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ABSTRACT

Genomic Language Models (GLMs) suffer from the inherent problem of data
scarcity, due to the cost, time and complexity of wet-lab experiments. Data
Augmentation offers a solution; however traditional methods often disrupt the
structural and functional properties of biological sequences. Furthermore, cur-
rent GLMs struggle to capture evolutionary dynamics through standard data
pipelines, limiting their understanding of nucleotide-wise importance and con-
straints. To address this, we present PhyloAug, a structure-aware, evolution-
inspired augmentation method grounded in neutral theory. PhyloAug leverages
Genomic Foundation Models (GFMs) to accurately perturb RNA sequences,
guided by phylogenetic analysis via PAML to identify evolutionarily neutral
site-wise positions where mutations are unlikely to affect function. These sites
are concatenated with RNA secondary structures, ensuring that augmentations
respect native structural constraints while embedding signals of neutral evolu-
tion. We further validate our method through a direct comparison of predicted
neutral sites with Rfam-annotated conserved regions. We demonstrate that by
enriching training data with these evolution-guided augmentations, PhyloAug
improves GFMs on well-established RNA benchmark tasks, and further enables
GFMs to internalise conserved sequence patterns and evolutionary constraints.
We demonstrate this through by establishing a novel task requiring evolutionary
reasoning, conserved site detection. PhyloAug demonstrates significant perfor-
mance improvements of up to 12.9% MCC and 17.2% F1-Score across our key
tasks.

1 INTRODUCTION

Genomic Foundation Models (GFMs) are large-scale machine learning models composed of mil-
lions to billions of parameters, pre-trained across an extensive corpus of genomic data. GFMs
have been highly appraised for their adaptability to similar genomic tasks, with fine-tuning act-
ing as the transfer layer to allow a general model, pre-trained through unsupervised learning,
to be tuned for a specific task on a much smaller set of supervised data. A wave of innova-
tion has recently demonstrated GFMs potential to decipher the language of genomics, DNA,
RNA and proteins, with huge successes in protein structure modelling with ESM3 (Hayes et al.|
2025)), Evo 2 for DNA language modelling (Brixi et all 2025), and the identification of new
translation-associated motifs in plant RNA with PlantRNA-FM (Yu et al., [2024)).

Although these advances highlight the power and potential of GFMs, their impact is constrained
by fundamental limitations in both the data they rely on and the evolutionary understanding
they capture. Prominent genomic benchmarks such as OmniGenBench (Yang et all [2024) and
BEACON (Ren et al., [2024) aim to provide curated, diverse genomic datasets to mitigate data
scarcity, however these benchmarks must rely on biological laboratories to verify data, where
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rigorous pre-processing and data validation techniques are applied with diverse sequencing tech-
nologies and wet-lab experimentation. Obtaining verified labels with biologically complex tasks,
such as structural annotation (Watters et al.,[2016|) and functional annotation of long non-coding
RNA (Chowdhary et al.| [2021; Mattick et al., [2023a)), requires significant fees and extensive bio-
logical expertise. GFMs are highly sought after to predict the outcome, as to minimise the time
and costs associated, however without the original data to fine-tune the GFM, we are unable to
obtain accurate results.

Whilst GFMs perform well on many tasks that rely on just an individual sequence-to-sequence
mapping, their understanding of sequence evolution, how a biological sequence evolves over
time and across species, has proven to be limited. This lack of evolutionary understanding has
been demonstrated by three recent works (Albors et al., 2025; [Ektefaie et al., [2025; |Benegas
et al., |2025)), each discussing unique mitigation strategies. (Ektefaie et al., 2025) emphasises
the importance of modelling sequences concurrently to develop an evolutionary understanding,
and (Albors et al., [2025) and (Benegas et all 2025)) utilise carefully curated Multiple Sequence
Alignment (MSA) and phylogenies to learn the evolutionary distinct signals between species.

Rather than propose new architectures, which demand substantial training resources and curated
alignments, we introduce PhyloAug, a data augmentation framework that injects evolutionary in-
formation into existing GFMs. PhyloAug leverages neutral evolution and structural constraints
to generate biologically faithful augmentations, and is readily applicable to non-coding RNA
tasks. Whereas prior augmentation methods for coding RNA exploit codon amino-acid redun-
dancy, such strategies do not transfer to non-coding RNA. PhyloAug addresses this key gap
in genomic augmentation by providing a biologically grounded method tailored to non-coding
RNA. We evaluate the effectiveness of our method on evolutionary tasks by introducing a novel
evolution-aware task, conserved nucleotide prediction. We further validate general utility on a
commonly known non-coding RNA task, RNA secondary structure prediction. Together, these
contributions establish PhyloAug as a scalable and biologically grounded strategy to enhance
evolutionary reasoning in GFMs.

2 BACKGROUND & RELATED WORK

2.1 DATA AUGMENTATION IN GENOMICS

Data augmentation is a widely recognised field and has been applied in numerous areas across
computer science (Trabucco et al., 2023; Mumuni and Mumuni), 2022} [Li et al. 2022)). However,
genomics data is context-dependent (Lee et al.l|2024), and thus widely applied techniques usually
applied in Natural Language Processing, such as random substitution and input reversal, cannot
easily be applied to genomics data (Sanabria et al.,2024). Furthermore, unlike traditional tasks
such as sentence-modelling or image-based analysis, we as humans cannot accurately determine
the label of genomics data merely by the predictive input, and must rely on biological wet-lab
verification. Substitution of the real label with a synthetic label may violate a crucial assumption
of the underlying data distribution, and the augmented data may not be supported by the true
data distribution (Shao et al., 2022). Thus, we must preserve the original data labels during
augmentation.

Previous genomic data augmentation methods focus on augmenting coding RNA, through meth-
ods such as synonymous mutation, as shown in EvoAug (Lee et al., |2023). As non-coding RNA
does not contain codons, these methods cannot transfer to non-coding RNA, leaving a key re-
search gap that PhyloAug seeks to fill. These key challenges of genomic modelling motivate
our work, PhyloAug, a novel data augmentation methodology leveraging evolutionary biology to
amplify the predictive power of genomic foundation models for non-coding RNA-specific tasks.
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2.2  MUTATIONS IN EVOLUTIONARY BIOLOGY

PhyloAug is motivated through the widely renowned neutral theory within evolutionary biology.
This theory asserts that the majority of evolutionary changes at the molecular level, within
DNA, RNA and proteomic sequences, are the result of random genetic drift of neutral mutations,
rather than Darwinian selection (Kimural, |1968). Whilst this theory is highly controversial within
molecular biology (Jensen et al., 2019; Kern and Hahn| 2018]), it is widely accepted that neutral
mutations are a fundamental part of molecular biology. As neutral mutations often do not have
observable phenotypic effects, they provide a biologically sound method to induce variation within
training data through data augmentation without disrupting underlying functional signals.

Neutral mutations in coding regions, especially those that do not change the resulting protein,
are well understood and often used as benchmarks in evolutionary studies, such as the McDon-
ald—Kreitman test (Charlesworth and Eyre-Walker, |2008). However, while neutral changes also
occur frequently in non-coding RNAs, it is much harder to differentiate between mutations that
affect function and neutral mutations. This is because non-coding RNAs lack a corresponding
amino-acid, thereby making it more difficult to detect the effects of mutations. Many non-coding
RNAs, particularly long non-coding RNAs, are believed to evolve through nearly neutral pro-
cesses (Mattick et al., 2023b]), where most variants appear “noisy” due to their selective impact
being too small to clearly distinguish from random drift. In practice, identifying functional sites
in ncRNAs often requires using a combination of structural conservation, covariation patterns,
and sequence conservation, rather than relying on simple sequence conservation as in coding
RNA. In our work, we predict the neutral mutations using structural conservation estimated
through Rfam covariance model-based alignments and the RNA secondary structure, and utilise
PAML to identify sequence conservation patterns. We motivate PhyloAug as an augmentation
methodology that aims to utilise these neutral mutations within augmentation. We integrate this
evolutionary data by obtaining neutral site estimates through computationally-derived evolution.

2.3 RNA STRUCTURE IN GFMs

As well as utilising evolutionary principles, we also aim to incorporate structural data within our
pipeline, as to preserve RNA-Protein interactions and prevent the model from learning impeding
sequences that may obscure the original function. Previous work such as OmniGenome (Yang
et al., [2025) and RNAErnie (Wang et al.l2024) has demonstrated that incorporation of the RNA
secondary structure can provide additional context, such as vital motifs within the RNA that
must be preserved. Thus, by incorporating the secondary structure in our pipeline, we can iden-
tify key structural motifs important to function. Many RNAs released contain their secondary
structure, however if the secondary structure cannot be obtained, we utilise ViennaRNA (Lorenz
et al., 2011, a secondary structure prediction method based on thermodynamic principles, to
estimate the true secondary structure. This guides our augmentation process to minimise disrup-
tion through avoiding computationally-derived mutations for the predicted secondary structure,
preserving the original function.

2.4 INTEGRATING EVOLUTIONARY INFORMATION WITHIN GLMS

Previous work primarily focuses on the usage of Multiple Sequence Alignment (MSA) or Phylo-
genetic information through Phylogenetic trees. MSA is used to align DNA or RNA sequences
that are evolutionary similar, as to uncover the evolutionary mutations that have occurred per
sequence. Phylogenetic trees are branching diagrams that illustrate the evolutionary relationship
of a single or group of organisms. MSA is often termed as a ”horizontal approach”, and Phylo-
genetic Analysis as a "vertical approach”, in which the evolutionary structure of the sequences
is preserved (Merkl and Sterner, |2016), although just incorporating the phylogenetic tree is not
enough to reach this vertical approach, and we must further utilise ancestral reconstruction
tools such as PAML (Phylogenetic Analysis by Maximum Likelihood) (Yang, [2007)). Ancestral
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reconstruction re-creates the original sequences before evolutionary mutation occurred, thereby
allowing us to make direct comparisons and accurately determine the types of mutations that
occurred at each site of the nucleotide sequence. Whilst PAML is traditionally used for coding
RNA, previous studies have demonstrated the use of the BaseML function for phylogenetic anal-
ysis of non-coding RNA (Hu et al.l |2019)). This provides a clear and accurate framework for the
identification of neutral mutations by utilising the evolutionary context.

GFMs generally focus on the incorporation of MSA and phylogenetic information within the
model pipeline, as a way to directly inject evolutionary information directly into the model.
There have been several approaches, such as RNA-MSM (Zhang et al. 2023), a GFM pre-
trained on RNA-MSA data, and the MSA-Transformer (Rao et al., 2021]) proposed for Protein
Language Models, enabling pre-training across a huge variety of MSA data. However, whilst
incorporating MSA data has proved to be beneficial, GPN-MSA (Benegas et al., |2025) suggests
the incorporation of evolutionary information alongside the MSA can further improve perfor-
mance, as through aligning the MSA with the same gene across 100 vertebrate species, they
achieve state-of-the-art performance in variant effect prediction. (Albors et al., 2025) and (Zhou
et al., [2025) are further recent examples of integrating phylogenetic information within genomic
models. CSFold establishes several key limitations of MSA, such as the reliance on the most
common nucleotide, rather than establishing a clear evolutionary trend and pattern, and further
utilises PAML and statistical tests to provide insight into the evolutionary trends of the data.
PhyloGPN establishes a novel training paradigm where the training loss is used to model the
evolution of aligned nucleotides given a phylogenetic tree, thus training the model to inherently
understand nucleotide evolution.

2.5 OVERVIEW

These previous works have established that adding additional evolutionary-based information
through MSA or Phylogenetic Trees may improve algorithm performance, however the method
including this information varies greatly, and is algorithm-specific. We propose a one-size-fits-all
solution for non-coding RNA, which can be applied to any gFM through fine-tuning, utilising
the evolutionary and structural information through data augmentation.

3 METHODOLOGY

3.1 OVERALL PIPELINE

This section introduces our overall pre-processing pipeline to predict neutral sites within non-
coding RNA. We begin by discussing the biological theories used within our pipeline to ensure
that the nucleotide sites we mask minimally impact biological function or structure. Next, we
dissect our pipeline and discuss each key section of our approach; gather homologous sequences
using BLASTN and the nt database, utilise biological pipelines to establish neutral positions
and mask these positions, recover masking percentage to a set threshold (if above) and the
strategy used to perturb sequences with our GFM. One central limitation with this biological
pipeline is that we do not consider the folded structure of the RNA, which may influence our
mutations (a base-pair is less likely to mutate than an unpaired site). Thus to mitigate this, we
discuss our methodology for integrating Rfam-annotated consensus structures and embedding
the secondary structure into our GFM perturbations. Lastly, we discuss the establishment of a
baseline comparison method, MSA-Only. With this complete pipeline, PhyloAug can augment
non-coding RNA while adhering to the evolutionary and structural features of our data.
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Figure 1: Overview of the augmentation pipeline. The process begins with the retrieval of ho-
mologous sequences from the NCBI nt database. Sequence-only homologs, homologs that do not
belong to the same structural family, are filtered out using annotations from the Rfam database.
A multiple sequence alignment is then constructed using MAFFT, and a phylogenetic tree is
constructed using FastTree. These are then fed into PAML, where we employ ancestral sequence
reconstruction and the estimation of site-specific evolutionary rates. Based on these rates, each
site is classified as conserved, rapidly evolving, or putatively neutral. Only sites inferred to be
neutral are masked. The masked sequence is then concatenated with its corresponding secondary
structure and passed to the genomic foundation model, which perturbs the masked regions to
generate the final augmented sequence set.

3.2 IDENTIFYING NEUTRAL MUTATIONS

A neutral mutation in is a change in a genomic sequence that has no effect on function or organism
fitness. In coding RNA, synonymous substitutions (base changes that do not alter the amino-
acid) are likely neutral mutations, as leaving the protein sequence unaffected will likely result in
the function being unaffected also (Calderoni et al., 2016)). Whilst identifying neutral mutations
is a well known and explored field in the realm of coding RNA, for non-coding RNA (ncRNA),
this problem is not so trivial. In coding RNA, a mutation can directly affect the amino-acid
codons, thereby it is much easier to detect a direct change. Unlike coding RNA, ncRNAs do not
have codons, and function through structural and regulatory roles, meaning mutations cannot
be directly assessed through the amino-acid chain. Furthermore, mutations that do not alter the
sequence function may still impact secondary structure, RNA-protein interactions, or expression.
Therefore identifying neutral variation in ncRNA requires additional information, including the
folded secondary RNA structure, and the usage of comparative genomics to identify nucleotides
that are susceptible to change.

Our pipeline begins with the separation of each sequence from the training dataset, and an ex-
haustive homology search using NCBI’s nt database, which contains over 116M RNA or DNA
sequencesﬂ This allows us to enrich the dataset by integrating evolutionary information from
closely related sequences, thereby forming the basis of our Multiple Sequence Alignment (MSA).
To ensure the sequences are homologically related, we utilise an e-value of le — 5, and remove
sequences that match within 5% of our original sequence identity to prevent duplicate sequences
from obfuscating our analysis. After homolog collection, we utilise Rfam to further remove
sequences that do not share the same structural family as the true sequence. A common is-
sue with accurately identifying homologs is a close sequence identity but an invalid underlying
structural family, thus this step removes any misaligned sequences. Thus, we have ensured our
collected homologs are both sequentially and structurally aligned with our true sequence. Next,

Whilst the nt database is huge, the homology search is batched to prevent long wait times
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MAFFT (Katoh and Standleyl |2013]) is used to computationally align the sequences through
MSA, accounting for evolutionary events such as insertions, deletions, and substitutions that
have accumulated over extensive evolutionary timescales. We aim to measure the evolutionary
distance between our homologs, providing our method an understanding of the cross-species re-
lationships and the evolution of the sequence over time. However, phylogenetic analysis of MSA
alone has many limitations, such as obscuring compensatory substitutions due to prioritising
column-wise frequency over evolutionary information (Zhou et al., [2025).

In parallel to the MSA, we construct a phylogenetic tree based on the aligned RNA sequences
within each homologous family using FASTTREE (Price et al., [2010]). The selected phylogenetic
analysis tool, PAML (Phylogenetic Analysis by Maximum Likelihood), is known to be inaccurate
when constructing phylogenetic trees, thus FASTTREE is used to provide accurate phylogenies.
The incorporation of a phylogenetic tree provides a framework for understanding the evolutionary
trajectory of RNA families, revealing ancestral lineages and pinpointing evolutionary events
obscured by MSA. To complete our phylogenetic analysis, we combine the aligned sequences and
phylogenetic tree with PAML, to perform ancestral sequence reconstruction. This step utilises
maximum likelihood methods to infer probable ancestral RNA sequences at internal nodes of the
phylogenetic tree.

Rather than directly utilising reconstructed ancestral sequences, we opt to analyse the evolution-
ary patterns to rule out conserved and fast-evolving mutations. In particular, we employ PAML’s
baseml tool to estimate site-specific substitution rates from the provided MSA and phylogenetic
tree. Sites that exhibit very low substitution rates are inferred to be conserved, likely due to
structural or regulatory importance, while rapidly evolving sites may indicate natural selection
or adaptation. Both types are assumed to be functionally important and are therefore excluded
from our candidate set of neutral mutations, as is in-line with previous phylogenetic analysis of
non-coding RNA (Meyer and von Haeseler} 2003} [Knies et al., |2008)).

To identify these constrained positions, we fit nucleotide substitution models with rate variation
across sites using a discrete gamma distribution and empirical Bayes approaches. We obtain
relative rate estimates for each site, and classify sites with posterior means < 0.8 as conserved,
> 1.2 as fast-evolving, and those in between as neutral. These thresholds were chosen for their
interpretability and robustness; they provide a symmetric margin around the neutral expectation
(rate = 1) to accommodate for natural variation. Similar strategies were previously adopted in
phylogenetic analyses of rate variation (Yang, 1994;1996)), where ” conserved” and ”accelerated”
sites are defined relative to the neutral background rate. Importantly, these thresholds do not
imply strict biological boundaries, but reduces the likelihood of perturbing functionally important
sites during augmentation.

A maximum and minimum threshold of masked nucleotides must be set for each task, however
the rates used are task-dependent, and many sequences can achieve upwards of 50% site-wise
masking, or may have less than 5% of identified neutral sites. This may affect the stability
and effectiveness of the generated augmentations, where site under-identification may result
in insufficient sequence diversity, and over-identification increases the likelihood of damaging
the original biological signals. To ensure reliability of our results, researchers should exclude
sequences that fail to meet a minimum neutral sites, and reduce the theoretical maximum to
prevent over-perturbing sequences.

3.3 COMBINING NEUTRAL POSITIONS WITH GFMS

Our masking strategy includes the consensus secondary structure from Rfam, however it does not
consider the individualised RNA structure when identifying conserved or rapidly evolving sites.
Providing the masked sequence alone could result in perturbations that change the underlying
structure, which may render them invalid or harmful. To address this, we concatenate the true
secondary structure label with the masked sequence to inject secondary context into the model.
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It is for this reason that we selected OmniGenome as our GFM to perturb the RNA sequences, as
OmniGenome was pre-trained with concatenated RNA secondary structures and sequences, and
thereby was explicitly trained on the sequence-structure relationship. It should be noted that if
the underlying RNA structure is not given within the dataset, we utilise ViennaRNA (Lorenz
et al.l |2011)) to estimate the structure.

To accurately fill in the masked positions, we utilise a top-k approach, where nucleotides with
a very small probabilistic rate (< 5%) will be disregarded. This prevents our approach from
choosing nucleotides that are very unlikely to occur through natural evolution, and those that
may break the structural constraints. This allows our augmentation method the potential to
generate huge amounts of augmentations, for example, a sequence with 15 masked positions has
a theoretical maximum of 4!° perturbed sequences. Once the augmentations are complete for
the training set, we merge the augmented sequences with the original dataset, and fine-tune our
models.

3.4 MSA-ONLY BASED APPROACH

Notably in our pipeline, we split the type of mutation into three separate types, neutral, rapidly
evolving and conserved. Through this description, it is possible to estimate these categories
using MSA alone, although doing so is known to be unreliable. To prove the effectiveness of
embedding phylogenetic analysis within our pipeline, we incorporate this as a comparator, as to
provide further information on the importance of each part of the pipeline.

4 EXPERIMENTS

4.1 EXAMINING METHODOLOGY EFFECTIVENESS

Currently there is no established method to reliably extract the neutral sites within non-coding
RNA, however Rfam (Ontiveros-Palacios et al. |2025)) holds annotations for the conserved nu-
cleotide sites within each RNA family. Thus, to investigate our method’s ability to reliability
and effectively circumnavigate conserved nucleotides within ncRNA, we compare our estimated
conserved sites with the ground truth. To accomplish this, we first randomly select 52 diverse
Rfam families, ensuring that each family contains at least 10 homologs to build an accurate
conserved nucleotide space. To perform the experiment, we randomly extract a sequence from
the homologs within the family, build our MSA by a BLAST search with the extracted sequence,
and perform neutral site identification for our method. We measure the success of our method
by calculating overlap between the conserved sites and our predicted neutral sites, where the
conserved positions are obtained from the original Rfam-annotated data. To further establish
the effectiveness of the incorporation of the Rfam-family alignment, we remove the Rfam part of
our pipeline and show only the results of the phylogenetic analysis section of our method.

Method Average Min Max

PhyloAug 0.047% 0.029% 0.073%
PhyloAug-No-Rfam  0.067%  0.054% 0.081%
MSA 0.114% 0.102% 0.134%
RANDOM 0.126% 0.117% 0.151%

Table 1: Average number of conserved nucleotides masked with each augmentation method.
PhyloAug represents the full pipeline described in Overall Pipeline, PhyloAug-No-Rfam repre-
sents the pipeline without using Rfam to predict the conserved nucleotides, MSA represents the
MSA-only methodology previously described, and Random represents masking based on purely
random nucleotides with no constraints. A masking rate of 15% was used for each method.
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Table 2: Model performance across conserved nucleotide and phylogenetic distance tasks with
and without augmentation.

Cons Sites Aug Cons Sites

Model No. Augs
F1 MCC F1 MCC \
SpliceBERT 724 £ .17 578 £ .15 .802 £ .10 .687 &+ .07 8
HyenaDNA 633 £ .16 .275 + .12 .692 + .14 .358 + .11 8
RNA-FM 796 £ .15 592 + .11 .857 £ .12 .676 + .10 8
RNA-BERT 505 + .27 .011 &+ .21 582 4+ .18 .092 + .14 8
RNA-MSM 692 £ .13 536 = .09 .763 £ .09 .613 £ .08 8
RNAErnie 617 £.19 252 + .12 .668 &£ .12 .324 + .10 8
OmniGenome .810 £ .16 .622 + .11 .907 & .13 .865 + .10 8

Std across 3 random seeds reported in parentheses.

Results We find that the complete PhyloAug pipeline, phylogenetic analysis and rfam-family
alignment, performs best overall, with a clash rate of merely 0.047% with conserved nucleotides.
All methods, even including our naive MSA method, outperforms random selection. We find that
each part of our methodology increases effectiveness in circumnavigating conserved nucleotides,
although the incorporation of the phylogenetic analysis alignment provides the most significant
increase in effectiveness. These results show that PhyloAug produces biologically faithful aug-
mentations by avoiding sites vital to function and structure.

4.2 CONSERVED SITE PREDICTION

Building on this, we next test whether these biologically grounded augmentations actually im-
prove model performance on evolutionary tasks. We first establish a dataset targeting conserved
sequence features, we utilised RNA family MSAs collected from the Rfam database (Ontiveros-
Palacios et all [2025). Full family alignments were downloaded in Stockholm format, and con-
served nucleotides were extracted. Alignments shorter than 50 positions were excluded to ensure
sufficient sequence context for conservation analysis. Specifically, we focus on the models under-
standing of evolutionarily conserved nucleotide positions.

Results Our results demonstrate improved performance across all models, although the de-
gree of the improvement is largely model-dependent. OmniGenome and RNA-FM achieve the
strongest results overall, and despite having strong performance, PhyloAug still results in a
significant improvement. The largest relative improvements occur in weaker baselines such
as RNA-BERT, showing that augmentation helps especially when models struggle to capture
evolutionary constraints. Likely OmniGenome performs best due to its pre-training task with
both secondary structures and sequences combined, thereby learning the structurally conserved
nucleotides within pre-training. All models also show reduced variance across random seeds,
suggesting that augmentation stabilises training.

4.3 STRUCTURAL PREDICTION

Experimental Design Finally, we evaluate whether the benefits extend beyond conserva-
tion tasks to RNA structural prediction. We utilise the three standard structural prediction
datasets, Archive2, bpRNA, and rnastralign, as consistent with previous analysis and bench-
marking methods. To evaluate the performance, we utilise the standard F1-Score, and combine
it with Matthew’s Correlation Coefficient (MCC), as to further evaluate the robustness of our
model performance. F1-Score does not evaluate true negatives, thus by including MCC, we also
evaluate the negative prediction aspect of our models.
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Table 3: Raw Performance improvements (absolute gain over baseline) across datasets with
augmentation.

Archive2 bpRNA StrAlign
F1 MCC F1 MCC F1 MCC

SpliceBERT .044+.016 .066+.024 .074%£.025 .065+.020 .008+£.003  .012+.005
HyenaDNA .049£.022 .075£.041  .047+.030 .096£.062 .013£.004  .020+.007
RNA-FM .025+.011  .037£.016  .023£.010  .059+£.027  .008+.003  .0124.005
RNA-BERT .364+.057  .500+£.071  .064+.027  .077£.031  .022+.009  .033+.012
RNA-MSM .058+.019 .089£.027  .115+.041  .166£.055 .015%.005  .0234.009
RNAErnie .006+.016 .010£.018  .004%.006 .006+£.008 -.002£.004 -.002+.005
OmniGenome .0074+.007 .012£.012 .029+.0017 .0444+.020 .001£.002  .001+£.002

Model

Results When testing our augmentation method for non-coding RNA, we find that for all
structural prediction tasks, our augmentation methodology improves performance consistently
across all models. For Archive2, we find that small models, such as RNA-BERT, which were
previously unable to generalise to the sparse dataset has a major increase in both MCC and F1-
score. Models with stronger performance, such as RNA-FM and RNA-MSM see a small increase
F1-Score, but a comparatively larger increase in MCC, suggesting a reduction in false positives
and negatives across model performance. Therefore, augmentations increase the robustness of
the models, as well as their predictive accuracy. We see a similar trend in the bpRNA dataset,
whereas rnastralign also shows signs of this trend, for top performing models such as RNA-FM
and OmniGenome, there is little change in model performance. This is not unexpected however,
as the model performance is almost perfect, suggesting that this may be the peak of the model
understanding for this dataset.

5 CONCLUSIONS

In this work, we introduced PhyloAug, a data augmentation method incorporating both evo-
lutionary and structural information to improve Genomic Foundation Models on downstream
tasks. We established the importance of the key sections of our pipeline through an empir-
ical experiment aligned with Rfam conserved nucleotides. We empirically demonstrated the
effectiveness of incorporating evolutionary information into the data augmentation process with
two key tasks, conserved nucleotide identification and sequence distance classification. Com-
prehensive experiments for non-coding secondary structure prediction illustrates the effective-
ness of PhyloAug for general non-coding tasks as well as evolutionary-based. Future work
may aim to integrate neutral evolution with batched sequences, to infer evolutionary impor-
tant sites directly. Notably, we release our code using the publicly available GitHub repo:
https://anonymous.4open.science/r/PhyloAug
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6 APPENDIX

6.1 SEQUENCE PATTERN PRESERVATION AND DISTRIBUTION

In this section we aim to answer how effective our augmentation methodology is at preserving
evolutionarily conserved contexts encoded within biological sequences. To achieve this, we utilise
the non-coding RNA structural prediction datasets, and assess how closely the augmentations
can reproduce the underlying characteristics of the set of homologous sequences. We perform
this investigation on each individual RNA within all three ncRNA structural prediction datasets,
as to provide a complete and comprehensive evaluation.

6.1.1 EXPERIMENTAL DESIGN.

Traditional analysis of RNA motif preservation utilises a simple visual inspection of sequence
logos, however due to the large amount of augmented sequences, we cannot show an accurate
visual diagram across all data. To preserve the motif-specific interactions across each original
RNA and it’s augmented set, we compare the MSA-aligned homologs obtained for each RNA
with the augmented set of RNA sequences. To fully understand the overall similarity across the
entire training set, we average the Jensen-Shannon Distance (JSD) and Cosine Similarity scores
across all augmented sequences as opposed with the MSA-aligned homologs. This gives us an
average for how closely the augmented sequence is able to represent the underlying nucleotide
distribution across the underlying data proportions. JSD is used to measure the similarity of
the nucleotide distributions, and Cosine Similarity measures the overall pattern/shape of the
nucleotide frequencies.

6.1.2 RESULTS

Our results across all three datasets show a significant improvement for PhyloAug as opposed
to MSA-only and random masking. We find that for each level of augmentation, we gradually
approach the ground truth, and with only one level of augmentation, the overall result is the
largest distance away from the ground truth. This is intuitive as our augmented sequences should
represent similar homologs our MSA-aligned data. This further demonstrates the usefulness of
a large set of augmentations, as with increasing augmentations, we draw closer to the ground
truth. We find that the full PhyloAug pipeline results in the closest evolutionary distance from the
ground truth, with random masking being the furthest. There is a significant difference between
PhyloAug and the alternative methods, of which the gap is maintained as the augmentation level
rises. This thereby proves our empirical result, being that the more augmentations, the better
overall performance, with reducing returns. The low JSD values demonstrate that the nucleotide
distributions of our augmented sequences are closely aligned with the original MSA homologs,
and our high cosine similarity shows a similar overall pattern/shape of nucleotides. We thereby
demonstrate empirically through performance and evolutionary distance the effectiveness of our
method.
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Table 4: JSD and Cosine Similarity results for three datasets

Phylo Masking MSA-only Masking Random Masking

Dataset / Augs JSD  Cosine JSD Cosine JSD Cosine

1 0.2431  0.7654  0.2740 0.7349 0.2896 0.7205

2 0.2422  0.7674  0.2732 0.7361 0.2810 0.7291

Archive2 4 0.2414  0.7690  0.2728 0.7369 0.2745 0.7350
8 0.2410  0.7694  0.2726 0.7373 0.2711 0.7379

12 0.2402  0.7702  0.2726 0.7375 0.2703 0.7386

1 0.2279  0.7799  0.2558 0.7499 0.2883 0.7202

2 0.2264  0.7821  0.2550 0.7533 0.2780 0.7303

bpRNA 4 0.2242  0.7864  0.2544 0.7448 0.2708 0.7360
8 0.2236  0.7879  0.2540 0.7456 0.2667 0.7393

12 0.2228  0.7887  0.2536 0.7466 0.2653 0.7404

1 0.2363  0.7838  0.2582 0.7619 0.2665 0.7577

2 0.2362  0.7847  0.2564 0.7658 0.2613 0.7634

rnastralign 4 0.2358  0.7855  0.2548 0.7677 0.2576 0.7666
8 0.2353  0.7861  0.2540 0.7689 0.2555 0.7685

12 0.2346  0.7863  0.2536 0.7694 0.2549 0.7689
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