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ABSTRACT

Vision—language—action (VLA) models have demonstrated strong semantic un-
derstanding and zero-shot generalization, yet most existing systems assume an
accurate low-level controller with hand-crafted action “vocabulary” such as end-
effector pose or root velocity. This assumption confines prior work to quasi-static
tasks and precludes the agile, whole-body behaviors required by humanoid whole-
body control (WBC) tasks. To capture this gap in the literature, we start by
introducing the first sim-to-real-ready, vision-language, closed-loop benchmark
for humanoid WBC, comprising over 150 tasks from 10 categories. We then pro-
pose LeVERB: Latent Vision-Language-Encoded Robot Behavior, a hierarchical
latent instruction-following framework for humanoid vision-language WBC, the
first of its kind. At the top level, a vision—language policy learns a latent action
vocabulary from synthetically rendered kinematic demonstrations; at the low level,
a reinforcement-learned WBC policy consumes these latent verbs to generate
dynamics-level commands. In our benchmark, LeVERB can zero-shot attain a
80% success rate on simple visual navigation tasks, and 58.5% success rate overall,
outperforming naive hierarchical whole-body VLA implementation by 7.8 times.

(LeVERB-Bench: Sim2Real-Ready, Vision-Language WBC Tasks
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Figure 1: Overview of our contributions. Top: we create a photorealistic and dynamically accurate
benchmark for humanoid vision-language WBC. Middle: in real world, we zero-shot deploy a
dual-process VLA model trained only on synthetic data. Bottom: a high-level overview of our model

architecture with decoupled vision-language and dynamics-level action processing.
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1 INTRODUCTION

Enabling humanoid robots to perceive complex scenes, interpret intuitive language commands, and
execute whole-body actions has long been a captivating yet technically challenging goal. Recent
advances in Vision-Language-Action (VLA) models have demonstrated promising capabilities in
complex tabletop and mobile manipulation Brohan et al.[(2023); |Kim et al.; Team et al.| (2025)); Black
et al., and embodied navigation|Cheng et al.|(2024a); [Shah et al.| (2023); |Xu et al.| tasks, leveraging
their semantic reasoning capacity to bridge perception, language, and control. However, applying
VLAs to humanoid robots remains underexplored. In contrast to quasi-static arm-based manipulators,
humanoid robots are inherently high-dimensional nonlinear dynamic systems.

Humans think both fast and slow. Vision and language, processed ultimately in the cortex, enable
high-level reasoning and long-horizon planning, while sensory-motor responses, mediated by spinal
reflexes and subcortical motor circuits, supports rapid, reactive control Jensen| (2006). This dual-
process architecture allows humans to execute complex motor skills while adapting to changing
environments. To achieve comparable whole-body competence, humanoid robots - which share
similar complexity in motor control - must likewise integrate a hierarchical architecture combining
high-frequency control from proprioceptive feedback with low-frequency planning and semantic
reasoning grounded in rich vision and language inputs.

Prior works on VLA-enabled WBC rely on explicit, low-dimensional action “’vocabulary”, such
as base velocities, end-effector pose, etc., as the interface between VLA models and low-level
controllers |(Cheng et al.[(2024a); |Ding et al.| (2025)), where the low-level control is only capable of a
few atomic skills and is designed to rapidly react to fine-grained high-level commands. However, such
interfaces restrict expressiveness and make it difficult to integrate complex whole-body motions and
scene interactions. To fully unleash humanoid whole-body capabilities, we need (1) a learned “latent
vocabulary” that is expressive enough to both cover whole-body motions and capture semantics
encoded in the vision and language inputs, and couple it with (2) a versatile WBC layer that
dynamically translates this vocabulary into humanoid-feasible actions that are zero-shot transferrable
to the real world.

To bridge this gap, we introduce LeVERB, Latent Vision-Language Encoded Robotic Behavior, the
first vision-language latent action model for humanoid whole-body control. LeVERB consists of
a high-level vision-language policy (System 2) that interprets vision-language inputs, and a low-
level reactive controller (System I) to execute whole-body motions. To overcome the scarcity of
robot-specific visual data, we develop a data synthesis pipeline that collects diverse human motions
retargeted to the humanoid robot and renders them photorealistically in randomized scene contexts.
A set of semantically similar language commands are then annotated using a VLM. This enables
training the high-level VLA directly on paired, robot-specific video and language data.

To learn a structured latent space from vision-language inputs, we propose a CVAE-based architecture
for the high-level VLA module. This structured latent space is key to learning a unified vision-
language-action distribution that accurately aligns perception and action while mitigating overfitting.
To reduce the cost of photorealistic rendering during parallel simulation training, we decouple the
learning process. We first train the vision-language component using kinematics reconstruction to
align visual and motion semantics. Then, we freeze its latent space and train a separate action module
that samples from it to learn a proprioception-only controller focused on mastering robot dynamics.

Trained entirely on synthetic data, LeVERB enables flexible, instruction-driven humanoid behavior.
It can follow commands grounded in both state-space objectives (e.g., “turn left”, “walk straight”) and
visual goals (e.g., “go to the table in front”, “sit on the green chair”). At inference, the vision-language
module (System 2) encodes vision and language inputs into a latent action plan, which is then decoded
by the low-level controller (System I) into motor commands executable on the robot. We demonstrate
that LeVERB achieves zero-shot closed-loop deployment, executing expressive whole-body motions

and scene interactions in simulation and on real humanoid hardware.

Our work advances the field of VLA-driven WBC in three significant ways. First, we develop a
scalable, ready-to-use synthetic data generation pipeline that renders robot kinematic motions with
photorealistic rendering and diverse scene randomization for training vision-language models for
humanoid robots, including a closed-loop dynamic environment for evaluation. Further, we propose a
novel CVAE-based hierarchical vision-language policy that learns a structured latent space, enabling
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semantically grounded whole-body behaviors from high-level visual and language inputs. Finally,
we validate our approach both in simulation and on real-world humanoid hardware, demonstrating
generalization to unseen scenarios and establishing the first zero-shot sim-to-real results for WBC
using a latent vision-language interface.

2 RELATED WORK

2.1 HUuUMANOID WHOLE BoDY CONTROL

Recent advances in physics-based animation have shown strong results in humanoid whole-body
control, primarily through motion tracking Peng et al.| (2018 2021); [Luo et al| (2023a), where
reinforcement learning (RL) policies imitate reference motions from human MoCap data. Building
on this, methods like PULSE [Luo et al. (2023b)) and MaskedMimic [Tessler et al.| (2024) learn latent
policies controllable by high-level inputs, using Conditional VAEs or Transformers conditioned on
language and object interactions. TokenHSI |Pan et al.|(2025) further supports compositional object
interactions. However, these methods depend on privileged simulation states (e.g., full object poses),
limiting real-world applicability and ignoring visual inputs.

In contrast, real-world humanoid systems avoid latent-conditioned low-level control, instead pre-
dicting explicit commands such as base velocity, orientation, or whole-body keyframes |Cheng et al.
(2024b); L1 et al.| (2025a)); |[He et al.[(2024)); |Fu et al.|(2024); Ji et al.|(2024). This modularity eases inte-
gration but often results in jittery or unnatural motions due to infeasible predictions. LangWBC |Shao
et al.[(2025)) introduces a language-conditioned CVAE for whole-body control with latent structure
but lacks visual grounding and high-level reasoning, limiting it to simple commands. Incorporating
vision-conditioned latent policies remains a key challenge for humanoid control.

2.2 HIERARCHICAL VLA FOR ROBOT LEARNING

Recent progress in manipulation Intelligence et al.| (2025); Black et al.; | Ye et al.[(2024); Zhen et al.
(2024); Kim et al.; [Team et al.| (2024) shows that vision-language-action (VLA) models enable
generalization to open-world tasks by integrating visual and linguistic inputs with low-level control.
However, end-to-end models often incur high inference latency due to the size of VLA backbones,
resulting in delayed or discontinuous motions. This is particularly problematic for humanoid whole-
body control, which demands high-frequency, low-latency feedback for stability and agility. To
address this, recent works Bu et al.| (2025); |[Zhang et al.; |Bjorck et al.[ (2025); |[Han et al.| (2024);
Li et al|(2025b) adopt hierarchical System-1-System-2 architectures. Notably, AGIbot Bu et al.
(2025) demonstrates that using a latent interface improves performance. For dynamic systems like
legged or humanoid robots, prior real-world approaches often rely on explicit interfaces between
high-level and low-level policies. For example, Liu et al.|Liu et al.| use end-effector poses and base
velocities for whole-body manipulation; NaVILA |Cheng et al.| (2024a)) predicts direction and distance
for velocity control; and Humanoid-VLA Ding et al.| (2025) forecasts full-body poses, offering
expressiveness but requiring task-specific tuning. These explicit strategies simplify modular training
but limit generalization to diverse whole-body skills, such as seated interactions.

To our knowledge, no prior work has demonstrated vision-language-driven whole-body control on
real humanoid robots using a hierarchical latent architecture—an important gap this work aims to fill.

2.3 HUMANOID BENCHMARK

Demonstration data is a critical enabler for training VLA models, but collecting such data for robotic
control is nontrivial. In the manipulation domain, recent works have tackled this problem through
large-scale data collection pipelines using teleoperation Kim et al.| (2025));|Octo Model Team et al.
(2024); |Black et al.| and expert policy distillation |N1u et al.| (2025). In contrast, demonstration data for
visual WBC in humanoid robots remains scarce. Although recent efforts have advanced teleoperation
for humanoids Ji et al.| (2024); He et al.| (2024)); Ze et al.|(2025)), large-scale visual demonstrations
have yet to be provided due to the complexity of collecting whole-body motions on physical robots.
Existing benchmarks either focus solely on locomotion |Al-Hafez et al.| (2023), operate purely in
the state space without visuals Sferrazza et al.|(2024)); Luo et al.[|(2024), or have non-photorealistic
renderings [Liu et al.|(2024)) leading to large sim-to-real gaps. We present the first benchmark and
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Figure 2: Visualization of LeVERB-Bench environments. Top row: hundreds of texture and object
randomization options. Middle row: egocentric camera view and randomized third-person camera
views. Bottom row: diverse task categories.

dataset that provides both photorealistic renderings and physics-based simulation for whole-body
motions that are readily transferred to real-world hardware.

3 LEVERB DATASET AND BENCHMARK

Since there exists no suitable dataset and
benchmark for vision-language-based humanoid
WBC, we will first introduce LeVERB-Bench,

Table 1: Distribution of task categories

an efficient and scalable pipeline for synthetic
visual-language humanoid WBC data generation

Vision-Language Tasks

and closed-loop benchmarking. An overview of Category #Motions Total [s] Avgs]
the dataset visualizations is shown in Figure[2} ~ Navigation 101 465.6 4.61
. ) . . Towards 80 372.0 4.65
The main innovation of our efficient synthetic Around 21 93.6 4.46
data generation pipeline is to replay retargeted [ J.o0 oo 20 64.4 320
MoCap motions in simulation to collect pho- Sitting 23 74.4 323
torealistic rollouts. This offers three key ad- Reaching 10 17.4 1.74
vantages: (1) it removes the need for reliable Total 154 621.7 4.04
dynamic control during data collection, (2) kine-
matic poses provide sufficient task-level seman- Language-Only Tasks
tics for vision-language understanding, and (3) ~ Category # Motions  Total [s] Avg [s]
it supports future use of retargeted humanoid [ ocomotion 399 1052.8 26
data from sources like internet videos Reaching 61 101.6 1.7
(2023). As we show later, despite minor arti-  Total 460 1154.5 25

facts, using kinematic-only rendering is suffi-

cient when paired with a high-quality low-level
policy for closed-loop control.

We use the ray-tracing rendering in IsaacSim to render our data. This allows more accurate simulation
of scene lighting and shadows, alleviating the sim-to-real gap caused by unrealistic lighting in
prior works on synthetic data |[Bonetto et al.| (2023). To create a diverse set of visual scenarios
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Figure 3: Details of our data collection and training pipeline. Step 1: we collect a synthetic,
photorealistic dataset of retargeted motions in IsaacSim, and annotate with text instructions. Step 2:

we train LeVERB-VL with a kinematic trajectory reconstruction task, and obtain a regularized latent

verb vocabulary, from which we cache the latent verbs zt(i) for every rollout ¢ in the dataset. Step 3:

we use z,gi) to condition LeVERB-A. It is DAgger-distilled from teacher tracking policy T¢, which
receives future reference command s, that corresponds to the latent verb’s intention.

with language instructions from a small number of kinematics motion trajectories, we employ a
procedural generation pipeline to scale and randomize each rollout. Specifically, we randomize scene
backgrounds, object properties, task setups, camera views, and mirror rollouts to ensure diverse and
semantically rich data. We then label them with egocentric text commands manually or with a VLM
Lin et al.| (20244). The detailed workflow is introduced in Appendix@

With 154 trajectories, each randomized 100 times, We generate 17.1 hours of photorealistic motion
rollouts. Table[Il summarizes the mixture of different tasks in them. Each demonstration consists of
images Iy, ..., Iy, a text instruction ¢, and robot kinematic states sg, ..., Sy

To further boost data diversity, we use a VLM to annotate text-only motion pairs without having
to run photorealistic rendering. In total, we augment the vison-language data with 2.7 hours of
language-only data covering 500 diverse trajectories. To address the lack of visual input, we inject
spatial cues into the text (e.g., “the red chair on the left”) to retain disambiguating context.

4 DUAL PROCESS HUMANOID CONTROL

As introduced in Figure [T} LeVERB follows a dual-process inference pipeline. In this section, we
detail the design and training of our dual-process model architecture, depicted in Figure[3] We begin
by outlining the hierarchical structure in Section[4.1} and then elaborate on the components of our
system: LeVERB-VL (System 2) in Section[4.2] and LeVERB-A (System 1) in Section[d.3]

4.1 OVERALL MODEL HIERARCHY: DECOUPLING VISION-LANGUAGE AND ACTIONS

We formulate the VLA-driven WBC policy as my(a; | o), where a; is the dynamics-level action,

oy = [0}, Iy, a;—1,¢] " is the observation, with o}"" is the proprioceptive sensor readings, I is the
visual inputs from a egocentric and a randomized third-person camera, and c is the textual instruction.
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Formally, our hierarchical system-1-system-2 policy is formulated at inference-time as

mo(ar | o¢) = /TaA(at | 26,00, ar—1) - pou (21 | It, c)dz (1)

where pg,, denotes the high-level system 2 handling vision-language instruction and closed-loop
visual feedback, which we name LeVERB-VL, and 7y, denotes the low-level system-1 action policy,
which we call LeVERB-A. 6y and 6, are policy parameters that corresponds to the two models.

A latent vector z serves as a one-way interface from LeVERB-VL to LeVERB-A, and is at the core
of LeVERB-VL training. Intuitively, the latent space of z is a descriptive vocabulary that encodes
complex whole-body motion objectives, and z is a latent sampled from this vocabulary.

LeVERB-VL runs at 10 Hz, while LeVERB-A outputs joint position action{] at 50 Hz. This decou-
pling of vision-language and dynamics-level action information enables separated training of the two
systems, avoiding the heavy computations for graphical rendering required in end-to-end approaches.

4.2 LEVERB-VL TRAINING: VISION-LANGUAGE-ACTION SEMANTIC ALIGNMENT

The goal of LeVERB-VL is to map vision and language inputs into a smooth, regularized latent
vocabulary space for motion control. To achieve this, we use a residual CVAE where the latent of a
VLA prior with only vision-language inputs is combined with a privileged trajectory encoder to form
a residual latent space. This encourages the VLA to focus on semantic reasoning while offloading
motion-specific details to the trajectory encoder. The combined latent is then sampled to condition a
decoder that predicts future poses Sy41, - . ., $¢+ s from the current state s,. Finally, we introduce a
discriminator that aligns data from different sources into a unified latent space.

LeVERB-VL py,, . The VLA prior consists of three modules: a vision encoder, a text encoder, and
a standard Transformer|Vaswani et al.| (2017) backbone. For the vision encoder, we use the visual
component of SigLiP [Zhai et al.| (2023); Beyer et al.[ (2022), Since the vision and text encoders
are contrastively pre-trained, the resulting embeddings are semantically aligned, which facilitates
effective multimodal fusion. During training, images from two views—egocentric (head-mounted)
and third-person—are independently processed by the frozen ViT-B/16 SigLiP visual encoder. The
resulting image tokens are attention-pooled to produce image tokens i;°° and i¢*°, respectively. The
vision encoder is pre-trained on WebLI|Chen et al.|(2022) and remains frozen throughout training.
The text encoder, also from the same SigLiP model, converts the textual instruction into a language
token [;. These tokens are concatenated to form the input sequence to the Transformer backbone:
obs; = [ly, i32°,i$*°]. Here, t denotes the current time step; we only use observations from the current
frame without any temporal history to reduce the risk of overfitting |[Lin et al.| (2024b)); Mandlekar
et al.| (2021)). The sequence obs; is then passed through the Transformer and a subsequent MLP head
to predict the distribution over the observation, parameterized by the mean 11, and variance o,. We
ablate the size of the backbone Transformer model in Appendix [B]

Kinematics Encoder Fy,. Since LeVERB-VL only observes the current vision-language inputs, we
introduce a kinematics encoder to capture additional information from future states. The encoder is
an MLP that takes the flattened ground-truth future states sy 1, ..., s¢+ s as input and predicts the
mean p g and variance pg of the latent distribution.

Residual Latent Space. Inspired by motion generation Ling et al.|(2020), we construct the latent
distribution as q(z; | S¢t1.44m, It, ¢, 0), where the mean is a residual connection of the action
encoder and the LeVERB-VL pg,,, : u = u, + pg. The variance is taken directly from the action
encoder: o = og. This setup allows the encoder to provide additional fine-grained information to
help reconstruction, allowing the VLA to focus more on semantics. A KL loss is applied to this
posterior to ensure the encoder captures only information not already inferable from vision-language
inputs. During training, we apply the standard reparameterization trick to sample z; = p + 0 - €,
where € ~ N(0, I).

Kinematics Decoder D,,. A sampled latent z; from the posterior distribution and current state s; are
fed into this MLP to reconstruct the future states Syy1, ..., 8¢y n-

!Joint position actions are not equivalent to the desired joint positions on humanoids, especially with contact
dynamics and realizable stiffness and damping. They are re-parameterized torque-level actions.
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Discriminator f,. To leverage both vision-language and language-only trajectories from LeVERB-
Bench, we mix these two sources during System 2 training by feeding a white-noise image to
LeVERB-VL for the “blind” trajectories. However, this introduces a distributional shift between
the latent embeddings of “blind” and “non-blind” inputs, which can hinder generalization. To
align the latent spaces and encourage a shared representation, we introduce a discriminator inspired
by |O’Connell et al.|(2022), which takes the latent z; as input and predicts whether an actual image
was present. We apply a Gradient Reversal Layer (GRL) |Ganin & Lempitsky| (2015) during training,
such that the adversarial learning encourages LeVERB-VL to produce modality-invariant latents,
regardless of image availability.

Training Objective. Our final training objective consists of three components: trajectory reconstruc-
tion, distribution alignment, and adversarial classification. The full objective is

2
L(Ovi, ) =Ep,  (211,6,50) [HDw(Sn z) — SﬁthHz} + 61 Dxe (q(ze) [ p(21)) + Ba Laisc(2t)
distribution alignment adversarial classification
@)
Here, q(z;) = N (1, + pe, 0g) is the action-conditioned posterior, and p(z;) = N (1, 03) is the
observation-conditioned prior from LeVERB-VL. We include data mixture strategy, data processing
pipeline, hyperparameter selection and training recipe in Appendix

trajectory reconstruction

4.3 LEVERB-A TRAINING: DISTILLING ACTIONS WITH LEARNED LATENT DISTRIBUTION

After training LeVERB-VL, we freeze its latent space and train LeVERB-A by first learning vision-
language-agnostic teachers, and then distilling a transformer-based student policy conditioned on the
latent distribution from LeVERB-VL.

Training Teachers 7. First, we train vision-language-agnostic teacher policies capable of accurately
tracking different categories of retargeted kinematics trajectories from LeVERB-Bench. The policy
receives privileged proprioceptive observations o} and reference motions as commmands, and
outputs expert actions a;. We train teachers with Proximal Policy Optimization (PPO) Schulman et al.
(2017) and apply domain randomization for zero-shot sim-to-real transfer and early terminations to

help training. Full details of teacher policies are provided in Appendix

LeVERB-A 7y, . Next, we distill high-quality actions from multiple teacher policies into a unified
student policy conditioned on latent commands generated by LeVERB-VL.

At the start of each episode, we sample a motion trajectory from LeVERB-VL’s training set and
extract the latent distribution’s mean and variance, (i, s and o, 5j. A random timestep ¢ is selected
as the episode’s start. Every H steps, matching the System 1-2 resampling interval, we sample a latent
code z; ~ N (1,4, 0,,) from the predicted distribution and hold it fixed until the next resampling.
Importantly, we sample from the latent distribution rather than using the mean p,. As LeVERB-VL
captures a multimodal mapping between vision-language semantics and motions, using only the
mean would impose a unimodal approximation, degrading policy performance.

LeVERB-A uses a Transformer that receives the observation o} " and latent code z; as separate

tokens. It is trained via DAgger|Ross et al.|(2011) with Huber loss against the teacher’s actions ay,
which has better robustness to outliers. At deployment, LeVERB-A is conditioned on the predicted
mean u, from LeVERB-VL. Additional details are provided in Appendix

5 EXPERIMENT

In this section, we evaluate LeVERB on multi-modal tasks with LeVERB-Bench. Since there exists
no prior work that establishes a fair comparison with our method, we mainly present multiple ablated
variants of LeVERB to demonstrate the effectiveness of our proposed method, including a naive
dual-process VLA. Then, we showcase zero-shot real-world results on a humanoid robot hardware.

5.1 CLOSED-L0OOP EVALUATION ON LEVERB-BENCH

First, we present closed-loop evaluations of LeVERB on various whole-body tasks from LeVERB-
Bench. This setup closely matches real-world deployment and is used as the primary quantitative
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Table 2: Results of LeVERB against its ablated versions. For each task/environment, we conduct
20 runs and report the success rate in percentages. Definitions of the abbreviations on both axes (e.g.,
ND, NE, NVL, VNF, VNR, VNS) are provided in Section

Tasks Environment LeVERB ND NE NVL NLS NS
Vision-Language Tasks

VNF Objective 80 75 75 15 0 0
VNR Jechv 30 10 45 10 5 0
VNF Distractor 75 55 60 0 0 0
VNR 30 10 25 15 10 0
VNF 50 5 25 15 5 0
VNR Cluttered 25 o 5 5 5 0
VNS - 5 0 5 0 0 0
Language-Only Tasks

Sit - 100 0 100 40 5 10
Stand - 90 75 90 55 10 15
Locomotion - 100 100 100 100 25 50
All - 58.5 33.0 53.0 255 6.5 15

results. We note that while individual items and textures are individually within the training distribu-
tion, their combinations are unseen from the training dataset.

Ablation Variants. We ablate the following components of the proposed architecture in Section 4}

* No Discriminator (ND): Removes the adversarial discriminator during LeVERB training.

* No Kinematics Encoder (NE): Removes the kinematics encoder E,;, from LeVERB-VL
training, shifting the burden of encoding motion style entirely to the vision-language model.

* No LeVERB-VL (NVL): Directly conditions the low-level controller on visual and language
embeddings, bypassing the high-level policy, similar to|Shao et al.|(2025).

* No Low-level Sampling (NLS): Uses mean instead of sampling in LeVERB-A training.

* No Sampling (NS): Disables sampling in both LeVERB-VL and LeVERB-A, yielding a
naive hierarchical VLA baseline with deterministic conditioning on VL outputs.

Task Subcategories. We sub-categorize each task in LeVERB-Bench to identify difficulty levels:

* Visual Navigation — Front / Rear (VNF / VNR): The navigation target is placed in front of
the robot at spawn (easy), or behind it (hard), requiring a turnaround motion.

* Objective / Distractor / Cluttered: The scene includes only the navigation target, 1-2
distractor objects, or a fully cluttered environment.

* Visual Navigation — Sit (VNS): Includes walk to a target chair, turn around, and sit down.

Table 2] shows the success rate of LeVERB compared with its ablated versions. We evaluate each
task on 20 scenes with unseen material and object combinations. We find that LeVERB stays on
top in 9 out of the 10 task categories, reaching an average success rate of 58.9%. The NE variant
shows slightly decreased performance at 53%, likely because its latent space is more fine-grained and
contains less semantic information, which is more vulnerable to unseen scenes.

In contrast, the ND variant shows a significant decrease in performance in visual navigation tasks.
This is likely due to the separation of the latent vocabulary distribution between the two categories
of demos, vision-language ones and language-only ones, as a result of removing the discriminator
designed to align data from different sources. This makes the model unable to apply the motion skills
learned from language-only demos on vision-language tasks, thus resulting in smaller data coverage
and less generalization. Similarly, we believe that the NS variant fails completely on almost all tasks
because with a simple auto-encoder setup, its learned latent space is even more unstructured, leading
to bad interpolation behavior and frequent OODs for the action module.
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Zero-Shot Real-World Vocabulary Generalization

Figure 4: Top: LeVERB responds robustly to human vocabulary variations. Bottom: LeVERB
executes different sit-down maneuvers conditioned on the chair’s visual location, demonstrating
spatial reasoning capabilities.

Furthermore, the NVL baseline achieves minimal success rates across all visual-language tasks.
This shows that including the VLA planning capacity does help dramatically on visual-language
input. In contrast, the performance on text-only tasks is much better, even 100% in locomotion. This
aligns with prior work [Shao et al/| that atomic language commands can be learned without
high-level reasoning capacity. Lastly, we confirm that by not including the latent sampling in training
LeVERB-A (NLS), the latent distribution cannot be fully captured by the low-level policy. Since this
low-level policy is trained separately from LeVERB-VL, a mismatch in the interface distribution is
likely to be detrimental.

5.2 REAL-WORLD DEPLOYMENT

Finally, we demonstrate the dynamics-level zero-shot sim-to-real transfer of LeVERB onto a real-
world humanoid robot, Unitree G1. Figure 4] demonstrates the proposed method in successfully
replaying the visual navigation and sitting task in real world. In simulation, we give language
commands with unseen combinations of verbs and objects (e.g. rest on the box), and record the
closed-loop latent verbs outputted by LeVERB-VL, which demonstrates vocabulary generalization
abilities to correctly execute the correct motion. We also test the spatial reasoning ability of our
method from vision by placing a target chair in different poses with respect to the robot’s initial
position, and have the robot walk and turn the appropriate amount to land in the chair by relying on
visual feedback. We then open-loop replay the latent verbs in real world to LeVERB-A, executing the
task successfully. This shows the dynamics-level sim-to-real readiness of LeVERB, enabling future
real-world vision-in-the-loop deployment.

6 CONCLUSION

In this work, we present LeVERB, the first vision-language latent action model for humanoid whole-
body control, and the first sim-to-real-ready, photorealistic benchmark for its kind. With a carefully
designed dual-process, CVAE-based VLA, LeVERB can be zero-shot deployed to real, although
trained only on a small synthetic dataset. In terms of task success rate, our method can outperform a
naive hierarchical VLA by 7.8 times. For future work, we conjecture that a post-training pipeline,
especially RL fine-tuning, could potentially improve policy performance by further aligning the
closed-loop latent vocabulary distribution.
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A DETAILED VISUAL-LANGUAGE WBC DATA GENERATION WORKFLOW

. Create scene-level randomization: we select the color and material randomization options

that can be applied to the objects in the background scene.

. Create object-level randomization: we label daily household objects such as chairs and desks

to randomize their color and material characteristics. This level of granularity is helpful for
creating semantically meaningful task instructions such as “walk towards the yellow desk”
or ”’go sit on the red sofa”.

. Create a task: given a prerecorded motion trajectory in the scene, we strategically place

objective and distractor objects around the trajectory, such that a semantically meaningful
task instruction can be given. For example, we spawn an objective in front of the end of
the trajectory, such that this task can be labeled with “walk towards xx”. The actual object
placed and its properties are subject to randomization.

. Procedurally generate variants: we let the simulator then randomize all visual features and

task-related objects, and collect 100 demos for each trajectory. Each rollout features the
onboard first-person-view camera, as well as 2-3 fixed third-person cameras, randomly
positioned such that the entire task is within the camera frame.

. Augment by mirroring: We mirror half the demos to boost data diversity.

B IMPLEMENTATION DETAILS FOR SYSTEM 2

Data Mixture Strategy The training of System 2 follows a data mixture strategy as described
in Table 3] comprising 3,696 trajectories with images and 2,300 trajectories without images. To
enhance the robustness of the learned latent representation across diverse language styles and visual
environments, we augment the dataset by repeating trajectories with varied language prompts and
alternative image renderings. This results in a more balanced and diverse dataset across data sources
and visual domains. Such augmentation helps mitigate overfitting to the limited trajectories used in
System 2 training and improves the generalization of the latent space for downstream tasks.

Table 3: Statistics of the data mixture recipe.

Category Count % Unique Traj Description
Total Demos 5,996 100% 614 -
Vision Language 3,696 61.6% 154 -
Language only 2,300 38.4% 460 -

Environment (Demonstrations with Images)

Brown Stone 456 12.3% 19 Apartment  building  with
kitchens and living rooms

Living Room 408 11.0% 12 Small living room

Modern House 1,872 50.6% 89 Large house with kitchen, living
room and bedroom

Kitchens 960 26% 34 Small kitchens with partial en-
closure for easy camera mount-
ing

Source (Demonstrations without Images)

Whole Body (AMASS) 425 18.5% 85 Reaching and sitting trajectories

Walk (LAFAN) 520 22.6% 104 Egocentric and navigation tra-
jectories

Run (LAFAN) 1,115 48.5% 219 Running trajectories

RL Motions (In-House) 240 10.4% 52 Egocentric trajectories
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Data Processing For System 2 training, the pipeline processes proprioception and action for a
13-joint robotic system (1 root joint and 12 body joints) The proprioception data captures the state of
each joint, where the root joint’s pose is represented by its position (z, y, z) in world coordinates and
rotation (yaw, roll, pitch) in Euler angles, while the remaining body joints are represented by their
(x,y, z) positions only (w.r.t the root joint). The rotation information for the root joint is converted
to a 6D rotation representation |Zhou et al.|(2019) to ensure continuous and differentiable learning.
The action space is designed to predict delta actions (changes) between future steps and current step,
where the root joint’s action includes both delta position and delta rotation, while other body joints
only require delta position predictions. This design choice reflects the navigation task’s requirements,
where the root joint’s full pose control is crucial for navigation, while other body joints primarily
need position control. The current state s; is a vector including pitch, roll of the root joint and z, y, 2
positions of the body joints. The future states s;1, ..., s¢+as 1S the delta action mentioned above. To
enhance robustness, we optionally apply noise to both proprioception and action data during training.

val_loss val_loss

— ViT-Large ViT-small — ViT-Base — ViT-Tiny -

———

100k 200k 300k 400k 500k 600k 100k 200k 300k 400k 500k 600k

Figure 5: The validation loss curves for training of system 2 of LeVERB The left part shows the
validation loss curve in Equation [2| with different size of backbone Transformer. The right part shows
the validation loss of trajectory reconstruction for conditioned on different input.

Hyperparameter Selection We use frozen ViT-Base models for both the visual and textual en-
coders, each producing 768-dimensional features. For the Transformer backbone in LeVERB-VL, we
ablate model sizes ranging from ViT-Tiny to ViT-Base and show the validation loss in Figure [3]left
side, and find that ViT-Base provides a good trade-off between performance and computational effi-
ciency. All other components, including the latent representation, kinematics encoder, and kinematics
decoder, operate in a latent space of dimension 256.

Training Details For the training objective in Equation weset 51 = 1071 and B = 5x 10~%. To
stabilize training, we apply schedulers to both the distribution alignment and adversarial classification
terms. Each scheduler acts as an additional scaling factor that linearly increases from O to 1 over the
first 40% of training epochs. These hyperparameters are selected based on empirical performance
observed during ablation studies. We use 2 NVIDIA Ada 6000 GPUs to train system 2 of LeVERB
with the global batchsize of 512. The total trainable parameter of system 2 is 102.56 million
parameters (ViT-Base LeVERB-VL backbone).

C EFFECTIVENESS OF THE CVAE OBJECTIVE

Since we provide the CVAE decoder with current states, it is a valid concern that the decoder might
be able to reconstruct the immediate future states without the latent input, i.e. the reconstruction
objective of immediate future states is not an effective objective to construct a meaningful latent
space. We disprove this concern by running a variant with randomly sampled latents from a normal
distribution and current state s; are fed into decoder D,,. As shown in right side of Figure E], this
variant converges to a much higher imitation loss, showing that the information excluding the latent
input for the decoder is insufficient to reconstruct future states, thus our training objective is effective.

D DETAILS FOR LEVERB-A TEACHER POLICIES

In this section, we introduce the details for training the teacher imitation policies.
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Observations and Actions The observations for the teacher policy include two parts: proprioceptive
observations and commands related to reference motions. For proprioceptive observations, we include
base linear velocity, base angular velocity, and joint positions and velocities. The commands include
reference joint positions and velocities in the next frame, and relative position and orientation of the
reference torso link in the next frame with respect to the actual one. We also include previous actions
as input. We define the actions in joint position with small stiffness and damping.

Table 4: Reward Terms and Formulations

Reward Terms

Reward Name Weight Mathematical Formulation o (if any)
Global Torso Position 0.5 exp (— W%W) v0.25
Global Torso Orientation 0.3 exp (— q“at’e"(’r(%;";‘“‘"’qmb“‘)Z ) v0.5
Global Body Position 0.5 exp =2z [ Xmotion — xrobolHQ) v0.25
Joint Position Error -1 — ||@motion — Brobot || -
Joint Velocity Error —-0.1 — Hémotion — émbmH -
Action Rate L2 —0.001 —lla; —a;_1|? -
Joint Limit Violation —100.0 —Lyiolate_timit -
Termination Signal —200.0 —Tdone -
Termination Terms
Name Type Mathematical Formulation Parameter
Bad Reference Position Termination | Pmotion — Probot|| > Tpos Tpos = 0.5
Bad Reference Orientation Termination Iproj, (82 ion — 82000 > Tori Tori = 0.8

Domain Randomization

Name Mode Range Type Range
Ground Property Startup Friction [0.3,0.8]
Ground Property Startup Restitution [0,0.5]
Joint Default Pos Startup Position Offset [—0.05,0.05]
Joint Armature Startup Armature Scale [0.2,2.0]
Push Robot Interval: [10, 15]s X-Y Velocity [—0.5,0.5]

Rewards and Early Termination We formulate the reward function with three parts. First, we
include DeepMimic |Peng et al.| (2018))-style motion tracking rewards. Second, we include smoothing
terms including action rate penalties and soft joint limits set to 90% of the hard joint limits. Last,
we penalize the policy when it terminates due to large tracking error. Specifically, the episode is
terminated when the tracking error of either the position or the orientation of the torso link is too
large. We summarize these reward functions in Table 4]

Domain Randomization For zero-shot sim-to-real transfer, we randomize physics properties
including ground friction and restitution, joint default positions in calibration and joint armature
in training the teacher policies. We also include a velocity perturbation term. These terms are
summarized in Table 4

Architecture For each teacher, we use a 3-layer MLP with hidden dimensions of 512, 256, and
128. ELU is used as the activation function, except for the final layer, which has no activation.

E DETAILS FOR LEVERB-A STUDENT POLICIES

In this section, we introduce the details for learning the student policy with DAgger.
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Observations Similar to the teacher policies, for proprioceptive observations, we include base
linear velocity, base angular velocity, previous actions, and joint positions and velocities from the joint
encoders. In addition, we also include a gravity vector projected onto the base link as an observation
of the row and pitch angles of the robot. For command, we include sampled latent from the output of
the System 2 VLA. Since System 2 runs at 10Hz and System 1 runs at 50Hz, for every 5 steps, we
sample a new latent vector from the latent Gaussian distribution of that timestep, and keep it fixed for
the next 5 steps. For actions, we use the as the teachers.

Early Termination and Domain Randomization In order to keep the teacher policy within its
training distribution so that the expert actions are optimal, we include the same early termination
conditions and domain randomizations for the student policy. These terms are summarized in the last
two blocks in Table

Architecture For the student, we use a Transformer with 2 layers, 4 attention heads, and a hidden
dimension of 128. The model encodes the latent command and proprioceptive inputs as separate
tokens, with a dropout rate of 0.3 applied to the attention weights. ELU is used as the activation
function throughout. Notably, in this setting, we find that incorporating observation history degrades
performance, as the policy could infer future actions from prior observations alone, reducing the
effectiveness of the latent commands.

F DETAILS FOR DEPLOYMENTS

Hardware Platform We deploy the policy on a standard G1 robot from Unitree. We use the official
SDK to obtain the sensor reading and send the action as the desired position on the joint command
while setting the desired velocity to zero, kp, and kd to the stiffness and damping in the simulation.

LeVERB-A System 1 getting sensor information from the joint encoder, IMU with Unitree SDK,
and custom state estimator at 500 Hz; the inference happens in onboard CPU of the robot at 50 Hz with
ONNX runtime, all the code is implemented in C++ to fulfill the real-time performance requirements.
The latent command interface is exposed as a ROS2 topic. The onboard RealSense camera image is
also compressed and streamed with a ROS2 topic so that any device in the network has access.

LeVERB-VL System 2 runs on an external desktop PC with NVIDIA RTX 4090 GPU at about
10 Hz, its input is from a third-person-view camera connected by USB, and the onboard camera on
the robot, both of which are running at 30 FPS and with the resolution of 1080 x 720 pixels. A
input text prompt window is shown on the PC screen. The policy outputs the latent verb, which is
broadcasted on a ROS?2 topic.

G EVALUATION ENVIRONMENT

We evaluate the tasks on 20 random environments and instructions for each task category. The
texture and object properties of the scene are completely randomized and previously unseen. The
third-person camera angle is locally randomized to the degree allowable by the scene. We ensure that
every task in the evaluation are visually unseen in the training dataset.
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