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ABSTRACT

Large language models (LLMs) show inherent brittleness in their safety mecha-
nisms, as evidenced by their susceptibility to jailbreaking and even non-malicious
fine-tuning. This study explores this brittleness of safety alignment by leverag-
ing pruning and low-rank modifications. We develop methods to identify critical
regions that are vital for safety guardrails, and that are disentangled from utility-
relevant regions at both the neuron and rank levels. Surprisingly, the isolated
regions we find are sparse, comprising about 3% at the parameter level and 2.5%
at the rank level. Removing these regions compromises safety without significantly
impacting utility, corroborating the inherent brittleness of the model’s safety mech-
anisms. Moreover, we show that LLMs remain vulnerable to low-cost fine-tuning
attacks even when modifications to the safety-critical regions are restricted. These
findings underscore the urgent need for more robust safety strategies in LLMs.

1 INTRODUCTION

The capabilities of large language models (LLMs) have been significantly improved over the past
few years (Brown et al., 2020; OpenAI, 2022; Touvron et al., 2023a; Anthropic, 2023a; Team et al.,
2023), yet these models face the challenge of producing inaccurate, misleading, or harmful outputs.
Efforts to align them with human values (Ouyang et al., 2022; Bai et al., 2022a;b; Rafailov et al.,
2023)are ongoing, yet ‘jailbreak’ scenarios show that even well-aligned models can be compromised
through adversarial prompts (Wei et al., 2023; Carlini et al., 2023; Zou et al., 2023b), persuasion
techniques (Zeng et al., 2024), or decoding manipulation (Huang et al., 2024). Furthermore, fine-
tuning may also inadvertently weaken a model’s safety mechanisms (Qi et al., 2024).

Addressing failure cases in the alignment of LLMs requires a deep understanding of why their safety
mechanisms are fragile. Our study aims to contribute to this understanding via weight attribution
— the process of linking safe behaviors to specific regions within the model’s weights. However,
a key challenge here is the intricate overlap between safety mechanisms and the model’s general
capabilities, or utility. For instance, responsibly handling a harmful instruction entails understanding
the instruction, recognizing its harmful intent, and declining it appropriately, which requires a blend
of safety awareness and utility capability. We aim to identify minimal safety-critical links within the
model that, if disrupted, could compromise its safety without significantly impacting its utility. If
there are few such links, it may help explain why safety mechanisms remain brittle.

Our study examines the model weights and disentangles safety and utility from two perspectives:
individual neurons and specific ranks within the model. For neuron attribution, we follow two
widely adopted and effective methods from the previous works on pruning transformer models (Lee
et al., 2019; Sun et al., 2024) to calculate a behavior-specific importance score for each neuron in an
LLM, which identifies a group of neurons crucial for a certain behavior, such as giving safe responses
(safety) or following instructions (utility). For rank attribution, we propose ActSVD, a data-aware
low-rank decomposition algorithm to identify crucial ranks of each weight matrix for the behavior.

To further address the complexity of potential entanglement between safety and utility, we propose
set difference method for neuron attribution, and orthogonal projection method for rank attribution, to
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Figure 1: The proposed pipelines for identifying and isolating safety-critical regions of LLM weights at (a)
neuron level and (b) rank level.

Table 1: The overview of our weight attribution methods.

Neuron Attribution Rank Attribution

Output Change Wanda (Sun et al., 2024), Appendix A.2 ActSVD
|W | ⊙

(
1 · ∥Xin∥⊤2

)
USV ⊤ ≈ WXin, Ŵ = UU⊤W

Loss Change SNIP (Lee et al., 2019), Appendix A.1 N/AEx∼D|W ⊙∇WL(x)|

Disentanglement Method Set difference Orthogonal projection
S(p, q) = Ss(q)− Su(p) ∆W (ru, rs) = (I −Πu)ΠsW

isolate safety-critical neurons and safety-critical ranks, respectively (see Figure 1). This separation
allows for a more refined analysis of safety mechanisms, leading to the findings below.

Safety-critical regions are very sparse in aligned models. We experiment with Llama2-chat model
family (Touvron et al., 2023b). After disentangling utility from safety, we find that safety-critical
neurons form a remarkably sparse structure in the model, representing just 3% of the weights (§ 3.1).
Similarly, safety-critical ranks account for only about 2.5% of the total ranks. The sparsity of these
regions may help explain why safety is so easily compromised after fine-tuning.

Removing safety-critical regions reduces safety while maintaining utility. We then demonstrate
that the removal of specifically identified safety-critical neurons or safety-critical ranks in the Llama2-
chat models significantly weakens their safety guardrails (§ 3.1). The attack success rate escalates
from 0 to over 90%, yet the model’s overall utility remains largely unaffected. Interestingly, excising
regions least crucial for safety slightly enhances resistance to jailbreaking attempts – a potentially
exciting direction for improving safety via pruning-based approaches.

Freezing safety-critical regions still remains vulnerable to fine-tuning attacks. While intuitively,
preventing modification of safety-critical parameters might reduce the likelihood fine-tuning attacks
succeeding, we show that this strategy only offers resistance to minor model modifications (§ 3.3).
This suggests that fine-tuning attacks may introduce new pathways that bypass the model’s original
safety mechanisms. Therefore, further research is needed to develop more robust mitigation strategies.

2 METHODOLOGY

To identify and isolate the regions that are exclusively responsible for a model’s behaviors, we make
modifications to the weights of the model and observe its behavioral change.

We present details of the methods below and summarize them in Table 1.

2.1 IDENTIFYING IMPORTANT NEURONS AND RANKS

SNIP score (Lee et al., 2019) For a data instance x = (xprompt, xresponse), we take the loss
as the conditional negative log-likelihood L(x) = − log p(xresponse | xprompt) predicted by the
model. For any linear layer with weight matrix W ∈ Rdout×din , and a dataset D, SNIP calculates
I(W ) = Ex∼DI(W,x) = Ex∼D|W⊙∇WL(x)|. Appendix A.1 provides more details for derivation.
Intuitively, I(W ) measures how important each entry is for the behavior of the model on the dataset
D. We can attribute the specific behavior of the model to weights with large I(W )ij .

Wanda score (Sun et al., 2024) For a calibration dataset, we store all the activations corresponding
to the layer W into Xin ∈ Rdin×n. The Wanda importance score I(W ) is given by I(W ) =

|W | ⊙
(
1 · ∥Xin∥⊤2

)
, where we take the row-wise L2 norm to obtain ∥Xin∥2 ∈ Rdin . Appendix A.2

provides more details for derivation.
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ActSVD We seek to find a low-rank matrix Ŵ such that the Frobenius norm of the change to output
is minimized:

Ŵ = argmin
rank Ŵ≤r

∥WXin − ŴXin∥2F .

This can be done by performing SVD on WXin ∈ Rdout×n: USV ⊤ ≈ WXin, where U ∈ Rdout×r

is the orthogonal matrix corresponding to the top r left singular vectors. The minimizer is given by
Ŵ = UU⊤W , where Π = UU⊤ is the orthogonal projection onto the r most significant left singular
subspace. The proof is postponed to Appendix F. Note that Ŵ can be implemented by a LoRA update.
The rank of the LoRA adaptor ∆W = W −Ŵ can be bounded by rank(∆W ) ≤ rank(I−UU⊤) =
R− r, where R = rank(W ). See Appendix B.3 for discussion of related methods.

2.2 ISOLATING SAFETY NEURONS AND RANKS

Assume we have two calibration different datasets: a utility dataset Du and a safety dataset Ds. We
seek to isolate the safety regions of the network weights, where removing those regions will have a
low influence on the model’s behavior on distribution Du but a high influence on Ds — effectively
maintaining the model’s general language abilities but compromising its safety alignment.

Isolating safety neurons: Set difference. For the two calibration datasets, assume we obtain two
scores Iu and Is, respectively, either using SNIP or Wanda as in § 2.1. We consider the weight
neurons that score least according to Iu but score most according to Is. For any pair of sparsity levels
(p%, q%), we define the top-p% important neurons Su(p) for utility as the neurons whose important
utility score Iui,j ranks top p% among the i-th row of Iu:Su(p) = {(i, j) | Iui,j is the top p% of Iui }.
Similarly, Ss(q) = {(i, j) | Isi,j is the top q% of Isi }. Then, the isolated neurons S(p, q) is defined
as the set difference between Ss(q) and Su(p) :

S(p, q) = Ss(q)− Su(p).

Isolating safety ranks: Orthogonal projection. Let R = rank(W ). For the two calibration datasets
Du and Ds, for any pair of integer (ru, rs), we can obtain the projection matrices Πu and Πs as stated
in § 2.1, where Πu = Uu(Uu)⊤, rank(Πu) = R − ru, and Πs = Us(Us)⊤, rank(Πs) = R − rs.
To isolate the safety ranks, we consider the matrix ∆W (ru, rs) = (I − Πu)ΠsW.. Removal of
∆W (ru, rs) essentially removes the important ranks of the safety behavior that are orthogonal to
the important ranks of the utility behavior. The modified weight matrix is W̃ = W −∆W (ru, rs),
which can be implemented by a LoRA update (Hu et al., 2022) with

rank(∆W (ru, rs)) ≤ min(ru, R− rs).

3 EXPERIMENTS

Table 2: The differences between three types of ASR in our safety evaluation. ASRVanilla captures the model
behavior under standard usage, while ASRAdv-Suffix and ASRAdv-Decoding captures behaviors against adversaries.

ASRVanilla ASRAdv-Suffix ASRAdv-Decoding

Sample Times 1 1 5
System Prompt ✓ é é

[INST], [/INST] wrapper ✓ ✓ é
Adversarial Suffix é ✓ é

Models and datasets We use Llama2-7B-chat and Llama2-13B-chat (Touvron et al., 2023b) for
their extensive safety tuning process. To identify safety-critical regions in the model, we use two types
of datasets: the safety dataset and the utility dataset for attributing safety-related and utility-related
behaviors respectively, both in (prompt, response) format. More details are provided in Appendix D.

Measuring utility and safety Following Sun et al. (2024), we measure the model’s utility through its
averaged zero-shot accuracy of seven tasks from EleutherAI LM Harness (Gao et al., 2023). For safety,
we assess the attack success rate (ASR) using AdvBenchprompts, defining a successful attack when
the model’s response lacks key patterns indicative of instruction rejection (Zou et al., 2023b). We
examine ASR in three contexts: standard (ASRVanilla), and two malicious conditions—manipulated
decoding (ASRAdv-Decoding) and adversarial suffixes (ASRAdv-Suffix). Differences in these metrics are
detailed in Table 2.
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(a) Removing Safety-Critical Neurons
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(b) Removing Safety-Critical Ranks
Figure 2: ASR and accuracy after removing safety-critical neurons with sparsity constraint < 3% (a) and
ranks with ranks of the weight updates (rank(∆W )) less than 100 (b) in Llama2-7B-chat. Disentangling
safety from utility (set difference for neurons and orthogonal projection for ranks) mostly effectively identify the
safety-critical regions, with safety severely compromised while utility retains.
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(a) Removing the least Safety-Critical Neurons
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(b) Removing the least Safety-Critical Ranks
Figure 3: Impact on ASR under adversaries in Llama2-7B-chat when: (a) Removing neurons with the lowest
safety importance scores and (b) Removing the least safety-critical ranks identified by ActSVD. Both the
importance score and safety-critical ranks are calculated on the safety-short dataset. All plotted points have
reasonable utility with accuracy > 0.5. The exclusion of neurons and ranks deemed least critical for safety results
in improved robustness against adversarial decoding attacks. Potential reason for the variation in ASRAdv-Suffix
is the adversarial suffixes may not directly transfer to the modified model. See Figure 6 for the results on
Llama2-13B-chat.

Methods We conduct experiments to identify safety-critical neurons using SNIP (top), Wanda (top),
SNIP with set difference, and probing, and safety-critical ranks using ActSVD and ActSVD with
orthogonal projection. See Appendix D.1 and Appendix D.2 for more details.

§ 3.1 demonstrates that our set difference and orthogonal projection outperform other methods in
isolating safety-critical neurons or ranks. Then in § 3.2, we analyze the overlap between safety and
utility, where we observe less overlap in MLP layers than self attention layers. Finally, § 3.3 examines
the potential of freezing safety-critical neurons to counter fine-tuning attacks.

3.1 SEPARATING SAFETY AND UTILITY IS KEY TO IDENTIFY CRITICAL SAFETY REGIONS

Safety-critical regions are sparse and can be effectively isolated via set difference or orthogonal
projection. We isolate neurons contributing to safety from those contributing to utility, by applying
the set difference method described in § 2.2 to SNIP. Figure 2a presents the Pareto front resulting from
set difference-based pruning: Removing < 3% of neurons pushes ASR close to 1, while maintaining
an average zero-shot accuracy above 0.5. Interestingly, if we focus solely on adversarial cases, only
pruning less than 1% of neurons can significantly compromise safety while still keeping its accuracy,
as shown in Appendix E.4. Similarly, Figure 2b shows that an update of just 2.5% (less than 100 of
4096) ranks significantly increases the model’s ASR, while preserving its accuracy. These findings
suggest that neurons and ranks for safety are relatively sparse.

Pruning top safety neurons or ranks severely compromises utility. Removing neurons with the
highest safety importance scores, either calculated with Wanda or SNIP, also leads to a complete loss
of safety in the Llama2-7B-chat model. However, there is also a drastic decrease in the model’s
utility, with its average accuracy dropping to about 0.35 from the original 0.58. Likewise, removing
even just the top-1 rank (out of 4096) critical for safety causes the model’s accuracy to drop to
0.38. Similar results are also observed in Llama2-13B-chat (Figure 5a in Appendix E.2). These
observations support our rationale for isolating safety from utility: Regions primarily contributing to
safety behaviors in aligned models may also be crucial for its general utility.

Attention head probing scores cannot isolate safety-critical neurons. Probing results in Ap-
pendix E.5 suggest that activations of individual attention heads are predictive of identifying harmful
versus harmless instructions, which, however, does not necessarily mean the top-scored heads are
solely responsible for safety generation. To verify this, we prune the top-scored attention heads from
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Figure 4: Safety and utility overlapping analysis of each layer inside Llama2-7B-chat using: (a) Jaccard Index
(p% = q% = 5%) and (b) subspace similarity (rank(Uu) = rank(Us) = 100). MLP layers show greater
differentiation in safety and utility behaviors.

Llama2-7B-chat. As shown in Figure 2a, our set difference approach outperforms the probing
method consistently, which highlights the need for a disentanglement method.

Pruning least safety-relevant neurons and ranks improves safety. Thinking from the opposite,
it’s reasonable to hypothesize that the neurons with the lowest safety importance scores could be
detrimental for safety. To verify this, we conduct an ablation study to remove neurons and ranks that
are least important for safety from the model. As shown in Figure 3, doing so enhances the robustness
of the model against adversarial decoding. More details are available in Appendix E.1.

3.2 MLP LAYERS APPEAR TO ENCODE MORE DIFFERENTIATED BEHAVIORS

In § 3.1, we find that removing high-safety-score regions also compromises utility, indicating a
possible entanglement of safety and utility regions. We validate this at both neuron and rank levels.

Neuron-level Jaccard index: We calculate layer-wise Jaccard index, J(A,B) = |A ∩B|/|A ∪B|,
to quantify the overlap between top p% utility neurons and top q% safety neurons. Figure 4 shows
Jaccard indices across transformer blocks and layers in Llama2-7B-chat, using SNIP with p%
and q% at 5%. Notably, MLP layers exhibit lower Jaccard indices compared to attention layers,
suggesting that utility or safety-related knowledge is more differentiated in MLP layers.

Rank-level subspace similarity: We also find that MLP layers appear to encode more differentiated
behaviors for safety and utility, from the rank perspective. Specifically, we report the subspace
similarity ϕ(Uu, Us) between rank-100 Uu and rank-100 Us as defined in Hu et al. (2022, Appendix
G) in Figure 4. Uu and Us exhibit a lower subspace similarity (i.e., utility and safety behaviors are
more differentiated) in MLP layers, corroborating our findings at the neuron level.

3.3 FREEZING SAFETY-CRITICAL NEURONS DOES NOT STOP FINE-TUNING ATTACKS

Table 3: ASRVanilla of the model under fine-tuning with
varying fractions of safety-critical neurons frozen. n
represents the number of Alapca examples used for fine-
tuning. Freezing safety-critical neurons is insufficient to
thwart fine-tuning attacks.

% of Frozen Weights ASRVanilla

n = 10 n = 50 n = 100

0 (original attack) 0.53 0.91 0.94

9.61 0.52 0.92 0.94
19.22 0.40 0.91 0.94
28.83 0.38 0.91 0.94
48.05 0.34 0.91 0.94
67.27 0.23 0.85 0.89

We explore whether the identified safety-critical
neurons could mitigate the fine-tuning attack (Qi
et al., 2024; Yang et al., 2023). We follow Qi
et al. (2024)’s fine-tuning attack but we freeze
the top-q% of safety neurons and observe their
effect on preserving safety. As shown in Ta-
ble 3, effective counteraction of the attack oc-
curs only with nsample = 10 and freezing over
50% of neurons. This observation aligns with
Lee et al. (2024)’s hypothesis that fine-tuning
attacks may create alternative pathways in the
original model. Given that safety-critical neu-
rons are sparse, these new routes could bypass
the existing safety mechanisms easily.

4 CONCLUSION

We introduce a pipeline for identifying safety-critical neurons and ranks in aligned LLMs, distin-
guishing safety from utility and revealing their sparsity—only about 3% and 2.5% at neuron and rank
levels, respectively. Despite their sparsity, these regions are crucial for the integrity of the model’s
safety mechanisms, as removing them destroys the model’s safety with utility retained. This finding
highlights the fragility of safety alignment in current LLMs and suggests using this sparsity as an
intrinsic metric to evaluate future models’ safety robustness, thereby complementing red teaming
efforts. We discuss limitations and future work in Appendix C.
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stette, Tim Rocktäschel, and David Scott Krueger. Mechanistically Analyzing the Effects of
Fine-Tuning on Procedurally Defined Tasks. arXiv preprint arXiv:2311.12786, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient Memory Management for Large Language Model
Serving with PagedAttention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611–626, 2023.

François Lagunas, Ella Charlaix, Victor Sanh, and Alexander M Rush. Block Pruning For Faster
Transformers. In EMNLP, 2021.

Michael Lan and Fazl Barez. Locating Cross-Task Sequence Continuation Circuits in Transformers.
arXiv preprint arXiv:2311.04131, 2023.

Andrew Lee, Xiaoyan Bai, Itamar Pres, Martin Wattenberg, Jonathan K Kummerfeld, and Rada
Mihalcea. A Mechanistic Understanding of Alignment Algorithms: A Case Study on DPO and
Toxicity. arXiv preprint arXiv:2401.01967, 2024.

N Lee, T Ajanthan, and P Torr. SNIP: Single-shot Network Pruning based on Connection Sensitivity.
In ICLR, 2019.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning Filters for
Efficient ConvNets. In ICLR, 2017.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-Time
Intervention: Eliciting Truthful Answers from a Language Model. In NeurIPS, 2023a.

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
LoSparse: Structured Compression of Large Language Models based on Low-Rank and Sparse
Approximation. In ICML, 2023b.

Yuhui Li, Fangyun Wei, Jinjing Zhao, Chao Zhang, and Hongyang Zhang. RAIN: Your Language
Models Can Align Themselves without Finetuning. In ICLR, 2024.

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei Xiao. AutoDAN: Generating Stealthy Jailbreak
Prompts on Aligned Large Language Models. In ICLR, 2024.

Yi Liu, Gelei Deng, Zhengzi Xu, Yuekang Li, Yaowen Zheng, Ying Zhang, Lida Zhao, Tianwei
Zhang, and Yang Liu. Jailbreaking ChatGPT via Prompt Engineering: An Empirical Study. arXiv
preprint arXiv:2305.13860, 2023.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning
Efficient Convolutional Networks through Network Slimming. In ICCV, 2017.

Ekdeep Singh Lubana, Eric J Bigelow, Robert P Dick, David Krueger, and Hidenori Tanaka. Mecha-
nistic Mode Connectivity. In ICML, 2023.

Scott M Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions. In NeurIPS,
2017.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. ThiNet: A Filter Level Pruning Method for Deep Neural
Network Compression. In ICCV, 2017.

8



Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

Xinyin Ma, Gongfan Fang, and Xinchao Wang. LLM-Pruner: On the Structural Pruning of Large
Language Models. In NeurIPS, 2023.

Andreas Madsen, Siva Reddy, and Sarath Chandar. Post-hoc Interpretability for Neural NLP: A
Survey. ACM Computing Surveys, 2022.

Pratyush Maini, Michael C Mozer, Hanie Sedghi, Zachary C Lipton, J Zico Kolter, and Chiyuan
Zhang. Can Neural Network Memorization Be Localized? In ICML, 2023.

Anay Mehrotra, Manolis Zampetakis, Paul Kassianik, Blaine Nelson, Hyrum Anderson, Yaron Singer,
and Amin Karbasi. Tree of Attacks: Jailbreaking Black-Box LLMs Automatically. arXiv preprint
arXiv:2312.02119, 2023.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and Editing Factual
Associations in GPT. NeurIPS, 2022.

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. Circuit Component Reuse Across Tasks in
Transformer Language Models. In ICLR, 2021.

Paul Michel, Omer Levy, and Graham Neubig. Are Sixteen Heads Really Better Than One? In
NeurIPS, 2019.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning Convolutional
Neural Networks for Resource Efficient Inference. In ICLR, 2017.

OpenAI. Introducing ChatGPT. https://openai.com/blog/chatgpt, 2022.

OpenAI. GPT-4 Technical Report, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training Language Models to Follow
Instructions With Human Feedback. In NeurIPS, 2022.

Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and Sanjeev Arora. Task-Specific Skill Localiza-
tion in Fine-tuned Language Models. In ICML, 2023.

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi Jia, Prateek Mittal, and Peter Henderson.
Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!
In ICLR, 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
Models are Unsupervised Multitask Learners. OpenAI blog, 2019.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In NeurIPS,
2023.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why Should I Trust You?” Explaining
the Predictions of Any Classifier. In KDD, 2016.

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement Pruning: Adaptive Sparsity by Fine-
Tuning. NeurIPS, 2020.
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A NEURON-LEVEL IMPORTANCE SCORE

A.1 SNIP SCORE

For a data instance x = (xprompt, xresponse), we take the loss as the conditional negative log-
likelihood L(x) = − log p(xresponse | xprompt) predicted by the model. For any linear layer with
weight matrix W ∈ Rdout×din , we can calculate the SNIP importance score (Lee et al., 2019) for the
loss L(x) for each weight entry Wij

I(Wij , x) = |Wij · ∇WijL(x)|,
which is the first-order Taylor approximation to the change of the loss when the weight entry Wij is
set to zero. In matrix form, we have

I(W,x) = |W ⊙∇WL(x)|.
Given a calibration dataset D, we take the absolute value first and then take the average over D and
obtain

I(W ) = Ex∼DI(W,x) = Ex∼D|W ⊙∇WL(x)|.
where we get an individual score for each example and aggregate over the examples following Michel
et al. (2019). Intuitively, I(W ) measures how important each entry is for the behavior of the model
on the calibration dataset D. Small I(W )ij indicates that setting Wij to zero has negligible impact
on each of the calibration data points x, and we can attribute the specific behavior of the model to the
weights with large I(W )ij .

A.2 WANDA SCORE

For a calibration dataset, we store all the activations corresponding to the layer W into Xin ∈ Rdin×n.
We consider multiplying the weight matrix W with an element-wise binary mask M , resulting in a
sparse matrix, such that the Frobenius norm of the change to the output is minimized as in Frantar &
Alistarh (2023):

min
M∈{0,1}dout×din

∥WXin − (M ⊙W )Xin∥2F .

We follow Wanda (Sun et al., 2024) to obtain an approximate solution to the objective above. Denote
an all-one vector by 1 ∈ Rdout . The importance score I(W ) is given by

I(W ) = |W | ⊙
(
1 · ∥Xin∥⊤2

)
,

where we take the row-wise L2 norm to obtain ∥Xin∥2 ∈ Rdin . To obtain a sparse network while
keeping the change to the outputs minimal, one can prune out weight neurons corresponding to the
minimal score I(W ).

In our setting, as we are only interested in measuring the importance of each weight entry that
contributes to the model’s response, we mask out the prompt activations and only include the response
activations in Xin.
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B RELATED WORK

B.1 ALIGNMENT AND JAILBREAK

Alignment refers to the process of ensuring a machine learning (ML) model’s behavior conforms
to human values. For example, pretrained language models are usually not aligned with human
objectives – they cannot follow users’ instructions, and could potentially generate harmful and
incorrect content. During the alignment stage, practitioners would employ Instruction Tuning (Wei
et al., 2022; Ouyang et al., 2022; Touvron et al., 2023b), and Reinforcement Learning from Human
Feedback (RLHF) (Ouyang et al., 2022; Touvron et al., 2023b; Bai et al., 2022a) to enforce the
language models to be helpful, harmless, and honest (the HHH principle) (Askell et al., 2021).
Aligned LLMs (e.g., OpenAI ChatGPT (OpenAI, 2023) and Anthropic Claude (Anthropic, 2023a;b)),
as a result, will follow human values and refuse to respond to harmful requests. Recent work (Rafailov
et al., 2023; Xu et al., 2023; Dai et al., 2024; Yang et al., 2024; Li et al., 2024; Yuan et al., 2024a)
propose more effective and efficient alignment alternatives to RLHF. As some examples, Direct
Preference Optimization (DPO) (Rafailov et al., 2023) directly fine-tunes language models on human
preference data, eliminating the need to train a reward model and conduct reinforcement learning;
Self-Rewarding (Yuan et al., 2024a) uses the language model itself as a reward model to curate labeled
preference data, and then align the language model with DPO in an iterative way; (Dai et al., 2024)
proposes to decouple the goal of safety and helpfulness during alignment, similar to the decoupling
goal of our work.

While harmful instructions that are plain and direct would be rejected by aligned LLMs, researchers
and communities have identified ways to bypass or remove the safety guardrails enforced by LLM
alignment efforts — namely “jailbreaking” LLMs. More specifically, jailbreaking is a series of
attacks where an adversary would coax or enforce the model to deviate from its ethical guidelines. In
practical, jailbreak attackers would either employ adversarial prompts (Liu et al., 2023; Zou et al.,
2023b; Yuan et al., 2024b; Liu et al., 2024; Shen et al., 2023; Yong et al., 2023; Mehrotra et al.,
2023) or manipulate model decoding process (Huang et al., 2024) to bypass LLM safety alignment.
Moreover, when having fine-tuning access of LLMs, adversaries (Qi et al., 2024; Yang et al., 2023;
Zhan et al., 2023) could directly remove the guardrails. A jailbroken LLM would provide harmful
responses to comply with users’ harmful requests, which they otherwise would simply reject (due to
the ethical guidelines injected by alignment) — this could subsequently pose serious safety risks in
the real world, since LLMs can directly deliver various harmfulness to individuals and the society.

B.2 IDENTIFYING TASK-SPECIFIC REGIONS IN LARGE LANGUAGE MODELS

Attributing the model’s behavior to the model’s weights is a classic research question in explainable
machine learning (Tjoa & Guan, 2020; Burkart & Huber, 2021; Ali et al., 2023). Previous studies
in pre-transformer eras have explored various approaches to identify task-specific neurons within
models, to better interpret and control the model’s behavior. Popular techniques mainly include
perturbation-based methods that perturb the input of a model and observe the changes in the output of
the model (Zeiler & Fergus, 2014; Ribeiro et al., 2016), and gradient-based methods that compute an
importance score for model weights based on the results from task-specific back propagation (Sprin-
genberg et al., 2015; Bach et al., 2015; Sundararajan et al., 2017; Shrikumar et al., 2017; Lundberg &
Lee, 2017). However, it was only recently that these methods have been rigorously applied to modern
transformer models (Madsen et al., 2022; Zhao et al., 2023; Maini et al., 2023).

Probing has emerged as a method for understanding the knowledge encoded in transformers, par-
ticularly large language models (Adi et al., 2016; Conneau et al., 2018; Hewitt & Liang, 2019). To
perform probing, the model representations and model parameters are fed into a probe classifier (Be-
linkov, 2022), whose task is to identify certain linguistic properties or reasoning abilities acquired by
the model. For instance, previous work has adopted probing-based method to localize truthfulness (Li
et al., 2023a; Campbell et al., 2023), factuality (Meng et al., 2022; Geva et al., 2023), toxicity (Lee
et al., 2024), and knowledge (Burns et al., 2023; Todd et al., 2023) in LLMs. More recently, Zou
et al. (2023a) propose a similar approach to probing: instead of training a classifier, they employ an
unsupervised approach, specifically singular value decomposition, to identify significant directions in
the representation space. They then demonstrate that these directions can predict and influence the
behavior of LLMs.
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In addition to the importance-score-based and probing-based methods discussed above, recent studies
have also investigated a range of techniques to pinpoint task-specific neurons in transformers. These
techniques address various aspects of the model, including linguistic properties (Dalvi et al., 2019;
Antverg & Belinkov, 2021), general capabilities (Lan & Barez, 2023; Gurnee et al., 2024; Merullo
et al., 2021), fine-tuning (Panigrahi et al., 2023; Lubana et al., 2023), and prompt tuning (Wang et al.,
2022).

The closest concurrent work to ours are Lee et al. (2024) and Jain et al. (2023). Lee et al. (2024)
investigate the representation and elicitation of toxicity in a GPT-2 (Radford et al., 2019) model, and
explores via probing how aligning the model using Direct Preference Optimization (DPO) (Rafailov
et al., 2023) mitigates toxicity. Their findings suggest that DPO does not eliminate the model’s ability
to generate toxic outputs, but rather learns to bypass the regions that elicit toxicity. While Lee et al.
(2024) reveal the fragility of model alignment by probing the GPT-2 model at the granularity of per
attention head level, our study examines the more advanced Llama family models (Touvron et al.,
2023b) using per-neuron or per-rank attribution, which is more relevant to real-world applications
and allows for a more fine-grained analysis. Jain et al. (2023) investigate the impact of fine-tuning
on LLMs, using methods such as probing and data-agnostic structured pruning. They suggest that
fine-tuning model weights might create a ‘safety wrapper’ around core models, rendering the effects
of safety alignment easily reversible. In contrast to their approach which operates on the transformer
block level, our study examines the models at a more fine-grained neuron level and rank level.

B.3 LOW RANK COMPRESSION

Our work borrows insight from Hsu et al. (2021); Schotthöfer et al. (2022); Zhang et al. (2023b); Yuan
et al. (2023); Li et al. (2023b). We address two similar methods (Yuan et al., 2023; Hsu et al., 2021)
and point out their differences from ActSVD. Yuan et al. (2023) propose ASVD (Activation-aware
Singular Value Decomposition) as a low-rank compression technique for language models. Their
method performs SVD on WS, where S is a diagonal matrix with Sii given by the norm of the
activations

Sii =

 1

n

∑
j

|Xij |

α

or
(
max

j
|Xij |

)α

.

Hsu et al. (2021) propose FWSVD (Fisher-Weighted SVD) as a low-rank compression technique,
where the SVD is applied to ÎW . Here

Î = diag(

√
ÎW1

, . . . ,

√
ÎWd

), ÎWi
=

∑
j

ÎWij
.

The ÎWij
is defined as the Fisher information of the loss function with respect to the weight entry Wij

ÎWij
=

1

D

∑
i

(
∂Wij

L(xi;Wij)
)2

.

In contrast, for the proposed method ActSVD, we perform SVD on WXin, where Xin is the stack of
all activations, i.e., Xin = [X1, . . . , Xn] ∈ Rdin×n.

B.4 PRUNING

Our approach to attribution aligns closely with techniques used in neural network pruning. Our
SNIP method (Lee et al., 2019) resembles more closely with unstructured pruning techniques, which
are designed to establish criteria based on weight magnitude, activations, or network gradients for
removing individual weights from a network (Han et al., 2016; Molchanov et al., 2017; Frankle &
Carbin, 2018; Chen et al., 2020; Sanh et al., 2020; Zhao et al., 2020; Cao et al., 2021; Guo et al.,
2021). These unstructured pruning methods have been adapted for use in large language models, as
seen in Wanda (Sun et al., 2024), SparseGPT (Frantar & Alistarh, 2023).

Broadly speaking, the low-rank compression techniques are akin to structured pruning approaches,
with a focus on identifying important structured subnetworks. In computer vision settings, it is
common to remove channels or filters (Li et al., 2017; Molchanov et al., 2017; Wen et al., 2016;
He et al., 2017; Luo et al., 2017; Liu et al., 2017) from convolutional neural networks. Structured
pruning of language models involves removing heads, dimensions, or ranks (Michel et al., 2019;
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Wang et al., 2020; Lagunas et al., 2021; Xia et al., 2022; Ma et al., 2023; Zhang et al., 2023b;a; Chen
et al., 2023; Xia et al., 2024; Ashkboos et al., 2024).

While pruning is commonly employed for model compression to decrease model sizes, our work
adopts similar techniques to identify critical regions responsible for safety.

C LIMITATIONS AND FUTURE WORK

We acknowledge several limitations in the current work and identify areas for potential future research.
A primary limitation is the limited availability of publicly accessible, safety-aligned models, which
constrains our experiments to the Llama2-chat models. It is conceivable that models pre-trained and
safety-tuned with different datasets and strategies might demonstrate varying behaviors under our
weight attribution pipeline.

In addition, we found that standard attention head probing does not effectively localize safety-critical
neurons. It remains possible that advanced probing methods could more successfully achieve this
goal. Our findings that MLP layers may exhibit better localization for safety knowledge, also suggest
that future probing research could explore MLP layers in more depth. This exploration should also
examine the potential integration of these methods with our pipeline to enhance weight attribution
effectiveness.

Moreover, this study proposes initial, yet promising, strategies for improving safety robustness, which
could be explored further: (1) Pruning regions least important for safety (or potentially explicitly
harmful) could improve safety robustness; (2) Making safety-critical regions difficult to isolate may
be an exciting new direction in building inherently safer models.

D EXPERIMENTAL DETAILS

D.1 VARIANTS TO IDENTIFY SAFETY-CRITICAL NEURONS

We conduct experiments to identify safety-critical neurons using the following methods:
• SNIP (top): we regard neurons that receive top-p% SNIP scores (§ 2.1) on safety data as safety-

critical. We choose p = 0.01.
• Wanda (top): we regard neurons that receive top-p% Wanda scores (§ 2.1) on safety data as

safety-critical. We choose p = 0.01.
• SNIP with set difference: we identify safety-critical neurons by focusing on those with top q%

scores in the safety data, which are not included in the top p% scoring neurons according to the
utility data (§ 2.2). We do a grid search for parameters p and q, with their values ranging from 0.1
to 90.

• Probing: we also compare our approach with probing Hewitt & Liang (2019), a common method
for attributing behaviors of LLMs to their internal components. Following standard probing
practices Clark et al. (2019); Campbell et al. (2023); Li et al. (2023a), we feed the model both
harmful and harmless instructions, collect activation outputs from each attention head, and then
train a linear classifier for each head to differentiate these activations. Attention heads with the
highest accuracy on the evaluation set are identified as safety-critical. Appendix D provides more
details.

D.2 VARIANTS TO IDENTIFY SAFETY-CRITICAL RANKS

We conduct experiments to identify safety-critical ranks using the following methods:
• ActSVD (top): we regard the top-r ranks identified as most safety-related by ActSVD (§ 2.1) as

safety-critical. We choose r = 1.
• ActSVD with orthogonal projection: we identify the safety-critical ranks via orthogonal projec-

tion between the utility projection matrix Πu and the safety projection matrix Πs obtained from
ActSVD (§ 2.2). We do a grid search for ru and rs between 50 and 4000.

We only use SNIP for set difference because during our early experiments, we find SNIP performs slightly
better than Wanda.
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D.3 OTHER DETAILS

Compute configurations All the experiments are done with four AMD EPYC 7J13 64-core CPUs
and a single NVIDIA A100-80G GPU. During the experiments, we utilize vLLM (Kwon et al., 2023)
for faster decoding. The typical GPU hours for different experiments are listed in Table 4.

Table 4: Typical GPU hours of different experiment types.

Model Name Attribution unit Experiment type GPU hours

Llama2-7B-chat
Neuron Pruning Top/Least Safety Neurons 0.2

Pruning with Set Difference 0.2

Rank Removing Top/Least Safety Ranks 0.5
Removing with Orthogonal Projection 1.0

Llama2-13B-chat
Neuron Pruning Top/Least Safety Neurons 0.5

Pruning with Set Difference 0.5

Rank Removing Top/Least Safety Ranks 0.8
Removing with Orthogonal Projection 2.0

Details for pruning For all the methods in the paper, we adopt block-wise pruning as Sun et al.
(2024), where we start from the first Transformer block in Llama. After pruning the 7 linear layers in
the current block (self attn.q, self attn.k, self attn.v, self attn.o, mlp.up, mlp.gate, mlp.down),
we recompute the outputs of the current block and continue to the next block.

For the neuron-level attribution, we use output-wise pruning following Sun et al. (2024), as the
authors observed that pruning per output has better performance for language models. Specifically,
after we obtain the score matrix I(W ), for a specific sparsity ratio p%, we set p% of the weights to
zero independently for each row of the matrix W .

Collection of safety and utility dataset The safety dataset is compiled using harmful instructions
from AdvBench (Zou et al., 2023a). We divide AdvBench into AdvBencheval (100 instructions for
evaluation) and AdvBenchattr (420 instructions for attribution). We prompt Llama2-7B-chat with
AdvBenchattr, collecting responses that refrain from following harmful instructions. As noted by
Zou et al. (2023b), the judgement segments in the model’s responses (e.g., “Sure,” “I am sorry”)
significantly impact the nature of subsequent responses. We thus create two variants: safety-full
(entire response) and safety-short (judgement segment only).

For the utility dataset, we filter out safety-related (prompt, response) pairs using sensitive phrase
matching (Qi et al., 2024) from Alpaca-Cleaned, a refined version of the Alpaca dataset (Taori
et al., 2023).

Table 5 provides more details for the safety and utility datasets we use in our experiments. During the
experiment, we sample 128 (prompt, response) pairs in computing the importance score or projection
matrix.

Table 5: The basic information of datasets used for attribution in our experiments.

Dataset Name Data sources Number of (prompt, response) pairs Average Sequence Length

Safety-full AdvBenchattr (prompt) 7, 220 175.68
Safety-short AdvBenchattr (prompt) 7, 220 48.78

Utility Alpaca-Cleaned 45, 874 118.50

Repeat times To mitigate the potential variability introduced by random seeds, we repeat our
experiments on Appendix E.1 three times with different random seeds. In our figure, we plot the
mean value µ for each data point. To represent variability, we shade the area between [µ− σ, µ+ σ],
where σ denotes the standard deviation corresponding to each point.

https://github.com/gururise/AlpacaDataCleaned
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The probing baseline We adopt a similar probing setup used in Li et al. (2023a) for identifying
safety-critical neurons in this work. Specifically, we feed the model with all 420 harmful instructions
from AdvBenchattr, as well as 420 harmless instructions randomly sampled from the utility dataset.
We collect the activation outputs of every internal attention head for these instructions. This collected
data is then split into two sets, with a 5 : 2 ratio for the training split and the validation split,
respectively. For each attention head, we train a linear classifier on the training split using its
activation inputs to distinguish between activations resulting from harmful and harmless instructions.
We then evaluate the accuracy of the classifier on the validation split, which indicates the relevance of
the attention head in distinguishing between harmful and harmless instructions.

The adversarial suffixes We run the GCG attack (Zou et al., 2023b) for 500 iterations, with
adversarial sting initiated as “!!!!!!!!!!!!!!!!!!!!”. For optimization, we use a batch size
of 512, top-k as 256, with a joint optimization over Llama2 family (Touvron et al., 2023b) and
Vicuna (Chiang et al., 2023) models, with their system prompts removed, for three independent trails.
We then identify the top three suffixes with the highest attack success rates on AdvBench, and use
them in our evaluation. For ethical reasons, we refrain from disclosing these suffixes to prevent
potential misuse.

The adversarial decoding For evaluating ASRAdv-Decoding, we configure the sampling temperature
to 1.0 when generating responses from AdvBencheval. For each harmful prompt in AdvBench, we
perform sampling 5 times. An attack is considered successful if at least one of the sampled responses
is deemed harmful.

E MORE EXPERIMENTAL RESULTS

E.1 PRUNING LEAST SAFETY-RELEVANT NEURONS AND RANKS IMPROVES SAFETY.

Pruning least safety-relevant neurons improves safety Thinking from the opposite, it’s reasonable
to hypothesize that the neurons with the lowest safety importance scores could be detrimental for
safety. Consequently, eliminating these neurons could potentially enhance the overall safety of the
model. To verify this, we conduct an ablation study to prune weights with the lowest SNIP and
Wanda scores at various sparsity levels (s%), and report randomly removing s% of neurons as a
baseline for comparison. Particularly, we only report the results for pruned models maintaining
reasonable utility, defined by an average accuracy above 0.5. As shown in Figure 3a, random pruning
strategy significantly reduces model accuracy, which falls below 0.5 after pruning merely 10% of the
weights; it also leads to a noticeable decline in the model’s safety. In contrast, when pruning is guided
by the lowest safety importance score, the model’s accuracy remains largely stable (i.e., > 0.5).
Furthermore, pruning neurons with the lowest safety scores even slightly enhances the model’s safety,
against both decoding manipulation and adversarial suffixes. This indicates that neurons identified as
least important for safety may undermine the model’s safety, thereby validating the effectiveness of
our method in calculating safety importance scores.

Removing least safety-relevant ranks improves safety. Similarly, we also consider removing the
least safety ranks from the model using ActSVD. Specifically, we remove least (R− r) safety ranks
by using Ŵ = UU⊤W =

∑r
i=1 UiU

⊤
i W to approximate W . In accordance to our findings at the

neuron level, as we increase the removed rank, we observe a decrease in the model’s ASRAdv-Decoding
in Figure 3b. This also echoes the recent findings (Sharma et al., 2023) where removing high-order
components improves the model’s reasoning performance. However, the model’s ASRAdv-Suffix
exhibits considerable variation, which could potentially be due to that the adversarial suffixes found
using Zou et al. (2023b) on the original model cannot directly transfer to the modified model.

E.2 MORE RESULTS IN Llama2-13B-chat

We plot the results of removing the most safety-critical neurons and ranks on Figure 5 and the results
of removing the least safety-critical neurons and ranks on Figure 6.

According to Zou et al. (2023b), incorporating a broader range of models during training enhances the
effectiveness of attacks.
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(a) Removing Safety-Critical Neurons
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(b) Removing Safety-Critical Ranks
Figure 5: ASR and accuracy after removing safety-critical neurons in Llama2-13B-chat identified by (a)
different methods in Appendix D.1 with sparsity constraint < 3%; (b) different methods in Appendix D.2 with
ranks of the weight updates ≤ 120 (out of 5120). Among all methods, disentangling safety from utility (set
difference for neurons and orthogonal projection for ranks) mostly effectively identify the safety-critical regions,
with safety severely compromised while utility retains.
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(a) Removing the least Safety-Critical Neurons
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(b) Removing the least Safety-Critical Ranks
Figure 6: Impact on ASR under adversaries in Llama2-13B-chat when: (a) Removing neurons with the lowest
safety importance scores and (b) Removing the least safety-critical ranks identified by ActSVD. Both the
importance score and safety-critical ranks are calculated based on safety short. All plotted points have reasonable
utility with accuracy > 0.5. The exclusion of neurons (using SNIP) and ranks deemed least critical for safety
slightly enhances robustness against adversarial decoding attacks (when actual sparsity < 0.4 & removed rank
< 300), and it maintains the robustness at a nearly 0 ASR against adversarial suffixes.

In accordance with the results on Llama2-7B-chat (see § 3), from Figure 5, we observe similar
results on Llama2-13B-chat:
• Removing safety-critical neurons using set difference, or removing safety-critical ranks using

orthogonal projection, is effective in destroying the model’s safety while preserving utility.
• Removing top safety neurons or ranks severely hurts utility.
• Set difference with SNIP score consistently outperforms the attention head probing baseline.
However, from Figure 6, we observe different curves from the results for Llama2-7B-chat.
• The exclusion of neurons using SNIP and ActSVD deemed least critical for safety slightly enhances

robustness against adversarial decoding attacks, i.e., when actual sparsity > 0.4 & removed rank
< 300.

• In contrast, removing neurons according to the least Wanda scores hurts the adversarial robustness.
• Different from Llama2-7B-chat, we see that the original Llama2-13B-chat has zero

ASRAdv-Suffix. Removing less than 45% of neurons or less than 750 ranks that are least criti-
cal for safety maintains the robustness against adversarial suffixes at a nearly 0 ASR. One potential
reason behinds the phenomenon is that the adversarial suffixes are obtained using 7B models
and they cannot transfer to Llama2-13B-chat. It may be possible that the trend between the
Llama2-13B-chat and Llama2-7B-chat models becomes more aligned with optimized suffixes.
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E.3 ABLATION STUDY BETWEEN SAFETY-FULL DATASET AND SAFETY-SHORT DATASET

Performance of set difference As shown in Figure 7, the trends in ASR versus accuracy for both
the safety-full and safety-short attribution datasets are similar. This observation implies that utilizing
judgment-only data is as effective as using the full response for identifying safety-critical neurons.
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Figure 7: The relationship between ASR and Averaged Zero-shot Accuracy with set difference pruning methods
on Llama2-13B-chat, using safety and safety-short datasets. The model’s performance is very similar in safety
and safety-short.

Performance of pruning the least safety-critical region As shown in Figure 8, when pruning
the least safety-critical region, compared to safety-full dataset, using safety-short dataset exhibits a
more significant change in both ASRAdv-Suffix and ASRAdv-Decoding. We also observe that ASRVanilla
remains close to zero for actual sparsity levels between 0 and 0.55. Therefore, we only report results
for ASRAdv-Suffix and ASRAdv-Decoding, with safety-short in Appendix E.1.
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Figure 8: Comparison between using safety-full and safety-short when pruning the least safety-critical neurons
on Llama2-7B-chat. Compared to safety-full dataset, using safety-short dataset exhibits a more significant
change.

E.4 MORE RESULTS FOR DISENTANGLEMENT METHODS

More results for (p, q) combinations in set difference. We conduct a comprehensive study
exploring the search space for (p, q) values ranging between 0.1 and 90. Complementing Figure 2a
and Figure 5a, Appendix E.4 presents the top (p, q) combinations along with the utility and safety
measures for the resulting models on Llama2-7B-chat and Llama2-13B-chat. In scenarios where
the actual sparsity is less than 1%, the model maintains a low ASRVanilla, typically under 0.3. However,
its ASRAdv-Suffix and ASRAdv-Decoding nearly reach to 1. In contrast, when the actual sparsity ∈
(1%, 3%)., the model approaches a value close to 1 for all three ASR variants. Notably, across all
cases outlined in Appendix E.4, the model consistently maintains utility, with an average accuracy
greater than 0.5. These findings indicate that the optimal range for the (p, q) parameters lies between
3 and 9, especially when the values of p and q are similar.

More results for (ru, rs) combinations in orthogonal projection. Note that the ranks of the
weight matrices of the linear layers are R = 4096 for Llama2-7B-chat and R = 5120 for
Llama2-13B-chat. We perform a grid search for the parameters ru and rs, spanning a range
from 50 to 4000 for Llama2-7B-chat and from 1200 to 5000 for Llama2-13B-chat. As an exten-
sion to Figure 2b and Figure 5b, Appendix E.4 presents the top five combinations of ru and rs along
with the utility and safety metrics for the models tested on Llama2-7B-chat and Llama2-13B-chat
model. The results indicate that setting rs close to R, especially when ru closes to rs, proves to be
particularly effective.
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Table 6: Performance of Llama2-7B-chat (a) and Llama2-13B-chat (b) with safety-critical neurons removed,
identified through set difference between top-q% safety and top-p% utility neurons, across various (p, q)
combinations. The ideal range for (p, q) is [3, 9], especially when p and q are closely matched.

p q Actual Sparsity ASRVanilla ASRAdv-Suffix ASRAdv-Decoding Averaged Accuracy

Actual Sparsity < 1%

1 1 0.63% 0.10 0.97 0.86 0.54
2 1 0.46% 0.06 0.94 0.84 0.55
4 2 0.78% 0.09 0.97 0.88 0.56
7 3 0.86% 0.06 0.97 0.89 0.58
3 2 0.94% 0.21 0.97 0.89 0.55

Actual Sparsity ∈ (1%, 3%)

4 4 2.03% 0.81 0.97 0.92 0.51
5 5 2.41% 0.92 0.97 0.95 0.51
6 5 2.10% 0.70 0.99 0.91 0.53
6 6 2.75% 0.87 0.97 0.93 0.51
9 8 2.99% 0.87 0.98 0.93 0.52

(a) Llama2-7B-chat

p q Actual Sparsity ASRVanilla ASRAdv-Suffix ASRAdv-Decoding Averaged Accuracy

Actual Sparsity < 1%

1 1 0.66% 0.30 0.82 0.83 0.60
5 2 0.72% 0.18 0.91 0.87 0.60
7 2 0.53% 0.13 0.84 0.86 0.60
7 3 0.93% 0.16 0.92 0.91 0.60
8 3 0.82% 0.14 0.88 0.88 0.60

Actual Sparsity ∈ (1%, 3%)

3 3 1.72% 0.96 0.98 0.92 0.54
4 3 1.46% 0.86 0.98 0.93 0.55
4 4 2.15% 0.98 0.97 0.95 0.53
6 6 2.91% 0.95 0.98 0.94 0.52
9 7 2.59% 0.83 0.96 0.93 0.56

(b) Llama2-13B-chat

Table 7: Performance of Llama2-7B-chat (a) and Llama2-13B-chat (b) model with safety-critical ranks
removed by doing orthogonal projection between utility projection matrix Πu and safety projection matrix
Πs, across various (ru, rs) combinations. Setting rs close to R, especially when ru closes to rs, proves to be
particularly effective.

ru rs min(ru, R− rs) ASRVanilla ASRAdv-Suffix ASRAdv-Decoding Averaged Accuracy

3450 4000 96 0.67 1.00 0.88 0.59
3550 4000 96 0.68 0.99 0.90 0.59
3950 4090 6 0.71 0.97 0.91 0.59
4000 4090 6 0.71 0.97 0.92 0.58
4080 4090 6 0.65 0.98 0.94 0.57

(a) Llama2-7B-chat (R = 4096)

ru rs min(ru, R− rs) ASRVanilla ASRAdv-Suffix ASRAdv-Decoding Averaged Accuracy

3450 5000 120 0.32 0.98 0.88 0.62
3600 5000 120 0.41 0.97 0.91 0.61
3900 5000 120 0.30 0.99 0.91 0.60
3750 5000 120 0.39 0.99 0.89 0.62
4400 5000 120 0.91 1.00 0.95 0.52

(b) Llama2-13B-chat (R = 5120)
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E.5 PROBING ACCURACY DISTRIBUTIONS

We also analyze the accuracy of linear probers trained on all 1024 attention heads from
Llama2-7B-chat (Figure 9a) and 1600 attention heads from Llama2-13B-chat (Figure 9b). The
results show that around half of the attention heads achieve very high probing accuracy (i.e., > 0.95)
in distinguishing between harmful and harmless instructions. Notably, even the attention heads with
the lowest probing accuracy show significant effectiveness – 0.78 for Llama2-7B-chat and 0.74 for
Llama2-13B-chat. Additionally, transformer blocks located in the middle typically demonstrate
higher probing accuracy compared to those at the beginning or end.
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Figure 9: The probing accuracy distribution across different attention heads inside Llama2-7B-chat and
Llama2-13B-chat. Around half of the attention heads achieve very high probing accuracy (i.e., > 0.95) in
distinguishing between harmful and harmless instructions.

This pattern of high accuracy suggests that making safety judgments at the level of individual attention
heads is relatively straightforward due to their effective representational capacity. Therefore, our
study’s focus on finer granularities, such as neurons or ranks, is essential for the precise localization
of safety-critical regions.

F PROOF OF THE OPTIMALITY OF ACTSVD

Lemma 1. Let Xin ∈ Rdin×n. Let Ŵ be the solution to the following rank-constrained approximation
problem.

Ŵ = argmin
rank Ŵ≤r

∥WXin − ŴXin∥2F . (1)

Let USV ⊤ be the rank-r SVD on WXin ∈ Rdout×n:
USV ⊤ ≈ WXin,

where U ∈ Rdout×r is the orthogonal matrix corresponding to the top r left singular vectors. The
minimizer to Equation (1) is given by

Ŵ = UU⊤W.

Proof. Denote Z = WXin. By Eckart–Young–Mirsky theorem (Eckart & Young, 1936), we know
that the SVD Ẑ = USV ⊤ ≈ Z is the best rank-r approximation to Z, where U ∈ Rdout×r,
S = diag(S1, . . . , Sr), V ∈ Rn×r. Furthermore, we have

Ẑ = UU⊤Z.
Plugging in Z = WXin, we have

Ẑ = UU⊤WXin.

Recall that we set Ŵ = UU⊤W . We see that
∥Ẑ − Z∥2F is minimized ⇒ ∥ŴXin −WXin∥2F is minimized.

Furthermore, as UU⊤ is a rank-r projection matrix, we have rank(Ŵ ) ≤ r. Therefore, Ŵ is the
optimal solution to the rank-constrained minimization problem (Equation (1)). The same reasoning is
used in Hsu et al. (2021).
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