitudes</div> <div style="margin-right: 10px;">▷ Epoch Count</div> </div> </div> </div></div>	<div style="display: flex; justify-content: space-between;"> <div style="flex: 1;"> <div style="margin-right: 10px;">▷ Observed Image, Rotation, Translation, CTF</div> <div style="margin-right: 10px;">▷ Center Alignment</div> </div> </div>
--	---	---

▷ Algorithm 2

▷ Apply CTF

▷ Loss

▷ Backprop and Step

▷ (Optional) Densification

864 **Algorithm 2** CUDA-accelerated Rasterization
 865 **Θ** : Gaussian parameters
 866 **W** : viewing transformation matrix
 867 **D** : side length of the observed particle images
 868
 869 **function** Rasterize(**Θ, W, D**)
 870 $\mu, \Sigma, A \leftarrow$ BuildGaussians(**Θ**)
 871 $\dot{\mu}, \dot{\Sigma} \leftarrow$ ViewingTransform(μ, Σ, W) ▷ Viewing Transformation
 872 $\tilde{\mu}, \tilde{\Sigma} \leftarrow$ Projection($\dot{\mu}, \dot{\Sigma}$) ▷ Orthogonal Projection
 873 $T \leftarrow$ CreateTiles(**D**) ▷ Tile Count
 874 $L, K \leftarrow$ DuplicateWithKeys($\tilde{\mu}, T$)
 875 SortByKeys(**K, L**)
 876 $R \leftarrow$ IdentifyTileRanges(**T, K**)
 877 $Q \leftarrow 0$ ▷ Init Canvas
 878 **for all** Tile **t** **in** **Q** **do**
 879 **for all** Pixel **p** **in** **t** **do**
 880 $r \leftarrow$ GetTileRange(**R, t**)
 881 $Q(p) \leftarrow$ SumSplats(**$p, L, r, K, \tilde{\mu}, \tilde{\Sigma}, A$**)
 882 **end for**
 883 **end for**
 884 **return** **Q**
 885 **end function**

D.4 DETAILS OF THE RASTERIZER

The details of the rasterizer are summarized in Algorithm 2. We follow the tile-based rasterization framework of Kerbl et al. (2023), where the output image is divided into 16×16 pixel tiles, and each splat is instantiated in every tile it overlaps. The splat instances are then assigned keys for sorting, after which each tile can be processed efficiently by locating the corresponding ranges in the sorted list. Since pixels are computed in parallel, the runtime is primarily determined by the maximum number of Gaussians within any tile. For more details, we refer the reader to Kerbl et al. (2023).

D.5 DETAILS OF REPORTED METRICS

When computing FSC curves for baselines, a spherical mask is applied to suppress background noise; cryoSplat uses the unmasked FSC because its Gaussian representation naturally suppresses noise outside the signal region. For runtime and memory comparisons, we use the backprojection implementation by Zhong et al. (2021a) instead of cryoSPARC, whose packaged environment introduces additional subprocesses and overhead that hinder fair measurement.

E ADDITIONAL EXPERIMENTS

E.1 MULTIMEDIA RESULTS

We provide videos of rotating reconstructed volumes in the supplementary material for all methods and datasets to facilitate visual comparison.

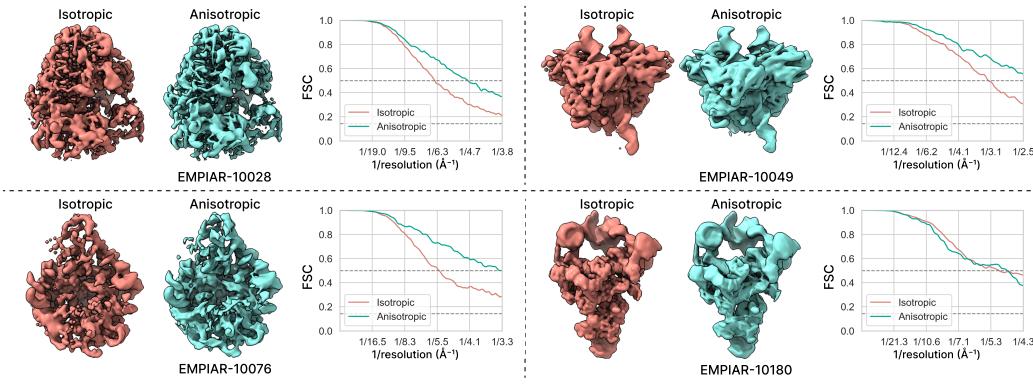
E.2 MEMORY USAGE

Tab. 1 compares GPU memory usage across different reconstruction methods. CryoDRGN (Zhong et al., 2021a) exhibits the highest memory footprint, exceeding 2.5 GiB at $D = 192$ and approaching 5 GiB at $D = 256$, primarily due to its deep neural decoder and a larger batch size of 8. Interestingly, backprojection consumes more memory at $D = 192$ than at $D = 256$, which may be attributed to implementation-specific factors such as padding overhead or kernel-level optimizations that favor power-of-two dimensions. This anomaly appears method-specific and does not reflect a general trend. In contrast, CryoSplat demonstrates consistently low memory usage across all configurations. Even with as many as 30,000 Gaussians, CryoSplat maintains a memory footprint below 380 MiB, with negligible variation across resolutions. This efficiency underscores the scalability and suitability of CryoSplat for large-scale or memory-constrained cryo-EM reconstruction scenarios.

918

919 Table 1: GPU memory usage across reconstruction methods at resolutions ($D = 192, D = 256$).

920 Methods	921 # Params	922 Settings	923 Batch Size	924 GPU Mem. (MiB)	925
926		927	928	$D = 192$	$D = 256$
929 Backprojection	930 $(D + 1)^3$	931 —	932 1	933 508	934 396
935 CryoDRGN (Zhong et al., 2021a)	936 $(6 \cdot \lfloor D/2 \rfloor + L + 3) \cdot C$ $+ L \cdot C^2 + 2$	937 $C = 1,024$ $L = 3$	938 1	939 680	940 1,008
941 CryoSplat (Ours)	942 $11 \cdot N$	943 $N = 2,048$ $N = 3,072$ $N = 5,120$ $N = 10,000$ $N = 30,000$	944 1	945 344	946 346
				947 344	948 348
				949 346	950 348
				951 348	952 350
				953 376	954 378

942 Figure 6: Qualitative and quantitative comparison of isotropic and anisotropic GMMs ($N = 30,000$)
943 on four real datasets. FSC curves show that anisotropic Gaussians consistently achieve higher cor-
944 relations across spatial frequencies, indicating improved reconstruction accuracy. Volume visual-
945 izations further reveal that anisotropic GMMs better recover fine structural details and elongated
946 features, whereas isotropic Gaussians tend to fragment such regions.947

E.3 ISOTROPIC VS. ANISOTROPIC

948
949 CryoSplat represents 3D volumes using anisotropic Gaussians while remaining fully compatible
950 with the isotropic formulation widely adopted in prior works (Chen & Ludtke, 2021; Chen et al.,
951 2023a;b; Schwab et al., 2024; Chen, 2025). When the scaling is isotropic, i.e., $s_x = s_y = s_z = \sigma$,
952 the anisotropic Gaussian exactly reduces to the standard isotropic form:

953
954
$$G(\mathbf{r}|\boldsymbol{\mu}, \sigma) = \frac{1}{(2\pi)^{\frac{3}{2}}\sigma^3} \exp\left(-\frac{\|\mathbf{r} - \boldsymbol{\mu}\|_2^2}{2\sigma^2}\right), \quad (22)$$

955 allowing direct integration into existing isotropic GMM-based pipelines.

956 We investigate the impact of isotropic versus anisotropic Gaussians on reconstruction quality. As
957 shown in Fig. 6, anisotropic GMMs achieve higher FSC scores across spatial frequencies and
958 produce sharper, more detailed structures. Subjectively, isotropic Gaussians struggle to capture elon-
959 gated features and are often captured by noise, which may contribute to the unstable convergence
960 from random initialization reported in previous methods. These results highlight the improved
961 representational capacity and reconstruction robustness enabled by anisotropic modeling.962

E.4 NUMBER OF GAUSSIANS

963 We present visual comparisons of reconstruction results using different numbers of Gaussians. As
964 shown in Fig. 7, increasing the number of components yields progressively sharper and more de-
965 tailed structures. These qualitative observations align with the quantitative improvements in FSC
966 curves reported in Fig. 3. Red arrows highlight representative regions where the differences in re-
967 construction quality are especially pronounced, facilitating direct visual comparison across settings.

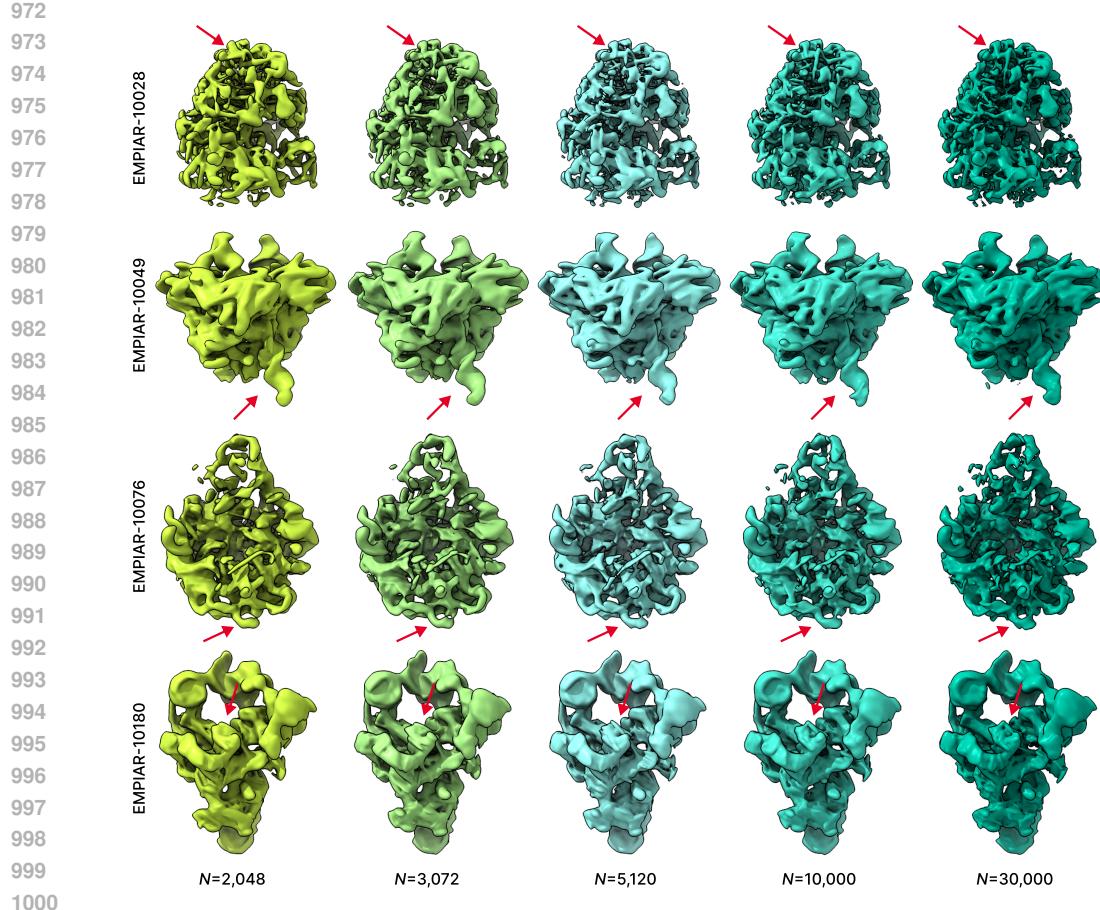


Figure 7: Qualitative evaluation of reconstruction performance with different numbers of Gaussians. Increasing the number of Gaussians leads to visibly improved reconstructions, with finer structural details and enhanced sharpness. Red arrows mark representative regions that highlight the qualitative differences for clearer comparison across settings.

E.5 SIGNAL-TO-NOISE RATIO

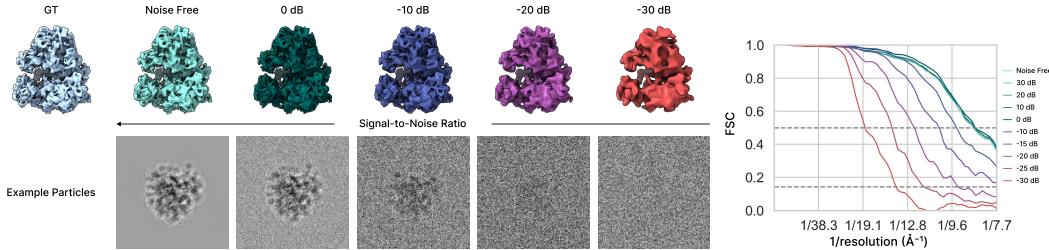


Figure 8: Reconstruction performance under varying SNRs. **(top)** Ground-truth (GT) and reconstructed volumes at different SNR levels. **(bottom)** Example synthetic particle images corresponding to each SNR. **(right)** FSC curves between GT and reconstructed volumes across SNRs.

We study the effect of SNR levels on cryoSplat with 5,120 Gaussians using the synthetic 80S dataset described in Sec. B. Figure 8 shows example synthetic particles, reconstructed volumes, and FSC curves under varying SNRs. FSCs are computed between the ground truth (GT) and reconstructed volumes. Overall, cryoSplat shows strong noise robustness: SNRs above 0 dB have little impact on reconstruction; high resolution is preserved even under severe noise at -15 dB, and reconstructions remain satisfactory at -20 dB, despite particles being barely visible.

1026

E.6 CORRECTED FSC

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

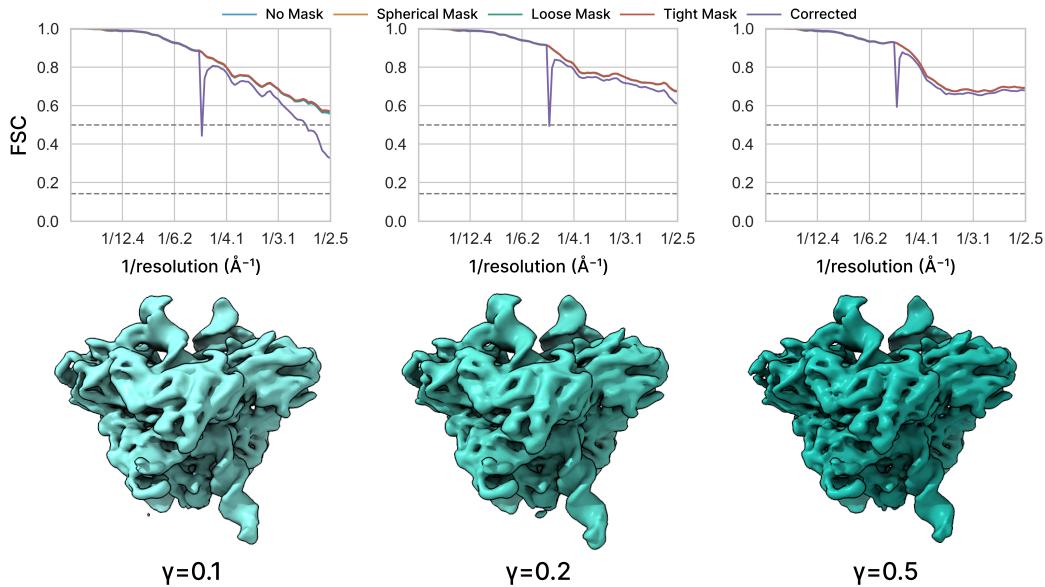


Figure 9: Reconstruction using 30,000 Gaussians under different exponential decay parameters γ . For each setting, the half-map FSC, masked FSC, and corrected FSC curves are plotted together for better comparison. When $\gamma = 0.1$, the half-map FSC exceeds the corrected FSC, indicating an overestimation of resolution due to strong self-consistency. Increasing γ reduces this discrepancy, and at $\gamma = 0.5$ the corrected FSC closely matches the half-map FSC, suggesting that no detectable artificial bias is introduced.

Half-map FSC is fundamentally a measure of self-consistency rather than visible structural detail. It is interpreted as a proxy for resolution under the assumption that (i) the SNR decreases at high frequencies, and therefore (ii) two independently reconstructed half maps should lose consistency in the high-resolution regime. If a method maintains strong self-consistency even under low SNR, whether due to genuine robustness or to an inherent bias, the half-map FSC may overestimate the true resolution. For example, if a method consistently overfits random noise into reproducible artificial patterns, the two half maps may show spurious agreement.

Corrected FSC (Chen et al., 2013) is specifically designed to detect such artificial bias. It does so by randomizing Fourier phases: half maps with randomized phases should share no meaningful consistency. Any remaining agreement is therefore interpreted as bias and subtracted from the FSC curve. In our results shown in Fig. 9, we indeed observe a discrepancy between the half-map FSC and the corrected FSC, indicating that the half-map FSC tends to overestimate cryoSplat’s resolution. Importantly, however, this discrepancy can be removed by slightly increasing the exponential decay parameter γ . When $\gamma = 0.5$, the corrected FSC closely follows the original half-map FSC, suggesting that no detectable artificial bias is introduced by cryoSplat.

We also observe that FSC curves computed under different masking levels remain tightly aligned. This indicates that cryoSplat suppresses noise effectively outside the signal-support region: the noise level is so low that applying a mask has virtually no effect on the FSC, consistent with our synthetic-data experiment in Sec. E.5, showing the strong denoising capability of GMM-based representations.

Having ruled out detectable artificial bias via corrected FSC, we next analyze why the half-map FSC may still overestimate the resolution for cryoSplat. We attribute this to the GMM’s strong ability to maintain self-consistency during optimization. This property is largely driven by the inherently low-pass nature of Gaussian kernels. On the one hand, the low-pass behavior encourages the model to fit low-frequency components more readily, yielding smoother volumes. As we show later in Sec. E.7, this effect can be substantially mitigated by increasing the number of Gaussians, which restores high-frequency detail. On the other hand, the same low-pass property also contributes to excellent self-consistency: both quantitative metrics and qualitative assessment show that this consistency does

not manifest as harmful artifacts. However, because the self-consistency is exceptionally strong, conventional FSC-based resolution estimation can become overly optimistic. As a result, qualitative assessment and domain-expert evaluation remain the most trustworthy way to evaluate the effective resolution produced by cryoSplat. Developing rigorous and objective quality metrics tailored to GMM-based cryo-EM reconstruction remains an important open question.

E.7 RECONSTRUCTION BEHAVIOR IN THE ULTRA-HIGH GAUSSIAN COUNT REGIME

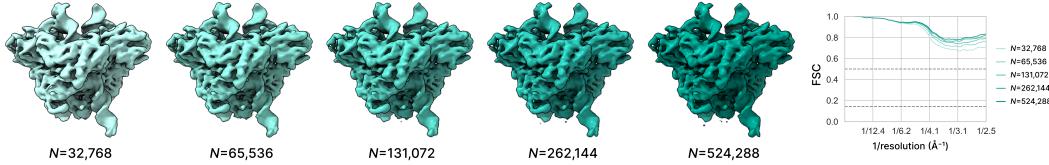


Figure 10: Qualitative and quantitative evaluation of reconstruction performance with ultra-high Gaussian counts. **(Left)** Reconstructed 3D volumes. **(Right)** FSC curves are plotted for quantitative evaluation. Gray dashed lines indicate the standard resolution thresholds of 0.5 and 0.143.

To further examine the representational capacity and optimization behavior of GMM-based representations, we increase the Gaussian count from 32,768 up to 524,288, as shown in Fig. 10. To ensure that the increased capacity can be fully utilized, we raise the exponential decay parameter to $\gamma = 0.5$ and train for 10 epochs.

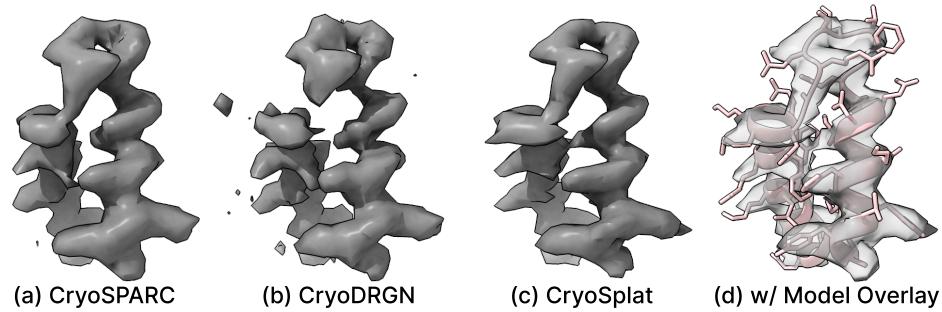


Figure 11: Feature comparison at an α -helix in the RAG1–RAG2 core region cropped from the reconstructed volume. CryoSplat with 524,288 Gaussians produces a sharp and continuous helical density that is comparable to cryoSPARC, while cryoDRGN shows breaks along the backbone and retains visible noise. Overlay with the atomic model demonstrates that cryoSplat accurately recovers the backbone trace and resolves larger side-chain features, including aromatic rings.

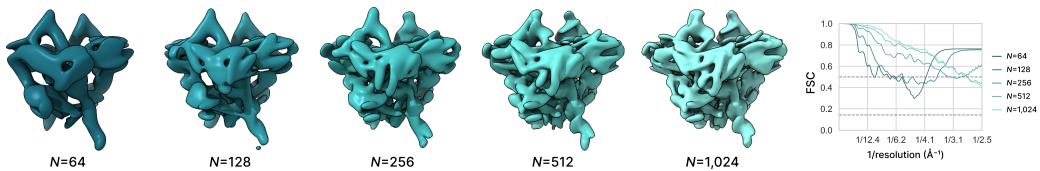
Increasing the number of Gaussians consistently improves both quantitative and qualitative reconstruction quality. We observe monotonic increases in FSC scores as the Gaussian count grows, together with visibly sharper structural details. At the highest resolution regime (524k Gaussians), many fine-scale features such as α -helices become clearly resolved, as shown in Fig. 11.

This is surprising given the common expectation that larger models are harder to optimize and more prone to unstable convergence. Instead, the opposite effect is observed: larger GMMs exhibit better consistency between half-maps and converge to higher FSC, indicating more stable optimization dynamics in the ultra-high-capacity setting. This suggests that additional Gaussians provide finer local modeling flexibility, allowing the renderer to better accommodate noise and subtle structural variability without overfitting.

Finally, even at 524,288 Gaussians, the model remains substantially more compact than voxel-based grids, since $524,288 \times 11 < 256^3$. However, this ultra-high-Gaussian regime currently incurs a significantly increased computational cost, making it impractical for routine use. We view these results primarily as an exploration of the upper limit of GMM-based representations; future improvements in optimization and implementation may help reduce the computational burden.

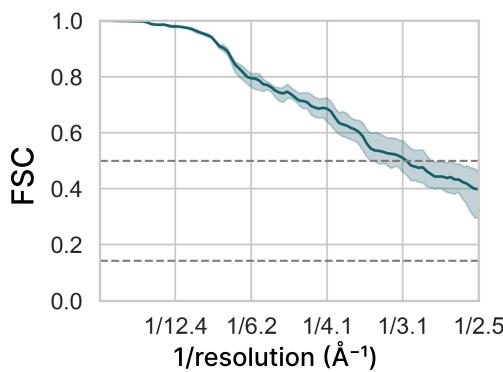
1134
1135

E.8 RECONSTRUCTION BEHAVIOR IN THE LOW GAUSSIAN COUNT REGIME

1136
1137
1138
1139
1140
11411142
1143
1144
1145
Figure 12: Qualitative and quantitative evaluation of reconstruction performance with low Gaussian
counts. **(Left)** Reconstructed 3D volumes. **(Right)** FSC curves are plotted for quantitative evalua-
tion. Gray dashed lines indicate the standard resolution thresholds of 0.5 and 0.143.1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
We additionally investigate how GMM-based reconstructions behave when the number of Gaussians
is severely limited, reducing the count from 1,024 down to 64, as shown in Fig. 12. As the Gaussian
count decreases, both quantitative and qualitative reconstruction quality degrade consistently. The
reconstructed densities become progressively blurred and blob-like, and once the count falls below
1,024, the maps begin to exhibit clearly visible Gaussian ellipsoids in place of coherent structural
details. This reflects the insufficient spatial degrees of freedom available to represent localized struc-
tural details. The FSC curves also reveal a distinctive failure pattern when the number of Gaussians
becomes extremely small. Instead of exhibiting a smooth decay, the curves dip at intermediate fre-
quencies and then rise again at high frequencies. This rise does not reflect genuine high-frequency
agreement; it occurs because the high-frequency components are largely absent, and the Fourier am-
plitudes of both half-maps approach zero in these bands, which leads to unreliable consistency and
inflated FSC values. Such low-Gaussian-count configurations are not practical for real reconstruc-
tion tasks. Although computational cost is reduced, the representation becomes too under-resolved
to yield reliable maps, and both qualitative appearance and quantitative metrics lose interpretability.

1160

E.9 ABLATION ON INITIALIZATION STRATEGY

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
11741175
1176
1177
1178
1179
Figure 13: Using 2,048 Gaussians, the RAG1–RAG2 complex (EMPIAR-10049) is reconstructed
under 10 random seeds (0–9). The figure shows the mean half-map FSC with the
minimum–maximum envelope across these runs. The narrow band indicates that cryoSplat converges
to highly consistent results across initializations, demonstrating strong robustness and stability.1180
1181
1182
1183
1184

We also examine how sensitive the method is to the choice of initialization. First, we fix the GMM configuration and only vary the random seed from 0 to 9. For each run, we compute the half-map FSC curve and then aggregate the results into a mean curve with an upper and lower envelope over all seeds. As is shown in Fig. 13, the envelopes are tight across all frequencies, indicating that both convergence behavior and final result are highly robust to random seed choices.

1185
1186
1187

A more challenging setting arises when the underlying structure exhibits substantial heterogeneity or ambiguity in its initial conformation. EMPIAR-10076 is a representative example, containing pronounced conformational flexibility across the complex. To evaluate whether such flexibility affects the stability of the initialization, we vary the spatial spread of the initial Gaussian locations

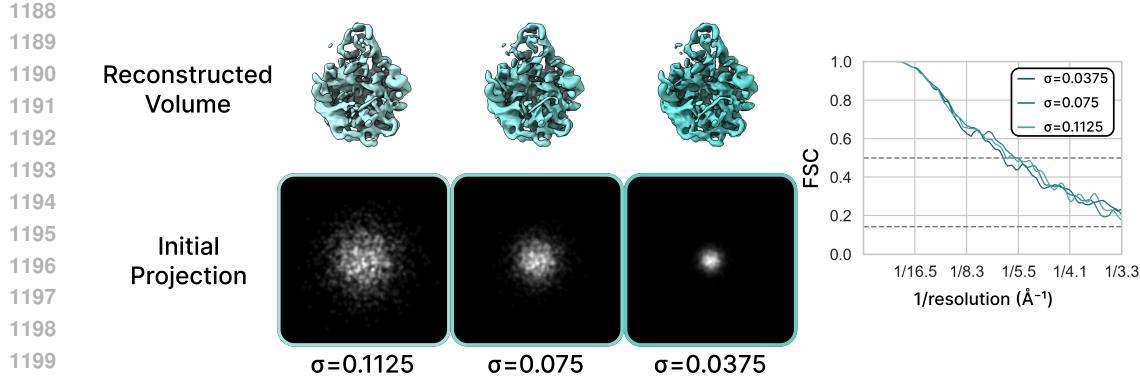


Figure 14: Initialization ablation on EMPIAR-10076 using 2,048 Gaussians. Reconstructed volumes (top-left), initial Gaussian projections (bottom-left), and FSC curves (right) under three initialization spreads $\sigma \in 0.0375, 0.075, 0.1125$. Both visual reconstructions and FSCs remain nearly identical across all settings, indicating that cryoSplat is highly robust to the choice of initialization.

by sampling with $\sigma \in 0.0375, 0.075, 0.1125$, which approximately correspond to placing Gaussians within spherical regions of radii $3E/2, E/2$, and $E/4$, respectively. The resulting initial projections under these settings, shown in Fig. 14, clearly illustrate the differences. Notably, the smallest spread ($\sigma = 0.0375$) does not cover the full region where the signal is present and therefore represents a substantially under-dispersed initialization. Despite this, all configurations converge to nearly identical reconstructions on this heterogeneous dataset: both the FSC curves and the visualized volumes are highly consistent. This indicates that even in cases with significant flexibility and ambiguous starting configurations, the optimization remains robust to the choice of initialization.