
Show or Tell? Interactive Task Learning
with Large Language Models

Jacob Sansom1, Muhammad Khalifa1,2, Honglak Lee1,2, Joyce Chai1
1University of Michigan 2LG AI Research

{jhsansom, khalifam, honglak, chaijy}@umich.edu

Abstract

Large Language Models (LLMs) can perform tasks specified in natural language,
making them accessible to users regardless of technical background. However,
specifying tasks within a single, static prompt is often both difficult and suboptimal.
Interactive Task Learning (ITL) [28, 18]—a goal for autonomous agents—proposes
to address this challenge through multi-turn interactions: teachers provide a task
description and (optionally) a demonstration, agents attempt the task while asking
clarifying questions, and teachers offer feedback. Despite ITL’s promise, systematic
evaluation of LLMs’ interactive learning capabilities remains limited. We introduce
the ListOps Domain, a novel testbed for evaluating models’ ability to learn
compositional symbolic tasks through ITL. We evaluate small-to-medium size
LLMs (4 to 32 billion parameters) and find that a limited form of teacher feedback—
expressing only reminders about broken rules rather than explicitly identifying
or correcting errors—enhances generalization. Using this feedback, we compare
models’ ITL and Few-Shot Learning (FSL) capabilities and find that ITL frequently
outperforms FSL, especially within more powerful models. We conclude with a
discussion of limitations and recommendations for advancing ITL research.

1 Introduction

The creation of AI agents has been a long sought-after goal hindered by both technical and human
challenges. Large Language Models (LLMs) have accelerated the development of such agents [52],
however adapting them to perform idiosyncratic tasks in custom environments is still difficult. Typical
methods for training and customizing AI agents include finetuning, which is expensive and technically
challenging, and prompt engineering, which is brittle and often suboptimal [46, 35, 8]. Laird et al.
(2017) [28] propose an alternative approach, arguing that “training” should instead occur over the
course of a multi-turn interaction in which a user teaches an AI agent in the same manner that they
might teach a human learner. Within this multi-turn interaction, which they term Interactive Task
Learning (ITL), a user begins with a demonstration of a desired behavior paired with an abstract
description thereof. The agent then attempts the workflow, and the user provides feedback on its
behavior and performance. Because ITL closely resembles how humans naturally teach one another
tasks, it may offer a more intuitive path to customization, particularly for novice users.

LLMs excel at In-Context Learning (ICL) [5, 16, 1], which we define broadly as the ability to perform
unseen tasks by conditioning generation on a prompt S that may contains instructions, demonstrations,
or other forms of information. By framing a multi-turn ITL interaction as a prompt SITL used to
steer generation, LLMs may also excel at ITL. Using this formulation, we explore the following
two research questions: Q1: What properties must natural language feedback have for LLMs to
effectively acquire and generalize task knowledge? Q2: How does ITL compare with alternative
paradigms for teaching LLMs to perform tasks, such as Few-Shot Learning (FSL) [5]?

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Multi-Turn Interactions
in Large Language Models.

Our contributions are as follows:

1. In Section 4, we introduce the ListOps Domain, a synthetic list transformation environment
that enables the systematic exploration of ITL techniques and capabilities.

2. In Section 5.1, we develop a taxonomy of teacher feedback, and we gather empirical data
demonstrating that LLMs learn most effectively when broken rules are repeated back to
them and when corrective information is withheld.

3. In Section 5.2, we utilize this form of teacher feedback to obtain ITL performance results
across a variety of small LLMs. We directly compare ITL performance against that of
Few-Shot Learning (FSL) and demonstrate that ITL presents a strong alternative.

4. We conclude by summarizing our limitations and directions for future research in Section 6.

2 Related Work

2.1 Interactive Task Learning

Laird et al. (2017) [28] first articulated ITL as a goal for AI agents and robots. Since then many works
have focused on studying and implementing ITL within robots [6, 59, 34, 23, 18] and non-robotic AI
agents [31]. Several recent works have incorporated LLMs into ITL, however LLMs have played
a subsidiary role, either serving as a knowledge source for a symbolic agent [25, 26, 24], mapping
human instructions into a structured language for use by a symbolic agent [29], using feedback to
label policy rollouts [33], determining the generality of human feedback [15], or mapping human
instructions into code for robotic control [32, 2]. In contrast, our work explores how well LLMs can
perform ITL via In-Context Learning (ICL), without the help of a symbolic or otherwise external
architecture. Furthermore, our work studies compositional, symbolic reasoning rather than robotics
and embodied agents, which are more typical domains of study within the ITL literature.

2.2 In-Context and Few-Shot Learning

Among other reasons, LLMs have gained popularity over the last several years due to their remarkable
in-context and few-shot learning abilities. We define In-Context Learning (ICL) broadly as the ability
of an LLM to perform unseen tasks by conditioning generation on a prompt S that may contain
instructions, demonstrations, or other forms of information. We define Few-Shot Learning (FSL) as a
type of ICL that specifically utilizes examples of task execution within the prompt S. Much work
[5, 16, 1] has focused on the ICL and FSL abilities of language models. We build upon this work by
studying ITL framed as a form of ICL.

In-Context Reinforcement Learning (ICRL) [37] is particularly relevant to our work. ICRL is a
technique whereby an LLM gathers examples of task execution (on-policy), receives feedback in
the form of scalar rewards, and combines both to construct a prompt S that steers itself towards
proficiency on unseen tasks. ICRL is similar to ITL, except ITL enables rich natural language
feedback, which provides strictly more information than scalar rewards.

2.3 Learning from Natural Language Feedback

Learning from natural language feedback is a vital component of ITL. Natural language enables a
teacher to communicate not only whether a learner has made a mistake but also when the mistake
was made as well as why the learner’s behavior was mistaken. This precision shifts the burden of
credit assignment from student to teacher. Natural language is thus theorized to underlie the uniquely
human ability to acquire “kind-generalizable knowledge from a single manifestation” [14].

It is therefore unsurprising that learning from natural language feedback has been a popular subject
for exploration within AI. Several previous works have studied the use of natural language feedback
for repairing faulty attempts, wherein language is used to steer a model towards success on a
particular task (rather than to generate general knowledge that can be repurposed on novel tasks).
Researchers have developed several benchmarks for testing attempt repair using natural language
feedback [9, 53, 57, 39] as well as several methods to more effectively enable models to repair their
faulty attempts [48, 54, 58, 4, 22, 54].

2

In contrast, the use of natural language feedback to transmit generalizable information, where
feedback on one task aids with the completion of future tasks, is less well-explored. [45, 7] introduce
Imitation Learning from Feedback (ILF), which utilizes natural language feedback to repair faulty
attempts (intra-task learning) and then finetunes over the resulting dataset of trajectories. ICAL [44]
does the same, except it also annotates trajectories with abstract rules and knowledge and utilizes
retrieval augmentation in addition to finetuning. Critically, both of these methods accumulate knowl-
edge in parallel, treating each learning experience as independent. Doing so avoids several core issues
within ITL, such as extracting task knowledge out of a longer stream of partially irrelevant information
(e.g., small talk mixed with task feedback) and properly interpreting pedagogical references to prior
experiences (e.g., “this task is similar to the one you tried yesterday”). [10] proposes Trace, a method
analogous to backpropagation that enables an LLM to update its policy according to natural language
feedback (which can include user and environmental feedback). Trace is neurosymbolic, utilizing the
LLM to create and update code, which serves as the policy itself. In contrast, we are interested in the
native abilities of LLMs themselves.

2.4 List Manipulation as a Domain

Our ListOps Domain, which is introduced in Section 4, draws inspiration from work spanning
cognitive psychology and AI. Both fields have utilized list transformation functions of the form f :
A∗ → A∗, (whereA∗ denotes the set of all finite-length sequences over alphabetA) to study inductive
reasoning. Within AI, researchers have devoted much effort towards inductive program synthesis (i.e.,
generating the logic for f based on examples of its execution) [19, 47, 3, 21, 49, 17, 38, 40, 13, 30].
Likewise, list transformation functions have been used to study concept acquisition within humans
[42, 43]. To our knowledge, we are the first to use list transformation functions to study ITL. ITL
requires both deductive and inductive reasoning since it proceeds from natural language instructions
and feedback in addition to examples. We thus also view our work as an extension of comparisons
between these two reasoning modalities [30, 11, 55].

3 Problem Formulation

Algorithm 1 Interactive Task Learning Procedure
1: fgeneral = πT (T) // Solicit a general description of the task domain from the teacher

2: H = [fgeneral] // Initialize a history buffer

3: for i = 0 to n− 1 do // Learn over n unique tasks

4: ti ∼ Ttrain // Sample task randomly

5: for j = 0 to m− 1 do // Attempt this task m times, or until successful

6: aij ∼ πS(·|H, ti) // Agent attempts the task

7: f i
j ∼ πT (t

i, aij) // Get feedback from teacher after attempt

8: H ← H∪ [ti, aij , f
i
j] // Add task-attempt-feedback tuple to history buffer

9: if success(ti, aij) then break // Break if attempt succeeds on task

10: end for

11: A(πS ,H)← 1
|Ttest|

∑
t∼Ttest

success
[
t, πS(·|H, t)

]
// Accuracy on test set

12: end for

13: return πS(·|H) // Return final trained policy

For this paper, we frame ITL as a structured multi-turn interaction between two agents: a student
πS and a teacher πT . The student’s objective is to use In-Context Learning (ICL) to execute tasks
effectively. The teacher’s objective is to teach the student using natural language in the form of a
general description fgeneral = πT (T) of the task domain T (provided prior to any attempts) and
feedback f i

j (provided after each attempt aij). The student is sequentially given n tasks to attempt and

3

m opportunities to attempt each task. After each attempt, the teacher provides feedback regarding
the student’s performance. This multi-turn interaction is stored into a history bufferH that is used
as context to steer the student’s generation. Algorithm 1 depicts this multi-turn interaction using
pseudocode.

ITL encompasses a broad variety of pedagogical techniques amenable to human teachers. For the
sake of simplicity, we defer aspects of ITL such as question-asking and curriculum learning to future
work. For a comprehensive discussion of limitations, please refer to Section 6.

4 The ListOps Domain

Many real-world task domains require an agent to learn heterogeneous skills and compose them flexi-
bly at test-time. An example would be a computer-use agent combining skills such as interacting with
search bars, clicking on menu items, and handling checkout carts so it can order food. Unfortunately,
rigorously evaluating ITL capabilities in real-world domains can be quite difficult. Synthesizing
large numbers of user-customized tasks and skills (such as proprietary corporate procedures or data
manipulations) is impractical in these domains. Additionally, many LLMs have already encountered
generic skills (such as interacting with search bars) during pre-training, making it difficult to isolate
ITL capabilities [36].

Thus, to systematically evaluate whether models can acquire heterogeneous skills in an interactive
manner, we develop a synthetic environment we call the List Operations (ListOps) Domain. Our
ListOps Domain tests models on their ability to acquire list-manipulation skills—a popular domain
within AI and cognitive psychology (see Section 2.4)—and compose them in novel manners.

The ListOps Domain consists of procedurally-generated worlds that serve as testbeds for teaching
and learning strategies. Each worldW is designed to emulate a set of user-specific tasks and skills
that a user might teach an agent via ITL.

We treat simple list manipulation functions such as reverse_subsequence and swap_indices
as “skills” within the ListOps Domain. We utilize a set S of 16 list manipulation skills detailed in
Appendix B. Each worldW consists of a subset of these skills SW ⊆ S. Utilizing these skills, each
world can generate infinitely many random tasks of the form t = (f, x), where f = s1 ◦ s2 ◦ · · · ◦ sn
is a transformation function that composes skills s1, ..., sn ∈ SW , and x ∈ A∗ is a list of arbitrary
length that must be transformed according to the function’s definition. The ListOps Domain constructs
sequences x from an alphabet A consisting of all uppercase and lowercase letters. Please refer to
Figure 1 for an example task and ground-truth answer.

def transform(sequence):
 sequence = blue_falcon(sequence, index=3)
 sequence = yellow_barrel(sequence, index1=0, index2=3)
 sequence = purple_coffee(sequence, index=1, amount=2)
 return sequence

blue_falcon swaps the case of the letter at
`index`. So, line 1 changes “M” to “m”:
#L1: ["z", "g", "m", "m", "t"]

yellow_barrel swaps the letters at `index1`
and `index2`. Line 2 thus swaps “z” and “m”:
#L2: ["m", "g", "m", "z", "t"]

purple_coffee increments the letter at
`index` by `amount`. “g” → “h” → “i”:
#L3: ["m", "i", "m", "z", "t"]

Please compute transform(["z", "g", "m", "M", "t"]), outputting
the result of each line.

Function Definition

Task

Ground-Truth Answer

Figure 1: An example function, task, and ground-truth reasoning trace from the ListOps Domain.
During testing, the LLM is provided the function definition and the task, which includes an input
sequence to pass into the function. The LLM is tasked with producing a reasoning trace that transforms
the sequence according to the definition of the function. The LLM is required to specify the output of
each line using the format #L2 [‘a’, ‘b’, ...]. The prompt template is in Appendix D.

By generating many worlds at random, testing a particular teaching method within each of these
worlds, and then aggregating performance, the ListOps Domain enables us to derive general insights
regarding how good the teaching method is. To ensure that skills must be learned rather than
inferred from their names, we obfuscate their names. The obfuscation process renames each skill to a
semantically meaningless, world-specific phrase such as blue_falcon or yellow_barrel.

4

5 Experiments and Results

5.1 What properties must natural language feedback have for LLMs to effectively acquire
and generalize task knowledge?

We taxonomize feedback according to the following hierarchy. Categories 1-3 form a strict hierarchy,
with each level providing more information than the previous. Category 3 (Explanation) is then
subdivided into three mutually exclusive types that represent different approaches to explaining
errors.

1. Identification: Simply identifies whether or not an error was made (i.e., provides binary
feedback). Learning from this sort of signal is roughly equivalent to In-Context Reinforce-
ment Learning (ICRL) [37]. For example: “You made an error.”

2. Localization: Locates when the error was made. Within the ListOps Domain, this cor-
responds to the line within the transformation function on which the student erred. For
example: “You made an error when trying to execute line 2.”

3. Explanation: Explains why the student’s actions constitute an error or what the student
should have done. We subdivide explanatory feedback into three mutually exclusive types:

(a) Error Description: Describes what the student did wrong without explaining why
it was wrong or how to fix it. For example: “You removed ‘a’ from the subsequence
when filtering.”

(b) Rule Explication: States the general principle or rule that the student violated. For
example: “When filtering uppercase letters, leave all lowercase letters in the subse-
quence.”

(c) Corrective Information: Provides the specific correct output for the erroneous step.
For example: “The correctly filtered subsequence at line 2 is [‘a’, ‘v’, ‘i’].”

5.1.1 Accuracy of Repair

We test each possible combination c of the above feedback categories across an identical set of 100
ListOps worlds. Within each world, we randomly generate a task t0 and give the student up to m = 3
attempts [a00, a

0
1, a

0
2] to solve it. The student receives feedback according to a particular feedback

combination (e.g., Identification + Localization + Error Description) after each attempt. We use the
results of this process to compute the accuracy of repair Ac

R for a particular combination c, which
refers to the proportion of skills si that the student executed incorrectly during the first attempt a00 but
correctly during a subsequent attempt a01 or a02.

We utilize Gemini 2.5 Flash [12] paired with a parser to generate plaintext feedback within each
category. More details regarding the prompts and the parser are available in Appendix D.2. We focus
our analysis on relatively small models (4 to 32 billion parameters), which struggle on the ListOps
Domain, since we are more interested in the learning dynamics underlying ITL rather than achieving
state-of-the-art performance on a real-world task. Small models enable cost-effective experimentation
at scale in our controlled, synthetic environment. We thus perform our analysis over four models from
three model families: Gemma3-27B [50], Qwen2.5-14B [41], Qwen3-4B, and Qwen3-8B [56]. For
consistency, we use simplified naming conventions throughout this paper (e.g., “Gemma3-27B” for
the instruction finetuned version of Gemma 3 27B and “Qwen2.5-14B” for Qwen2.5-14B-Instruct;
please refer to Table 2 for all of the full model names).

Examining the left side of Figure 2, Localization appears to confer few benefits over Identification.
By contrast, adding just one sub-category of Explanation feedback—Rule Explication—confers
consistently large benefits. We choose Rule Explication as the representative sub-category of
Explanation feedback since it provides the best generalization results (as detailed in Figure 3). The
benefits of Rule Explication suggest that LLMs can take advantage of rich linguistic feedback to
more rapidly and consistently address errors.

Examining the right side of Figure 2 reveals a positive effect of all forms of Explanation feedback on
accuracy of repair. In other words, all three categories have a positive impact on the student LLM’s
ability to repair its faulty generations.

5

Gemma3-27B Qwen2.5-14B Qwen3-4B Qwen3-8B
Model

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

Analysis of Feedback Hierarchy
Identification
Localization
Rule Explication

Error Description Rule Explication Corrective Information
Feedback Component

0%
5%

10%
15%
20%
25%
30%
35%
40%

Ac
cu

ra
cy

 D
iff

er
en

ce
 (w

ith
 -

wi
th

ou
t) Analysis of Explanation Sub-Components

Gemma3-27B
Qwen2.5-14B
Qwen3-4B
Qwen3-8B

Effect of Feedback on Accuracy of Repair Ac
R

Figure 2: An analysis of the effect of various feedback combinations on accuracy of repair Ac
R.

(Left) A comparison of feedback categories 1-3, which are strictly hierarchical. (Right) A display
of the average difference with versus without each Explanation sub-category, computed across all
combinations of Explanation feedback per the method in Appendix C.1. For the raw data, please
refer to Table 3.

5.1.2 Accuracy of Generalization

We also test the generalization of each feedback combination c by generating a new task t1 within the
same ListOps world. We ensure that task t1 includes the skill si that the student initially executed
incorrectly during task t0. We then let the student attempt task t1 once, using the conversational
history as context, and determine whether or not it executed skill si correctly. We use this procedure
to compute the accuracy of generalization Ac

G, which refers to the proportion of these skills si that
were executed correctly during t1 across all ListOps worlds.

Gemma3-27B Qwen2.5-14B Qwen3-4B Qwen3-8B
Model

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

Analysis of Feedback Hierarchy
Identification
Localization
Rule Explication

Error Description Rule Explication Corrective Information
Feedback Component

-10%

-5%

0%

5%

10%

15%

Ac
cu

ra
cy

 D
iff

er
en

ce
 (w

ith
 -

wi
th

ou
t) Analysis of Explanation Sub-Components

Gemma3-27B
Qwen2.5-14B
Qwen3-4B
Qwen3-8B

Effect of Feedback on Accuracy of Generalization Ac
G

Figure 3: An analysis of the effect of various feedback combinations on accuracy of generalization
Ac

G. (Left) A comparison of feedback categories 1-3, which are strictly hierarchical. (Right) A
display of the average difference with versus without each Explanation sub-category, computed across
all combinations of Explanation feedback per the method in Appendix C.1. For the raw data, please
refer to Table 4.

Examining the left side of Figure 3 reveals a story similar to that of accuracy of repair: Localization
confers few benefits over Identification, however adding the best type of Explanation feedback greatly
improves generalization.

Examining the right side of Figure 3, the effect of each Explanation sub-category appears to be mixed.
Rule Explication yields a positive effect across all four models. Given that Rule Explication utilizes
language to articulate the rule in a general, task-agnostic manner, it makes intuitive sense that an
agent of sufficient intelligence would be able to utilize this category of feedback to obtain general
understanding; after all, the “transmission of generic knowledge” through language is one method by
which humans rapidly come to grasp general concepts [14]. Our experiment evidences the notion
that even small-to-medium size LLMs might possess intelligence sufficient to acquire general
knowledge from Rule Explication feedback.

6

By contrast, Corrective Information yields a negative effect on accuracy of generalization across
all four models. Although Corrective Information is effective at enabling the student to repair its
faulty attempts, it fails to induce general knowledge. We hypothesize that, by simply providing the
student with the answer, Corrective Information may enable the student to succeed at a task without
referencing or modifying its (potentially incorrect) representations of the general task structure.

Given the disparate effect of various feedback categories on accuracy of repair versus generalization,
we contend that accuracy of repair is not a good proxy for accuracy of generalization. Thus,
progress made towards repairing faulty attempts using natural language feedback (as surveyed in
Section 2.3) may not constitute progress towards pedagogical and learning techniques that can
produce general knowledge from natural language feedback.

Despite the positive-on-average performance of Error Descriptions, the best overall combination of
Explanation feedback sub-categories is Rule Explication alone (paired with error Identification
and Localization). Please refer to Table 4 for a comprehensive comparison of all feedback categories.
We thus use this feedback combination for the remaining ITL experiments within this paper.

5.2 How does ITL compare with alternative paradigms for teaching LLMs to perform tasks,
such as Few-Shot Learning (FSL)?

We compare ITL to two alternative pedagogical methods:

1. Baseline Prompt: This is a templated prompt that provides information about each skill’s
definition as well as an example of its execution. We intend for this to serve as the sort of
general description fgeneral that a teacher might give a student at the beginning of an ITL
interaction. An example is located in Appendix D.4.

2. Few-Shot Learning (FSL): This prompt format provides ground-truth reasoning traces for
several randomly-sampled tasks from the relevant ListOps world. An example is located in
Appendix D.3.

To ensure a fair comparison between FSL and ITL, we include the Baseline Prompt at the beginning
of both, and we utilize an identical set of n = 5 tasks per world for each method. Within FSL, we
provide the ground-truth reasoning traces for each of these five tasks. We generate these ground-truths
by repeatedly prompting Gemini 2.5 Flash [12] until it produces a correct reasoning trace (more
details in Appendix C.2). Within ITL, we allow the student to attempt each of these five tasks up to
m = 3 times—receiving feedback from Gemini 2.5 Flash each time—before forcing the student to
learn on a new task. We report ITL results using the best form of feedback identified within Table 4,
which includes Identification, Localization, and Rule Explication.

Gemma3-12B Gemma3-27B Qwen2.5-7B Qwen2.5-14B Qwen2.5-32B Qwen3-4B Qwen3-8B Qwen3-14B Qwen3-32B
Model

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Gemma3 Models Qwen2.5 Models Qwen3 Models

Performance of ITL and FSL on the ListOps Domain

Baseline Prompt
Few-Shot Learning
Interactive Task Learning

Figure 4: A comparison between a Baseline Prompt, Interactive Task Learning (ITL), and Few-Shot
Learning (FSL) on the ListOps domain. We test models from the Gemma3 [50], Qwen2.5 [41], and
Qwen3 [56] families. Each bar represents the mean accuracy across 4 tests each for 100 ListOps
worlds (seeds), yielding 400 datapoints total. We display 95% confidence intervals around each bar.

7

ITL demonstrates performance competitive with FSL, achieving statistically significant im-
provements over FSL in six out of nine models (p < 0.05) while showing higher mean accuracy in
all models tested. These results suggest that ITL provides, at minimum, comparable performance
to FSL and may offer advantages for certain model architectures.

Furthermore, Figure 5 displays the generalization performance of Qwen2.5-14B and Qwen3-14B
as a function of the number of tasks seen during learning. Although FSL begins to catch up to ITL
as the number of tasks increases, ITL exhibits an even stronger advantage over FSL when the
number of learning tasks is quite low (e.g., one or two).

0 1 2 3 4 5
Number of Tasks Seen During Learning

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

Qwen2.5-14B: ITL vs FSL Learning Curves

FSL
ITL

0 1 2 3 4 5
Number of Tasks Seen During Learning

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95 Qwen3-14B: ITL vs FSL Learning Curves

FSL
ITL

Figure 5: A display of ITL and FSL by Qwen2.5-14B [41] and Qwen3-14B [56]. We plot test
accuracy as a function of the number of learning tasks presented during In-Context Learning.

6 Limitations and Future Work

By developing a systematic evaluation of LLMs in an interactive feedback loop, we have made signif-
icant progress towards studying the principles most central to Interactive Task Learning. However
ITL is a broad concept that encompasses a variety of learning skills beyond what we study in this
paper. In this section, we outline several ways in which our ListOps Domain falls short of truly robust
ITL, and we propose methods for overcoming these deficits within future work.

6.1 Unstructured Student-Teacher Interactions

The current learning paradigm we study involves a rigid interaction structure between student and
teacher. A task is randomly selected by the domain itself and fed to the student, the student is able
to attempt this task a fixed number of times, and the teacher is allowed to give feedback only at the
conclusion of each attempt. In a real-world setting, such a rigid structure could frustrate a user who
is accustomed to more dynamic interactions with other humans. Additionally, our rigid structure
does not take full advantage of the pedagogical expertise that a human teacher might possess. For
instance, a human teacher might provide helpful advice prior to an attempt; our formulation only
provides foresight feedback in the form of a templated fgeneral prompt. A human teacher might
utilize their theory of mind to identify weaknesses within the student and ask questions or introduce
tasks that bring these weaknesses to the surface; our randomized task selection mechanism does not
allow for this sort of dynamic interaction. Finally, a robust domain for testing ITL ought to allow
the student to ask questions as well. LLMs are known to struggle with meta-cognition [51, 20], an
ability that enables humans to identify and resolve uncertainties, so research into question-asking
will surely enhance ITL capabilities. We believe the ListOps Domain could be adapted in the future
to accommodate many of these features.

6.2 Memory and Adaptibility

Laird et al. (2017) [28] write the following about humans: “After we learn the essence of a task,
we can learn extensions and modifications to it, getting better and better with experience.” The

8

ListOps Domain provides an initial testbed for studying this phenomenon. For instance, we introduce
skills at random, so not all of them are encountered within the first task instance. Despite this, the
ListOps Domain utilizes a static task distribution throughout the lifetime of a ListOps worldW . To
more effectively study ITL, the ListOps Domain could be extended such that some skills are only
introduced after more time (and, as a result, context) has elapsed. Such a change might necessitate
more robust memory architectures than in-context learning. Furthermore, additional changes to the
internal structure of skills or to the structure of the task itself, which would both cause distribution
shift, could be valuable research endeavors.

6.3 Multimodality

By simulating ITL in a plaintext conversation, the ListOps Domain omits many important pedagogical
signals that a human user might provide in a real-world scenario. For instance, human teachers often-
times direct their students’ attention towards relevant phenomena by pointing or directing their own
gaze [28]. Even for non-embodied AI agents, these gestural and nonverbal forms of communication
transmit important information that is lost when represented in text alone. We recommend research
within Human-Computer Interaction (HCI) to investigate what sorts of computing form factors and
AI models might afford these interactions.

7 Conclusion

In this paper, we have presented an initial analysis of LLMs’ ability to perform Interactive Task Learn-
ing via In-Context Learning. Overall, LLMs show promise at our formulation of ITL, outperforming
FSL in many scenarios, however further research ought to be devoted towards studying ITL abilities
in real-world settings. We hope that this work will serve as a foundation for this research.

References
[1] Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What

learning algorithm is in-context learning? investigations with linear models. arXiv preprint
arXiv:2211.15661, 2022.

[2] Leonard Bärmann, Rainer Kartmann, Fabian Peller-Konrad, Jan Niehues, Alex Waibel, and
Tamim Asfour. Incremental learning of humanoid robot behavior from natural interaction and
large language models. Frontiers in Robotics and AI, 11:1455375, 2024.

[3] Alan W Biermann. The inference of regular lisp programs from examples. IEEE transactions
on Systems, Man, and Cybernetics, 8(8):585–600, 2007.

[4] Xiaohe Bo, Zeyu Zhang, Quanyu Dai, Xueyang Feng, Lei Wang, Rui Li, Xu Chen, and Ji-Rong
Wen. Reflective multi-agent collaboration based on large language models. Advances in Neural
Information Processing Systems, 37:138595–138631, 2024.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[6] Joyce Chai, Qiaozi Gao, Lanbo She, Shaohua Yang, Sari Saba-Sadiya, and Guangyue Xu.
Language to action: Towards interactive task learning with physical agents. In Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence, 2018.

[7] Angelica Chen, Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan,
Samuel R Bowman, Kyunghyun Cho, and Ethan Perez. Learning from natural language
feedback. Transactions on machine learning research, 2024.

[8] Yanda Chen, Chen Zhao, Zhou Yu, Kathleen McKeown, and He He. On the relation between
sensitivity and accuracy in in-context learning. arXiv preprint arXiv:2209.07661, 2022.

[9] Ching-An Cheng, Andrey Kolobov, Dipendra Misra, Allen Nie, and Adith Swaminathan.
Llf-bench: Benchmark for interactive learning from language feedback. arXiv preprint
arXiv:2312.06853, 2023.

9

[10] Ching-An Cheng, Allen Nie, and Adith Swaminathan. Trace is the next autodiff: Generative
optimization with rich feedback, execution traces, and llms. Advances in Neural Information
Processing Systems, 37:71596–71642, 2024.

[11] Kewei Cheng, Jingfeng Yang, Haoming Jiang, Zhengyang Wang, Binxuan Huang, Ruirui Li,
Shiyang Li, Zheng Li, Yifan Gao, Xian Li, et al. Inductive or deductive? rethinking the
fundamental reasoning abilities of llms. arXiv preprint arXiv:2408.00114, 2024.

[12] Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic
capabilities. arXiv preprint arXiv:2507.06261, 2025.

[13] Andrew Cropper, Rolf Morel, and Stephen Muggleton. Learning higher-order logic programs.
Machine Learning, 109(7):1289–1322, 2020.

[14] Gergely Csibra and György Gergely. Natural pedagogy. Trends in cognitive sciences, 13(4):148–
153, 2009.

[15] Yuchen Cui, Siddharth Karamcheti, Raj Palleti, Nidhya Shivakumar, Percy Liang, and Dorsa
Sadigh. No, to the right: Online language corrections for robotic manipulation via shared
autonomy. In Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot
Interaction, pages 93–101, 2023.

[16] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing
Xu, Zhiyong Wu, Tianyu Liu, et al. A survey on in-context learning. arXiv preprint
arXiv:2301.00234, 2022.

[17] John K Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data structure transformations
from input-output examples. ACM SIGPLAN Notices, 50(6):229–239, 2015.

[18] KA Gluck and JE Laird. Interactive task learning: Agents, robots, and humans acquiring new
tasks through natural interactions, 2018.

[19] Cordell Green. Application of theorem proving to problem solving. In Readings in artificial
intelligence, pages 202–222. Elsevier, 1981.

[20] Maxime Griot, Coralie Hemptinne, Jean Vanderdonckt, and Demet Yuksel. Large language
models lack essential metacognition for reliable medical reasoning. Nature communications,
16(1):642, 2025.

[21] Stanford Artificial Intelligence Laboratory. Automatic-Programming Research Group and
C Cordell Green. Progress report on program-understanding systems. Stanford Univ., Computer
Science Department, School of Humanities, 1974.

[22] Xiang Huang, Sitao Cheng, Shanshan Huang, Jiayu Shen, Yong Xu, Chaoyun Zhang, and
Yuzhong Qu. Queryagent: A reliable and efficient reasoning framework with environmental
feedback-based self-correction. arXiv preprint arXiv:2403.11886, 2024.

[23] James R Kirk and John E Laird. Learning hierarchical symbolic representations to support
interactive task learning and knowledge transfer. In IJCAI, pages 6095–6102, 2019.

[24] James R Kirk, Robert E Wray, and John E Laird. Exploiting language models as a source of
knowledge for cognitive agents. In Proceedings of the AAAI Symposium Series, volume 2, pages
286–294, 2023.

[25] James R Kirk, Robert E Wray, Peter Lindes, and John E Laird. Integrating diverse knowledge
sources for online one-shot learning of novel tasks. arXiv preprint arXiv:2208.09554, 2022.

[26] James R Kirk, Robert E Wray, Peter Lindes, and John E Laird. Improving knowledge extraction
from llms for task learning through agent analysis. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 18390–18398, 2024.

10

[27] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large lan-
guage model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium
on Operating Systems Principles, 2023.

[28] John E Laird, Kevin Gluck, John Anderson, Kenneth D Forbus, Odest Chadwicke Jenkins,
Christian Lebiere, Dario Salvucci, Matthias Scheutz, Andrea Thomaz, and Greg Trafton.
Interactive task learning. IEEE Intelligent Systems, 32(4):6–21, 2017.

[29] Lane Lawley and Christopher Maclellan. Val: Interactive task learning with gpt dialog parsing.
In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems, pages
1–18, 2024.

[30] Jiachun Li, Pengfei Cao, Zhuoran Jin, Yubo Chen, Kang Liu, and Jun Zhao. Mirage:
Evaluating and explaining inductive reasoning process in language models. arXiv preprint
arXiv:2410.09542, 2024.

[31] Toby Jia-Jun Li, Tom Mitchell, and Brad A Myers. Interactive task learning from gui-grounded
natural language instructions and demonstrations. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics: System Demonstrations, pages 215–223, 2020.

[32] Jacky Liang, Fei Xia, Wenhao Yu, Andy Zeng, Montserrat Gonzalez Arenas, Maria Attarian,
Maria Bauza, Matthew Bennice, Alex Bewley, Adil Dostmohamed, et al. Learning to learn faster
from human feedback with language model predictive control. arXiv preprint arXiv:2402.11450,
2024.

[33] Huihan Liu, Alice Chen, Yuke Zhu, Adith Swaminathan, Andrey Kolobov, and Ching-An
Cheng. Interactive robot learning from verbal correction. arXiv preprint arXiv:2310.17555,
2023.

[34] Huihan Liu, Shivin Dass, Roberto Martín-Martín, and Yuke Zhu. Model-based runtime moni-
toring with interactive imitation learning. In 2024 IEEE International Conference on Robotics
and Automation (ICRA), pages 4154–4161. IEEE, 2024.

[35] Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically
ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity. arXiv
preprint arXiv:2104.08786, 2021.

[36] Inbal Magar and Roy Schwartz. Data contamination: From memorization to exploitation. arXiv
preprint arXiv:2203.08242, 2022.

[37] Giovanni Monea, Antoine Bosselut, Kianté Brantley, and Yoav Artzi. Llms are in-context bandit
reinforcement learners. arXiv preprint arXiv:2410.05362, 2024.

[38] Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed program synthesis.
ACM SIGPLAN Notices, 50(6):619–630, 2015.

[39] Jane Pan, Ryan Shar, Jacob Pfau, Ameet Talwalkar, He He, and Valerie Chen. When benchmarks
talk: Re-evaluating code llms with interactive feedback. arXiv preprint arXiv:2502.18413,
2025.

[40] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program synthesis from polymor-
phic refinement types. ACM SIGPLAN Notices, 51(6):522–538, 2016.

[41] Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang
Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5
technical report, 2025.

[42] Joshua Rule, Eric Schulz, Steven T Piantadosi, and Joshua B Tenenbaum. Learning list concepts
through program induction. BioRxiv, page 321505, 2018.

11

[43] Joshua Stewart Rule. The child as hacker: building more human-like models of learning. PhD
thesis, Massachusetts Institute of Technology, 2020.

[44] Gabriel Sarch, Lawrence Jang, Michael Tarr, William W Cohen, Kenneth Marino, and Katerina
Fragkiadaki. Vlm agents generate their own memories: Distilling experience into embodied
programs of thought. Advances in Neural Information Processing Systems, 37:75942–75985,
2024.

[45] Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Angelica Chen,
Kyunghyun Cho, and Ethan Perez. Training language models with language feedback at
scale. arXiv preprint arXiv:2303.16755, 2023.

[46] Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. Quantifying language models’
sensitivity to spurious features in prompt design or: How i learned to start worrying about
prompt formatting. arXiv preprint arXiv:2310.11324, 2023.

[47] David E Shaw, William R Swartout, and C Cordell Green. Inferring lisp programs from
examples. In IJCAI, volume 75, pages 260–267, 1975.

[48] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: Language agents with verbal reinforcement learning. Advances in Neural Information
Processing Systems, 36:8634–8652, 2023.

[49] Douglas R Smith. The synthesis of lisp programs from examples: A survey. Automatic program
construction techniques, 307:324, 1984.

[50] Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona
Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma
3 technical report. arXiv preprint arXiv:2503.19786, 2025.

[51] Guoqing Wang, Wen Wu, Guangze Ye, Zhenxiao Cheng, Xi Chen, and Hong Zheng. Decoupling
metacognition from cognition: A framework for quantifying metacognitive ability in llms. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pages 25353–25361,
2025.

[52] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen,
Jiakai Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous
agents. Frontiers of Computer Science, 18(6):186345, 2024.

[53] Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji.
Mint: Evaluating llms in multi-turn interaction with tools and language feedback. arXiv preprint
arXiv:2309.10691, 2023.

[54] Jiajun Xi, Yinong He, Jianing Yang, Yinpei Dai, and Joyce Chai. Teaching embodied rein-
forcement learning agents: Informativeness and diversity of language use. arXiv preprint
arXiv:2410.24218, 2024.

[55] Fangzhi Xu, Qika Lin, Jiawei Han, Tianzhe Zhao, Jun Liu, and Erik Cambria. Are large
language models really good logical reasoners? a comprehensive evaluation and beyond. IEEE
Transactions on Knowledge and Data Engineering, 2025.

[56] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

[57] Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
tool-agent-user interaction in real-world domains. arXiv preprint arXiv:2406.12045, 2024.

[58] Weiran Yao, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Yihao Feng, Le Xue, Rithesh
Murthy, Zeyuan Chen, Jianguo Zhang, Devansh Arpit, et al. Retroformer: Retrospective large
language agents with policy gradient optimization. arXiv preprint arXiv:2308.02151, 2023.

[59] Lihan Zha, Yuchen Cui, Li-Heng Lin, Minae Kwon, Montserrat Gonzalez Arenas, Andy
Zeng, Fei Xia, and Dorsa Sadigh. Distilling and retrieving generalizable knowledge for robot
manipulation via language corrections. In 2024 IEEE international conference on robotics and
automation (ICRA), pages 15172–15179. IEEE, 2024.

12

A Acknowledgments

This material is based upon work supported by the National Science Foundation Graduate Research
Fellowship Program under Grant No. DGE 2241144. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

We thank Jeffrey Brill, Creighton Glasscock, and Anuj Tambwekar for helpful discussions and
insights during the initial phases of this work.

B ListOps Domain

As introduced in Section 4, the ListOps Domain consists of compositional transformation functions
of the form f = s1 ◦ s2 ◦ · · · ◦ sn. These transformation functions compose skills s1, ..., sn ∈ SW ,
where SW ⊆ S is a subset of skills drawn from a universal skillset S. Each “skill” is a simple
transformation function that intakes a sequence, manipulates it in some way (e.g., swapping the letters
at two indices), and then returns the transformed sequence. The entire universal skillset S is detailed
in Table 1.

Table 1: Skills within the ListOps Domain

Skill Name Description
swap_indices Swaps two letters at specified indices
increment_letter Increments a letter by a specified amount with wraparound
set_index_to_value Sets the letter at a given index to a specified value
change_case_at_index Changes the case of the letter at a specified index
sort_subsequence Sorts a subsequence alphabetically (lowercase before uppercase)
reverse_subsequence Reverses the order of letters in a subsequence
shift_letter Moves a letter to a different position in the sequence
delete_index Removes the letter at a specified index
delete_letter Removes all instances of a specified letter
insert_letter Inserts a letter at a specified index
set_case Sets a letter at a given index to uppercase or lowercase
remove_duplicates Removes duplicate letters from a subsequence
duplicate_subsequence Creates a copy of a subsequence at the same location
rotate_subsequence Performs circular shift of letters within a subsequence
filter_by_case Keeps only uppercase or lowercase letters in a subsequence
filter_by_alphabet_range Keeps only letters within a specified alphabetical range

C Experimental Details and Further Analysis

We deployed all open-weight models (i.e., every model except for Gemini 2.5 Flash) using vLLM
[27]. We used greedy decoding (temperature of t = 0) across all open-weight models to ensure
deterministic, reproducible results and enable fair comparison across different model families. While
this may not reflect each model’s optimal performance, it provides a consistent evaluation framework
for comparing pedagogical approaches.

We use a simplified naming scheme to refer to models throughout this paper. Please refer to Table 2
for all of the “full” model names (i.e., the locations of the models on HuggingFace).

13

Table 2: Simplified Model Names

Simplified Model Name HuggingFace Model Name
Gemma3-12B google/gemma-3-12b-it
Gemma3-27B google/gemma-3-27b-it
Qwen2.5-7B Qwen/Qwen2.5-7B-Instruct
Qwen2.5-14B Qwen/Qwen2.5-14B-Instruct
Qwen2.5-32B Qwen/Qwen2.5-32B-Instruct
Qwen3-4B Qwen/Qwen3-4B
Qwen3-8B Qwen/Qwen3-8B
Qwen3-14B Qwen/Qwen3-14B
Qwen3-32B Qwen/Qwen3-32B

For all models, we utilize a decoding limit of 4096 tokens (not including prior context). We forcibly
truncate model output after this limit has been reached and return the output.

For all reasoning models—which coincides in this paper with the Qwen3 model family—we modified
the chat template so that <think> blocks from previous conversational turns were preserved, which
is not done by default. Furthermore, for these models, we truncate thinking 256 tokens prior to
the 4096 token limit by injecting a </think> token, and then we provide the model 256 additional
tokens to provide its final answer.

For all experiments, we utilized sequences of length |x| = 8, transformation functions composed of 4
skills each, and |SW | = 8 skills per ITL world.

C.1 More Details on Feedback Comparison Experiments

This section contains more details regarding the experiments performed in Section 5.1. Tables 3
and 4 display the raw accuracy of repair AR

c and accuracy of generalization AG
c results for different

feedback combinations c.

Table 3: Accuracy of repair AR
c by feedback combination and model. Feedback categories tested

include (I)dentification, (L)ocalization, (D)escription of Error, (R)ule Explication, and (C)orrective
Information, per the hierarchy detailed in Section 5.1.

Feedback Components Model Performance
I L D R C Gemma3-27B Qwen2.5-14B Qwen3-4B Qwen3-8B
✓ 0.292 0.093 0.536 0.632
✓ ✓ 0.231 0.158 0.659 0.589
✓ ✓ ✓ 0.654 0.472 0.702 0.750
✓ ✓ ✓ 0.643 0.494 0.885 0.878
✓ ✓ ✓ 0.554 0.798 0.885 0.817
✓ ✓ ✓ ✓ 0.785 0.600 0.946 0.942
✓ ✓ ✓ ✓ 0.844 0.783 0.860 0.929
✓ ✓ ✓ ✓ 0.810 0.820 0.897 0.980
✓ ✓ ✓ ✓ ✓ 0.829 0.860 0.941 0.929

14

Table 4: Accuracy of generalization AG
c by feedback combination and model. Feedback cate-

gories tested include (I)dentification, (L)ocalization, (D)escription of Error, (R)ule Explication, and
(C)orrective Information, per the hierarchy detailed in Section 5.1.

Feedback Components Accuracy of Generalization AG
c

I L D R C Gemma3-27B Qwen2.5-14B Qwen3-4B Qwen3-8B
✓ 0.525 0.544 0.612 0.651
✓ ✓ 0.469 0.463 0.631 0.679
✓ ✓ ✓ 0.544 0.600 0.652 0.761
✓ ✓ ✓ 0.599 0.686 0.838 0.883
✓ ✓ ✓ 0.460 0.443 0.597 0.706
✓ ✓ ✓ ✓ 0.606 0.627 0.813 0.859
✓ ✓ ✓ ✓ 0.500 0.506 0.684 0.713
✓ ✓ ✓ ✓ 0.576 0.609 0.732 0.804
✓ ✓ ✓ ✓ ✓ 0.581 0.565 0.667 0.860

To create the righthand sides of Figures 2 and 3, we average the performance of all combinations
without that category and subtract it from the average performance of all combinations with that
same category. For instance, to test the benefits of Error Descriptions (D), we perform the following
accuracy calculation. Since this is simply a comparison of the Explanation feedback subcategories, we
implicitly assume that Identification and Localization are always present, even in the None category
below.

[(AD+R+C −AR+C) + (AD+R −AR) + (AD+C −AC) + (AD −ANone)] /4

This calculation, in effect, tells us the average positive impact incurred by adding error identification.

C.2 Method for Generating Ground-Truths with Gemini

We generate a dataset of 2000 ground-truth reasoning traces (20 tasks each across 100 ListOps
worlds) on the ListOps domain by prompting Gemini 2.5 Flash [12] without any obfuscation (such
that the meaning of each subfunction can be inferred from its name). We generate each reasoning
trace independently (i.e., utilizing no history) by providing Gemini with the Baseline Prompt detailed
in Appendix D. We utilize the default temperature of t = 1.0 provided by Google’s API. We let
Gemini have three opportunities to generate the ground-truth (utilizing randomness forced by the
non-zero temperature to encourage Gemini to output novel attempts). If Gemini fails after three
consecutive attempts, we provide a templated version of the ground-truth (complete with reasoning
explanations) as a single in-context example. We then repetitively query Gemini using the baseline
prompt as well as the templated ground-truth until Gemini yields a correct output.

C.3 Detailed Results and Further Analysis for ListOps Domain Experiments

We tested each learning method (e.g., ITL with a particular teacher configuration) across 100 distinct
ListOps worlds (i.e., 100 seeds). Within each world, we created a learning set of five tasks and a test
set of four tasks, across which we computed an accuracy within that ListOps world. We then report
results for the mean accuracy across all worlds as well as 95% confidence intervals. In Table 5, we
report mean performance as well as statistical significance. We compute statistical significance using
paired t-tests and mark results that are statistically significant improvements with asterisks.

Both FSL and ITL can be viewed as methods for formulating strings SFSL and SITL that steer the
LLM’s generation. The contents of each string are as follows, where ti refers to task i, gi refers to
the ground-truth for ti, and aij and f i

j refer to the j’th attempt and corresponding feedback for ti.

SFSL = [fgeneral, t
1, g1, t2, g2, ..., tn, gn]

SITL = [fgeneral, t
1, a11, f

1
1 , a

1
2, f

1
2 , ..., a

n
≤m, fn

≤m]

15

Table 5: Performance comparison of the Baseline Prompt, Few-Shot Learning (FSL), and Interactive
Task Learning (ITL) on the ListOps Domain. Bold text indicates the highest-performing learning
strategy for each model. Asterisks * indicate when a learning strategy outperforms the strategy directly
to its left (i.e., FSL outperforming Baseline Prompt or ITL outperforming FSL) to a statistically
significant degree.

Model Baseline Prompt Few-Shot Learning Interactive Task Learning
Gemma3-12B 0.142 0.312* 0.338
Gemma3-27B 0.350 0.412 0.590*
Qwen2.5-7B 0.117 0.205* 0.212
Qwen2.5-14B 0.263 0.407* 0.468*
Qwen2.5-32B 0.532 0.477 0.670*
Qwen3-4B 0.537 0.585* 0.588
Qwen3-8B 0.565 0.623* 0.715*
Qwen3-14B 0.672 0.782* 0.868*
Qwen3-32B 0.815 0.885* 0.938*

It is also possible to view both of these as methods for extracting pedgagogical information from a
strong teacher model—Gemini 2.5 Flash in this case. In FSL, the teacher πT is queried independently
using each task to obtain a ground truth: gi ∼ πT (t

i). In ITL, the teacher is queried using the task
and the student’s attempt to obtain feedback: f i

j ∼ πT (t
i, aij).

C.4 Analysis of Attempts During Interactive Task Learning

Figure 6 displays the number of incorrect and correct attempts that each model made when approach-
ing the five learning tasks. The number of failed attempts per learning trajectory was quite varied.
Generally, the number of failed attempts has an inverse relationship with model performance at
ITL, while the number of successful attempts has a direct relationship. It is unclear based on these
results alone, however, whether there is a causal link between these phenomena (or in which direction
causation flows).

Gem
ma3

-12
B

Gem
ma3

-27
B

Qwen
2.5

-7B

Qwen
2.5

-14
B

Qwen
2.5

-32
B

Qwen
3-4

B

Qwen
3-8

B

Qwen
3-1

4B

Qwen
3-3

2B
0

2

4

6

8

10

12

Nu
m

be
r o

f F
ai

le
d

At
te

m
pt

s p
er

 Tr
ac

e

7.79

5.52

11.11

7.27

3.84 3.62
2.88

1.32
0.89

Failed Attempts per Trace

Gem
ma3

-12
B

Gem
ma3

-27
B

Qwen
2.5

-7B

Qwen
2.5

-14
B

Qwen
2.5

-32
B

Qwen
3-4

B

Qwen
3-8

B

Qwen
3-1

4B

Qwen
3-3

2B
0

2

4

6

8

10

12

Nu
m

be
r o

f S
uc

ce
ss

fu
l A

tte
m

pt
s p

er
 Tr

ac
e

2.95
3.69

1.51

3.10

4.24 4.26 4.35
4.89 4.87

Successful Attempts per Trace
Model Performance: Failed vs Successful Attempts per Learning Trace

Figure 6: A display of the number of failed (left) and successful (right) attempts made by models
during Interactive Task Learning. Learning occurred over n = 5 tasks, with a maximum of m = 3
attempts per task.

C.5 Token Usage Comparison between ITL and FSL

Displayed in Table 6 is a breakdown of the average number of tokens required for different portions
of the learning trace SFSL or SITL. We multiply the average length (in tokens) of each category by
the number of times it occurs within a trace (displayed in Figure 6) to obtain estimates of the mean
number of tokens within each trace type. Note that this estimation process omits tokens utilized for

16

chat formatting, the task definitions themselves, and the fgeneral prompt. The latter two are present
in both FSL and ITL, and the former utilizes a relatively small number of tokens, so we omit it.

Table 6: A Breakdown of the number of tokens for different pedagogical paradigms. Each number
displayed is the mean number of tokens rounded to the nearest integer. We report FSL token counts
using the Qwen3 [56] tokenizer.

Model Successful Attempt Failed Attempt Feedback Full Trace
FSL 544 N/A N/A 2719

ITL with Gemma3-12B 594 734 39 7891
ITL with Gemma3-27B 579 626 35 5912
ITL with Qwen2.5-7B 686 724 43 9619
ITL with Qwen2.5-14B 651 728 38 7699
ITL with Qwen2.5-32B 534 584 29 4741
ITL with Qwen3-4B 1502 1867 30 13397
ITL with Qwen3-8B 1404 1905 26 11777
ITL with Qwen3-14B 1390 2114 19 9707
ITL with Qwen3-32B 1563 2835 17 10229

We can draw a few conclusions from Table 6. Namely, due to the inclusion of failed attempts, ITL
traces tend to be much longer than FSL traces. We anticipate this would enable FSL to outperform ITL
in scenarios where the context length rather than the number of tasks is held constant. Furthermore,
failed attempts tend to be longer than successful attempts across all models tested. This effect
is especially pronounced within the Qwen3 family—all of which are reasoning models—which
we observed have a tendency to meet the 4096 token limit when the reasoning process goes awry.
Additionally, even the correct reasoning traces within ITL tend to be longer than the correct reasoning
traces produced by Gemini 2.5 Flash for use in FSL, although this effect is only pronounced among
the Qwen3 family. Finally, we note that feedback requires few tokens on average, making it an
insignificant contributor to ITL’s long context lengths.

D Prompts

D.1 Student Prompt

The following is an example of the prompt given to the student LLM. The student has access to the
following core components:

1. The fgeneral prompt, which provide details about the skills within this particular ITL
world. See Appendix D.4 for a complete example.

2. function_str, which provides the Python code for the function that the student was tasked
with executing.

3. The input that the student was tasked with transforming.

Student Prompt

{f_general}

{function_str}

Please predict transform({input})
Please think step by step and then conclude by responding with your answer.

After executing each line, you MUST output the line’s result using this
syntax:
#L1 [’x’, ’x’, ’x’, ’x’, ’x’, ’x’, ’x’, ’x’]

17

Two things to note about this format:
- Replace the number 1 with the line number within the function. For
instance, if you are outputting the result from line 2, use #L2
- Replace the letters ’x’ with the correct sequence.

D.2 Teacher Prompt

The following is an example of the prompt given to the teacher LLM. The teacher has access to the
following core components:

1. The fgeneral prompt, which provide details about the skills within this particular ITL
world. See Appendix D.4 for a complete example.

2. function_str, which provides the Python code for the function that the student was tasked
with executing.

3. The input that the student was tasked with transforming.

4. The student’s response.

5. A ground truth response.

6. A ground truth judgment of the student response’s correctness (either “Correct” or
“Incorrect”), which is determined using a parser written in Python.

After the student completes an attempt aij during learning, we parse the result to identify whether it
made any errors. If our parser finds no errors, we simply respond with the string “Good job! You
executed this task without any errors!” and move on to a new task. If our parser detects one or more
errors—which happens frequently since an incorrect output on line i becomes an incorrect input to
line i+ 1—we provide feedback for the first error only.

We utilize Gemini 2.5 Flash [12] to provide natural language feedback regarding Localization as well
as all three Explanation categories (using a json format). Our parser searches for strings with the
format “#L1 [‘a’, ‘b’, ...]”, which we instruct the student to output at the conclusion of each
line within the transformation function (see Figure 1 for an example of a reasoning trace using this
format). We do not explicitly generate separate Identification feedback since Localization feedback
always specifies whether or not an error was made. We query Gemini using the prompt detailed in
Appendix D.2, which gives it access to the student’s response, a synthetically-generated ground-truth
reasoning trace for the task, the parser’s analysis (which identifies the line in which the student failed),
and the templated general information string fgeneral provided to the student.

To optimize the performance of Gemini, we do not obfuscate any of the skill names; all student
generations are de-obfuscated before being shown to the teacher, and all teacher generations are
re-obfuscated before being shown to the student.

Teacher Prompt

{f_general}

You are responsible for providing feedback to a student tasked with
predicting the output of the following function for the input {input}:
{function_str}

The student’s response was as follows:
{student_response}

The ground truth reasoning trace that would have successfully solved this
problem is as follows:
{ground_truth}

18

The student may have made multiple errors, but your job is to provide
feedback specifically for the student’s first error, which occurred at line
{step}.
The student responded with {faulty_list} when it should have responded with
{gt_list}.

Please provide feedback for the student. ONLY discuss this particular error,
not other errors that the student may have made.

Please address your feedback to the student, not to me:
- BAD: "The student’s response is incorrect due to mistake x"
- GOOD: "Your response is incorrect due to mistake x"

You must analyze the student’s error and provide feedback in exactly four
categories.
Each category serves a distinct purpose and should NOT overlap with others.

[Temporal Location]
This type of feedback ONLY identifies for the student *when/where* its error
occurred, without describing what went wrong.
- Must specify the line number in which the error occurred
- Must NOT describe the error itself or how to fix it
- Keep extremely brief (1 sentence maximum)
Example: "You made an error when trying to execute line 3."

[Error Identification]
Describes WHAT the student did wrong, without explaining why it was wrong or
how to fix it.
- Must be purely descriptive of the student’s actual behavior
- Must NOT include normative details regarding what should have been done
instead
- Must NOT reference general rules or principles
Examples:
- "You treated ’E’ as a lowercase letter when sorting."
- "You removed ’a’ from the subsequence when filtering."
- "You left a copy of ’G’ in its original location."

[Rule Identification]
States the general principle or rule that the student violated.
- Must be a generalizable rule that applies beyond this specific case
- Should explain the correct principle without referencing this particular
instance
- Focus on the "why" behind correct behavior
Examples:
- "When sorting, uppercase letters must be ordered after their lowercase
counterparts."
- "When filtering uppercase letters, leave all lowercase letters in the
subsequence."
- "When shifting a letter, you must always move rather than copy the letter."

[Corrective Information]
Provides the specific correct output for the erroneous step ONLY.
- Must show the correct intermediate result at the point of error
- Should NOT include full explanation or reasoning
- Keep focused on the immediate correction needed
Examples:
- "The correct sorted subsequence at line 3 is [’a’, ’x’, ’E’]."
- "The correctly filtered subsequence at line 2 is [’a’, ’v’, ’i’]."
- "The correct result for line 1 is [’c’, ’w’, ’b’, ’G’, ’z’]."

Please output your response in a json format as follows:
{{

"temporal_location" : "You made an error when trying to execute line 3.",

19

"error_identification" : "You treated ’E’ as a lowercase letter when
sorting.",

"rule_identification" : "When sorting, uppercase letters must be ordered
after their lowercase counterparts.",

"corrective_information" : "The correct sorted subsequence at line 3 is
[’a’, ’x’, ’E’]."
}}
Do not output ANYTHING except this json file. If you output additional text,
you will BREAK the code.

D.3 Few-Shot Learning Prompt

Few-Shot Learning Prompt

{f_general}

EXAMPLE 1:
You are tasked with predicting the output of a function named ‘transform‘
for a particular input.
Here is the function’s definition:

{function_str_1}

Please predict transform({input_1})
Please think step by step and then conclude by responding with your answer.

After executing each line, you MUST output the line’s result using this
syntax:
#L1 [’x’, ’x’, ’x’, ’x’, ’x’, ’x’, ’x’, ’x’]
Two things to note about this format:
- Replace the number 1 with the line number within the function. For
instance, if you are outputting the result from line 2, use #L2
- Replace the letters ’x’ with the correct sequence.

{ground_truth_1}

EXAMPLE 2:
You are tasked with predicting the output of a function named ‘transform‘
for a particular input.
Here is the function’s definition:

{function_str_2}

Please predict transform({input_2})
Please think step by step and then conclude by responding with your answer.

After executing each line, you MUST output the line’s result using this
syntax:
#L1 [’x’, ’x’, ’x’, ’x’, ’x’, ’x’, ’x’, ’x’]
Two things to note about this format:
- Replace the number 1 with the line number within the function. For
instance, if you are outputting the result from line 2, use #L2
- Replace the letters ’x’ with the correct sequence.

{ground_truth_2}

EXAMPLE 3:
...

20

Please now try executing a new function transform for a new input.
Here is the new function’s definition:

{function_str}

Please predict transform({input})
Please think step by step and then conclude by responding with your answer.

After executing each line, you MUST output the line’s result using this
syntax:
#L1 [’x’, ’x’, ’x’, ’x’, ’x’, ’x’, ’x’, ’x’]
Two things to note about this format:
- Replace the number 1 with the line number within the function. For
instance, if you are outputting the result from line 2, use #L2
- Replace the letters ’x’ with the correct sequence.

D.4 General Task Description

The following is a templated prompt that provides a detailed description of every skill within a
particular ListOps worldW . The skill descriptions themselves are static, however the list of skills, as
well as their obfuscated names, changes depending on the ListOps world. Please note that, in the
prompt fed to the student LLM, the names of the skills would be obfuscated to match the names used
within the corresponding ListOps world.

This prompt is used in various experiments:

• It is used as a general description of the task domain fgeneral = πT (T) at the beginning
of an ITL session.

• It is used as the Baseline Prompt and as a component of the Few-Shot Learning prompt for
the experiments displayed in Figure 4.

• It is given to Gemini 2.5 Flash [12] to improve its feedback for the student.

Please note that the following prompt is an example that details several skills used within a particular
ListOps World. Thus, not every skill in the universal skillset S is represented below.

General Task Description

Your task will involve knowledge about a custom API that utilizes the
following "atomic" functions:

‘set_case(sequence, index=int, case=str)‘
This function sets the letter at index ‘index‘ to either uppercase or
lowercase.
The variable ‘case‘ can be either ’upper’ or ’lower’.
Here is an example of this function being executed:
‘‘‘
set_case([’e’, ’x’, ’A’, ’E’, ’p’, ’l’, ’e’], index=3, case=’upper’)
This function requires us to set the letter at index 3 to uppercase.
Currently, index 3 is occupied by ’E’.
This letter is already uppercase, therefore we should not change anything.
We can simply return the input sequence:
[’e’, ’x’, ’A’, ’E’, ’p’, ’l’, ’e’]
‘‘‘

‘delete_index(sequence, index=int)‘
This function identifies the letter corresponding to ‘index‘ and removes it
from the list.
Here is an example of this function being executed:

21

‘‘‘
delete_index([’e’, ’x’, ’A’, ’M’, ’p’, ’l’, ’e’], index=3)
This function requires us to delete the letter at index 3
At index 3 is the letter M
Removing this letter, we can return the following sequence:
[’e’, ’x’, ’A’, ’p’, ’l’, ’e’]
‘‘‘

‘change_case_at_index(sequence, index=int)‘
This function identifies the letter at ‘index‘ (zero-indexed).
It then changes the case of this letter (making it uppercase if it is
currently lowercase and vice versa).
It then returns the resulting sequence.
Here is an example of this function being executed:
‘‘‘
change_case_at_index([’e’, ’x’, ’A’, ’M’, ’p’, ’l’, ’e’, ’Y’], index=0)
The letter e is at index 0
This letter is currently lowercase, so we should convert it to uppercase
The uppercase version of e is E
Thus, the function would return [’E’, ’x’, ’A’, ’M’, ’p’, ’l’, ’e’, ’Y’]
‘‘‘

‘shift_letter(sequence, index=int, amount=int)‘
This function identifies the letter corresponding to ‘index‘ and shifts it
to the right by ‘amount‘.
A negative value for ‘amount‘ corresponds to a leftward shift.
Here is an example of this function being executed:
‘‘‘
shift_letter([’e’, ’x’, ’A’, ’M’, ’p’, ’l’, ’e’], index=4, amount=-2)
This function requires us to shift the letter at index 4 left by 2
At index 4 is the letter p
Shifting this letter to the left 2 would place it before ’A’
Thus, it would return the following sequence:
[’e’, ’x’, ’p’, ’A’, ’M’, ’l’, ’e’]
‘‘‘

‘duplicate_subsequence(sequence, index1=int, index2=int)‘
This function identifies the subsequence starting at index1 and ending at
index2 (inclusive, zero-indexed).
It then duplicates this subsequence and returns the result.
Here is an example of this function being executed:
‘‘‘
duplicate_subsequence([’e’, ’x’, ’A’, ’e’, ’p’, ’l’, ’e’], index1=1,
index2=3)
This subfunction requires us to duplicate the subsequence from index1=1 to
index2=3.
At index 1 is the letter x.
At index 3 is the letter e.
Thus, the subsequence is [’x’, ’A’, ’e’].
Duplicating this subsequence results in the subsequence [’x’, ’A’, ’e’, ’x’,
’A’, ’e’].
Re-inserting this into its original location within the list, this function
returns:
[’e’, ’x’, ’A’, ’e’, ’x’, ’A’, ’e’, ’p’, ’l’, ’e’]
‘‘‘

‘insert_letter(sequence, index=int, letter=character)‘
This function inserts ‘letter‘ at index ‘index‘.
Here is an example of this function being executed:
‘‘‘
insert_letter([’e’, ’x’, ’A’, ’E’, ’p’, ’l’, ’e’], index=4, letter=Y)
This function requires us to insert the letter Y at index 4.
Currently, index 4 is occupied by ’p’.

22

I will therefore insert ’Y’ between ’p’ and its predecessor ’E’.
Doing so will yield the following sequence:
[’e’, ’x’, ’A’, ’E’, ’Y’, ’p’, ’l’, ’e’]
‘‘‘

‘set_index_to_value(sequence, index=int, letter=character)‘
This function identifies the letter at ‘index‘ (zero-indexed).
It then sets this letter to ‘letter‘ and returns the resulting sequence.
Here is an example of this function being executed:
‘‘‘
set_index_to_value([’e’, ’x’, ’A’, ’M’, ’p’, ’l’, ’e’, ’Y’], index=7,
letter=e)
Currently, the letter Y is at index 7
This function replaces this letter with e
Thus, the function would return [’e’, ’x’, ’A’, ’M’, ’p’, ’l’, ’e’, ’e’]
‘‘‘

‘rotate_subsequence(sequence, amount=int, index1=int, index2=int)‘
This function identifies the subsequence starting at index1 and ending at
index2 (inclusive, zero-indexed).
It then performs a circular shift of the subsequence.
A positive value for ‘amount‘ indicates that the letters within the
subsequence ought to be shifted to the right by that amount.
A negative value for ‘amount‘ indicates that the letters ought to be shifted
to the left.
Here is an example of this function being executed:
‘‘‘
rotate_subsequence([’e’, ’x’, ’A’, ’e’, ’p’, ’l’, ’e’], amount=-1, index1=1,
index2=3)
This subfunction requires us to rotate the subsequence from index1=1 to
index2=3.
At index 1 is the letter x.
At index 3 is the letter e.
Thus, the subsequence is [’x’, ’A’, ’e’].
Rotating this subsequence by -1 indicates a leftward shift of 1.
This results in the subsequence [’A’, ’e’, ’x’].
Re-inserting this into its original location within the list, this function
returns:
[’e’, ’A’, ’e’, ’x’, ’p’, ’l’, ’e’]
‘‘‘

23

	Introduction
	Related Work
	Interactive Task Learning
	In-Context and Few-Shot Learning
	Learning from Natural Language Feedback
	List Manipulation as a Domain

	Problem Formulation
	The ListOps Domain
	Experiments and Results
	What properties must natural language feedback have for LLMs to effectively acquire and generalize task knowledge?
	Accuracy of Repair
	Accuracy of Generalization

	How does ITL compare with alternative paradigms for teaching LLMs to perform tasks, such as Few-Shot Learning (FSL)?

	Limitations and Future Work
	Unstructured Student-Teacher Interactions
	Memory and Adaptibility
	Multimodality

	Conclusion
	Acknowledgments
	ListOps Domain
	Experimental Details and Further Analysis
	More Details on Feedback Comparison Experiments
	Method for Generating Ground-Truths with Gemini
	Detailed Results and Further Analysis for ListOps Domain Experiments
	Analysis of Attempts During Interactive Task Learning
	Token Usage Comparison between ITL and FSL

	Prompts
	Student Prompt
	Teacher Prompt
	Few-Shot Learning Prompt
	General Task Description

