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ABSTRACT

As a critical modality for structural biology, cryogenic electron microscopy (cryo-
EM) facilitates the determination of macromolecular structures at near-atomic res-
olution. The core computational task in single-particle cryo-EM is to reconstruct
the 3D electrostatic potential of a molecule from noisy 2D projections acquired
at unknown orientations. Gaussian mixture models (GMMs) provide a continu-
ous, compact, and physically interpretable representation for molecular density
and have recently gained interest in cryo-EM reconstruction. However, existing
methods rely on external consensus maps or atomic models for initialization, lim-
iting their use in self-contained pipelines. In parallel, differentiable rendering
techniques such as Gaussian splatting have demonstrated remarkable scalability
and efficiency for volumetric representations, suggesting a natural fit for GMM-
based cryo-EM reconstruction. However, off-the-shelf Gaussian splatting meth-
ods are designed for photorealistic view synthesis and remain incompatible with
cryo-EM due to mismatches in the image formation physics, reconstruction ob-
jectives, and coordinate systems. Addressing these issues, we propose cryoSplat,
a GMM-based method that integrates Gaussian splatting with the physics of cryo-
EM image formation. In particular, we develop an orthogonal projection-aware
Gaussian splatting, with adaptations such as a view-dependent normalization term
and FFT-aligned coordinate system tailored for cryo-EM imaging. These inno-
vations enable stable and efficient homogeneous reconstruction directly from raw
cryo-EM particle images using random initialization. Experimental results on real
datasets validate the effectiveness and robustness of cryoSplat over representative
baselines. The code will be released upon publication.

1 INTRODUCTION

Single particle cryogenic electron microscopy (cryo-EM) has emerged as a transformative tool in
structural biology, enabling visualization of macromolecular complexes at atomic or near-atomic
resolution without crystallization (Kühlbrandt, 2014; Nogales, 2016; Renaud et al., 2018). Central
to cryo-EM is the computational task of reconstructing a 3D volume from a large collection of
2D projection images, each corresponding to a different, unknown viewing direction of identical
particles embedded in vitreous ice.

This inverse problem is inherently ill-posed and computationally challenging. First, cryo-EM im-
ages are severely corrupted by noise due to the low electron dose required to prevent radiation dam-
age. For experimental datasets, the signal-to-noise (SNR) could be as low as around −20 dB (Ben-
dory et al., 2020; Bepler et al., 2020). Second, the orientations (poses) of individual particles are
unknown and must be inferred jointly with the 3D structure. Third, many biological samples exhibit
structural heterogeneity, with multiple conformational states coexisting in the same dataset.

These difficulties underscore two central objectives in cryo-EM image analysis: ab initio recon-
struction, which aims to estimate both the 3D structure and particle poses directly from raw data
without prior models, and heterogeneous reconstruction, which seeks to disentangle and reconstruct
multiple structural states from the dataset. Both objectives fundamentally rely on the availability of
a robust and efficient homogeneous reconstruction method, which assumes all particles correspond
to a single structure and serves as a building block for more complex inference.
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Approaches to homogeneous reconstruction include methods based on backprojection, iterative
expectation-maximization with voxel-based volumes (Tang et al., 2007; Scheres, 2012; Punjani
et al., 2017; Shekarforoush et al., 2024), and more recently, neural representation learning (Zhong
et al., 2021a;b), which models the 3D volume using coordinate-based networks. In parallel, Gaus-
sian mixture models (GMMs) have received attention for their continuous, compact, and physically
interpretable parameterization of molecular density (Chen & Ludtke, 2021; Chen et al., 2023a). No-
tably, GMMs offer a natural connection to atomic models and can represent fine structural details
using fewer parameters (Chen et al., 2023b; Li et al., 2024; Schwab et al., 2024; Chen, 2025).

Despite their conceptual appeal, existing GMM-based methods (Chen & Ludtke, 2021; Chen et al.,
2023a;b; Li et al., 2024; Schwab et al., 2024; Chen, 2025) for cryo-EM reconstruction rely on non-
trivial prerequisite steps. They typically rely on consensus volumes from external pipelines, or
even atomic models, for initialization, and have not demonstrated stable convergence when directly
optimizing from experimental images. In fact, no prior method achieves reliable GMM-based re-
construction even under known particle poses, due to the inherent difficulty of optimizing mixture
parameters in extreme noise. As a result, GMMs lack a self-contained and stable formulation that
can serve as a backbone for broader reconstruction workflows.

In this work, we propose cryoSplat, a GMM-based homogeneous reconstruction method that fills
this foundational gap. Given known particle poses, cryoSplat performs stable and efficient recon-
struction directly from raw cryo-EM projection images, starting from random initialization and re-
quiring no external priors. Inspired by recent advances in 3D Gaussian Splatting (3DGS) by Kerbl
et al. (2023), we model the 3D density as a mixture of anisotropic Gaussians and project them into
2D using a novel differentiable orthographic splatting algorithm consistent with cryo-EM physics.
To support practical scalability and training efficiency, we develop a CUDA-accelerated real-space
renderer that enables fast rasterization and optimization of the GMM.

Our contributions can be summarized as follows:

• A self-contained GMM-based reconstruction method: We present cryoSplat as the first
method capable of performing cryo-EM homogeneous reconstruction from a randomly ini-
tialized Gaussian mixture model without an external prior, thereby establishing the missing
foundation needed to develop GMMs into standalone reconstruction tools.

• A physically accurate projection model: We design a splatting algorithm under orthogo-
nal projection tailored to cryo-EM image formation, enabling differentiable projection of
anisotropic Gaussians in real space.

• An efficient implementation: We adapt the CUDA tile-based framework of 3DGS to cryo-
EM imaging, introducing modified forward equations and re-derived gradients, which en-
ables fast optimization of GMMs with tens of thousands of Gaussians.

• Experimental validation: We demonstrate the effectiveness of cryoSplat on real datasets,
showing that it converges reliably from random initialization and achieves reconstruction
quality outperforming state-of-the-art methods.

2 RELATED WORK

2.1 VOLUME REPRESENTATION IN CRYO-EM

In cryo-EM experiments, purified biomolecules are rapidly frozen in a thin layer of vitreous ice,
where each particle adopts a random orientation. A high-energy electron beam passes through the
specimen, interacts with the electrostatic potential of the particles, and is recorded on a detector as a
2D projection image (Singer & Sigworth, 2020). The goal of cryo-EM reconstruction is to recover
the 3D electrostatic potential, i.e., the volume, from a large set of such noisy and randomly oriented
2D projections. Central to cryo-EM reconstruction is the choice of volume representation.

2.1.1 VOXEL-BASED REPRESENTATION

Voxel-based representations are the most widely used in conventional cryo-EM software, e.g., RE-
LION (Scheres, 2016b), cryoSPARC (Punjani et al., 2017) and EMAN2 (Tang et al., 2007). The 3D
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volume is discretized into a regular grid of density values, enabling fast projection and reconstruc-
tion via FFT-based algorithms. Despite their practical success, voxel grids are memory-intensive,
which limits their compatibility with modern learning-based analysis frameworks.

2.1.2 NEURAL FIELD

Neural fields represent the volume as a continuous function parameterized by neural networks.
These methods (Zhong et al., 2021a;b; Levy et al., 2022a;b; 2025) offer differentiability, implicit
smoothness, and natural compatibility with learning-based heterogeneous analysis. However, the
implicit nature of neural fields often comes at the cost of interpretability, and such models are typi-
cally slow to train and difficult to constrain with biological priors.

2.1.3 GAUSSIAN MIXTURE MODEL

Gaussian mixture models have a long history in structural biology, with early uses for molecular ap-
proximation (Grant & Pickup, 1995; Grant et al., 1996; Kawabata, 2008). E2GMM (Chen & Ludtke,
2021) was among the first to apply GMMs to cryo-EM heterogeneous reconstruction. Like neural
fields, GMMs can approximate any smooth density function and support differentiable optimization.
More importantly, GMMs provide an explicit and interpretable representation that naturally links to
atomic structures. Recent studies (Chen et al., 2023a;b; Li et al., 2024; Ducrocq et al., 2024; Schwab
et al., 2024; Chen, 2025; Shekarforoush et al., 2025) have shown that GMMs can capture molecu-
lar flexibility by modeling atomic motion directly, making them highly suitable for heterogeneous
reconstruction and downstream structural analysis.

However, existing GMM-based methods typically require initialization from an externally recon-
structed consensus map or even an atomic model. Without such guidance, random initialization
leads to unstable optimization and poor reconstruction quality. Our work addresses this limitation
by introducing a GMM-based reconstruction pipeline that can be stably trained from scratch.

2.2 GAUSSIAN SPLATTING

3DGS (Kerbl et al., 2023) is a recent differentiable rendering technique developed for real-time
novel view synthesis. It represents a 3D scene as a collection of anisotropic Gaussians and ren-
ders images via rasterization-based accumulation and alpha blending (Zwicker et al., 2002). While
3DGS achieves high visual fidelity in synthetic and real-world RGB datasets, as a volume rendering
method, it is not a physically accurate model of natural image formation (Huang et al., 2024).

Although the original 3DGS formulation is not physically consistent with natural image formation,
its volume rendering framework closely aligns with the cryo-EM imaging model, where each image
arises from an orthographic line integral of electrostatic potential modulated by the contrast transfer
function (CTF). Leveraging this alignment, we adapt splatting to cryo-EM by rederiving the pro-
jection of anisotropic Gaussians under cryo-EM physics, replacing heuristic alpha blending with
physically accurate line integrals and incorporating CTF modulation.

3 METHOD

3.1 OVERVIEW

Our goal is to achieve physically accurate and computationally efficient cryo-EM reconstruction by
leveraging a Gaussian Mixture Model (GMM). To this end, we propose cryoSplat, a differentiable
framework that represents the 3D electrostatic potential of a specimen as a set of anisotropic Gaus-
sians and directly simulates the cryo-EM image formation process in real space, faithfully adhering
to the physics of transmission electron microscopy.

Building upon recent progress in differentiable volume rendering, particularly the Gaussian splatting
framework by Kerbl et al. (2023), we adopt a tile-based rasterization strategy for scalable and effi-
cient computation. However, the original 3DGS formulation is not directly applicable to cryo-EM
due to several fundamental mismatches: (i) it employs perspective projection consistent with a pin-
hole camera model, in contrast to the orthographic projection in cryo-EM imaging; (ii) it is tailored

3
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Figure 1: Cryo-EM reconstruction aims to recover a 3D volume (a) from a large set of 2D particle
images (b). (b) Purified biomolecules with random orientations are embedded in a thin layer of
vitreous ice. The electrostatic potential of the sample interacts with transmitted electrons, forming
a micrograph that contains 2D projections of the molecules. Individual particle images are ex-
tracted from the micrograph; they are extremely noisy and modulated by highly oscillatory CTFs.
(c) Fourier slice theorem: the 2D Fourier transform of a particle image corresponds to a central slice
of the 3D Fourier transform of the volume. (d) Overview of cryoSplat. An anisotropic GMM repre-
senting the 3D volume is transformed to the projection direction, orthogonally projected onto a 2D
image plane using a fast differentiable rasterizer, and modulated by the oscillatory CTF to simulate a
physically accurate projection. The GMM parameters are optimized via gradients propagated from
the discrepancy between the simulated and observed particle images. The resulting GMM can be
voxelized to obtain the final 3D volume.

for novel-view synthesis (i.e., photorealistic 2D appearance) rather than for physical 3D density re-
construction required in cryo-EM; and (iii) its image-centered coordinate system is incompatible
with the FFT-aligned conventions assumed in cryo-EM reconstruction.

To address these issues, cryoSplat introduces several key adaptations: (i) we replace heuristic alpha
blending with physically grounded line integrals to reflect the transmission nature of electron imag-
ing; (ii) we fix the normalization between 3D-to-2D transformation and apply consistent learning
rates across all parameters to ensure stable optimization; and (iii) we align the rasterization coordi-
nate system with the FFT grid, allowing accurate gradient propagation through CTF modulation.

These modifications collectively enable cryoSplat to perform stable, end-to-end differentiable re-
construction from raw cryo-EM particle images, starting from random initialization without relying
on externally provided volumes or atomic models.

3.2 IMAGE FORMATION

As shown in Fig. 1(b), electrons traverse a vitrified specimen, and the transmitted wavefronts un-
dergo phase shifts due to the specimen’s electrostatic potential (Singer & Sigworth, 2020). Under the
weak phase approximation, the phase shifts are linearly related to the 3D potential (volume), and the
image formed at the detector is a line integral (projection) of this potential along the beam direction,
further convolved with H : R2→R, the point spread function (PSF) of the imaging system.

In homogeneous reconstruction, it is assumed that all particle images Y : R2 → R correspond to
identical copies of a single 3D volume V : R3 → R, and that any conformational or compositional
heterogeneity is negligible. Under this assumption, the image formation model can be expressed as:

Y (rx, ry) = H(rx, ry) ∗
∫
R
V (W⊤r + t)drz + ϵ, (1)

where r = [rx, ry, rz]
⊤ are the 3D Cartesian coordinates in real space, W ∈ SO(3) is the 3D pose

of the particle, and t = [tx, ty, 0]
⊤ is the in-plane translation, accounting for imperfect centering

during particle cropping. The noise term ϵ is modeled as independent, zero-mean Gaussian noise.
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3.3 CRYOSPLAT

3.3.1 ANISOTROPIC GMM

Anisotropic GMMs are developed to represent the volume, which can be written in the form

V (r) =

N∑
i=1

AiGi(r), (2)

where N denotes the Guassian count and Ai is the amplitude of the i-th normalized Gaussian Gi(r).

By substituting Eq. (1), we obtain the full forward process of cryoSplat. Specifically, we apply a
viewing transformation to align the GMM to the target orientation, orthographically project each
Gaussian along the z-axis to form a 2D image, and convolve the result with the PSF:

X(rx, ry) = H(rx, ry) ∗
N∑
i=1

Ai

∫
R
Gi(W

⊤r + t)drz. (3)

Since the integral is linear, each Gaussian contributes independently to the final image. We thus
focus on a single Gaussian and omit the subscript i in the following discussion. A normalized 3D
Gaussian is defined as:

G(r|µ,Σ) =
1

(2π)
3
2 |Σ| 12

exp
(
− 1

2
(r − µ)⊤Σ−1(r − µ)

)
, (4)

where µ ∈ R3 and Σ ∈ R3×3 denote the mean (position) and the covariance matrix (shape),
respectively. The determinant |Σ| ensures proper normalization. Following Kerbl et al. (2023), to
guarantee the positive semidefinite property, we construct the covariance matrix as:

Σ = RSS⊤R⊤, (5)

where S = diag(s) is a diagonal scaling matrix and R ∈ SO(3) is a rotation matrix. In our
implementation, we store the scaling vector s = [sx, sy, sz]

⊤ and parameterize R using a quaternion
q = [qw, qx, qy, qz]

⊤. To ensure positivity and stable gradients during optimization, we apply a
softplus function to both the amplitude A and the scaling vector s. The quaternion q is normalized
to ensure it represents a valid rotation. Altogether, each anisotropic Gaussian is parameterized by
the 11-dimensional set {µx, µy, µz, sx, sy, sz, qw, qx, qy, qz, A}.

3.3.2 VIEWING TRANSFORMATION

The viewing transformation is the first step in simulating image formation, aligning each Gaus-
sian with a given projection direction. Since the parameters µ and Σ describe Gaussians in world
coordinates, we must transform them into the image-space coordinates before projection.

According to the derivation in Zwicker et al. (2002), applying an affine transformation to a Gaussian
results in another Gaussian with appropriately transformed parameters. In our case, the transforma-
tion consists of a rotation W ∈ SO(3) and a 2D in-plane translation t ∈ R3, leading to:

Ġ(r|µ̇, Σ̇) = G(W⊤r + t|µ,Σ), (6)

where the transformed mean and covariance are given by µ̇ = W (µ− t) and Σ̇ = WΣW⊤.

3.3.3 ORTHOGONAL PROJECTION

The orthogonal projection closely aligns with the physical principles of cryo-EM. Mathematically,
it corresponds to a line integral of a 3D Gaussian along the z-axis, resulting in a 2D Gaussian,
hereafter referred to as a splat, G̃(r̃|µ̃, Σ̃):

G̃(r̃|µ̃, Σ̃) =

∫
R
Ġ(r|µ̇, Σ̇)drz. (7)

This operation effectively integrates the 3D Gaussian along the projection axis, preserving its Gaus-
sian form in 2D. The resulting closed-form expression is:

G̃(r̃|µ̃, Σ̃) =
1

2π|Σ̃| 12
exp

(
− 1

2
(r̃ − µ̃)⊤Σ̃−1(r̃ − µ̃)

)
, (8)
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where r̃ = [rx, ry]
⊤ denotes the 2D Cartesian coordinates in real space.

In prior works, such as 3DGS, the normalization term 1/(2π|Σ̃| 12 ) is often omitted, as their primary
focus is on photorealistic novel view synthesis rather than the physical fidelity of the underlying
3D representation. However, in cryo-EM reconstruction, the ultimate goal is to recover the correct
3D volume. Omitting this view-dependent normalization introduces bias in amplitude and leads to
incorrect reconstructions. Therefore, unlike 3DGS, we retain the normalization term to preserve the
quantitative correctness of the model.

After projection, the final image is constructed by summing the weighted contributions of all splats
and applying the PSF:

X(rx, ry) = H(rx, ry) ∗
N∑
i=1

AiG̃i(r̃). (9)

3.3.4 FAST DIFFERENTIABLE RASTERIZATION

We adopt the efficient tile-based rasterization framework from Kerbl et al. (2023), which enables
scalable and differentiable processing of tens of thousands of Gaussians via per-tile accumulation.
Unlike 3DGS, which uses alpha blending for photorealistic rendering, we modify the rasterization to
directly sum contributions of splats, in accordance with the physical transmission model in cryo-EM.

For an image X∈RD×D, the original 3DGS implementation places the continuous coordinate cen-
ter at [(D − 1)/2, (D − 1)/2]⊤, i.e., halfway between two discrete pixels. In contrast, FFT-based
image formation assumes the origin is located at the integer grid point [⌊D/2⌋, ⌊D/2⌋]⊤. To ensure
compatibility with FFT-based forward and backward modeling, we shift the rasterization coordinates
by half a pixel so that the image center aligns with the FFT grid. This alignment eliminates phase
inconsistencies and enables accurate electron projection simulation, while preserving the compu-
tational efficiency of the 3DGS architecture. Let X,Y ∈ RD×D be the matrices representing the
GMM-based projection X and the observed image Y after rasterization, respectively.

3.3.5 LOSS FUNCTION

Unlike previous GMM-based methods that rely on specially designed losses with complex regular-
ization or constraints to ensure stable optimization, we adopt a much simpler formulation. Specifi-
cally, we directly apply the mean squared error (MSE) loss between the GMM-based projection X
and the observed image Y : L = ∥X − Y ∥22. Despite its simplicity, this loss formulation leads to
stable and fast convergence in practice, without requiring additional regularization terms.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate our method on four publicly available cryo-EM datasets from the Electron
Microscopy Public Image Archive (EMPIAR) (Iudin et al., 2016): EMPIAR-10028 (Pf 80S ribo-
some) (Wong et al., 2014), EMPIAR-10049 (RAG complex) (Ru et al., 2015), EMPIAR-10076 (E.
coli LSU assembly) (Davis et al., 2016), and EMPIAR-10180 (pre-catalytic spliceosome) (Plaschka
et al., 2017). These datasets span a range of structural complexity and image quality, from rigid
assemblies with high contrast to highly heterogeneous macromolecular machines. For each dataset,
we use the provided particle images, consensus pose estimates, and CTF parameters. All reconstruc-
tions are performed under the homogeneous assumption.

Evaluation metrics. Since ground truth volumes are unavailable for real datasets, we follow stan-
dard practice and assess reconstruction quality using the gold standard Fourier Shell Correlation
(FSC) (Van Heel & Schatz, 2005). Each dataset is split evenly into two halves, and the method is
applied independently to each. Reconstructed volumes are compared in Fourier space by comput-
ing FSC as a function of spatial frequency, quantifying their consistency across frequency shells.
Resolution is defined as the spatial frequency where the FSC curve drops below the 0.143 threshold.
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Figure 2: Qualitative and quantitative comparison of voxel-based, neural, and GMM-based represen-
tations. (Left) Final 3D reconstructions on four real datasets visualized with ChimeraX (Pettersen
et al., 2021). (Right) FSC curves are plotted for quantitative evaluation. Gray dashed lines indicate
the standard resolution thresholds of 0.5 and 0.143, reported in Angstroms (Å). CryoSplat consis-
tently achieves higher resolution across all datasets.

CryoSPARC CryoDRGN CryoSplat, N=2,048 CryoSplat, N=3,072 CryoSplat, N=5,120 CryoSplat, N=10,000 CryoSplat, N=30,000

EMPIAR-10028 EMPIAR-10049 EMPIAR-10076 EMPIAR-10180

FS
C

1/resolution (Å⁻¹) 1/resolution (Å⁻¹) 1/resolution (Å⁻¹)1/resolution (Å⁻¹)

Figure 3: Reconstruction performance with varying numbers of Gaussians. Increasing the number
improves accuracy and robustness.

Implementation details. For all experiments, particle images from EMPIAR-10028, 10076, and
10180 are downsampled to 256 × 256, while EMPIAR-10049 is used at its original 192 × 192
resolution. Published particle translations are applied to the observed images via phase shifting
in Fourier space prior to reconstruction, rather than through the GMM viewing transform. We do
not apply any windowing to the observed particle images during preprocessing. The 3D volume is
defined over the domain [−E,E]3, and each 2D projection is assumed to lie within [−E,E]2 in the
image plane, where E = 0.5 defines the spatial extent. Gaussians are initialized with random means
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Figure 4: Runtime efficiency across reconstruction methods at different resolutions (D = 192 and
D = 256). Frame rates (FPS) are measured under increasing numbers of Gaussians (log-scaled).

µ ∼ N (0, 0.0752I), isotropic scales sx = sy = sz = 0.0075, identity quaternion q = [1, 0, 0, 0]T ,
and amplitude A = 1/(2N), where N is the number of Gaussians. This initialization reflects the
empirical prior that most particle density lies within a spherical region of radius E/2. The variance
0.0752 is chosen, following the standard three-sigma rule, ensuring that most Gaussians start within
the high-density region. A small initial scale further encourages localized support. We provide
additional discussion in Appendix D. All parameters are trainable. We use Adam (Kingma & Ba,
2014) with batch size 1, learning rate 0.001, and exponential decay (γ = 0.1) at each epoch. All
GMMs are trained for 5 epochs. For the voxel-based baseline, we run cryoSPARC’s “Homogeneous
Reconstruction Only” job using the same poses and CTF parameters. For neural representation
learning, we follow cryoDRGN’s default configuration: three 1,024-node layers, trained for 50
epochs. All experiments are run on a single NVIDIA GeForce RTX 3090.

4.2 EVALUATION ON REAL DATASETS

We evaluate the performance of different volume representations on real cryo-EM datasets under
a homogeneous reconstruction setting. To ensure a fair comparison focused solely on the choice
of volume representation, all methods reconstruct consensus maps using the same set of published
particle poses, without performing pose estimation. Our evaluation focuses on two aspects: (i) the
ability to reconstruct high-quality consensus maps, and (ii) robustness to noise and imperfect pose
assignments. Since related methods (Zhong et al., 2021a;b; Levy et al., 2022a;b; 2025) adopt cryo-
DRGN’s neural field implementation and differ mainly in pose estimation, we focus our comparison
on cryoDRGN. Accordingly, we evaluate three representative approaches: voxel-based backprojec-
tion cryoSPARC (Punjani et al., 2017), the neural representation method cryoDRGN (Zhong et al.,
2021a), and our proposed GMM-based method cryoSplat. Visualizations of the reconstructed vol-
umes are shown in Fig. 2, and spatial resolution is quantified using gold-standard FSC curves. Each
volume of cryoSplat is represented using 30,000 Gaussians.

The Pf 80S ribosome (EMPIAR-10028) is relatively easy to reconstruct due to its high-contrast im-
ages and structurally stable particles. All methods achieve high-resolution results (3.80 Å) and
strong FSC agreement across the spectrum. cryoDRGN yields slightly higher FSC values at inter-
mediate frequencies, while cryoSplat outperforms all baselines at high spatial frequencies, demon-
strating its ability to recover fine structural details.

The RAG complex (EMPIAR-10049) poses greater challenges due to symmetry-induced pose de-
generacy and flexible regions such as the DNA elements and the nonamer binding domain (NBD),
indicated by arrows. CryoSplat outperforms the baselines with a higher FSC, achieving a resolution
of 2.49 Å. Unlike the baselines, cryoSplat reconstructs the DNA elements and the NBD with mini-
mal density fragments. Its FSC curve remains consistently above those of other methods across all
spatial frequencies, highlighting its robustness to pose degeneracy and structural variability.

This LSU assembly dataset (EMPIAR-10076) contains substantial compositional and conforma-
tional heterogeneity, making consensus reconstruction particularly challenging. Both FSC analysis
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and visualization show that cryoSplat is more resilient under such conditions, achieving a resolution
of 3.30 Å with fewer fragments than voxel-based or neural methods, as indicated by the red circle.

The spliceosome dataset (EMPIAR-10180) features large-scale motions of the SF3b indicated by
the red circle, making consensus reconstruction particularly challenging. The reconstructions from
cryoSPARC and cryoDRGN show pronounced high-frequency spurious spikes in this region, while
cryoSplat is more robust to such motions and achieves a resolution of 4.26 Å. FSC analysis further
confirms that cryoSplat significantly outperforms the baselines across the frequency range.

CryoSplat consistently converges within 5 epochs, with FSC curves from the 4th and 5th epochs
tightly overlapping, indicating stable optimization and improved generalization.

4.3 ABLATION STUDIES

This section reports ablation studies of our approach. More results can be found in Appendix E.

Number of Gaussians. Fig. 3 shows the FSC curves for cryoSplat with varying numbers of Gaus-
sians. In general, increasing the number of Gaussians leads to improved FSC, as a denser GMM
provides greater representational capacity. While cryoSplat performs well on most datasets, its rel-
ative performance varies due to differences in structural complexity and dataset-specific challenges.
On EMPIAR-10028, cryoSplat reaches a resolution of 3.8 Å under all settings. While configura-
tions with fewer than 10,000 Gaussians exhibit lower FSC values than cryoDRGN and cryoSPARC
across most frequencies, the curves intersect at the highest frequency, indicating comparable final
resolution. For EMPIAR-10049, all cryoSplat settings significantly outperform both cryoSPARC
(4.23 Å) and cryoDRGN (4.07 Å), achieving a resolution of 2.49 Å. Moreover, the FSC curves of all
cryoSplat variants remain consistently above those of the two baselines across the entire frequency
range. For EMPIAR-10076, the 30,000-Gaussian model clearly outperforms other settings; even
with fewer Gaussians, cryoSplat still surpasses the baselines, reaching 3.3 Å. For EMPIAR-10180,
the models with 10,000 and 30,000 Gaussians achieve the best FSC, reaching 4.3 Å, while sparser
GMMs remain competitive at high spatial frequencies. Overall, we observe that using 10,000 Gaus-
sians is sufficient to provide a robust improvement in FSC-derived resolution metrics over baseline
methods across most datasets. Associated qualitative comparisons are provided in Appendix E.

Runtime efficiency. We compare the runtime efficiency of cryoSplat with other representation base-
lines, as shown in Fig. 4. Backprojection is the fastest, as it generates projections by directly index-
ing and interpolating from a dense voxel grid, but its cubic scaling makes it unsuitable for modern
non-linear heterogeneous analysis. For such tasks, neural representations and GMMs offer greater
flexibility. Under commonly used settings in heterogeneous reconstruction (e.g., 2,048–3,072 Gaus-
sians (Chen & Ludtke, 2021; Chen et al., 2023a;b)), cryoSplat achieves 2–3× higher FPS than cry-
oDRGN. Moreover, cryoSplat typically converges within 5 epochs, compared to 50 epochs required
by cryoDRGN, providing an overall speedup up to 30×. As discussed above, using 10,000 Gaus-
sians allows cryoSplat to consistently outperform baseline methods in FSC across most datasets,
while still maintaining a higher FPS than cryoDRGN. Even with an extremely large number of
Gaussians (e.g., 30,000), cryoSplat provides reasonable runtime performance for orthogonal projec-
tion operations. Overall, as shown in Fig. 4, cryoSplat demonstrates sub-linear time complexity with
respect to the number of Gaussians, offering a favorable trade-off between accuracy and efficiency.

5 CONCLUSION

We present cryoSplat, a novel GMM-based framework that integrates Gaussian splatting with the
physics of cryo-EM image formation. CryoSplat enables stable and efficient homogeneous recon-
struction directly from raw cryo-EM particle images, starting from random initialization without
relying on consensus volumes. Experimental results on real datasets demonstrate the effectiveness,
robustness, and faster convergence of cryoSplat compared to representative baselines.

Limitation and future work. While our current method assumes known poses and thus does not
qualify as an ab initio approach, cryoSplat establishes a principled foundation for future GMM-
based methods that aim to tackle ab initio and heterogeneous reconstruction. We believe cryoSplat
provides a missing piece in the broader goal of integrating GMMs into scalable and self-contained
cryo-EM reconstruction pipelines. These directions are left for future work.
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APPENDIX

A DETAILS OF METHOD

A.1 REAL SPACE RECONSTRUCTION

According to the Fourier slice theorem (Bracewell, 1956), illustrated in Fig. 1(c), the 2D Fourier
transform of a projection corresponds to a central slice of the 3D Fourier transform of the volume,
orthogonal to the projection direction and passing through the origin. Based on this property, an
alternative and widely adopted formulation models reconstruction directly in the Fourier domain,
where the image formation model becomes:

Ŷ (kx, ky) = Ĥ(kx, ky) · V̂ (W⊤k) · e−2πik⊤t + ϵ̂, (10)

where k = [kx, ky, 0]
⊤ denotes the Cartesian coordinates in Fourier space, and the 2D spectrum Ŷ ,

the CTF Ĥ and the 3D spectrum V̂ denote the Fourier transform of Y , H and V , respectively. The
noise term ϵ̂ is similarly modeled as independent, zero-mean Gaussian noise in the Fourier domain.

In this work, departing from most existing approaches that adopt Eq. (10), we instead build our
pipeline on Eq. (1), performing homogeneous reconstruction directly in real space.

A key reason we choose to operate in real space is that it allows us to fully exploit the fast rasteriza-
tion strategy from 3DGS. In high-resolution reconstructions, individual Gaussians in real space have
small spatial scales and affect only a few nearby tiles, as shown in Fig. 5(a). This locality means
that each GPU thread is responsible for a single pixel and only needs to process a small subset of all
Gaussians. In contrast, Gaussians in Fourier space become broad as resolution increases, leading to
near-global support. As a result, each pixel in the frequency domain must aggregate contributions
from nearly all Gaussians, making fast rendering impractical.

Real Space Fourier Space FFT-basedImage-centered

(b)(a)

Figure 5: Rasterization details. (a) A Gaussian with small spatial scales in real space during high-
resolution reconstruction overlaps at most four tiles, while in Fourier space it exhibits nearly global
support. Tile boundaries are indicated by lines. (b) For a 4 × 4 image, the origin of the continu-
ous coordinate system during rasterization is defined differently: FFT-based coordinates place it at
[2, 2]⊤, whereas image-centered coordinates place it at [1.5, 1.5]⊤. The origin is marked by a dot.
Image-centered coordinates induce a phase error of −πk/D, up to ±π/2 at the Nyquist frequency,
degrading reconstruction at high frequency. The effect diminishes with larger D but never vanishes.

A.2 COMPUTATIONAL DETAILS

Section 3.3.3 describes how a 3D Gaussian is projected along the z-axis to form a splat. As discussed
in Zwicker et al. (2002), the splat can be computed analytically by removing the z-axis components
from the mean and covariance:

µ̇ = [µ̇x, µ̇y, µ̇z]
⊤ ⇒ [µ̇x, µ̇y]

⊤ = µ̃

Σ̇ =

σ̇xx σ̇xy σ̇xz

σ̇xy σ̇yy σ̇yz

σ̇xz σ̇yz σ̇zz

⇒ [
σ̇xx σ̇xy

σ̇xy σ̇yy

]
= Σ̃

(11)

thereby enabling an efficient computation of Eq. (7).
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As discussed in Sec. 3.3.4 and shown in Fig. 5(b), when a continuous image X : R2 → R is
rasterized onto pixels X∈RD×D, the origin of the continuous coordinate system should be aligned
with [⌊D/2⌋, ⌊D/2⌋]⊤ to match the FFT-based coordinate convention used in cryo-EM. Formally,

Xi,j = X

(
(j − ⌊D

2
⌋)2E

D
,−(i− ⌊D

2
⌋)2E

D

)
, (12)

where Xi,j denotes (i, j)-th entry of matrix X . Note that the row and column indices correspond to
the y- and x-axes, respectively, with the y-axis flipped during this rasterization.

In practice, since the PSF corresponds to a large convolution kernel, we apply the contrast transfer
function (CTF) in the Fourier domain after rasterization for efficiency:

Xi,j = F−1

(
Ĥ ⊙F

(
N∑
i=1

AiG̃i

(
(j − ⌊D2 ⌋)

2E
D ,−(i− ⌊D2 ⌋)

2E
D

)))
, (13)

where F(·) and F−1(·) denote the Fourier and inverse Fourier transform operators, respectively. Ĥ
is the rasterized CTF Ĥ and ⊙ denotes element-wise (Hadamard) product.

Before deriving the gradients, we first define

Q(rx, ry) =

N∑
i=1

AiG̃i(r̃), (14)

which is the pre-rasterization continuous image. For clarity, we omit the Gaussian index i in the
following derivations, as the gradients are computed independently for each Gaussian. We denote
by P the set of 2D coordinates corresponding to the centers of rasterized pixels. When r̃ ∈ P, the
coordinate r̃ = [rx, ry]

⊤ refers to a discrete sampling location in the image plane. The gradients
used in the backward pass can be summarized as

∂L
∂A

=
∑
r̃∈P

∂L
∂Q(r̃)

∂Q(r̃)

∂A

∇µL =
∑
r̃∈P

∂L
∂Q(r̃)

∇µQ(r̃)

∇sL =
∑
r̃∈P

∂L
∂Q(r̃)

∇ΣQ(r̃) ◦ ∂Σ
∂s

∇qL =
∑
r̃∈P

∂L
∂Q(r̃)

∇ΣQ(r̃) ◦ ∂Σ
∂q

(15)

where ◦ denotes the composition of Jacobian operators (chain rule). The derivation of gradients with
respect to the amplitude A and mean µ is trivial, which can be given directly by

∂Q

∂A
= G̃(r̃), (16)

and {
∇µ̃Q = AG̃(r̃)Σ̃−1(r̃ − µ̃)

∇µQ = W [∇µ̃Q
⊤ 0]⊤

(17)

where [∇µ̃Q
⊤ 0]⊤ embeds the 2D gradient into 3D space by padding the z-component with zero.

For completeness, we provide the derivation of the covariance gradients ∇ΣQ, noting that our for-
mulation retains the normalization term, which is omitted in 3DGS (Kerbl et al., 2023). Remember

G̃(r̃|µ̃, Σ̃) =
1

2π|Σ̃| 12
exp(−1

2
(r̃ − µ̃)⊤Σ̃−1(r̃ − µ̃))

=
|Σ̃−1| 12
2π

exp(−1

2
(r̃ − µ̃)⊤Σ̃−1(r̃ − µ̃)).

(18)
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We can first compute

∇Σ̃−1Q = A exp(−1

2
(r̃ − µ̃)⊤Σ̃−1(r̃ − µ̃))

1

4π
|Σ̃−1|− 1

2 |Σ̃−1|Σ̃⊤

+A
|Σ̃−1| 12
2π

exp(−1

2
(r̃ − µ̃)⊤Σ̃−1(r̃ − µ̃))(− 1

2 (r̃ − µ̃)(r̃ − µ̃)⊤)

= 1
2AG̃(r̃)(Σ̃− (r̃ − µ̃)(r̃ − µ̃)⊤),

(19)

and then ∇Σ̃Q = −Σ̃−⊤∇Σ̃−1QΣ̃−⊤. Finally,

∇Σ̇Q =

[
∇Σ̃Q 0

0⊤ 0

]
. (20)

The subsequent derivations of ∇sL and ∇qL follow exactly the formulation in Kerbl et al. (2023).

B DATASET DETAILS

We provide detailed statistics and characteristics of the cryo-EM datasets used in our experiments:

• EMPIAR-10028 (Plasmodium falciparum 80S (Pf 80S) ribosome) (Wong et al., 2014):
105,247 particle images of size 360 × 360 pixels at a sampling rate of 1.34 Å/pixel. This
is a widely used benchmark with high-contrast images and a static structure.

• EMPIAR-10049 (RAG1-RAG2 complex) (Ru et al., 2015): 108,544 particles of size 192×
192 pixels at 1.23 Å/pixel. This dataset is considered more challenging due to its lower
contrast and flexibility in some regions.

• EMPIAR-10076 (E. coli large ribosomal subunit undergoing (LSU) assembly) (Davis et al.,
2016): 131,899 particles of size 320 × 320 pixels at 1.31 Å/pixel. This dataset contains
substantial conformational and compositional heterogeneity, which poses a challenge to
homogeneous modeling.

• EMPIAR-10180 (Pre-catalytic spliceosome) (Plaschka et al., 2017): 327,490 particles of
size 320×320 pixels at 1.69 Å/pixel. It samples a continuum of conformations, particularly
involving large-scale motions of the SF3b subcomplex.

• Synthetic 80S ribosome: We construct a synthetic dataset of the 80S ribosome with 100,000
particles using Relion (Scheres, 2016a), following the protocol of Levy et al. (2022a). The
electron scattering potential is derived in ChimeraX (Pettersen et al., 2021) at a resolution
of 6.0 Å/pixel, based on two atomic models: the small subunit (PDB 3J7A) and the large
subunit (PDB 3J79) (Wong et al., 2014). Each particle image is 128 × 128 pixels with a
pixel size of 3.77 Å/pixel. Orientations are uniformly sampled over SO(3), and all images
are centered without translations. Defocus values for the CTF are randomly drawn from
log-normal distributions following Levy et al. (2022a), and zero-mean white Gaussian noise
with varying signal-to-noise ratios (SNRs) is added.

C FOURIER SHELL CORRELATION

To evaluate reconstruction quality on real datasets without ground truth volumes, we adopt the gold
standard Fourier Shell Correlation (FSC) (Van Heel & Schatz, 2005), following established proto-
cols. Each dataset is randomly split into two halves, and the reconstruction algorithm is applied
independently to each subset. Let the resulting volumes be V̂a(k) and V̂b(k), representing their
Fourier transforms. The FSC is computed as a function of frequency k using the following formula:

FSC(k) =

∑
∥k∥2=k

V̂a(k) · V̂b(k)
∗

√( ∑
∥k∥2=k

|V̂a(k)|2
)( ∑

∥k∥2=k

|V̂b(k)|2
) . (21)

This metric quantifies the correlation between two independently reconstructed volumes within con-
centric shells in Fourier space. The spatial resolution is defined as the frequency where the FSC
curve drops below the 0.143 threshold, indicating the limit of reproducible structural detail.
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D MORE IMPLEMENTATION DETAILS

D.1 INTUITION BEHIND INITIALIZATION

The values used in initialization are fixed but grounded in straightforward statistical intuition. We
observe that most particles are concentrated within a spherical region of radius E/2, where E = 0.5
defines the spatial extent as mentioned in Sec. 4.1. To reflect this prior and accelerate convergence,
we initialize the Gaussian means within this region.

Moreover, based on the three-sigma rule for Gaussian distributionsN (µ, σ2), where 99.7% of sam-
ples fall within [µ − 3σ, µ + 3σ], we obtain σ = E/6 from 3σ = E/2. To slightly tighten the
spread, we apply a scaling factor and use σ = 0.9 · E/6 = 0.075 to initialize the means. The initial
scale of each Gaussian is set to 0.1 × 0.075 = 0.0075, encouraging localized support. Finally, to
maintain consistent overall energy across varying numbers of Gaussians, we initialize the amplitude
as A = 1/(2N), where N is the total number of Gaussians.

D.2 INTUITION BEHIND LEARNING RATE

In the original 3DGS (Kerbl et al., 2023), different learning rates are assigned to different types of
Gaussian parameters (means, scales, rotations, opacities). While this works well in novel view
synthesis, it introduces instability in cryo-EM reconstruction. Let the full parameter vector be
θ = [µx, µy, µz, sx, sy, sz, qw, qx, qy, qz, A]⊤. In gradient descent optimization, the direction of
parameter updates is determined by the gradient ∇θL. Unequal learning rates distort this direction
by scaling different components unequally, which can lead to divergence. We observe that such prac-
tice causes Gaussians to spread uncontrollably in early iterations and finally diverge. To avoid this,
we adopt a single unified learning rate across all parameter types, preserving the intended descent
direction and ensuring stable convergence.

D.3 OPTIMIZATION ALGORITHM

Our optimization algorithm is summarized in Algorithm 1. Unlike Kerbl et al. (2023), which uses
gradient magnitude as the criterion for splitting and cloning Gaussians, we observe that gradients
are not a reliable indicator for densification in cryo-EM reconstruction. Furthermore, elaborate
densification schemes are generally unnecessary, as our method seldom suffers from significant
local minima owing to its close consistency with cryo-EM imaging physics. Nevertheless, we retain
a simple densification option to balance efficiency and resolution: fewer Gaussians enable faster
training, whereas more Gaussians yield higher-resolution reconstructions, as demonstrated in Fig. 4.

Algorithm 1 Optimization and Densification
N : number of Gaussians
D: side length of the observed particle images

Θ← InitAttributes(N ) ▷ Positions, Scales, Quaternions, Amplitudes
i← 0 ▷ Epoch Count
while not converged do

for (Y , W , t, Ĥ) in Dataloader() do ▷ Observed Image, Rotation, Translation, CTF
Y ← FourierShift(Y , t) ▷ Center Alignment
Q← Rasterize(Θ, W , D) ▷ Algorithm 2
X ← ApplyCTF(Q, Ĥ) ▷ Apply CTF
L ← Loss(X , Y ) ▷ Loss
Θ← Adam(∇L) ▷ Backprop and Step

end for
if IsDoubleGaussians(i) then ▷ (Optional) Densification

for all Gaussian(µ, s, q, A) in Θ do
SplitGaussian(µ, s, q, A)

end for
end if
i← i+ 1

end while
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Algorithm 2 CUDA-accelerated Rasterization
Θ: Gaussian parameters
W : viewing transformation matrix
D: side length of the observed particle images

function Rasterize(Θ, W , D)
µ, Σ, A← BuildGaussians(Θ)
µ̇, Σ̇← ViewingTransform(µ, Σ, W ) ▷ Viewing Transformation
µ̃, Σ̃← Projection(µ̇, Σ̇) ▷ Orthogonal Projection
T ← CreateTiles(D) ▷ Tile Count
L, K ← DuplicateWithKeys(µ̃, T ) ▷ List of Indices and Keys
SortByKeys(K, L)
R← IdentifyTileRanges(T , K)
Q← 0 ▷ Init Canvas
for all Tile t in Q do

for all Pixel p in t do
r ← GetTileRange(R, t)
Q(p)← SumSplats(p, L, r, K, µ̃, Σ̃, A)

end for
end for
return Q

end function

D.4 DETAILS OF THE RASTERIZER

The details of the rasterizer are summarized in Algorithm 2. We follow the tile-based rasterization
framework of Kerbl et al. (2023), where the output image is divided into 16×16 pixel tiles, and each
splat is instantiated in every tile it overlaps. The splat instances are then assigned keys for sorting,
after which each tile can be processed efficiently by locating the corresponding ranges in the sorted
list. Since pixels are computed in parallel, the runtime is primarily determined by the maximum
number of Gaussians within any tile. For more details, we refer the reader to Kerbl et al. (2023).

D.5 DETAILS OF REPORTED METRICS

When computing FSC curves for baselines, a spherical mask is applied to suppress background
noise; cryoSplat uses the unmasked FSC because its Gaussian representation naturally suppresses
noise outside the signal region. For runtime and memory comparisons, we use the backprojection
implementation by Zhong et al. (2021a) instead of cryoSPARC, whose packaged environment intro-
duces additional subprocesses and overhead that hinder fair measurement.

E ADDITIONAL EXPERIMENTS

E.1 MULTIMEDIA RESULTS

We provide videos of rotating reconstructed volumes in the supplementary material for all methods
and datasets to facilitate visual comparison.

E.2 MEMORY USAGE

Tab. 1 compares GPU memory usage across different reconstruction methods. CryoDRGN (Zhong
et al., 2021a) exhibits the highest memory footprint, exceeding 2.5 GiB at D = 192 and approaching
5 GiB at D = 256, primarily due to its deep neural decoder and a larger batch size of 8. Interestingly,
backprojection consumes more memory at D = 192 than at D = 256, which may be attributed to
implementation-specific factors such as padding overhead or kernel-level optimizations that favor
power-of-two dimensions. This anomaly appears method-specific and does not reflect a general
trend. In contrast, CryoSplat demonstrates consistently low memory usage across all configurations.
Even with as many as 30,000 Gaussians, CryoSplat maintains a memory footprint below 380 MiB,
with negligible variation across resolutions. This efficiency underscores the scalability and suitabil-
ity of CryoSplat for large-scale or memory-constrained cryo-EM reconstruction scenarios.
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Table 1: GPU memory usage across reconstruction methods at resolutions (D = 192, D = 256).

Methods # Params Settings Batch Size GPU Mem. (MiB)
D = 192 D = 256

Backprojection (D + 1)3 — 1 508 396

CryoDRGN (Zhong et al., 2021a) (6 · ⌊D/2⌋+ L+ 3) · C C = 1,024 1 680 1,008
+L · C2 + 2 L = 3 8 2,560 4,906

CryoSplat (Ours) 11 ·N

N = 2,048

1

344 346
N = 3,072 344 348
N = 5,120 346 348
N = 10,000 348 350
N = 30,000 376 378

Isotropic Anisotropic

1/resolution (Å⁻¹)

FS
C

AnisotropicIsotropic

1/resolution (Å⁻¹)

FS
C

EMPIAR-10028 EMPIAR-10049

EMPIAR-10076
1/resolution (Å⁻¹)

FS
C

Isotropic Anisotropic

EMPIAR-10180
1/resolution (Å⁻¹)

FS
C

Isotropic Anisotropic

Figure 6: Qualitative and quantitative comparison of isotropic and anisotropic GMMs (N = 30,000)
on four real datasets. FSC curves show that anisotropic Gaussians consistently achieve higher cor-
relations across spatial frequencies, indicating improved reconstruction accuracy. Volume visual-
izations further reveal that anisotropic GMMs better recover fine structural details and elongated
features, whereas isotropic Gaussians tend to fragment such regions.

E.3 ISOTROPIC VS. ANISOTROPIC

CryoSplat represents 3D volumes using anisotropic Gaussians while remaining fully compatible
with the isotropic formulation widely adopted in prior works (Chen & Ludtke, 2021; Chen et al.,
2023a;b; Schwab et al., 2024; Chen, 2025). When the scaling is isotropic, i.e., sx = sy = sz = σ,
the anisotropic Gaussian exactly reduces to the standard isotropic form:

G(r|µ, σ) = 1

(2π)
3
2σ3

exp(−∥r − µ∥22
2σ2

), (22)

allowing direct integration into existing isotropic GMM-based pipelines.

We investigate the impact of isotropic versus anisotropic Gaussians on reconstruction quality. As
shown in Fig. 6, anisotropic GMMs achieve higher FSC scores across spatial frequencies and pro-
duce sharper, more detailed structures. Subjectively, isotropic Gaussians struggle to capture elon-
gated features and are often captured by noise, which may contribute to the unstable convergence
from random initialization reported in previous methods. These results highlight the improved rep-
resentational capacity and reconstruction robustness enabled by anisotropic modeling.

E.4 NUMBER OF GAUSSIANS

We present visual comparisons of reconstruction results using different numbers of Gaussians. As
shown in Fig. 7, increasing the number of components yields progressively sharper and more de-
tailed structures. These qualitative observations align with the quantitative improvements in FSC
curves reported in Fig. 3. Red arrows highlight representative regions where the differences in re-
construction quality are especially pronounced, facilitating direct visual comparison across settings.
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Figure 7: Qualitative evaluation of reconstruction performance with different numbers of Gaussians.
Increasing the number of Gaussians leads to visibly improved reconstructions, with finer structural
details and enhanced sharpness. Red arrows mark representative regions that highlight the qualitative
differences for clearer comparison across settings.

E.5 SIGNAL-TO-NOISE RATIO

Noise Free 0 dB -10 dB -20 dB -30 dBGT

Example Particles

Signal-to-Noise Ratio

1/resolution (Å⁻¹)

FS
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30 dB
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Figure 8: Reconstruction performance under varying SNRs. (top) Ground-truth (GT) and recon-
structed volumes at different SNR levels. (bottom) Example synthetic particle images correspond-
ing to each SNR. (right) FSC curves between GT and reconstructed volumes across SNRs.

We study the effect of SNR levels on cryoSplat with 5,120 Gaussians using the synthetic 80S dataset
described in Sec. B. Figure 8 shows example synthetic particles, reconstructed volumes, and FSC
curves under varying SNRs. FSCs are computed between the ground truth (GT) and reconstructed
volumes. Overall, cryoSplat shows strong noise robustness: SNRs above 0 dB have little impact on
reconstruction; high resolution is preserved even under severe noise at −15 dB, and reconstructions
remain satisfactory at −20 dB, despite particles being barely visible.
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E.6 CORRECTED FSC
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Figure 9: Reconstruction using 30,000 Gaussians under different exponential decay parameters γ.
For each setting, the half-map FSC, masked FSC, and corrected FSC curves are plotted together
for better comparison. When γ = 0.1, the half-map FSC exceeds the corrected FSC, indicating an
overestimation of resolution due to strong self-consistency. Increasing γ reduces this discrepancy,
and at γ = 0.5 the corrected FSC closely matches the half-map FSC, suggesting that no detectable
artificial bias is introduced.

Half-map FSC is fundamentally a measure of self-consistency rather than visible structural detail.
It is interpreted as a proxy for resolution under the assumption that (i) the SNR decreases at high
frequencies, and therefore (ii) two independently reconstructed half maps should lose consistency
in the high-resolution regime. If a method maintains strong self-consistency even under low SNR,
whether due to genuine robustness or to an inherent bias, the half-map FSC may overestimate the true
resolution. For example, if a method consistently overfits random noise into reproducible artificial
patterns, the two half maps may show spurious agreement.

Corrected FSC (Chen et al., 2013) is specifically designed to detect such artificial bias. It does
so by randomizing Fourier phases: half maps with randomized phases should share no meaningful
consistency. Any remaining agreement is therefore interpreted as bias and subtracted from the FSC
curve. In our results shown in Fig. 9, we indeed observe a discrepancy between the half-map FSC
and the corrected FSC, indicating that the half-map FSC tends to overestimate cryoSplat’s resolu-
tion. Importantly, however, this discrepancy can be removed by slightly increasing the exponential
decay parameter γ. When γ = 0.5, the corrected FSC closely follows the original half-map FSC,
suggesting that no detectable artificial bias is introduced by cryoSplat.

We also observe that FSC curves computed under different masking levels remain tightly aligned.
This indicates that cryoSplat suppresses noise effectively outside the signal-support region: the noise
level is so low that applying a mask has virtually no effect on the FSC, consistent with our synthetic-
data experiment in Sec. E.5, showing the strong denoising capability of GMM-based representations.

Having ruled out detectable artificial bias via corrected FSC, we next analyze why the half-map FSC
may still overestimate the resolution for cryoSplat. We attribute this to the GMM’s strong ability to
maintain self-consistency during optimization. This property is largely driven by the inherently low-
pass nature of Gaussian kernels. On the one hand, the low-pass behavior encourages the model to fit
low-frequency components more readily, yielding smoother volumes. As we show later in Sec. E.7,
this effect can be substantially mitigated by increasing the number of Gaussians, which restores high-
frequency detail. On the other hand, the same low-pass property also contributes to excellent self-
consistency: both quantitative metrics and qualitative assessment show that this consistency does
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not manifest as harmful artifacts. However, because the self-consistency is exceptionally strong,
conventional FSC-based resolution estimation can become overly optimistic. As a result, qualitative
assessment and domain-expert evaluation remain the most trustworthy way to evaluate the effective
resolution produced by cryoSplat. Developing rigorous and objective quality metrics tailored to
GMM-based cryo-EM reconstruction remains an important open question.

E.7 RECONSTRUCTION BEHAVIOR IN THE ULTRA-HIGH GAUSSIAN COUNT REGIME

1/resolution (Å⁻¹)

FS
C

N=32,768

N=65,536

N=131,072

N=262,144

N=524,288

N=32,768 N=65,536 N=131,072 N=262,144 N=524,288

Figure 10: Qualitative and quantitative evaluation of reconstruction performance with ultra-high
Gaussian counts. (Left) Reconstructed 3D volumes. (Right) FSC curves are plotted for quantitative
evaluation. Gray dashed lines indicate the standard resolution thresholds of 0.5 and 0.143.

To further examine the representational capacity and optimization behavior of GMM-based repre-
sentations, we increase the Gaussian count from 32,768 up to 524,288, as shown in Fig. 10. To
ensure that the increased capacity can be fully utilized, we raise the exponential decay parameter to
γ = 0.5 and train for 10 epochs.

(a) CryoSPARC (b) CryoDRGN (c) CryoSplat (d) w/ Model Overlay

Figure 11: Feature comparison at an α-helix in the RAG1–RAG2 core region cropped from the
reconstructed volume. CryoSplat with 524,288 Gaussians produces a sharp and continuous helical
density that is comparable to cryoSPARC, while cryoDRGN shows breaks along the backbone and
retains visible noise. Overlay with the atomic model demonstrates that cryoSplat accurately recovers
the backbone trace and resolves larger side-chain features, including aromatic rings.

Increasing the number of Gaussians consistently improves both quantitative and qualitative recon-
struction quality. We observe monotonic increases in FSC scores as the Gaussian count grows,
together with visibly sharper structural details. At the highest resolution regime (524k Gaussians),
many fine-scale features such as α-helices become clearly resolved, as shown in Fig. 11.

This is surprising given the common expectation that larger models are harder to optimize and more
prone to unstable convergence. Instead, the opposite effect is observed: larger GMMs exhibit better
consistency between half-maps and converge to higher FSC, indicating more stable optimization
dynamics in the ultra-high-capacity setting. This suggests that additional Gaussians provide finer
local modeling flexibility, allowing the renderer to better accommodate noise and subtle structural
variability without overfitting.

Finally, even at 524,288 Gaussians, the model remains substantially more compact than voxel-based
grids, since 524,288× 11 < 2563. However, this ultra-high-Gaussian regime currently incurs a sig-
nificantly increased computational cost, making it impractical for routine use. We view these results
primarily as an exploration of the upper limit of GMM-based representations; future improvements
in optimization and implementation may help reduce the computational burden.
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E.8 RECONSTRUCTION BEHAVIOR IN THE LOW GAUSSIAN COUNT REGIME
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Figure 12: Qualitative and quantitative evaluation of reconstruction performance with low Gaussian
counts. (Left) Reconstructed 3D volumes. (Right) FSC curves are plotted for quantitative evalua-
tion. Gray dashed lines indicate the standard resolution thresholds of 0.5 and 0.143.

We additionally investigate how GMM-based reconstructions behave when the number of Gaussians
is severely limited, reducing the count from 1,024 down to 64, as shown in Fig. 12. As the Gaussian
count decreases, both quantitative and qualitative reconstruction quality degrade consistently. The
reconstructed densities become progressively blurred and blob-like, and once the count falls below
1,024, the maps begin to exhibit clearly visible Gaussian ellipsoids in place of coherent structural
details. This reflects the insufficient spatial degrees of freedom available to represent localized struc-
tural details. The FSC curves also reveal a distinctive failure pattern when the number of Gaussians
becomes extremely small. Instead of exhibiting a smooth decay, the curves dip at intermediate fre-
quencies and then rise again at high frequencies. This rise does not reflect genuine high-frequency
agreement; it occurs because the high-frequency components are largely absent, and the Fourier am-
plitudes of both half-maps approach zero in these bands, which leads to unreliable consistency and
inflated FSC values. Such low-Gaussian-count configurations are not practical for real reconstruc-
tion tasks. Although computational cost is reduced, the representation becomes too under-resolved
to yield reliable maps, and both qualitative appearance and quantitative metrics lose interpretability.

E.9 ABLATION ON INITIALIZATION STRATEGY

F
S

C

1/resolution (Å⁻¹)

Figure 13: Using 2,048 Gaussians, the RAG1–RAG2 complex (EMPIAR-10049) is reconstructed
under 10 random seeds (0–9). The figure shows the mean half-map FSC with the mini-
mum–maximum envelope across these runs. The narrow band indicates that cryoSplat converges
to highly consistent results across initializations, demonstrating strong robustness and stability.

We also examine how sensitive the method is to the choice of initialization. First, we fix the GMM
configuration and only vary the random seed from 0 to 9. For each run, we compute the half-map
FSC curve and then aggregate the results into a mean curve with an upper and lower envelope over
all seeds. As is shown in Fig. 13, the envelopes are tight across all frequencies, indicating that both
convergence behavior and final result are highly robust to random seed choices.

A more challenging setting arises when the underlying structure exhibits substantial heterogeneity
or ambiguity in its initial conformation. EMPIAR-10076 is a representative example, containing
pronounced conformational flexibility across the complex. To evaluate whether such flexibility af-
fects the stability of the initialization, we vary the spatial spread of the initial Gaussian locations
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Figure 14: Initialization ablation on EMPIAR-10076 using 2,048 Gaussians. Reconstructed vol-
umes (top-left), initial Gaussian projections (bottom-left), and FSC curves (right) under three ini-
tialization spreads σ ∈ 0.0375, 0.075, 0.1125. Both visual reconstructions and FSCs remain nearly
identical across all settings, indicating that cryoSplat is highly robust to the choice of initialization.

by sampling with σ ∈ 0.0375, 0.075, 0.1125, which approximately correspond to placing Gaussians
within spherical regions of radii 3E/2, E/2, and E/4, respectively. The resulting initial projections
under these settings, shown in Fig. 14, clearly illustrate the differences. Notably, the smallest spread
(σ = 0.0375) does not cover the full region where the signal is present and therefore represents a
substantially under-dispersed initialization. Despite this, all configurations converge to nearly iden-
tical reconstructions on this heterogeneous dataset: both the FSC curves and the visualized volumes
are highly consistent. This indicates that even in cases with significant flexibility and ambiguous
starting configurations, the optimization remains robust to the choice of initialization.
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