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Abstract

In the last decades, the capacity to generate large amounts of data in science and engineering
applications has been growing steadily. Meanwhile, the progress in machine learning has
turned it into a suitable tool to process and utilise the available data. Nonetheless, many
relevant scientific and engineering problems present challenges where current machine learn-
ing methods cannot yet efficiently leverage the available data and resources. For example,
in scientific discovery, we are often faced with the problem of exploring very large, struc-
tured and high-dimensional spaces, and where querying a high fidelity, black-box objective
function is very expensive. Progress in machine learning methods that can efficiently tackle
such problems would help accelerate currently crucial areas such as drug and materials dis-
covery. In this paper, we propose a multi-fidelity active learning algorithm with GFlowNets
as a sampler, to efficiently discover diverse, high-scoring candidates where multiple approx-
imations of the black-box function are available at lower fidelity and cost. Our evaluation
on molecular discovery tasks show that multi-fidelity active learning with GFlowNets can
discover high-scoring candidates at a fraction of the budget of its single-fidelity counterpart
while maintaining diversity, unlike RL-based alternatives. These results open new avenues
for multi-fidelity active learning to accelerate scientific discovery and engineering design.

1 Introduction

To tackle the most pressing challenges for humanity, such as the climate crisis and the threat of pandemics or
antibiotic resistance, there is a growing need for new scientific discoveries. By way of illustration, materials
discovery can play an important role in improving the efficiency of energy production and storage; and
reducing the costs and duration of drug discovery cycles has the potential to effectively and rapidly mitigate
the consequences of new diseases. In recent years, researchers in materials science, biochemistry and other
fields have increasingly adopted machine learning as a tool since it holds the promise to drastically accelerate
scientific discovery (Butler et al., 2018; Zitnick et al., 2020; Bashir et al., 2021; Das et al., 2021).

Although machine learning has already made a positive impact in scientific discovery applications (Stokes
et al., 2020; Jumper et al., 2021), unleashing its full potential will require improving the current algorithms
Agrawal & Choudhary (2016). For example, typical tasks in potentially impactful applications in materials
and drug discovery require exploring combinatorially large, structured and high-dimensional spaces (Bohacek
et al., 1996; Polishchuk et al., 2013), where only small, noisy data sets are available. Furthermore, obtaining
new annotations computationally or experimentally is often very expensive. Such scenarios present serious
challenges even for the most advanced current machine learning methods.

In the search for a useful discovery, we typically define a quantitative proxy for usefulness, which we can
view as a black-box function. One promising avenue for improvement is developing methods that more
efficiently leverage the availability of multiple approximations of the target black-box function at lower
fidelity but much lower cost than the highest fidelity oracle (Chen et al., 2021; Fare et al., 2022). For
example, a standard tool to characterise the properties of materials and molecules is quantum mechanics
simulations such as Density Functional Theory (DFT) (Parr, 1980; Sholl & Steckel, 2022). However, DFT
is computationally too expensive for high-throughput exploration of large search spaces. Thus, large-scale
exploration can only be achieved through cheaper but less accurate oracles. Nonetheless, solely relying on
low-fidelity approximations is clearly suboptimal. Ideally, such “needle-in-a-haystack” problems would be
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Figure 1: Illustration of multi-fidelity active learning with GFlowNets (Algorithm 1). Given a set of M oracles
f1, . . . , fM (center left) with varying fidelities and costs λ < . . . < λM , respectively, we can construct a data
set D (top left) with annotations from the oracles. With this data, we fit a multi-fidelity surrogate (center),
modelling the posterior p(fm(x)|x, m, D). Using the surrogate, we compute a multi-fidelity acquisition
function—max-value entropy search in our experiments— which is used as the reward to train a GFlowNet
(right). GFlowNet samples both an object x and the fidelity m proportionally to this reward. Once GFlowNet
is trained, we sample N tuples (x, m) and select the top B according to the acquisition function (bottom
left). Finally, we annotate each new candidate with the selected oracle, add them to the data set and repeat
the process.

best tackled by methods that can efficiently and adaptively distribute the available computational budget
between the multiple oracles depending on the already acquired information.

Another challenge is that even the highest fidelity oracles are often underspecified with respect to the
actual, relevant, downstream applications. This underspecification problem can be mitigated by finding
multiple candidate solutions (Jain et al., 2023a). However, most current machine learning methods used
in scientific discovery problems, such as Bayesian optimisation (BO, Song et al., 2018; Garnett, 2023) and
reinforcement learning (RL, Angermueller et al., 2020), are designed for global optimisation of the target
function. Therefore, it is imperative to develop methods that not only find the global optimum, but also
discover sets of diverse, high-scoring candidates.

Recently, generative flow networks (GFlowNets, Bengio et al., 2021a) have demonstrated their ability to
find diverse candidates through discrete probabilistic modelling, with particularly promising results when
used in an active learning loop (Jain et al., 2022). In this paper, we propose a multi-fidelity active learning
algorithm enhanced with these capabilities of GFlowNets. Our contributions can be summarized as follows:

• We introduce a multi-fidelity active learning algorithm designed for combinatorially large, structured
and high-dimensional spaces.

• We propose an extension of GFlowNets for this multi-fidelity setting, to sample both candidates and
oracle indices, proportionally to a given acquisition function.

• We conduct a comprehensive empirical evaluation across four scientific discovery tasks and demon-
strate that multi-fidelity active learning with GFlowNets:

– Discovers high-scoring samples with reduced computational costs compared to its single-fidelity
counterpart.
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– Identifies multiple modes of the target function, unlike methods relying on reinforcement learn-
ing or standard Bayesian optimization, thereby facilitating diverse sampling.

2 Related Work

Our work can be framed within the broad field of active learning (AL), a class of machine learning methods
whose goal is to learn an efficient data sampling scheme to accelerate training (Settles, 2009). For the bulk
of the literature in AL, the goal is to train an accurate model h(x) of an unknown target function f(x),
as in classical supervised learning. However, in certain scientific discovery problems, which motivate our
work, a desirable goal is often instead to discover multiple, diverse candidates x with high values of f(x), as
discussed in Section 1.

Our work is also closely connected to Bayesian optimisation (BO, Garnett, 2023; Snoek et al., 2015), which
aims at optimising a black-box objective function f(x) that is expensive to evaluate. In contrast to the
problems we address in this paper, standard BO typically considers continuous domains and works best
in relatively low-dimensional spaces (Frazier, 2018). Nonetheless, in recent years, approaches for BO with
structured data (Deshwal & Doppa, 2021; Papenmeier et al., 2023) and high-dimensional domains (Grosnit
et al., 2021) have been proposed in the literature. The main difference between BO and the problem we
tackle in this paper is that we are interested in finding multiple, diverse samples with high value of f and
not only the optimum. Recent work by Maus et al. (2022) has proposed a variant of traditional BO to find
diverse solutions.

This goal, as well as the discrete nature of the search space, is shared with active search (Garnett et al.,
2012), a variant of active learning in which the task is to efficiently find multiple samples of a valuable
(binary) class from a discrete domain X . This objective was already considered in the early 2000s by
Warmuth et al. (2001) for drug discovery , and more formally analysed in later work (Jiang et al., 2017;
2019). Another recent research area in stochastic optimisation that considers diversity is so-called Quality-
Diversity (Chatzilygeroudis et al., 2021), which typically uses evolutionary algorithms that perform search
in a latent space. These and other problems such as multi-armed bandits (Robbins, 1952) and the general
framework of experimental design (Chaloner & Verdinelli, 1995) all share the objective of optimising or
exploring an expensive black-box function. Formal connections between some of these areas have been
established in the literature (Srinivas et al., 2010; Foster, 2021; Jain et al., 2023a; Fiore et al., 2023).

Multi-fidelity methods have been proposed in most of these areas of research. An early survey on multi-
fidelity methods for Bayesian optimisation was compiled by Peherstorfer et al. (2018), and research on the
subject has continued since with the proposal of specific acquisition functions (Takeno et al., 2020) and the
use of deep neural networks to improve the modelling (Li et al., 2020). Recently, works on multi-fidelity
active search have also appeared in the literature (Nguyen et al., 2021), but interestingly, the literature on
multi-fidelity active learning (Li et al., 2022a) is scarcer. Finally, while multi-fidelity methods have started
to be applied in scientific discovery problems (Chen et al., 2021; Fare et al., 2022) the literature is still scarce
probably because most approaches cannot tackle the specifics of scientific discovery, such as the need for
diverse samples. Here, we aim at addressing this need with the use of GFlowNets (Bengio et al., 2021a; Jain
et al., 2023b) for multi-fidelity active learning.

3 Method

In this section, we first briefly introduce the necessary background on GFlowNets and active learning. Then,
we describe the proposed algorithm for multi-fidelity active learning with GFlowNets.

3.1 Background

GFlowNets Generative Flow Networks (GFlowNets; Bengio et al., 2021a;b) are amortised samplers de-
signed for sampling from discrete high-dimensional distributions. Given a space of compositional objects X
and a non-negative reward function R(x), GFlowNets are designed to learn a stochastic policy π that gen-
erates x ∈ X with a probability proportional to the reward, that is π(x) ∝ R(x). This distinctive property
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induces sampling of diverse, high-reward objects, which is a desirable property for scientific discovery, among
other applications (Jain et al., 2023a).

The objects x ∈ X are constructed sequentially by sampling transitions st→st+1 ∈ A between partially
constructed objects (states) s ∈ S, which includes a unique empty state s0. The stochastic forward policy
is typically parameterised by a neural network PF (st+1|st; θ), where θ denotes the learnable parameters,
which models the distribution over transitions st→st+1 from the current state st to the next state st+1.
The backward transitions are parameterised too and denoted PB(st|st+1; θ). Objects x are generated by the
sequential application of PF , forming trajectories τ = (s0 → s1 . . . → x). To learn the parameters θ such
that π(x) ∝ R(x) we use the trajectory balance learning objective (Malkin et al., 2022)

LT B(τ ; θ) =
(

log Zθ

∏n
t=0 PF (st+1|st; θ)

R(x)
∏n

t=1 PB(st|st+1; θ)

)2

, (1)

where Zθ is an approximation of the partition function
∑

x∈X R(x) that is learnt. The GFlowNet learning
objective supports training from off-policy trajectories, so during training the trajectories are typically sam-
pled from a mixture of the current policy with a uniform random policy. The reward is also tempered to
make the policy focus on the modes.

Active Learning In its simplest formulation, the active learning problem that we consider is as follows:
we start with an initial data set D = {(xi, f(xi))} of samples x ∈ X and their evaluations by an expensive,
black-box objective function (oracle) f : X → R, which we use to train a surrogate model h(x). A GFlowNet
can then be trained to learn a generative policy πθ(x) using h(x) as reward function, that is R(x) =
h(x). Optionally, we can instead train a probabilistic surrogate p(f |D) and use as reward the output of an
acquisition function α(x, p(f |D)) that considers the epistemic uncertainty of the surrogate model, as typically
done in Bayesian optimisation. This is the approach by Jain et al. (2022) with GFlowNet-AL. An important
difference between traditional BO and active learning with GFlowNets is that the latter samples from the
acquisition function instead of optimising it (Jain et al., 2023a). Finally, we use the policy π(x) to generate
a batch of samples to be evaluated by the oracle f , we add them to our data set and repeat the process a
number of active learning rounds.

While much of the active learning literature (Settles, 2009) has focused on so-called pool-based active learning,
where the learner selects samples from a pool of unlabelled data, we here consider the scenario of de novo
query synthesis, where samples are selected from the entire object space X . This scenario is particularly
suited for scientific discovery (King et al., 2004; Xue et al., 2016; Yuan et al., 2018; Kusne et al., 2020). The
ultimate goal pursued in active learning applications is also heterogeneous. Often, the goal is the same as
in classical supervised machine learning: to train an accurate (surrogate) model h(x) of the unknown target
function f(x). For some problems in scientific discovery, we are usually not interested in the accuracy across
the entire input space X , but rather in discovering new, diverse objects with high values of f . We have
reviewed the literature that is connected to our work in Section 2.

3.2 Multi-Fidelity Active Learning

We now consider the following active learning problem with multiple oracles of different fidelities. Our
ultimate goal is to generate a batch of K samples x ∈ X according to the following desiderata:

• The samples obtain a high value when evaluated by the objective function f : X → R+.

• The samples should be diverse, covering distinct high-valued regions of f .

Furthermore, we are constrained by a computational budget Λ that limits our capacity to evaluate f . While
f is extremely expensive to evaluate, we have access to a discrete set of approximate functions (oracles)
{fm}1≤m≤M : X → R+, where m represents the fidelity index and each oracle has an associated cost λm—
we assume, without loss of generality, that the larger m, the higher the fidelity and that λ1 < λ2 < . . . < λM .
We also assume fM = f because, even though there may exist more accurate oracles, we do not have access
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to them. This scenario resembles many practically relevant problems in scientific discovery and motivates
our approach: because the objective function fM is not a perfect proxy of the true usefulness of objects x,
we seek diversity; and because fM may be expensive to evaluate, we make use of approximate models.

In multi-fidelity active learning—as well as in multi-fidelity Bayesian optimisation—the iterative sampling
scheme consists of not only selecting the next object x (or batch of objects) to evaluate, but also the level of
fidelity m, such that the procedure is cost-effective.

Briefly, our algorithm, MF-GFN follows these iterative steps: we use the currently available data to train
a probabilistic multi-fidelity surrogate model h(x, m). We can use the surrogate to compute the value of
annotating a candidate x with the oracle fm via an acquisition function α(x, m). Next, we train a GFlowNet
with the acquisition function as a reward. Once trained we sample N tuples (x, m) and select the top B.
Finally, we annotate each candidate x with the selected oracle m and start over. Figure 1 contains a visual
illustration of MF-GFN and more detailed descriptions are provided in Algorithm 1 and in Appendices A
and B. Below, we discuss further the surrogate model and the acquisition function, and in Section 3.3 we
introduce the multi-fidelity GFlowNet.

Surrogate Model Given a dataset D, a candidate x and an oracle index m, we want to model the posterior
distribution over the output of the oracle, p(fm(x)|x, m, D). A natural modelling choice is Gaussian Processes
(GP) (Rasmussen & Williams, 2005), commonly used in Bayesian optimisation. However, in order to better
model structured, high-dimensional data, we use deep kernel learning (Wilson et al., 2016): First, a non-
linear embedding of the inputs x is learnt by a deep neural network. Then, a multi-fidelity GP kernel is
applied by combining a Matern kernel applied to the latent representations from the network along with a
linear downsampling kernel over the fidelity index m (Wu et al., 2019).

Acqusition Function Multi-fidelity methods proposed in the Bayesian optimization literature have
adapted information theory-based acquisition functions (Li et al., 2022a; Wu et al., 2023; Li et al., 2022b).
In our work, we use the multi-fidelity version (Takeno et al., 2020) of max-value entropy search (MES)
Wang & Jegelka (2017). MES captures the mutual information between the value of candidate x and the
maximum value attained by the objective function, f⋆. The multi-fidelity variant is designed to select the
candidate x and the fidelity m that maximise the mutual information between f⋆

M and the oracle at fidelity
m, fm, weighted by the cost of the oracle (see Appendix B for the details). MES has been shown to be
more efficient than plain entropy search (ES) (Wang & Jegelka, 2017) and it even makes random sampling
a strong baseline. Additionally, for efficiency, we adopt the GIBBON approximation of MF-MES, which has
demonstrated good performance in the context of multi-fidelity optimization (Moss et al., 2021).

3.3 Multi-Fidelity GFlowNets

A multi-fidelity acquisition function can be regarded as a cost-adjusted utility function. Therefore, in order
to carry out a cost-aware search, we seek to sample diverse objects with high value of the acquisition function.
To this purpose, we propose to use a GFlowNet as a generative model by training it to sample the fidelity m
in addition to the candidate x itself. Formally, given a GFlowNet with state and transition spaces S and A,
we augment the state space with a new dimension for the fidelity M′ = {0, 1, 2, . . . , M} (including m = 0,
which corresponds to unset fidelity), such that the augmented, multi-fidelity space is SM′ = S ∪ M′. The
set of allowed transitions AM is augmented such that a fidelity m > 0 of a trajectory must be selected once,
and only once, from any intermediate state.

Intuitively, allowing the selection of the fidelity at any step in the trajectory should give flexibility for better
generalisation. At the end, complete trajectories are the concatenation of an object x and the fidelity m,
that is (x, m) ∈ XM = X ∪ M. In summary, the proposed approach learns a policy that samples jointly
objects in a possibly very large, structured and high-dimensional space, together with the level of fidelity,
that maximise a given multi-fidelity acquisition function as reward.
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Algorithm 1: MF-GFN: Multi-fidelity active learning with GFlowNets. A graphical summary of this
algorithm is shown in Fig. 1.
Input: {(fm, λm)}: M oracles and their corresponding costs;
D0 = {(xi, fm(xi), mi)}: Initial data set;
h(x, m): Multi-fidelity Gaussian Process surrogate model;
α(x, m): Multi-fidelity acquisition function;
R(α(x, m), β): reward function to train the GFlowNet;
B: Batch size of oracles queries;
Λ: Maximum available budget;
K: Number of top-scoring candidates to be evaluated at termination;
Result: Top-K(D), Diversity
Initialization: Λj = 0, D = D0
while Λj < Λ do

• Fit h on data set D;
• Train GFlowNet with reward R(α(x, m), β) to obtain policy πθ(x);
• Sample N ≫ B tuples (xi, mi) ∼ πθ;
• Score each tuple using α(x, m) and select the top B tuples with the highest scores;
• Evaluate each tuple with the corresponding oracle to form batch
B = {(x1, fm(x1), m1), . . . , (xB , fm(xB), mB)};

• Update data set D = D ∪ B and budget Λj = Λj +
∑i=B

i=1 λmi ;
end

4 Empirical Evaluation

In this section, we present empirical evaluations of multi-fidelity active learning with GFlowNets. Through
our experiments, we aim to answer the following questions:

• Can our multi-fidelity active learning approach find high-scoring, diverse samples at lower cost than
with a single-fidelity oracle?

• Does MF-GFN, which samples objects and fidelities (x, m), provide any advantage over sampling
only x and selecting m randomly?

4.1 Metrics

As discussed in Section 3.2, our goal is to sample diverse objects with high scores according to a reward
function. Following Gao et al. (2022) and Jain et al. (2022), we here consider a pair of metrics that capture
both the score and the diversity of the final batch of candidates:

• Mean top-K score: mean score, per the highest fidelity oracle fM , of the top-K samples.

• Top-K diversity: mean pairwise distance within the top-K samples.

For additional details, see Appendix D. Since here we are interested in the cost effectiveness of the active
learning process, we evaluate the above metrics as a function of the cost accumulated in querying the oracles.
It is important to note that multi-fidelity approaches are not aimed at achieving better mean top-K scores
than a single-fidelity active learning counterpart, but rather the same mean top-K scores but with a smaller
budget.

4.2 Baselines

In order to evaluate our approach, and to shed light on the questions stated above, we consider the following
baselines:
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Figure 2: Results on the DNA aptamers and AMP tasks. The curves indicate the mean energy fM within the
top-100 samples computed at the end of each active learning round and plotted as a function of the budget
used. The colour of the round markers indicates the diversity within the batch (darker colour indicating
more diversity), computed as the average sequence identity distance (see Appendix D). In both the DNA and
AMP tasks, MF-GFN outperforms all baselines in terms of cost efficiency, while obtaining great diversity in
the final batch of top-K candidates.

GFlowNet with highest fidelity (SF-GFN) GFlowNet-based active learning (GFlowNet-AL) as in Jain
et al. (2022) with the highest fidelity oracle, to establish a benchmark for performance without considering
the cost-accuracy trade-offs.

GFlowNet with random fidelities (Random fid. GFN) Variant of SF-GFN where the candidates are
generated with the GFlowNet but the multi-fidelity acquisition function is evaluated with random fidelities,
to investigate the benefit of deciding the fidelity with GFlowNets.

Random candidates and fidelities (Random) Quasi-random approach where both candidates and
fidelities are randomly sampled. We query the top (x, m) pairs according to the acquisition function.

Multi-fidelity PPO (MF-PPO) Instantiation of multi-fidelity Bayesian optimisation where the acquisi-
tion function is optimised using proximal policy optimisation (PPO, Schulman et al., 2017). Unlike with the
other baselines, we include an initialisation of n/3 steps where n is the maximum number of steps allowed.
We do this to help exploration and diversity, since without this PPO tends to collapse to generation of very
similar candidates.

4.3 Benchmark Tasks

As a proof of concept, we perform experiments on two low-dimensional synthetic functions: Branin and
Hartmann, widely used in the multi-fidelity Bayesian optimisation literature (Perdikaris et al., 2017; Song
et al., 2018; Kandasamy et al., 2019; Li et al., 2020; Folch et al., 2023). These tasks show that MF-GFN is able
to obtain results comparable to other multi-fidelity BO methods. We provide these results in Appendix C.4.
To obtain a solid assessment of the performance of MF-GFN on large, structured and high-dimensional
problems, we evaluate it on more complex tasks of practical scientific relevance. We present results on a
variety of discovery domains: DNA aptamers (Section 4.3.1), anti-microbial peptides (Section 4.3.2) and
small molecules (Section 4.3.3).
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4.3.1 DNA Aptamers

DNA aptamers are single-stranded nucleotide sequences of nucleobases A, C, T and G, with multiple applica-
tions in polymer design due to their specificity and affinity as sensors in crowded biochemical environments
(Zhou et al., 2017; Corey et al., 2022; Yesselman et al., 2019; Kilgour et al., 2021). The objective is to
maximize the (negative) free energy of the secondary structure of DNA sequences. This free energy can be
seen as a proxy of the stability of the sequences. Diversity is computed as one minus the mean pairwise
sequence identity among a set of DNA sequences.

Setting In our experiments, we consider fixed-length sequences of 30 bases and design a GFlowNet envi-
ronment where the action space A consists of the choice of base to append to the sequence, starting from an
empty sequence. This yields a design space of size |X | = 430 (ignoring the selection of fidelity in MF-GFN).
Further details about the task are discussed in Appendix C.5.1.

Oracles NUPACK (Zadeh et al., 2011), a nucleic acid structure analysis software, is used as the highest
fidelity oracle, fM . As a low fidelity oracle, we trained a transformer model on 1 million randomly sampled
sequences annotated with fM , and assigned it a cost 100× smaller than the highest-fidelity oracle. The cost
difference is selected to simulate practical scenarios where wet lab experiments take hours for evaluation,
while cheap online simulations take a few minutes.

Results As presented in Fig. 2a, MF-GFN reaches the best mean top-K energy achieved by its single-
fidelity counterpart with just about 25 % of the budget. It is also more efficient than GFlowNet with random
fidelities and MF-PPO. Crucially, we also see that MF-GFN maintains a high level of diversity (0.32), even
after converging to the top-K scores. On the contrary, MF-PPO (0.20) is not able to discover diverse samples,
as is expected based on prior work (Jain et al., 2022).

4.3.2 Antimicrobial Peptides

Antimicrobial peptides are short protein sequences which possess antimicrobial properties. As proteins, these
are sequences of amino-acids—a vocabulary of 20 along with a special stop token. The aim is to identify
sequences with a high antimicrobial activity, as measured by a classifier trained on DBAASP (Pirtskhalava
et al., 2021). The diversity calculation mirrors that of DNA.

Setting We consider variable-length protein sequences with up to 50 residues. Analogous to DNA, if we
ignore the fidelity, this yields a design space of size |X | = 2050.

Oracles We construct a three-oracle setup by training deep learning models with different capacities on
exclusive subsets of data points. We simulated a setup wherein the two lower fidelity oracles are trained
on specifc subgroups of the peptides. Details in Appendix C.5.2. Similar to the DNA experiment, the
lower-fidelity oracles had (equivalent) costs 100× less than the highest fidelity oracle.

Results Fig. 2b indicates that in this task MF-GFN obtains even greater advantage over all other baselines
in terms of cost-efficiency. It reaches the same maximum mean top-K score as the random baselines with 10×
less budget and almost 100× less budget than SF-GFN. In this task, MF-PPO did not achieve comparable
results. Crucially, the diversity of the final batch found by MF-GFN stayed high (0.87), satisfying this
important criterion in the motivation of this method.

4.3.3 Small Molecules

Molecules are clouds of interacting electrons (and nuclei) described by a set of quantum mechanical properties.
These properties dictate their chemical behaviours and applications. To demonstrate the capability of MF-
GFN in the setting of quantum chemistry, we consider two proof-of-concept tasks in molecular electronic
potentials: maximisation of the (negative) adiabatic ionisation potential (IP) and of the adiabatic electron
affinity (EA). These electronic potentials dictate the molecular redox chemistry, and are crucial in organic
semiconductors, photoredox catalysis and organometallic synthesis. In this task, the diversity measure is
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Figure 3: Results on the molecular discovery tasks: (a) ionisation potential (IP), (b) electron affinity (EA).
These visualisations are analogous to those in Fig. 2. The diversity of molecules is computed as the average
pairwise Tanimoto distance (see Appendix D). Results generally show MF-GFN’s faster convergence in
discovering diverse molecules with desirable properties.

computed as the average pairwise Tanimoto distance among the top-K scoring molecules (Bajusz et al.,
2015).

Setting We designed the GFlowNet state space by considering variable length sequences of SELFIES
tokens (Krenn et al., 2020) to represent molecules, with a vocabulary size of 26. The maximum length was
64, resulting in a design space of |X | = 2664.

Oracles Numerous approximations of these quantum mechanical properties have been developed with dif-
ferent methods at different fidelities, with the famous example of Jacob’s ladder in density functional theory
(Perdew & Schmidt, 2001). We employed three oracles that correlate with experimental results as approxi-
mations of the scoring function, by using various levels of geometry optimisation to obtain approximations
to the adiabatic geometries. The calculation of IP or EA was carried out with semi-empirical quantum
chemistry method XTB (Neugebauer et al., 2020). These three oracles had costs of 1, 3 and 7 (respectively),
proportional to their computational running demands. See Appendix C.5.3 for further details.

Results The realistic configuration and practical relevance of these tasks allow us to draw stronger conclu-
sions about the usefulness of multi-fidelity active learning with GFlowNets in scientific discovery applications.
As in the other tasks evaluated, we here also found MF-GFN to achieve better cost efficiency at finding high-
score top-K molecules (Fig. 3), especially for ionization potentials (Fig. 3a). By clustering the generated
molecules, we find that MF-GFN captures as many modes as random generation, far exceeding that of MF-
PPO. Indeed, while MF-PPO is able to quickly optimise the target function in the task of electron affinity
(Fig. 3b), all generated molecules were from a few clusters (low diversity), which is of much less utility for
chemists.

4.4 Ablation studies and additional results

Besides the main experiments presented above, we carried out additional experiments to gain further insights
about MF-GFN and study the influence of its various components. We provide detailed results in Appendix E
and summarise the main conclusions here:

• Analysing the results in terms of the top-K diverse samples confirms that the GFlowNet-based
approaches are able to jointly optimize scores and diversity, while RL approaches trade diversity for
high scores.
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• As is expected, the advantage of MF-GFN over its single-fidelity counterpart decreases as the cost
of the lower fidelity oracles increases. Nonetheless, even with a cost ratio of 1 : 2 in the DNA task,
MF-GFN still outperforms all other methods.

• The same conclusions hold for various values of the final batch size, K ∈ {50, 100, 200}.

• We expect MF-GFN to query cheap oracles to prune the input space and costly oracles for high-
reward candidates. We validate this through a visualization of a synthetic task.

5 Conclusions, Limitations and Future Work

In this paper, we have presented MF-GFN, a multi-fidelity active learning algorithm that leverages
GFlowNets to achieve exploration with diversity for scientific discovery applications. MF-GFN samples
candidates as well as the fidelity at which the candidate is to be evaluated, when multiple oracles are avail-
able with varying fidelities and costs. We evaluated MF-GFN on benchmark tasks of practical relevance,
such as DNA aptamer generation, antimicrobial peptide and small molecule design. Through comparisons
with previously proposed methods as well as with variants of our method designed to understand the con-
tributions of different components, we conclude that multi-fidelity active learning with GFlowNets not only
outperforms its single-fidelity active learning counterpart in terms of cost effectiveness and diversity of sam-
pled candidates, but it also offers an advantage over other multi-fidelity methods due to its ability to learn
a stochastic policy to jointly sample objects and the fidelity of the oracle to be used to evaluate them.

Limitations and Future Work Aside from the molecular modelling tasks, our empirical evaluations in
this paper involved simulated oracles with manually selected costs. Future work should evaluate MF-GFN
with more practical oracles and costs that reflect their computational or financial demands. Furthermore,
a promising avenue that we do not study in this paper is the application of MF-GFN in more complex,
structured design spaces, such as hybrid (discrete and continuous) domains (Lahlou et al., 2023), as well as
multi-fidelity, multi-objective problems (Jain et al., 2023b).

Statement of Broader Impact

Our work is motivated by pressing challenges to sustainability and public health, and we envision applications
of our approach to drug discovery and materials discovery. However, as with all work on these topics, there is
a potential risk of dual use of the technology by nefarious actors (Urbina et al., 2022). The authors strongly
oppose any uses or derivations of this work intended to cause harm to humans or the environment.

Reproducibility Statement

We have made an effort to include the most relevant details of our proposed algorithm in the main body
of the paper. For example, a detailed procedure of the steps of the algorithm is presented in Algorithm 1.
Besides this, we have included additional details about the algorithm in Appendices A and B. We have
also provided the most relevant information about the experiments in Section 4, for instance including a
description of the data representation and the oracles for each of the benchmark tasks. The rest of the
details about the experiments are provided in Appendix C for the sake of better clarity, transparency and
reproducibility. Finally, our submission includes the original code of our algorithm and experiments and,
since it has been developed as open source, the link to the code will be included in the manuscript at the
end of the review process.
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A MF-GFN Algorithm

Our algorithm, MF-GFN, detailed in Algorithm 1, proceeds as follows: An active learning round j starts with
a data set of annotated samples Dj = {(xi, fm(xi), mi)}1≤m≤M . The data set is used to fit a probabilistic
multi-fidelity surrogate model h(x, m) of the posterior p(fm(x)|x, m, D). The output of the surrogate model
is then used to compute the value of a multi-fidelity acquisition function α(x, m). In our experiments, we
use the multi-fidelity version (Takeno et al., 2020) of max-value entropy search (MES) (Wang & Jegelka,
2017), which is an information-theoretic acquisition function widely used in Bayesian optimisation.

An active learning round terminates by generating N objects from the sampler (here the GFlowNet policy
π) and forming a batch with the best B objects, according to α. Note that N ≫ B, since sampling from
a GFlowNet is relatively inexpensive. The selected objects are annotated by the corresponding oracles and
incorporated into the data set, such that Dj+1 = Dj ∪ {(x1, fm(x1), m1), . . . (xB , fm(xB), mB)}.

B Surrogate Models and Acquisition Function

In this appendix, we provide additional details about the surrogate models used in our active learning
experiments, as well as about the acquisition function.

B.1 Gaussian Processes

In our multi-fidelity active learning experiments, we model the posterior distribution over the outputs of the
oracles fm, p(fm(x)|x, m, D), assuming that observations are perturbed by noise from a normal distribution
N (0, σ2). The assumption of normally distributed noise with constant variance is widely used in the Bayesian
Optimization literature. Consider a set of n points z(1:n) = (x1, m1), (x2, m2), . . . , (xn, mn) with observed
values y(1:n) = y1, y2, . . . , yn. We can then use Gaussian Processes such that f |z(1:n), y(1:n) ∼ GP (µn, Kn)
with mean µn and covariance function or kernel Kn evaluated at point z = (x, m) as

µn(x) = µ(x) + K(x, x1:n)(K(x1:n, x1:n) + σ2I)−1(y1:n − µ(x1:n))
Kn(x1, x2) = K((x1, x2) − K(x1, x1:n)(K(x1:n, x1 : n) + σ2I)−1K(x1:n, x2).

We adapt the multi-fidelity kernel as proposed in (Wu et al., 2019). The authors implement a Downsampling
Kernel for the data fidelity parameter, in cases where it is relevant, along with an Exponential Decay Kernel
for the iteration fidelity parameter, when applicable. As our experimental approach treats fidelity as akin
to a data point, the implementation of the Downsampling Kernel has been incorporated.

Hence, the kernel function of the GP is
K(z1, z2) = K1(x1, x2) × K2(m1, m2),

where K1(·, ·) is a square-exponential kernel and K2(·, ·), the downsampling kernel is given by
K2(m1, m2) = c + (1 − m1)1+δ(1 − m2)(1+δ),

where c, δ > 0 are hyper-parameters.

B.2 Deep Kernel Learning

While for the synthetic (simpler) tasks we use exact GPs, it is well know that GPs are less effective with
high-dimensional data, because of the reliance on the Euclidean distance. Furthermore, standard GPs are
not directly applicable to discrete, structured data. Therefore, for the benchmark tasks we implement deep
kernel learning (DKL; Wilson et al., 2016). In DKL, the inputs are transformed by

k(xi, xj |θ) → k(g(xi, w), g(xj , w)|θ, w),
where the non-linear mapping g(x, w) is a low-dimensional continuous embedding, learnt via a deep neural
network—a transformer in our tasks. To scale the GP to large datasets, we implement the stochastic
variational GP based on the greedy inducing point method (Chen et al., 2018). We adopt the deep kernel
learning experimental setup from (Stanton et al., 2022).
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B.3 Acquisition Function

Max Value Entropy Search (MES) (Wang & Jegelka, 2017) is an information-theoretic acquisition function.
The standard, single-fidelity MES seeks to query the objective function at locations that reduce our current
uncertainty in the maximum value of f∗. It aims to maximise the mutual information between the value
of the objective function f when choosing point x and the maximum of the objective function, f⋆. This
contrasts with previously proposed entropy search (ES) criterion, which instead considers the arg max of
the objective function. The MES criterion is defined as follows:

α = I(f⋆; y|Dj) = H(y|Dj) − Ef⋆ [H(y|Dj , f⋆)|Dj ],

where y is the outcome of experiment x and Dj is the data set at the jth active learning iteration. and
H(Y ) = EY [− log(p(Y ))] is the differential entropy of random variable Y .

The information gain is defined as the reduction in entropy of y provided by knowing the maximal value f⋆

IG(y, m|Dn) = H(y|Dn) − H(y|f⋆ < m, Dn)

It follows that the MES acquisition function can be expressed in terms of IG:

α = Em∼f⋆ [IGn(y, m|Dn)],

where y ∼ N (µA, σA), f(x) ∼ N (µB, σB) and the difference between y and f(x) is just independent Gaussian
noise.

Replacing the maximisation of an intractable quantity with the maximisation of a lower bound is a well-
established strategy. Instead of attempting to evaluate the intractable quantity, IG, we evaluate its lower
bound IGApprox.

Thus, the acquisition function becomes

α = 1
M

∑
m∈M

IGApprox(y, m|Dn)

IGApprox = 1
2 log|R| − 1

2M
∑

m∈M
log(1 − ρ2 ϕ(γ(m))

Φ(γ(m)) [γ(m) + ϕ(γ(m))
Φ(γ(m)) ]),

where ϕ and Φ are the standard normal cumulative distribution and probability density functions (as arising
from the expression for the differential entropy of a truncated Gaussian), γ(m) = m−µn(x)

σn(x) and R is the

correlation matrix with elements Ri,j = Σy
i,j

Σy
i,i

Σy
j,j

.

This construction is called the General Information-Based Bayesian OptimisatioN (GIBBON) acquisition
function (Moss et al., 2021).

Multi-Fidelity Formulation Let the maximum of the highest fidelity function fM (when M different
fidelities are available to querying) be f⋆

M . We obtain a pair (x, m) which maximally gains information of
the optimal value f⋆ of the highest fidelity per unit cost. Formally, the multi-fidelity max value entropy
search acquisition function that use in our algorithm is the following:

α(x, m) = 1
λm

I(f⋆
M ; fm|Dj), (2)

where λm is the cost of the oracle at fidelity m.
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C Experimental Details

This appendix presents the details about the experiments presented in the main Section 4. First, we provide
general details about all tasks and then present details specific to each task in separate sections.

C.1 Initial data set and budget

We define a budget (Λ0) for the initial data set. Let λm be the cost of evaluation with oracle fm, and nSF ,
nMF be the total number of initial training points in the single- and multi-fidelity experiments respectively.
Also let nm be the number of training points evaluated against fm in the multi-fidelity experiment such that
nMF =

∑m=M
m=1 nm, then

Λ0 = nSF × λM =
m=M∑
m=1

nm × λm

The initial data set is split into train-validation in the ratio of 9:1 for all tasks. Task specific information is
summarized in Table 1.

For each task, we assign a total active learning budget Λ = γ × λM (Table 2). γ was selected based on the
rate of convergence of the algorithms to the modes. Note that during an active learning round, only the
oracle evaluations of the sampled batch contribute to Λ. The cost of sampling from a trained GFlowNet is
nearly negligible compared to the oracle evaluations. This is why we can afford to sample a large number of
samples (N = 5 × B) to then select the best B, according to the acquisition function (Algorithm 1).

C.2 DKL Implementation Details

We are describe our implementation of DKL, which is inspired by (Stanton et al., 2022).

Neural Network Architecture For all experiments, the same base architecture was used, featuring
transformer encoder layers with position masking for padding tokens. Standard pre-activation residual
blocks were implemented, comprising two convolutional layers, layer normalization, and swish activations.
The encoder embeds input sequences with standard vocabulary and sinusoidal position embeddings. The
encoder is trained with the Masked Language Modeling (MLM) objective which is calculated by randomly
masking input tokens and subsequently computing the empirical cross-entropy between the original sequence
and the predictive distribution generated by the MLM head for the masked positions.

Optimizer Hyperparameters The running estimates of the first two moments in the Adam opti-
mizer (Kingma & Ba, 2015) were disabled by setting β1 = 0.0 and β2 = 0.01.

Kernel Hyperparameters In order to force the encoder to learn features appropriate for the initial
lengthscale, we place a tight Gaussian prior σ = 0.01 around the intial lengthscale value. The reinitialization
procedure for inducing point locations and variational parameters outlined in Maddox et al. (2021) was
followed.

C.3 Policy Implementation Details

Neural Network Architecture For all tasks, the architecture of the forward policy (PF ) model is a
multi-layer perceptron with 2 hidden layers and 2048 units per layer. The backward policy (PB) model was
set to share all but the last layer parameters with PF . We use LeakyReLU as our activation function as in
Bengio et al. (2021a). All models are trained with the Adam optimiser Kingma & Ba (2015).

Reward Function As detailed in 1, the GFlowNet is trained to generate samples with a higher value
of MES (and its multi-fidelity variant) in single- and multi-fidelity experiments respectively. In order to
increase the relative reward of higher values of the acquisition function, we transform the MES value α(x, m)
with the reward function R(α(x, m), β). On an additional note, MES exhibits increased sparsity as more
samples are discovered. Hence, in order to facilitate optimization, a linear reduction of the parameter β
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(with a scaling factor denoted by ρ) is implemented at each successive active learning round so as to scale
up the rewards. Given an active learning round j,

R(α(x, m)) = α(x, m) × ρj−1

β

Note that within an active learning round (j), the GFN samples from this fixed reward function and thus
the policy need not be conditioned on j. Details for all tasks are summarized in Table 2.

Our models are implemented in pytorch (Paszke et al., 2019), and rely on botorch (Balandat et al., 2020)
and GPytorch (Gardner et al., 2021).

Table 1: Oracle costs (indexed by increasing level of fidelity) and initial data set details

Task Oracle Costs Initial Data Set
Λ0 nSF nMF

λ1 λ2 λM n1 n2 nM

Branin 0.01 0.1 1 4 4 20 20 2
Hartmann 6D 0.125 0.25 1 25 25 80 40 5

DNA – 0.2 20 1600 80 – 3000 50
AMP 0.5 0.5 50 2500 50 2000 2000 10

Molecules 1 3 7 1050 150 700 68 16

Table 2: Active-learning and policy reward function and hyperparameters of multi-fidelity experiments

Task Surrogate Model Active-learning Policy reward function
γ B β ρ

Branin Exact GP 300 30 1 1
Hartmann 6D Exact GP 100 10 1e-2 1

DNA DKL 256 512 1e-5 2
Antimicrobial Peptides DKL 20 32 1e-5 1

Molecules DKL 180 128 1e-6 1.5

C.4 Synthetic Tasks

C.4.1 Branin

We consider an active learning problem in a two-dimensional space where the target function fM is the
Branin function, as modified in (Sobester et al., 2008) and implemented in botorch (Balandat et al., 2020).
In the domain [−5, 10] × [0, 15], the Branin function has three modes and is evaluated using the following
expression:

f(x) = (x2 − −1.25x2
1

π2 + 5x1

π
− 6)2 + (10 − 5

4π
) cos(x1) + 10.

This corresponds to the modification introduced in (Sobester et al., 2008). As lower fidelity functions, we
used the expressions from (Perdikaris et al., 2017), which involve non-linear transformations of the true
function as well as shifts and non-uniform scalings. The functions, indexed by increasing level of fidelity, are
the following:

f1(x) = f2(1.2(x + 2)) − 3x2 + 1

f2(x) = 10
√

f(x − 2) + 2(x1 − 0.5) − 3(3x2 − 1) − 1

We simulate three levels of fidelity, including the true function. The lower-fidelity oracles, the costs of the
oracles (0.01, 0.1, 1.0) as well as the number of points queried in the initial training set were adopted from (Li
et al., 2020).
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In order to consider a discrete design space, we map the domain to a discrete 100 × 100 grid. We model this
grid with a GFlowNet as in (Bengio et al., 2021a; Malkin et al., 2022): starting from the origin (0, 0), for
any state s = (x1, x2), the action space consists of the choice between the exit action or the dimension to
increment by 1, provided the next state is in the limits of the grid.

We use the botorch implementation of an exact multi-fidelity Gaussian process as described in B.1 for
regression. The active learning batch size B is 30 in the Branin task.

Fig. 4a illustrates the results for this task. We observe that MF-GFN is able to reach the minimum of the
Branin function with a smaller budget than the single-fidelity counterpart and the baselines.

C.4.2 Hartmann 6D

We consider the 6-dimensional Hartmann function as objective fM on a hyper-grid domain. It is typically
evaluated on the hyper-cube xi ∈ [0, 1]6 and consists of six local maxima. The true Hartmann function is
given by

f(x) =
4∑

i=1
αiexp(−

3∑
j=1

Aij(xj − Pij)2),

where α = [1.0, 1.2, 3.0, 3.2] and A, P ∈ R4×6 are the following fixed matrices:

A =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 1
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 1



P = 10−4 ×


3689 1170 267
4699 4387 7470
1091 8732 5547
381 5743 8828


To simulate the lower fidelities, we modify α to α(m) where α(m) = α + (M − m)δ where δ =
[0.01, −0.01, −0.1, 0.1] and M = 3. The domain is X = [0, 1]6. This implementation was adopted from
Kandasamy et al. (2019). As with Branin, we consider three oracles, adopting the lower-fidelity oracles and
the set of costs (0.125, 0.25, 1.0) from (Song et al., 2018).

We discretize the domain into a six-dimensional hyper-grid of length 10, yielding 106 possible candidate
points. For the surrogate, we use the same exact multi-fidelity GP implementation as of Branin. The active
learning batch size B is 10.

The results for the task are illustrated in Fig. 4b, which indicate that multi-fidelity active learning with
GFlowNets (MF-GFN) offers an advantage over single-fidelity active learning (SF-GFN) as well as some of
the other baselines in this higher-dimensional synthetic problem as well. The better performance on MF-
PPO can be attributed to the fact that while the GFN initiates its exploration from the origin point, the
PPO commences from a random starting point within a bounded range, allowing at most three units of
displacement (maximum possible displacement is 10 units) along each of the six axes. We hypothesise that
this aids the PPO algorithm in expediting the discovery of modes within the optimization process. While
MF-PPO performs better in this task, as shown in the benchmark experiments, it tends to collapse to single
modes of the function in complex high-dimensional scenarios.

.

C.5 Benchmark Tasks

C.5.1 DNA

We conduct experiments using a two-oracle setup (fM , f1) with costs λM = 20 and λ1 = 0.2 for the high
and low fidelity oracles, respectively. As fM , we used the free energy of the secondary structure of DNA
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(b) Hartmann task

Figure 4: Results on the synthetic tasks—Branin and Hartmann functions. The curves indicate the mean
score fM within the top-50 and top-10 samples (for Branin and Hartmann, respectively) computed at the end
of each active learning round and plotted as a function of the budget used. The random baseline is omitted
from this plot to facilitate the visualisation since the results were significantly worse in these tasks. We
observe that MF-GFN clearly outperforms the single-fidelity counterpart (SF-GFN) and slightly improves
upon the GFlowNet baseline that samples random fidelities. On Hartmann, MF-PPO initially outperforms
the other methods.

Table 3: Oracles for the antimicrobial peptides task

Oracle Training points Model Layers Hidden units Training Epochs
f1 3447 MLP 2 512 51
f2 3348 MLP 2 512 51
fM 6795 MLP 2 1024 101

sequences obtained via the software NUPACK (Zadeh et al., 2011), setting the temperature at 310 K. f1 is
a transformer (with 8 encoder layers, 1024 hidden units per layer and 16 heads) trained on 1 million random
sequences annotated by fM . To evaluate the performance of f1 (with respect to fM ), we construct a test
set by sampling sequences from a uniform distribution of the free energy. On this test set, the explained
variance of the f1 is calculated to be 0.8. For the probabilistic surrogate model, we implement deep kernel
learning, the hyper-parameters of which are provided in Table 4. The active learning batch size B is 512.

C.5.2 Antimicrobial Peptides

We use data from DBAASP (Pirtskhalava et al., 2021) containing antimicrobial activity labels, which is split
into three sets - D1 for training the oracle, D2 as the initial data set in the active learning loop and D3 as
the test set (Jain et al., 2022).

This is a three-oracle setup (fM , f2, f1) where each oracle is a different neural network model. The con-
figurations of the oracle models are presented in Table 3. Biologically, each antimicrobial peptide can be
classified into an antimicrobial group. fM is trained on the entire dataset D1. However, for f1 and f2,
we divide D1 into two equally-sized subpart such the set of antimicrobial groups present in one subpart
is mutually exclusive of the other. This simulated a setup wherein each lower fidelity oracle specialised in
different sub-regions of the entire sample space. We set costs λM = 50 and λ1 = λ2 = 0.5 as f1 and f2
have similar configurations. Further, as for DNA, the explained variance of f1 and f2 (with respect to fM )
on a uniform test set, D3 was 0.1435 and 0.099 respectively. For the surrogate, we implement deep kernel
learning with hyperparameters in Table 4. The active learning batch size B is 32.
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Table 4: Deep Kernel hyperparameters for the DNA and Antimicrobial tasks

Hyperparameter Value
Architecture Num. of Layers 8

Num. of Heads 8
Latent dimension 64

GP likelihood variance init. 0.25
GP length scale prior N (0.7, 0.01)

Num. of inducing points (SVGP head) 64
Optimisation Batch Size 128

Learning Rate 1e-3
Adam EMA parameters (β1, β2) (0., 1e-2)

Max. number of Epochs 512
Early stopping patience (number of epochs) 15

Early stopping holdout ratio 0.1

C.5.3 Small Molecules

This is a three oracle setup (fM , f2, f1) with costs representing the actual compute time. We implement
the oracles using RDKit 2023.03 (rdk, 2023) and the semi-empirical quantum chemistry package xTB. We
use GFN2-xTB (Bannwarth et al., 2019) method for the single point calculation of ionization potential and
electron affinity with empirical correction terms.

In f1, we consider one conformer obtained by RDKit with its geometry optimised via force-field
MMFF94(Halgren, 1996). This geometry is used to calculate (vertical) IP/EA. In f2, we consider two con-
formers obtained by RDKit, and take the lowest energy conformer after optimisation by MMFF94, and further
optimise it via GFN2-xTB to obtain the ground state geometry; this remains a vertical IP/EA calculation. In
fM , we consider four conformers obtained by RDKit, and take the lowest energy conformer after optimisation
by MMFF94, and further optimise it via GFN2-xTB; the corresponding ion is then optimised by GFN2-xTB, and
the adiabatic energy difference is obtained via total electronic energy. The fidelities are based on the fact that
vertical IP/EA approximates that of adiabatic ones (to varying degrees, depending on the molecule). On a
uniform test set of 1400 molecules, the explained variance of f1 and f2 (with respect to fM ) is 0.1359, 0.279
and 0.79, 0.86 for the EA and IP tasks respectively.

The surrogate model is a deep kernel. Further details about the hyperparameters are provided in Table 5. The
active learning batch size B is 128. In the environment for GFN, we consider a set of SELFIES vocabularies
containing aliphatic and aromatic carbon, boron, nitrogen, oxygen, fluorine, sulfur, phosphorous, chlorine,
and bromine, subject to standard valency rules.

We note that this is proof-of-concept and hence we do not conduct a full search of conformers, and nor
do we use Density Functional Theory calculations, but we note that the highest fidelity oracle has a good
correlation with experiments (Neugebauer et al., 2020). We do not consider synthesisability in this study
and we note it may negatively impact GFN as unphysical molecules could produce false results for the
semi-empirical oracle.

D Metrics

In this section, we provide additional details about the metrics used for the evaluation of the proposed
MF-GFN as well as the baselines.

Mean Top-K Score We adapt this metric from Bengio et al. (2021a). At the end of an active learning
round, we sample N (x, m) candidates and then select the top-K candidates (K ≪ N) according to the
acquisition function value. In the experiments, we score these top-K candidates with the corresponding
oracle. In the figures, we report the mean score according to the highest-fidelity oracle.
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Table 5: Deep Kernel hyperparameters for the molecular tasks

Hyperparameter Value
Architecture Number of Layers 8

Number of Heads 8
Latent dimension 32

GP likelihood variance init. 0.25
GP length scale prior N (0.7, 0.01)

Number of inducing points (SVGP head) 64
Optimisation Batch Size 128

Learning Rate 1e-3
Adam EMA parameters (β1, β2) (0., 1e-2)

Max. number of Epochs 512
Early stopping patience (number of epochs) 15

Early stopping holdout ratio 0.1

Mean Diverse Top-K Score This is a version of the previous metric by which we restricts the selection
of the K candidates to examples that are diverse between each other. We use similarity measures (vide
infra) such that we sample the top-K candidates where each candidate is at most similar to each other by
a certain threshold. For antimicrobial peptides, the sequence identity threshold is 0.35; for DNA aptamers,
the sequence identity threshold is 0.60; for molecules, the Tanimoto similarity distance threshold is 0.35.

Diversity In order to measure the diversity of a set of candidates, we use use one minus the similarity
index with the following details for each of the tasks:

• DNA aptamers: The similarity measure is calculated by the mean of pairwise sequence identity
between a set of DNA sequences. We utilize global alignment with Needleman-Wunsch algorithm and
standard nucleotide substitution matrix, as calculated by biotite package (Kunzmann & Hamacher,
2018).

• Antimicrobial peptides: The similarity measure is calculated by the mean of pairwise sequence
identity between a set of peptide sequences. We utilize global alignment with Needleman-Wunsch
algorithm and BLOSUM62 substitution matrix, as calculated by biotite package (Kunzmann &
Hamacher, 2018).

• Molecules: The similarity measure is calculated by the mean of pairwise Tanimoto similarity
between a set of molecules. Tanimoto metrics are calculated from Morgan Fingerprints (radius of
two, size of 2048 bits) as implemented in RDKit package (rdk, 2023).

E Additional Results

E.1 Energy of Diverse Top-K

In this section we complement the results presented in Section 4 with the mean diverse top-K scores, as
defined in Appendix D. This metric combines that mean top-K score and the measure of diversity. Figure 5
shows the results on the DNA, AMP and the molecular tasks.

The results with this metric allow us to further confirm that multi-fidelity active learning with GFlowNets
is able to discover sets of diverse candidates with high mean scores, as is sought in many scientific discovery
applications. In contrast, methods that do not encourage diversity such as RL-based algorithms (MF-PPO)
obtain comparatively much lower results with this metric.
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(b) Anti-microbial peptides (AMP) task
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(c) Molecules ionisation potential (IP) task
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(d) Molecules electron affinity (EA) task

Figure 5: Mean scores (energy) of diverse top-K candidates on the DNA (top left), AMP (top right) and
molecular (bottom) tasks. The mean energy is computed across the top-K examples at each active learning
round that also satisfy the criteria of diversity. Consistent with the diversity metrics observed in Fig. 2,
we here see that GFlowNet-based methods, and especially MF-GFN, obtain good results according to this
metric, while MF-PPO achieves comparatively much lower mean energy.

E.2 Understanding the Impact of Oracle Costs

As discussed in 1, a multi-fidelity acquisition function like the one we use—defined in Eq. (2)—is a cost-
adjusted utility function. Consequently, the cost of each oracle plays a crucial role in the utility of acquiring
each candidate. In our tasks with small molecules (Section 4.3.3), for instance, we used oracles with costs
proportional to their computational demands and observed that multi-fidelity active learning largely out-
performs single-fidelity active learning. However, depending on the costs of the oracles, the advantage of
multi-fidelity methods can diminish significantly.

In order to analyse the impact of the oracle costs on the performance of MF-GFN, we run several experiments
on the DNA task (Section 4.3.1), which consists of two oracles, with a variety of oracle costs. In particular,
besides the costs used in the experiments presented in Section 4.3.1, with costs (0.2, 20) for the lowest and
highest fidelity oracles, we run experiments with costs (1, 20) and (10, 20).

The results, presented in Fig. 6a, indeed confirm that the advantage of MF-GFN over SF-GFN decreases as
the cost of the lowest-fidelity oracle becomes closer to the cost of the highest-fidelity oracle. However, it is
remarkable that even with a ratio of costs as small as 1 : 2, MF-GFN still outperforms not only SF-GFN but
also MF-PPO in terms of cost effectiveness, without diversity being negatively impacted. It is important
to note that in practical scenarios of scientific discovery, the cost of lower fidelity oracles is typically orders
of magnitude smaller than the cost of the most accurate oracles, since the latter correspond to wet-lab
experiments or expensive computer simulations.
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Figure 6: Analysis of the impact of the oracle costs on the performance of MF-GFN on the DNA task and
the synthetic Hartmann task. On the DNA task, we observe that the advantage over SF-GFN and MF-PPO
(0.2, 20) decreases as the cost of the lower fidelity oracle becomes closer to the cost of the highest fidelity
oracle. Nonetheless, even with a cost ratio of 1 : 2 MF-GFN displays remarkable performance with respect
to other methods. Similar conclusions can be drawn from the analysis on the Hartmann task.

E.3 Batch Size Ablation

We evaluate the impact of the batch size on the performance of MF-GFN and its comparison with the
baselines for the molecule IP task with different batch sizes. We notice that the reward curve becomes
steeper with higher batch sizes.
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Figure 7: Molecules IP: Impact of acquisition size (64/128/256)

E.4 Impact of the choice of the final batch size

For the set of results presented in the main paper, we computed the mean top-K energy and diversity on
the final batch of size K = 100. While the choice of K is not arbitrary as it is related to the acquisition size
in the active learning loop and in turn to reasonable numbers in the domains of application, it is interesting
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to study whether our conclusions are robust to other choices of K. In Fig. 8, we provide the equivalent set
of results for all the task with K = 50 and in Fig. 9 with K = 200, half and double the size, respectively.

In view of these results, we can conclude that the results are robust to the choice of this parameter, since
we can derive the same conclusions for all values of K ∈ {50, 100, 200}:

• MF-GFN obtains the best trade-off between mean energies and diversity of all the evaluated methods.

• All other GFlowNet-based methods are able to discover diverse samples.

• The multi-fidelity method with PPO is able to discover high-scoring samples, but with a strong lack
of diversity.
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Figure 8: Results as in the original figures, but with K = 50, instead of K = 100.

E.5 Visualisation of Sampled Candidates

Given that MF-GFN conducts a cost-aware search with the help of the multi-fidelity acquisition function,
our expectation is that the algorithm will selectively query the less costly oracles for input space exploration
and will query the more expensive oracles on high-reward candidates. To substantiate this hypothesis, we
provide a two-dimensional visualization (Figure 10) of the sampled candidates after expending the allocated
budget in the synthetic Branin task. C.4.1.
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Figure 9: Results as in the original figures, but with K = 200, instead of K = 100.
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Figure 10: We present a visualization of the sampled candidates (x, m) in the synthetic Branin task (Ap-
pendix C.4.1). The domain of Branin is defined in [−5, 10] × [0, 15]. Each round marker, identified by
grid-specific coordinates, represents a sampled candidate, x. The markers are color-coded based on the
oracle the candidate is to be evaluated with, m. Our observation reveals that the lower fidelity oracles (with
costs of 0.01 and 0.1) are primarily used for exploration across the input domain, while evaluations using the
high-fidelity oracle (cost=1) are predominantly concentrated near the modes (denoted by the star marker).
Furthermore, it’s important to note that the training points were intentionally chosen to exclude any modes
of the Branin function.
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