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Abstract

Hindi has a flexible word order, yet certain001
word orders are consistently preferred over oth-002
ers. A number of factors are known to influ-003
ence Hindi word order preferences in isolation,004
including information structure and syntactic005
complexity. However, the relative impact of006
these factors on Hindi constituent ordering is007
not well understood. Inspired by prior work008
on syntactic priming, we investigate how the009
words and syntactic structures in a sentence010
influence the word order of the following sen-011
tences. Specifically, we extract sentences from012
the Hindi-Urdu Treebank corpus (HUTB), we013
permute the preverbal constituents of those014
sentences, and we build a classifier to predict015
which sentences actually occurred in the corpus016
against our generated distractors. The classi-017
fier uses a number of discourse-based features018
and cognitive features to make its predictions,019
including dependency length, surprisal, and020
information status. We find that lexical and021
syntactic priming and referent givenness drive022
order preferences. Moreover, along the lines023
of previous work in psycholinguistics, we find024
that certain verbs are more susceptible to prim-025
ing than others. We conclude by situating our026
results within the broader syntactic priming027
literature.028

1 Introduction029

Hindi (Indo-Aryan family) has a rich case-marking030

system and flexible word order. In this work, we in-031

vestigate the factors that cause certain word orders032

to be preferred over other orderings that express033

similar meanings.034

Example 1 contains a set of sentences that each035

expresses a similar meaning but with a different036

pre-verbal word order.037

(1) a. amar ujala-ko
Amar Ujala-ACC

yah
it

sukravar-ko
friday-on

daak-se
post-INST

038

prapt
receive

hua
be.PST.SG

039

Amar Ujala received it by post on Friday. 040

b. yah amar ujala-ko sukravar-ko daak-se prapt 041
hua 042

c. sukravar-ko yah amar ujala-ko daak-se prapt 043
hua 044

Earlier studies of Hindi word order have demon- 045

strated a wide variety of factors that influence order 046

preferences, such as information status (Butt and 047

King, 1996; Kidwai, 2000), prosody (Patil et al., 048

2008), and semantics (Perera and Srivastava, 2016; 049

Mohanan and Mohanan, 1994). Prior work has 050

also shown that Hindi optimizes processing effi- 051

ciency by minimizing information load (Ranjan 052

et al., 2019) and dependency length (Ranjan et al., 053

2021; Vasishth, 2004). The current work investi- 054

gates how discourse and cognitive factors jointly 055

influence preverbal constituent order in Hindi. 056

During reading, encountering a syntactic struc- 057

ture eases the comprehension of subsequent sen- 058

tences with similar syntactic structures as attested 059

in a wide variety of languages (Arai et al., 2007; 060

Husain and Yadav, 2020; Tooley and Traxler, 061

2010). So in this work we test whether adapting a 062

neural language model to inter-sentential discourse 063

information helps better model preverbal Hindi 064

constituent order in the presence of other cogni- 065

tively grounded controls. Additionally, since in- 066

formation structure influences word order (Arnold 067

et al., 2000), we also test whether givenness of 068

the constituents (Clark and Haviland, 1977; Chafe, 069

1976) influences which order is preferred. 070

To test ordering preferences, we generated 071

meaning-equivalent grammatical variants of sen- 072

tences from the Hindi-Urdu Treebank corpus 073

(HUTB; Bhatt et al., 2009) by permuting their pre- 074

verbal constituent ordering. Subsequently, we used 075
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a logistic regression model to separate the origi-076

nal reference sentences from the plausible variants077

using the cognitive features of interest.078

Corroborating the previous findings of adapta-079

tion/priming in comprehension (Fine et al., 2013;080

Fine and Jaeger, 2016) and production (Gries,081

2005; Bock, 1986), our results indicate that prim-082

ing influences word-order preferences in Hindi.083

Generally, this effect is driven by lexical priming,084

but we also find that certain object-fronted con-085

structions prime subsequent object-fronting, pro-086

viding evidence for self-priming of larger syntac-087

tic configurations. Verb-specific analyses revealed088

that priming in Hindi is stronger for certain verb089

classes, a phenomenon also observed in English090

spoken and written text (Gries, 2005). Finally, we091

discuss the implications of our findings for syntac-092

tic priming in both comprehension and production.093

Our main contribution is that for a low-resource094

and typologically distinct language, viz., Hindi, we095

show the impact of discourse context on word order096

choices using computational methodology. Thus097

we provide cross-linguistic evidence imperative to098

validate theories of language processing (Jaeger099

and Norcliffe, 2009).100

2 Background101

2.1 Surprisal Theory102

Surprisal Theory (Hale, 2001; Levy, 2008) posits103

that comprehenders construct probabilistic inter-104

pretations of sentences based on previously encoun-105

tered structures. Mathematically, the surprisal of106

the kth word, wk, is defined as the negative log107

probability of wk given the preceding context:108

Sk = − logP (wk|w1...k−1) = log
P (w1...wk−1)

P (w1...wk)
(1)109

These probabilities can be computed either over110

word sequences or syntactic configurations and re-111

flect the information load (or predictability) of wk.112

Both versions of surprisal predict eye-movements113

in reading times (Levy, 2008; Demberg and Keller,114

2008; Staub, 2015) as well as spontaneous speech115

word durations (Demberg et al., 2012; Dammalap-116

ati et al., 2021).117

2.2 Dependency Locality Theory118

Dependency locality theory (Gibson, 2000) has119

been shown to be effective at predicting the com-120

prehension difficulty of a sequence, with shorter de- 121

pendencies generally being easier to process than 122

longer ones (Temperley, 2007; Futrell et al., 2015; 123

Liu et al., 2017, cf. Demberg and Keller, 2008). 124

In this work, we defined dependency length as the 125

number of intervening words between head and 126

dependent units in a dependency tree (Temperley, 127

2008; Rajkumar et al., 2016). 128

2.3 Information Status 129

Information structure strongly influences syntac- 130

tic choice (Halliday, 1970). Languages generally 131

prefer to mention given referents, from earlier in 132

the discourse, before introducing new ones (Clark 133

and Haviland, 1977; Chafe, 1976; Kaiser and 134

Trueswell, 2004). The explanation for this is that 135

given information is more accessible compared to 136

new information, so providing the given informa- 137

tion first provides a more robust context to ease pro- 138

cessing of the new referents (Arnold et al., 2000; 139

Bock and Irwin, 1980). 140

3 Data and Models 141

Our dataset comprises 1996 reference sentences 142

containing well-defined subject and object con- 143

stituents from the HUTB corpus of dependency 144

trees (Bhatt et al., 2009). Figure 1 in Appendix A 145

displays the dependency tree for Example sentence 146

1a and explains our variant generation procedure in 147

more detail. For each reference sentence, we cre- 148

ated artificial variants by permuting the preverbal 149

constituents whose heads were linked to the root 150

node in the dependency tree. Inspired by grammar 151

rules proposed in the NLG literature (Rajkumar 152

and White, 2014), ungrammatical variants were au- 153

tomatically filtered out by detecting dependency re- 154

lation sequences not attested in the original HUTB 155

corpus. After filtering, we had 72833 variant sen- 156

tences for our classification task. 157

3.1 Models 158

We set up a binary classification task to separate 159

the original HUTB reference sentences from the 160

variants using the cognitive metrics described in 161

Section 2. To alleviate the data imbalance between 162

the two classes (1996 references vs 72833 variants), 163

we transformed our data set using the approach 164

described in Joachims (2002). This technique con- 165

verts a binary classification problem into a pair- 166
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wise ranking task by training the classifier on the167

difference of the feature vectors of each reference168

and its corresponding variants (see Equation 2 and169

3). Equation 2 displays the objective of a standard170

binary classifier, where the classifier must learn a171

feature weight (w) such that the dot product of w172

with the reference feature vector (ϕ(reference))173

is greater than the dot product of w with the variant174

feature vector (ϕ(variant)). This objective can be175

rewritten as equation 3 such that the dot product176

of w with the difference of the feature vectors is177

greater than zero.178

w · ϕ(reference) > w · ϕ(variant) (2)179

w · (ϕ(reference) − ϕ(variant)) > 0 (3)180

Every variant sentence in our dataset was paired181

with their corresponding reference sentence with182

order balanced across these pairings (e.g., Exam-183

ple 1 would yield (1a,1b) and (1c,1a)). Thereafter,184

their feature vectors were subtracted (e.g., 1a-1b185

and 1c-1a), and binary labels were assigned to186

each transformed data point. Reference-Variant187

pairs were coded as “1" and Variant-Reference188

pairs were coded as “0". The alternate pair or-189

dering thus re-balanced our previously severely190

imbalanced classification task.191

For each reference sentence, our objective was192

to model the possible syntactic choices entertained193

by the speaker. In each instance, the author chose194

to generate the reference order over the variant, im-195

plicitly demonstrating an order preference. If the196

cognitive factors we chose influenced that decision,197

a logistic regression model should be able to use198

those factors to predict which syntactic choice was199

ultimately chosen by the author. Using the trans-200

formed features dataset labelled with 1 (denoting a201

preference for the reference order) and 0 (denoting202

a preference for the variant order), we trained a203

logistic regression model to predict each reference204

sentence (see Equation 4). We report our classifi-205

cation results using 10-fold cross-validation. The206

regression results are reported on the entire trans-207

formed test data for the respective experiments. All208

the experiments were done with the Generalized209

Linear Model (GLM) package in R.210

choice ∼


δ dependency length +
δ trigram surp + δ pcfg surp +
δ IS score + δ lexical repetition surp +
δ lstm surp + δ adaptive lstm surp

(4)211

Here choice is encoded by the binary dependent 212

variable as discussed above (1: reference prefer- 213

ence and 0: variant preference). To obtain sentence- 214

level surprisal measures, we summed word-level 215

surprisal of all the words in each sentence. The 216

values for independent variables were calculated 217

as follows. 218

1. Dependency length: We computed a 219

sentence-level dependency length measure by 220

summing the head-dependent distances (mea- 221

sured as the number of intervening words) in 222

the dependency trees provided in the HUTB 223

corpus. Since our variants were generated by 224

manipulating the provided dependency trees, 225

we were able to directly compute the depen- 226

dency length for each variant sentence as well. 227

2. Trigram surprisal: For each word in a 228

sentence, we estimated its local predictabil- 229

ity using a 3-gram language model (LM) 230

trained on the EMILLE Hindi Corpus (Baker 231

et al., 2002), which consists of 1 million 232

mixed genre sentences, using the SRILM 233

toolkit (Stolcke, 2002) with Good-Turing dis- 234

counting. 235

3. PCFG surprisal: The syntactic predictabil- 236

ity of each word in a sentence was es- 237

timated using the Berkeley latent-variable 238

PCFG parser1 (Petrov et al., 2006). Hindi 239

is a low resource language as it has only 240

one dependency treebank and no constituency 241

treebank. So 12000 phrase structure trees 242

were created to train the parser by convert- 243

ing Bhatt et al.’s HUTB dependency trees 244

into constituency trees using the approach de- 245

scribed in Yadav et al. (2017). Sentence level 246

log-likelihood of each test sentence was es- 247

timated by training a PCFG language model 248

on four folds of the phrase structure trees and 249

then testing on a fifth held-out fold. 250

4. Information status (IS) score: We automati- 251

cally annotated whether each sentence exhib- 252

ited given-new ordering. The subject and ob- 253

ject constituents in a sentence were assigned a 254

Given tag if any content word within them was 255

15-fold CV parser training and testing F1-score metrics
were 90.82% and 84.95%, respectively.
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mentioned in the preceding sentence (e.g., if256

“Amar Ujala” had been mentioned in the sen-257

tence preceding 1a, it would be annotated as258

Given in 1a) or if the head of the phrase was a259

pronoun (e.g., “yah” in 1b). All other phrases260

were tagged as New. For each sentence, IS261

score was computed as follows: a) Given-262

New order = +1 b) New-Given order = -1263

c) Given-Given and New-New = 0. For illus-264

tration, see Example 3 in Appendix A, which265

shows how givenness would be coded after a266

context sentence (Example 2).267

5. Lexical repetition surprisal: For each word268

in a sentence, we accounted for lexical prim-269

ing by interpolating a 3-gram language model270

with a unigram cache LM based on the his-271

tory of words (H = 100) containing the pre-272

ceding sentence. We used the original im-273

plementation provided in the SRILM toolkit274

with a default interpolation weight parameter275

(µ = 0.05; see Equations 5 and 6) based on276

the approach described by Kuhn and De Mori277

(1990). The idea is to keep a count of recently278

occurring words in the sentence history and279

then boost their probability within the trigram280

language model. Words that have occurred re-281

cently in the text are likely to re-occur in sub-282

sequent sentences (Kuhn and De Mori, 1990;283

Clarkson and Robinson, 1997).284

P (wk|w1, w2, ....wk−1) = µ Pcache(wk|w1, w2, ....wk−1)

+(1 − µ) Ptrigram(wk|wk−2, wk−1)
(5)285

286

Pcache(wk|wk−H , wk−H+1, ...wk−1) =
wk counts in cache

H
(6)287

6. LSTM surprisal: We estimated the pre-288

dictability for each word according to the en-289

tire sentence prefix using a long short-term290

memory language model (LSTM; Hochre-291

iter and Schmidhuber, 1997) trained on the 1292

million sentences of the EMILLE Hindi cor-293

pus (Baker et al., 2002). We used the original294

implementation provided in the neural com-295

plexity toolkit2 (van Schijndel and Linzen,296

2018) with default hyper-parameter settings297

2https://github.com/vansky/
neural-complexity

Learning Rate 0 0.002 0.02 0.2 2 20 200
Perplexity 103.29 98.79 87.78 66.64 56.86 117.91 ∼ 109

Table 1: Learning rate influence on lexical and syntac-
tic adaptation for the validation set containing 13274
sentences (the initial non-adaptive model performance
is when we use a learning rate of 0)

to estimate surprisal using an unbounded neu- 298

ral context. 299

7. Adaptive LSTM surprisal: We estimated the 300

discourse predictability of each word in the 301

sentence using the neural complexity toolkit. 302

van Schijndel and Linzen (2018) proposed 303

a simple way to continuously adapt a neural 304

LM, and found that adaptive surprisal predicts 305

human reading times significantly better than 306

non-adaptive surprisal. Their method takes a 307

pre-trained LSTM LM, and, after generating 308

surprisals for a test sentence, the parameters 309

of the LM get updated based on the cross- 310

entropy loss for that sentence. After that, the 311

revised LM weights are used to predict the 312

next test sentence. In our work, for each test 313

sentence, we used our base (non-adaptive) 314

LSTM LM and adapted it to the preceding 315

context sentence before generating (adaptive) 316

surprisal values for the desired sentence. 317

4 Experiments and Results 318

We tested the hypothesis that information sta- 319

tus and surprisal enhanced with inter-sentential 320

discourse information (adaptive LSTM surprisal) 321

predict constituent ordering in Hindi over other 322

baseline cognitive controls, including dependency 323

length, lexical repetition and non-adaptive sur- 324

prisal. For our adaptation experiments, we used 325

an adaptive learning rate of 2 as it minimized the 326

perplexity of the validation data set (see Table 1).3 327

The Pearson’s correlation coefficients between dif- 328

ferent predictors are displayed in Figure 2 in Ap- 329

pendix A. The adaptive LSTM surprisal has a high 330

correlation with all other surprisal features and a 331

low correlation with dependency length and infor- 332

mation status score. We report the results of the 333

regression and prediction experiments on the full 334

3Interestingly, van Schijndel and Linzen (2018) found that
an adaptive learning rate of 2 minimized validation perplexity
in English as well, though we leave further investigation of
this to future work.
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data set as well as on subsets of the data consisting335

of two types of non-canonical constructions. We336

also conducted a fine-grained verb-specific analy-337

sis of priming patterns.338

4.1 Regression Analysis339

Our regression results over the entire data set (Ta-340

ble 2) show that all of our measures are signif-341

icant predictors for the task of classifying refer-342

ence and variant sentences. The negative regres-343

sion coefficients for our surprisal metrics indicate344

that surprisal is consistently lower in the refer-345

ence sentences compared with the competing vari-346

ants. And adding adaptive LSTM surprisal into a347

model containing all other predictors significantly348

improved the fit of our regression model (χ2 =349

66.81; p < 0.001). The positive regression coeffi-350

cient for information status (IS) score indicates that351

reference sentences adhere to given-new ordering.352

These results support our two core hypotheses that353

discourse-adaptive surprisal and information status354

affect word order preferences in Hindi. However,355

the positive regression coefficient of dependency356

length suggests that reference sentences exhibit357

longer dependency lengths compared to their vari-358

ant counterparts, violating locality considerations.359

We also examined the contribution of each pre-360

dictor on two non-canonical constructions, DO-361

fronted and IO-fronted constructions, which have362

been studied extensively in the sentence compre-363

hension literature. Prior work has shown that364

salient objects tend to occur early in the sentence,365

thus leading to fronting (Wierzba and Fanselow,366

2020; Kaiser and Trueswell, 2004). In the specific367

context of Hindi, Vasishth (2004) examined the368

role of locality effects in processing non-canonical369

word orders (direct and indirect object fronting) in370

salient as well as non-salient contexts. He showed371

that the increased distance from direct object (DO)372

fronting leads to high self-paced reading time at373

the inner-most verb as compared to its canonical374

counterpart in both salient and non-salient condi-375

tions. However, in indirect object (IO) fronted376

constructions, he found that salient contexts alle-377

viated the processing difficulty which was caused378

by increased distance. Based on these findings, we379

predict that adaptive surprisal should be more380

effective in IO-fronted than DO-fronted con-381

structions.382

Predictor β̂ σ̂ t

intercept 1.50 0.001 1496.47
trigram surprisal -0.08 0.005 -14.53
dependency length 0.02 0.001 15.55
pcfg surprisal -0.07 0.002 -39.46
IS score 0.01 0.001 11.32
lex-rept surprisal -0.03 0.005 -5.31
lstm surprisal -0.14 0.016 -9.26
adaptive lstm surprisal -0.13 0.016 -8.18

Table 2: Regression model on full data set (N = 72833;
all significant predictors denoted by |t|>2)

We isolated two types of non-canonical construc- 383

tions from our data set. In the first type, the ref- 384

erence sentence has a direct object (DO) fronted 385

structure while the variant has the canonical order 386

where the subject precedes the DO. In the second 387

type, the reference sentence has an indirect ob- 388

ject (IO) fronted structure while the variant has the 389

canonical order where the subject precedes the IO. 390

Table 3a and Table 3b present regression results 391

for DO- and IO-fronted constructions respectively. 392

These subsets constitute a very small fraction of 393

our data set due to the infrequency of these con- 394

structions in Hindi. The regression coefficient for 395

adaptive LSTM surprisal was significantly negative 396

for both subsets, indicating that the non-canonical 397

structures are more common in the context of sim- 398

ilarly non-canonical structures. This pattern is 399

more robust for IO-fronted reference sentences (χ2 400

= 90.90; p < 0.001) than for DO-fronted refer- 401

ence sentences (χ2 = 4.03; p = 0.04), validating 402

our proposed prediction about these constructions. 403

Furthermore, in contrast to the IO-fronted subset, 404

the regression coefficient for dependency length 405

in DO-fronted items is significantly negative sug- 406

gesting that locality considerations are limited to 407

constructions involving a high dependency length 408

difference4 between reference and variants, a simi- 409

lar finding to that reported in Ranjan et al. (2021) 410

on a similar task. 411

4.2 Prediction Accuracy 412

While the previous section explored how predictors 413

contribute to Hindi ordering preferences across all 414

of the data in aggregate, in this section we frame 415

our model as a classification task on held-out data 416

to determine how many sentences are affected by 417

4The average dependency length difference for DO-subset
is 13.92 and IO-subset is 7.77 words
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Predictor β̂ σ̂ t

intercept 1.49 0.008 171.18
trigram surp -0.28 0.049 -5.84
dep length -0.05 0.008 -6.22
pcfg surp 0.001 0.014 0.12
IS score 0.04 0.006 7.04
lex repetition surp 0.07 0.044 1.67
lstm surp 0.03 0.114 0.23
adaptive lstm surp -0.23 0.113 -2.00

(a) Direct objects (DO; 1663 points) fronted cases

Predictor β̂ σ̂ t

intercept 1.51 0.008 188.49
trigram surp -0.18 0.039 -4.54
dep length 0.02 0.012 1.77
pcfg surp -0.13 0.015 -8.34
IS score -0.01 0.005 -1.87
lex repetition surp 0.03 0.036 0.92
lstm surp 1.21 0.154 7.87
adaptive lstm surp -1.50 0.155 -9.67

(b) Indirect objects (IO; 1353 points) fronted cases

Table 3: Discourse adaptation regression model on DO/IO fronted cases (all significant predictors denoted by |t|>2)

Predictors Full
Accuracy % DO IO Predictors Full

Accuracy % DO IO

a = IS score 51.84 53.88 50.92 Collective: with repetition effects
b = dep length 62.31*** 68.49*** 58.91*** base1 = a+b+c+d+e+f 95.05 80.99 89.06
c = pcfg surp 86.86*** 65.90 78.86*** base1 + g 95.06 81.06 89.65*
d = lex repetition surp 90.07*** 77.33*** 85.07***

Collective: without repetition effects
e = 3-gram surp 91.18*** 78.95* 87.29**
f = lstm surp 94.01*** 79.55 87.28 base2 = a+b+c+e+f 95.06 81.24 89.65
g = adaptive lstm surp 94.06 79.97 88.32*** base2 + g 95.09* 81.42 89.80

Table 4: Prediction performances (Full data set (72833 points), Direct objects (DO; 1663 points) and indirect
object (IO; 1353 points) fronted cases; each row refers to a distinct model; *** McNemar’s two-tailed significance
compared to model on previous row)

each predictor. This enables us to examine the rela-418

tive performance of different predictors in identify-419

ing Hindi reference sentences amidst artificially420

generated grammatical variants and to conduct421

more detailed error analysis of our results. We422

used 10-fold cross-validation to evaluate model423

classification accuracy, i.e. the percentage of data424

points where a model correctly predicted the ref-425

erent sentence over a paired variant, for different426

subsets of predictors (see Table 4).427

Non-adaptive LSTM surprisal (94.01% accu-428

racy) and adaptive LSTM surprisal (94.06%)429

yielded the best classification accuracies when no430

other predictors were included. Over a baseline431

model comprised of every other feature except lexi-432

cal repetition surprisal (see base2 in Table 4), adap-433

tive LSTM surprisal induced a small but signifi-434

cant increase of 0.03% in accuracy (p = 0.04 using435

McNemar’s two-tailed test). When we included436

lexical repetition surprisal in the baseline model437

(see base1 in Table 4), adaptive LSTM surprisal438

ceases to be a significant predictor. This suggests439

that, in the general case, adaptive LSTM surprisal440

reflects the influence of lexical priming on word or-441

der. Apart from the content words, adaptive LSTM442

surprisal accounts for the re-occurrence of function 443

words (e.g., case markers) which have been shown 444

to modulate syntactic priming and drive parsing 445

processes (Husain and Yadav, 2020). 446

To study prediction accuracy on non-canonical 447

constructions, we restricted our analyses to IO- and 448

DO-fronted items in the test partition (still train- 449

ing the classifier on the full training partition for 450

each fold). In contrast to the DO-fronted subset, 451

adaptive surprisal was a significant predictor of 452

IO-fronted syntactic choice, even in the presence 453

of lexical repetition surprisal, as evident from the 454

significant increase of 0.6% in accuracy (p = 0.02 455

using McNemar’s two-tailed test; see the right- 456

most IO column in Table 4). This result indicates 457

that syntactic priming is effective in predicting IO- 458

fronting in sentences that follow other IO-fronted 459

sentences. Both our regression and classification 460

results demonstrate that adaptation is more effec- 461

tive in IO-fronted than DO-fronted constructions, 462

mirroring the findings in Hindi sentence compre- 463

hension, where Vasishth (2004) showed that dis- 464

course context could compensate for the processing 465

difficulty induced by indirect object fronting. 466

Further linguistic analyses in IO-fronted con- 467
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Type Freq Baseline Baseline +
(%) Adaptive LSTM

Verb Class
DO 48.68 96.82 96.82
GIVE 19.35 93.86 93.98
SOCIAL 8.00 92.90 92.95
COMMUNICATE 6.25 93.94 93.98
LODGE 4.04 94.29 94.22
MOTION 3.87 90.87 90.76
PUT 2.97 95.28 95.28
DESTROY 2.42 95.58 95.63
PERCEPTION 0.73 87.48 87.10
OTHERS 3.69 90.63 90.22

Alternations
S-DO 71.89 95.35 95.33
S-DO-IO 12.74 93.39 93.50
S-IO 15.37 94.98 95.04

Table 5: Prediction performance of verb-specific and
subject-objects alternations (72833 points); Baseline de-
notes base1 shown in Table 4; bold denotes McNemar’s
two-tailed significance compared to baseline model in
the same row)

structions revealed that LSTM adaptation also cap-468

tured the priming of given-given items, potentially469

modeling the preferred ordering of multiple given470

items, a case not captured by IS score or lexical471

repetition surprisal. Refer to Appendix G for full472

details of this analysis.473

4.3 Verb-specific Priming474

Individual verb biases also influence structural475

choices during language production (Ferreira and476

Schotter, 2013; Thothathiri et al., 2017; Yi et al.,477

2019). Therefore, we grouped Hindi verbs based478

on Levin’s syntactico-semantic classes using the479

heuristics proposed by Begum and Sharma (2017).480

Then we analyzed the efficacy of adaptive surprisal481

at classifying reference and variant instances of482

Levin’s verb classes (still training the classifier on483

the full training partition for each fold). Our re-484

sults (Table 5, top block) indicate that the GIVE485

verb class was susceptible to priming, with adap-486

tive surprisal producing a significant improvement487

of 0.5% in classification accuracy (p = 0.01 us-488

ing McNemar’s two-tailed test) over the baseline489

model. Other verb frames did not show a syntactic490

priming effect.491

Our results are in line with previous work in492

the priming literature that show GIVE to be es-493

pecially susceptible to priming, thus providing494

cross-linguistic support to verb-based priming ef-495

fects (Pickering and Branigan, 1998; Gries, 2005; 496

Bock, 1986). The GIVE verb class in our data set 497

includes different verbs that are semantically sim- 498

ilar to give in English, such as de, baant, saup, 499

bhej, maang, dila, lauTaa, vasul, thama, vaapas. 500

We found that all these verbs strongly exhibited 501

double object constructions (Begum and Sharma, 502

2017) and their arguments are heavily case marked 503

(see Table 6 in Appendix B). 504

Our results also reveal (Table 5, bottom block) 505

that syntactic priming is more influential in dou- 506

ble object constructions (S-DO-IO) than in single 507

object constructions as attested by a significant im- 508

provement of 0.1% in classification accuracy (p 509

= 0.04 using McNemar’s two-tailed test). Double 510

object constructions are also highly case marked 511

(see Table 7 in Appendix C) and 57.82% of these 512

items contain verbs that belong to GIVE class (see 513

Table 8 in Appendix D). We present a more nu- 514

anced discussion on the effects of case-markers 515

and verb’s combinatorial properties on priming in 516

Section 5. The regression coefficients on Levin’s 517

GIVE verb classes and double object alternations 518

follow similar trends as reported in the previous 519

section (see Appendices E and F).5 520

Our analyses suggest that different verbs display 521

varying strength of priming effects, corroborating 522

previous findings in the literature (Gries, 2005). 523

Ditransitive constructions (denoted by S-DO-IO 524

ordering) prime more strongly than other orderings, 525

where verbs from the GIVE class have a strong 526

preference for canonical argument ordering.6 527

4.4 What causes priming? 528

In the priming literature, there is debate as to 529

whether priming is driven by residual neural activa- 530

tion (short-lived effects) or by humans learning and 531

updating their language expectations (long-lived ef- 532

fects). Bock and Griffin (2000) showed that syntac- 533

tic priming in humans persisted even when prime 534

and target sentences were separated by 10 inter- 535

vening sentences, supporting the implicit learning 536

(long-lived) hypothesis of syntactic priming. In or- 537

5We provide an analysis of an example item in Appendix H
to show how discourse priming (via adaptive surprisal) can
interact with the other factors we studied to jointly predict the
correct ordering preference in double-object constructions.

6For example, out of 284 instances, 89.79% of the give
lemma ‘de’ occurs with canonical argument ordering in our
test data set.
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der to test this effect on constituent ordering choice,538

we repeated our adaptation experiment by adapting539

to additional context sentences from the preced-540

ing discourse. Adaptive LSTM surprisal and lexi-541

cal repetition surprisal were estimated by adapting542

the base LSTM LM and trigram LM, respectively,543

to five preceding context sentences, rather than544

the single context sentence we used for our other545

analyses. We found that for non-canonical IO/DO-546

fronted constructions, additional context sentences547

do not improve the adaptive LSTM LM’s word548

order predictions, suggesting that priming may be549

driven by short-term residual activation (see Table550

13 in the Appendix I).551

5 Discussion552

Our main findings suggest that lexical priming,553

structural priming, and information status all influ-554

ence the word order preferences of Hindi. Lexical555

priming is most influential in canonical sentence556

contexts, but syntactic priming does influence pref-557

erences in non-canonical contexts. We also show558

that certain verb classes are more susceptible to559

priming than others. Specifically, verbs selecting560

double objects are most prone to priming, a case561

demonstrated in English as well (Gries, 2005), thus562

providing cross-linguistic support for the finding.563

Below, we discuss the implications of our find-564

ings in terms of the 4 factors affecting syntactic565

priming discussed in detail by Reitter et al. (2011):566

inverse frequency interaction, decay, lexical boost,567

and cumulativity. The IO-fronted construction is568

very rare (0.76%) compared to DO-fronted non-569

canonical sentences (1%) in the HUTB corpus of570

13274 sentences. We find strong priming effects571

in the case of IO-fronted constructions but weak572

priming in the case of DO-fronted constructions,573

providing evidence for an inverse frequency inter-574

action (Scheepers, 2003; Jaeger and Snider, 2007).575

Our finding that priming is not aided by long-576

term contexts indicates a decay effect in priming,577

which supports the residual activation (short-lived)578

hypothesis of priming in comprehension (Pickering579

and Branigan, 1998). Nevertheless, there has been580

evidence for implicit learning effects in comprehen-581

sion as well (Luka and Barsalou, 2005; Wells et al.,582

2009). In an experimental study examining the im-583

pact of preverbal case markers on syntactic priming584

in Hindi comprehension, Husain and Yadav (2020)585

provide counter-evidence against the residual acti- 586

vation account. They argue that researchers must 587

incorporate more syntactic properties of target sen- 588

tences into priming studies. Additional research is 589

required to tease apart the exact processes reflected 590

by priming, a point raised by Tooley and Traxler 591

(2010) in their comprehensive literature review. 592

Previous work suggests that lexical overlap be- 593

tween prime and target sentences enhances syntac- 594

tic priming (Pickering and Branigan, 1998; Gries, 595

2005). The repeated lexical items become cues dur- 596

ing sentence planning and bias the speaker to pro- 597

duce similar structures that those repeated lexical 598

items tend to occur in. Overall, we find that lexical 599

repetition drives Hindi syntactic choice; however, 600

syntactic priming is observed over and above lexi- 601

cal repetition in non-canonical and double object 602

constructions. Our verb-specific priming analy- 603

ses indicate that prime sentences need not share 604

the same main verb as the target sentence; instead 605

successive sentences may have a similar argument 606

structure (subcategorization frame). Our results 607

provide evidence for a generalized lexical boost 608

effect which operates over verb classes and not 609

simply string-identical verbs, validating similar 610

findings on English (Snider, 2009). However, Hu- 611

sain and Yadav (2020) showed that the combina- 612

tory properties of the verb need not be the sole 613

driver of priming in Hindi. In their self-paced read- 614

ing experiment involving identical critical verbs 615

in both prime and target sentences, they observed 616

a speedup in reading times only in the condition 617

where nominals were marked by a locative case 618

marker (in contrast to accusative and ergative con- 619

ditions). So the impact of case markers on priming 620

strength needs to be explored more thoroughly in 621

future inquiries. 622

Finally, with regards to the cumulativity of prim- 623

ing, Jaeger and Snider (2007) showed in their cor- 624

pus study of production of passives and that inser- 625

tion/omission that the effect of priming increases 626

with the number of primes preceding it. Our work 627

does not investigate this specifically, and more con- 628

trolled experiments would be required. 629

Overall, our results demonstrate that Hindi word 630

order preferences are driven by lexical and syntac- 631

tic priming as well as Given-New ordering patterns 632

of discourse referents. 633
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ROOT

hua

 main

uajala

 k4

yah

 k1

sukravar

 k7t

daak

 k3

prapt

 pof

।

 rsym

amar

 pof__cn

ko

 lwg__psp

ko

 lwg__psp

se

 lwg__psp

(a) Dependency tree

Label Dependency
relation

Invariant syntactic relations
k1 subject/agent
k2 object/patient
k3 instrument
k4 object/recipient
k7t location in time
Complex predicate relation
pof parts of

conjunct verb
pof_cn parts of

compound noun
Local word group (lwg)
lwg_psp postposition
lwg_vaux auxilliary verb
Symbols
rsym symbol relation

(b) Dependency relations

Figure 1: Example HUTB dependency tree and relation labels

A Variant Generation883

(2) Context sentence884

amar ujala-ki
Amar Ujala-GEN

bhumika
role

nispaksh
unbiased

rehti
remain

hai
be.PRS.SG

885

Amar Ujala’s role remains unbiased.886

(3) a. amar ujala-ko
Amar Ujala-ACC

yah
it

sukravar-ko
friday-on

daak-se
post-INST

prapt
receive

hua
be.PST.SG

[Given-Given = 0] (Reference)887

Amar Ujala received it by post on Friday.888

b. yah amar ujala-ko sukravar-ko daak-se prapt hua [Given-Given = 0] (Variant 1)889

c. sukravar-ko yah amar ujala-ko daak-se prapt hua [New-Given = -1] (Variant 2)890

This work uses sentences from the Hindi-Urdu Treebank (HUTB) corpus of dependency trees (Bhatt891

et al., 2009) containing well-defined subject and object constituents. Figure 1 displays the dependency892

tree (and a glossary of relation labels) for reference sentence 3a. The grammatical variants were created893

using an algorithm that took as input the dependency tree corresponding to each HUTB reference sentence.894

The re-ordering algorithm permuted the preverbal dependents of the root verb and linearized the resulting895

tree to obtain variant sentences. For example, corresponding to the reference sentence 3a and its root896

verb “hai” (see figure 1a), the preverbal constituents with parents as “ujala”, “yah”, “suravar”, “daak”,897

and “prapt” were permuted to generate the artificial variants (3b and 3c). The ungrammatical variants898

were automatically filtered out using dependency relation sequences (denoting grammar rules) attested in899

the gold standard corpus of HUTB trees. In the dependency tree 1a, “k4-k1”, “k7t-k1”, “k3-k7t”, and900

“pof-k3” are dependency relation sequences. In cases where the total number of variants exceeded 1007,901

we chose 99 non-reference variants randomly along with the reference sentence.902

7Higher and lower cutoffs do not affect our results.
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Figure 2: Pearson’s coefficient of correlation between different pairs of predictors

B Levin’s Verb Class and Case Density 903

Verb Types Case density Freq Freq (%)
GIVE 0.45 372 18.64
DO 0.39 726 36.37
COMMUNICATION 0.67 264 13.23
MOTION 0.39 93 4.66
SOCIAL 0.4 242 12.12
PERCEPTION 0.32 36 1.8
DESTROY 0.63 34 1.7
LODGE 0.32 95 4.76
PUT 0.4 52 2.61
OTHERS 0.43 82 4.11
Full 0.44 1996 100

Table 6: Levin’s verb semantic classes and case density (i.e., number of case markers per constituent in a sentence)
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C Argument Ordering and Case Density904

Alternation Case density Freq Freq (%)
S-DO-IO 0.48 185 9.27
S-DO 0.39 1417 70.99
S-IO 0.59 394 19.74
Full 0.44 1996 100

Table 7: Argument ordering and case density (i.e., number of case markers per constituent in a sentence)

D Levin’s classes of verbs within Double Object (S-IO-DO) alternation905

Verb Lemma Frequency Freq (%) Verb Types Freq (%)
chah 127 1.37

SOCIAL 2.59
nawaja 5 0.05
mil 5 0.05
bech 104 1.12
daal 99 1.07

PUT 2.13jutaa 75 0.81
pilaa 23 0.25
dikha 28 0.3 PERCEPTION 0.3
badal 99 1.07 LODGE 1.07
de 3240 34.92

GIVE 57.82
saup 1090 11.75
bhej 569 6.13
maang 419 4.52
dilaa 46 0.5
kar 1737 18.72

DO 24.03
karaa 465 5.01
chipaa 23 0.25
ban 5 0.05
kah 883 9.52

COMMUNICATION 12.06
sunaa 198 2.13
likh 23 0.25
bataa 15 0.16
Full (S-IO-DO) 9278 100 12.74% of 72388

Table 8: Levin’s syntactico-semantic classes of verbs within S-DO-IO data points from Table 5
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E GIVE Verb Class Regression Model 906

Predictor β̂ σ̂ t

intercept 1.50 0.002 638.32
trigram surprisal -0.11 0.013 -8.57
dependency length 0.01 0.003 2.78
pcfg surprisal -0.08 0.004 -18.87
IS score 0.02 0.002 10.01
lex-rept surprisal 0.01 0.012 0.46
lstm surprisal 0.08 0.036 2.25
adaptive lstm surprisal -0.36 0.037 -9.86

Table 9: Regression model on lemma verb GIVE data set (14094 data points; all significant predictors denoted by
|t|>2)

F Double Object (S-DO-IO) Alternation Regression Model 907

Predictor β̂ σ̂ t

intercept 1.50 0.003 506.77
trigram surprisal -0.14 0.017 -8.30
dependency length 0.02 0.003 6.20
pcfg surprisal -0.11 0.005 -20.8
IS score 0.02 0.003 5.43
lex-rept surprisal 0.06 0.016 4.07
lstm surprisal 0.31 0.081 3.81
adaptive lstm surprisal -0.59 0.081 -7.23

Table 10: Regression model on double object construction S-DO-IO data set (9278 data points; all significant
predictors denoted by |t|>2)

G Information Profile for IO-fronted Example 908

Reference sentence 3a is correctly predicted by the model containing adaptive LSTM surprisal and all 909

other features (i.e., base1+g in Table 4) but a model without adaptive LSTM surprisal (i.e., base1) predicts 910

the variant Example 3b. Table 11 (first block) presents the exact scores of different predictors for the 911

referent-variant pairs (3a and 3b). All predictors but LSTM and adaptive LSTM surprisal assign high 912

score for the reference sentence with respect to its paired variant. Adaptive LSTM surprisal assigns a 913

low per-word surprisal for the phrase amar ujala when it comes at the first position in the reference 914

sentence (3a) with respect to when it comes at the second position in the variant (3b), potentially modeling 915

givenness as this word occurred in the previous sentence (2) as well. See Figure 3 for the information 916

profile of the reference-variant pairs. 917
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Figure 3: Information profile for the reference-variant pair 3a and 3b

H Information Profile for Double Object Ordering Example918

To see how adaptive LSTM surprisal is able to capture ordering preferences, see Example 5:919

(4) Context Sentence920

collingwood 8
collingwood 8

aur
and

jones 0
jones 0

aur
and

blackville 10-par
blackville 10-PSP

hi
EMPH

harbhajan-ki
harbhajan-GEN

firki-ka
spin-GEN

sikaar
victim

ban gaye
become-PST.PL

921

Collingwood became the victim of Harbhajan’s spin on 8 and Jones on 0 and Blackville on just922

10.923

(5) a. plunket
plunket

14-par
14-PSP

pathan-ki
pathan-GEN

gend-par
ball-PSP

Gambhir-ko
gambhir-GEN

kaetch
catch

de baethe
give.PST.SG

(Reference)924

Plunket ended up giving a catch to Gambhir on 14 off Pathan’s bowling.925

b. 14-par plunket pathan-ki gend-par gambhir-ko kaetch de baethe (Variant)926

The LSTM LM when adapted to the previous sentence (4) learns the argument structure of the verb927

‘become’(ban) which when tested on referent-variants pairs (5) assigns a lower surprisal score to reference928

sentence (5a) than its competing variant (5b) owing to similar double object construction for the verb929

‘GIVE’ (de) in reference sentence (see Table 11 for sentence-level predictor values, and see Figure 4 for930

information profiles).931
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Type Trigram surp Deplen PCFG surp IS score LSTM surp Adaptive LSTM surp Repetition surp
Example 3a Reference 24.69 18 61.13 0 91.80 89.52 23.80
Example 3b Variant 23.80 20 60.67 0 93.78 93.17 22.19
Example 5a Reference 34.27 24 107.04 0 173.06 156.88 36.45
Example 5b Variant 33.92 23 105.11 0 171.49 165.86 36.45

Table 11: Predictor scores for reference-variant pairs

Non-canonical
HUTB Sentences

Frequency
Count (%)

Baseline
Perplexity

Adapted
Perplexity (Prev1)

Perplexity
Dip (Prev1)

Adapted
Perplexity (Prev5)

Perplexity
Dip (Prev5)

DO 133 (1%) 183.92 103.40 -80.52 77.33 -106.59
IO 101 (0.76%) 138.78 88.26 -50.52 68.45 -70.33

Table 12: Effect of adaptation on discourse sentences (Prev1: Preceding one sentence in discourse, Prev5: Preceding
five sentences in discourse)
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Figure 4: Information profiles for the reference-variant pair 5a and 5b

I Contextual Adaptation on One Vs. Multiple Sentences for DO/IO Constructions 932

We investigated if adapting the LSTM LM to the preceding five contextual sentences instead of one 933

contextual sentence will help predict word-ordering patterns better for IO/DO constructions. Table 12 934

showcases perplexity dip on test sentences during 3 vs. 5 contextual sentence adaptation. Table 13 935

highlights classification accuracy of different models containing combination of features. Our results 936

indicate that adding Prev5-adaptive LSTM surprisal in the machine learning model above and beyond 937

every other features including Prev1-adaptive surprisal does not significantly boost prediction accuracy 938

for both IO- and DO-fronted subset. 939
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Type Baseline + Prev5 Adaptive
LSTM

DO 81.06 81.12
IO 89.65 89.73

Table 13: Prediction performance (Direct objects (DO: 1663 points), Indirect Objects (IO: 1353 points)); Baseline
denotes base1+g shown in Table 4; bold denotes McNemar’s two-tailed significance compared to baseline model
in the same row
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