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Full-precision floating-point neural image and video codecs pose significant challenges in power
consumption, storage requirements, and cross-platform interoperability, particularly when deployed
on resource-constrained devices. To address these issues, network quantization techniques have been
extensively studied for neural image codecs. However, the quantization of neural video codecs re-
mains largely unexplored. Unlike quantizing neural image codecs, quantizing neural videos codecs
requires significantly more effort. Many coding components operate on temporally correlated data
and often rely on features propagated from previous frames, introducing additional sensitivity to
both cross-platform round-off errors and quantization noise. This work presents the first systematic
study of quantization effects across multiple neural video coding frameworks and temporal buffer-
ing strategies. Extensive analyzes are conducted to evaluate how various combinations of coding
frameworks and temporal buffering strategies respond to various quantization schemes in terms of
coding performance and computational complexity. Experimental results confirm the superiority
of our mixed-precision quantization to fixed-precision quantization when they are incorporated into
state-of-the-art neural video codecs. At a time when the development of neural video codecs is tran-
sitioning from maximizing rate-distortion performance to addressing practicality issues, this work
offers holistic insights into key design considerations.

1 INTRODUCTION

State-of-the-art neural video codecs (NVCs) have demonstrated superior performance than tradi-
tional codecs (e.g. HEVC/H.265 and VVC/H.266). The coding gains, however, come at the cost
of increased model size, higher computational complexity, larger temporal buffers, and other prac-
ticality issues. The development of NVCs is entering a critical stage in which the focus shifts from
maximizing coding performance to addressing practicality challenges. The first challenge is cross-
platform interoperability (Ballé et al., 2019). Like neural image codecs, neural video codecs typi-
cally rely on floating-point arithmetic, which can produce platform-dependent variations in output.
Temporal drifting errors may thus arise when encoding and decoding occur on distinct platforms.
This is because even minor numerical perturbations in each decoded video frame can propagate and
accumulate over time via inter-frame prediction, leading to significant quality degradation in the
decoded video, as illustrated in Fig. 1a. The second challenge is the high memory access overhead.
Fig. 1b depicts a typical implementation of video codecs, traditional or neural, on resource-limited
devices. It adopts an on-chip, block/patch-based processing pipeline while storing temporally propa-
gated information for motion compensation and inter-frame prediction in off-chip memory. In prac-
tical deployment scenarios, neural video codecs involve frequent access to such a temporal buffer,
making memory operations highly energy-intensive. Power dissipation can become prohibitively
high (Perleberg et al., 2024). Although intermediate features in a neural network-based autoencoder
can impose high memory access demands, this issue can be largely mitigated by the block/patch-
based processing pipeline (Fig. 1b). By decomposing intermediate features into blocks/patches for
on-chip processing, this approach eliminates the need for their off-chip storage.

One of the most effective ways to address these challenges is by applying neural network quantiza-
tion. Quantization in this context refers to representing neural networks, originally in 32-bit floating-
point precision (FP32), using lower bit-width formats, such as 16-bit integers (INT16) (Kuzmin
et al., 2022; Nagel et al., 2021b). There are two primary approaches to quantizing neural networks:
post-training quantization (PTQ) and quantization-aware training (QAT). When proprietary training
data and recipes are unavailable, PTQ applies quantization to a pretrained model without modifying
the training process, offering simplicity and low computational cost, though sometimes at the ex-
pense of the model’s capability. In contrast, QAT incorporates quantization into the training process,
allowing the model to learn and compensate for quantization-induced errors. QAT typically yields
better performance than PTQ, especially with low bit-widths (Kuzmin et al., 2022).
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(a)

(b)

Figure 1: (a) Comparison of video encoding and decoding on the same versus different platforms.
Top-right: decoding is conducted on the same platform as encoding. Bottom-right: decoding is
conducted on a different platform than encoding. (b) Patch-wise processing pipeline.

Unlike quantizing neural image codecs, quantizing neural videos codecs requires significantly more
effort due to inter-frame dependencies. Typically, video codecs must not only reconstruct individ-
ual frames, but also accurately model motion and temporal dependencies across frames. As such,
the encoding/decoding components operate on temporally correlated data and often rely on features
propagated from previous frames, which introduces additional sensitivity to both cross-platform
round-off errors and quantization noise. Consequently, errors introduced in earlier stages of decod-
ing can propagate and accumulate over time, leading to severe quality degradation. Therefore, it is
essential to also quantize the variational autoencoder (VAE) decoding path to ensure consistency and
preserve reconstruction quality, beyond just quantizing the hyperprior decoding path as is common
in neural image codecs. Quantization offers several advantages for learned video codecs. On the
one hand, it reduces the computational complexity of operations, lowers memory access demands,
and promotes cross-platform consistency by minimizing the effects of floating-point variability. On
the other hand, lowering numerical precision can introduce quantization errors that degrade coding
performance. This trade-off depends on the choice of quantization bit-width. Higher bit-widths pro-
vide greater precision, but lower bit-widths reduce complexity and power requirements. Selecting
an appropriate bit-width is essential to balancing between coding efficiency and computational cost.

While quantization has been extensively studied in the context of neural image compression, its
application to neural video codecs remains largely underexplored. There is limited understanding
of how to effectively quantize the diverse and temporally interdependent components in a video
decoder. Notably, this work is not restricted to a specific codec design, but rather aims to provide
insights that generalize across different coding frameworks and temporal buffering strategies. While
each individual component may be implemented in various ways, we adopt those from the state-
of-the-art DCVC-FM (Li et al., 2024) in order to derive most meaningful insights into future codec
development; moreover, our analysis ensures that various coding frameworks share similar compo-
nents in order to assess fairly their merits and faults. We experiment with both PTQ and QAT using
uniform quantizers, which are broadly supported across modern compute platforms. Specifically,
our work has the following unique contributions.

(1) We analyze multiple neural video coding frameworks and temporal buffering strategies to ex-
amine how quantization affects their coding performance across a wide range of bit-widths. (2) We
conduct extensive analyses to assess how each decoding component responds to quantization effects.
(3) Based on these analyses, we explore a mixed-precision quantization scheme for various coding
variants to strike a balance between coding efficiency and computational complexity. Experimental
results confirm the superiority of mixed-precision quantization to fixed-precision quantization when
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Table 1: Comparison with prior methods.

Codecs Coding
Frameworks Temporal Buffers Component-wise

analysis
Mixed Precision

PTQ
Sub-16 bit

Quantization
MobileNVC RC Explicit × × ✓
DCVC-RT CC Implicit × × ×
Ours CC, MCR Explicit, Implicit, Hybrid ✓ ✓ ✓

they are incorporated into state-of-the-art NVCs. To the best of our knowledge, this work represents
the first systematic study of quantization effects on neural video codecs from a holistic perspective.

2 RELATED WORK

Quantization in neural image and video codecs plays a crucial role in reducing memory and power
consumption, as well as ensuring cross-platform interoperability, while maintaining high coding
performance. Prior works on neural image codecs (Johannes Ballé, 2019; Esin Koyuncu & Kaup,
2022) demonstrate that quantizing the weights and activations of hyperprior components can effec-
tively mitigate decoding errors. In Koyuncu et al. (2024), it is shown that applying post-training
quantization (PTQ) to the entire decoder can achieve bit-exact results for cross-platform operations.
However, using uniform precision across all coding components often leads to suboptimal coding
performance. Heming Sun (2020) perform quantization on individual weight groups, achieving a
75% reduction in model size compared to the FP32 baseline. Mixed-precision quantization (Hossain
et al., 2024) has also been proposed to balance computational complexity and coding efficiency.

Although quantization has been widely explored in neural image codecs, limited research has ad-
dressed quantization strategies for different video coding frameworks or the sensitivity of individual
decoding components. Most existing approaches apply uniform quantization schemes. For exam-
ple, MobileNVC (van Rozendaal et al., 2024) applies 8-bit quantization to both weights and activa-
tions of the inter-frame encoder and decoder using a multi-stage process—incorporating PTQ and
QAT—based on the AIMET framework (Nagel et al., 2021a; Siddegowda et al., 2022), with a focus
on mobile deployment. However, this approach yields limited coding performance. Conceição et al.
(2025) investigated cross-platform round-off errors in the SSF compression framework (Agustsson
et al., 2020) and mitigated them by introducing 8-bit quantization in the hyperprior decoder, imple-
mented using the PyTorch quantization framework. A more recent method, DCVC-RT (Jia et al.,
2025), quantizes both decoder weights and activations to 16-bit integers (INT16), achieving de-
terministic inference across platforms. Nevertheless, the impact of lower precision (sub-16-bit)
quantization on coding performance across different coding frameworks remains an open issue. Ta-
ble 1 summarizes the key differences between this and other prior works in terms of their scopes
and quantization approaches. RC, CC and MCR refer to Residual Coding, Conditional Coding, and
Masked Conditional Residual Coding, respectively (Fig. 2).

3 NEURAL VIDEO CODECS

3.1 LEARNED VIDEO CODING FRAMEWORKS

The incorporation of temporal correlation in inter-frame codec design has evolved into four
mainstream approaches: (1) residual coding (RC), (2) conditional coding (CC), (3) conditional
residual coding (CRC), and (4) masked conditional residual coding (MCR). Early learned video
codecs (Agustsson et al., 2020; Hu et al., 2021; Lu et al., 2020; Lin et al., 2020; Liu et al., 2020; Lu
et al., 2019; Yang et al., 2020) predominantly follow RC (see Fig. 2a), which adopts the same inter-
frame coding principle as traditional video codecs. That is, it performs a linear temporal prediction
of the current coding frame xt based on a temporal predictor xc, generated by motion compensating
a previously decoded reference frame x̂t−1.

Instead of forming a linear prediction of xt, CC (Ho et al., 2022; Hu et al., 2022; Ladune et al., 2020;
Li et al., 2021; 2022; 2023; 2024; Sheng et al., 2023; 2024a;b; Shi et al., 2022) (Fig. 2b) replaces
linear temporal prediction with a potentially non-linear approach. It achieves this by providing
the (motion-compensated) reference frame or its features as the condition signal to the inter-frame
encoder/decoder. The way the reference frame utilized for coding xt is learned from data, imposing
no restrictions on whether the prediction is linear or non-linear. Although CC has been adopted by
many state-of-the-art NVCs, it may be susceptible to the bottleneck issue (Brand et al., 2022).

To overcome the bottleneck issue, CRC (Brand et al., 2024) (see Fig. 2c) introduces a novel approach
that blends the strengths of RC and CC. It encodes the prediction residue xt−xc using a conditional
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Figure 2: Illustration of neural video coding frameworks, categorized by how temporal correlation
is utilized in the inter-frame codec. Each coding framework contains a inter-frame main codec
Genc/Gdec, a hyperprior codec Henc/Hdec, a motion codec F enc/F dec, a motion estimation net-
work, a prediction network, and a temporal buffer. For brevity, some components are omitted. The
details of these network architectures are available in the supplementary material.

Figure 3: Illustration of temporal buffering strategies for inter-frame coding.

inter-frame codec that takes x̃c as the condition signal. Similar to RC, it updates xc on the decoder
side with the decoded residue to reconstruct xt. Furthermore, conditioned on x̃c, the prediction
residue xt − xc is coded more efficiently. In Brand et al. (2024), when xc forms a good prediction
of xt, CRC is superior to CC. The coding efficiency of CRC relies heavily on the assumption that
xc provides an accurate prediction of xt. However, this assumption can break down in regions with
complex motion or dis-occlusion, causing CRC to perform worse than CC. To mitigate this issue,
MCR (Chen et al., 2024b) (see Fig. 2d) introduces a soft mask m that adaptively blends CRC and
CC at the sub-frame level.

3.2 TEMPORAL BUFFERING STRATEGIES

To leverage temporal correlation for coding a video frame xt, learned video codecs store either
pixel-domain frames or latent-domain features to assist with subsequent frame coding. In the former
case, the previously decoded frame x̂t (Agustsson et al., 2020; Brand et al., 2022; 2024; Chen et al.,
2024a;b; Ladune et al., 2020; Li et al., 2021; Liu et al., 2020), or even more frames (Lin et al., 2020),
is explicitly buffered as a reference frame. In contrast, the latter propagates latent features used for
reconstructing xt (Li et al., 2023; 2024; Sheng et al., 2023; 2024a). Since these latent features
are learned completely from training video sequences, there is little control of what information is
stored, making their content inherently non-explainable. We term the buffer storing these features
as the implicit buffer, as opposed to the explicit buffer that stores decoded frames.

In Fig. 3, we further illustrate how these buffering strategies differ by conceptualizing them as dis-
tinct approaches to constructing recurrent neural networks (RNN) along the temporal dimension for
video coding in a rate-distortion sense. To see this, we note that the coding frameworks in Fig. 2
all process input video frame-by-frame. Each input video frame is first transformed by an encoder
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network into its latent representation and entropy encoded into a bitstream, followed by reconstruct-
ing it approximately by a decoder network. As a sequence-to-sequence mapping, the successive
inter-frame coding process forms an RNN that encodes video frames one at a time, producing re-
constructed frames that closely resemble the originals. At first glance, simply replicating an input
sequence as output in an RNN appears trivial. However, in the context of video coding, the challenge
lies in minimizing the entropy rate of quantized frame latents while maximizing the reconstruction
quality of decoded frames. Encoding input frames individually–akin to intra coding–is feasible yet
inefficient; the key to rate-distortion optimized video coding is to leverage and propagate temporal
information from past frames to exploit inter-frame correlations effectively.

With this conceptualization of RNN, the explicit buffering strategy (Fig. 3a can be viewed as an
RNN with only a output-recurrence connection. That is, it involves the previously decoded frame
as the only source of past information when generating latents for the current coding frame. In
contrast, the implicit strategy (Fig. 3b) relies solely on a ”hidden-to-hidden” connection without
the output-recurrence connection. It stores and updates only the latent, multi-channel features as a
mechanism for propagating past information. As noted in (Goodfellow et al., 2016), an RNN with
only the output-recurrence connection has a limited capacity for signal representation. This lim-
itation arises because the reconstructed frame x̂t−1 must not only approximate the corresponding
input frame xt−1, but also serve as a surrogate summarizing the past information. These dual objec-
tives may conflict. Likewise, an RNN with only the hidden-to-hidden connection is suboptimal as it
misses the opportunity to exploit the decoded frames, which often correlate strongly with the current
coding frame. Goodfellow et al. (2016) also highlights that combining both output-recurrence and
hidden-to-hidden connections in an RNN is theoretically more effective than using either alone, as
it integrates the advantages of both—namely, leveraging decoded frames without introducing dual
objectives on reconstructed frames. In this work, we also explore a hybrid approach that merges
explicit and implicit buffering strategies for inter-frame coding, as illustrated in Fig. 3c. This ap-
proach incorporates both the decoded frame x̂t−1 and hidden features Ft−1 to generate latents for
the input frame xt. We remark that buffering strategies and coding frameworks are two orthogonal
aspects. The four frameworks shown in Fig. 2 can be paired with any of the three buffering strate-
gies in Fig. 3, Fig. 3, although some combinations are more commonly used than the others. some
combinations are more commonly used than the others.

3.3 SCOPE AND LIMITATIONS

This work presents the first systematic attempt to examine quantization effects across modern neural
video coding frameworks and temporal buffering strategies. We focus on integrating modern coding
frameworks (e.g., conditional coding and masked conditional residual coding) with state-of-the-art
component designs from the representative DCVC-FM to provide meaningful insights for future
codec development. Both PTQ and QAT use uniform quantization, which is widely supported by
existing compute platforms (Nagel et al., 2021a; van Rozendaal et al., 2024; Jia et al., 2025). In
contrast, codec-specific non-uniform quantization falls outside our scope due to its limited hard-
ware support. Specifically, we experiment with MSE-based and min-max uniform quantizers as
in Jia et al. (2025) and van Rozendaal et al. (2024), and adopt publicly available training setups and
datasets. Last but not least, generalizing our findings to the full spectrum of quantization methods
and network architectures for individual components is inherently challenging and is not our intent.

4 QUANTIZING NVCS: A CASE STUDY WITH MCR AND CC

We use MCR and CC as a case study to examine the impact of quantization on neural video codecs.
We choose these two coding frameworks because MCR is an emerging, new coding framework,
while CC is the current mainstream approach to modern neural video coding. First, we assess the
sensitivity of the decoder components to quantization. Our investigation focuses on the decoder;
we want to ensure bit-exact video reconstruction across different deployment platforms to avoid
temporal drifting errors. Next, we analyze how quantization affects activations and network weights,
evaluating their impacts on coding performance degradation. Finally, we examine the influence of
quantization on the coding performance of the three temporal buffering strategies for inter-frame
coding when integrated with MCR and CC.

4.1 EXPERIMENT SETTINGS

Coding variants and notation: We consider 2 coding schemes (MCR and CC) along with 3 tem-
poral buffering strategies (Explicit, Implicit and Hybrid). All variants share a similar compression
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(a) (b)
Figure 4: Visualization of the BD-rate increases due to PTQ. (a) Quantizing all decoder components
of MCR-Hybrid to sub-16 bit-widths. (b) The component-wise analysis of quantizing MCR-Hybrid
and CC-Hybrid to W8A10. The FP32 counterparts serve as anchors.

backbone derived from DCVC-FM (Li et al., 2024). Additional implementation details are available
in the supplementary material.

Evaluation Metrics: We assess quantization effects by reporting BD-rate increases relative to a
FP32 implementation across four widely used datasets, including UVG (Mercat et al., 2020), MCL-
JCV (Wang et al., 2016), HEVC Class B–E (Bossen et al., 2013), and HEVC-RGB (Flynn et al.,
2013). Each test sequence is encoded for the first 96 frames with an intra period of 32. Experimental
results with an intra-period of -1 are reported in the supplementary material. Following the common
practice, we adopt BT.601 for color space conversion between YUV420 and RGB444, with all tested
codecs operating in the RGB domain. Additional results for BT.709, which is used in Li et al. (2023;
2024), are provided in the supplementary material. To avoid padding and ensure fair comparisons,
each frame is cropped so that its width and height are multiples of 64. Intra coding is applied at
scene cuts across all methods. We report PSNR in the RGB domain and bitrate in bits per pixel
(bpp). BD-rate is computed by averaging per-frame PSNR-RGB and bpp across all encoded frames
to generate a dataset-specific rate-distortion point. The average BD-rates across all test datasets are
reported. Negative and positive BD-rate numbers suggest rate reduction and inflation, respectively.
All codecs are trained with the Vimeo90k (Xue et al., 2019) and BVI-DVC (Ma et al., 2021) datasets,
following similar training protocols. The training details are in the supplementary material.

Quantization methods: We conduct experiments using PTQ and QAT, applying both approaches
separately at each rate point for weights and activations. PTQ adopts a mean square error (MSE)-
based configuration, using the Vimeo90k dataset for calibration. The number of calibration samples
follows the standard practice outlined in Nagel et al. (2021a). For QAT finetuning, we adopt both
the BVI-DVC (Ma et al., 2021) and Vimeo90k (Xue et al., 2019) datasets. Unless otherwise speci-
fied, PTQ is used as the default quantization method. The FP32 codecs are implemented with 32-bit
floating-point arithmetic without quantizing weights and activations. To report BD-rates for low-
precision codecs, the corresponding FP32 implementations are used as anchors. To facilitate eval-
uation on floating-point hardware, all results are obtained through quantization simulation (Nagel
et al., 2021a). Following Nagel et al. (2021a), we employ symmetric per-channel quantization for
weights and asymmetric per-tensor quantization for activations.

4.2 THE SENSITIVITY OF DECODER COMPONENTS TO QUANTIZATION

As shown in Fig. 4a, the MCR-Hybrid variant broke down under W10A10 (10 bits for network
weights and 10 bits for activations) and W8A10 quantization. This section investigates the quan-
tization sensitivity of each decoding component in a challenging scenario (W8A10), quantified by
BD-rate increases relative to the FP32 anchor (see Section 4.1). The sensitivity is assessed by solely
quantizing a single decoding component into W8A10 while the remaining components (in both en-
coder and decoder) adopt the FP32 format. We decompose the decoder into four components: the
inter-frame main decoder (I), hyperprior decoder (H), motion decoder (M), and prediction network
(P) (which refers collectively to the motion compensation network and condition generation net-
work). Results are reported exclusively for MCR-Hybrid and CC-Hybrid using the 5-channel buffer
(B=5), while the results for the other variants (i.e. MCR-Implicit, MCR-Explicit, CC-Implicit, and
CC-Explicit) are provided in the supplementary material. We make the following observations.

(1) Inter-frame main decoder exhibits the highest sensitivity to quantization. Fig. 4b shows
that in MCR-Hybrid, the inter-frame decoder exhibits the highest sensitivity to quantization, as
indicated by its large BD-rate increase, followed by the prediction network. This is because both
components play a direct role in reconstructing video frames. As depicted in Fig. 2d, the prediction
network generates both the conditional signal x̃c for the conditional residual decoder Gdec and the
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Table 2: Effects of PTQ on each decoder component in MCR-Hybrid and CC-Hybrid, with the
respective FP32 configurations serving as anchors.

(a) Effect of quantizing activations (A) for each decoder component.
MCR-Hybrid CC-Hybrid

FP32 W16A14 W16A12 W16A10 W16A8 FP32 W16A14 W16A12 W16A10 W16A8
Inter-frame main decoder

0.0
(Anchor)

0.2 1.5 10.1 -
0.0

(Anchor)

0.5 1.3 9.7 -
Prediction 0.0 0.1 3.0 - 0.2 0.2 1.3 -
Motion decoder 1.0 2.2 5.1 - 0.4 0.8 5.6 -
Hyperprior decoder 0.0 0.2 1.5 - 0.1 0.4 1.7 -

(b) Effect of quantizing network weights (W) for each decoder component.
MCR-Hybrid CC-Hybrid

FP32 W14A16 W12A16 W10A16 W8A16 FP32 W14A16 W12A16 W10A16 W8A16
Inter-frame main decoder

0.0
(Anchor)

- 0.1 0.1 1.8
0.0

(Anchor)

- 0.3 0.9 6.3
Prediction - 0.1 0.6 3.7 - 0.1 0.4 4.2
Motion decoder - 1.0 1.0 1.1 - 0.4 0.4 0.4
Hyperprior decoder - 0.0 0.0 0.0 - 0.1 0.1 0.5

Table 3: Effects of PTQ and QAT on decoder components in MCR-Hybrid and CC-Hybrid, with the
respective FP32 configurations serving as anchors.

Precision Quantization
Method

MCR-Hybrid CC-Hybrid
I P M H I P M H

W8A16 PTQ 1.8 3.7 1.1 0.0 6.3 4.2 0.4 0.5
QAT 0.6 0.8 0.3 0.2 0.0 0.3 0.5 -0.3

W16A10 PTQ 10.1 3.0 5.1 1.5 9.7 1.3 5.6 1.7
QAT 5.6 2.6 2.5 0.0 4.7 1.4 3.2 0.1

9

temporal predictor xc. Subsequently, xc is updated by the output of Gdec, which needs to decode the
residual signal via a non-linear synthesis transform. Additionally, quantization errors in the motion
decoder lead to motion errors, degrading the quality of xc, x̃c and thereby increasing the bitrate.
The hyperprior is the least sensitive to quantization (1.5% BD-rate increase), suggesting that it is
amenable to lower precision quantization. CC-Hybrid exhibits a similar trend. However, unlike
MCR-Hybrid, the inter-frame main decoder in CC-Hybrid is more severely affected by quantization
than the other components. This is because the inter-frame main decoder Gdec must reconstruct xt

directly, rather than residual signals as in MCR-Hybrid (see Fig. 2b).

Tables 2a and 2b present an analysis to assess the sensitivity of activations and network weights in
each decoder component to quantization. In Table 2a (respectively, 2b), we report BD-rate increases
when varying the precision of quantization applied only to the activations (respectively, network
weights) of a single decoder component. All remaining components are kept at 32-bit floating point.

(2) Activations are more sensitive to quantization than network weights. This finding is consis-
tent across MCR-Hybrid and CC-Hybrid. A significant coding performance decline is observed
when activations, particularly those of the inter-frame main decoder, are quantized to 10 bits,
whereas network weights experience a noticeable coding performance drop with 8-bit quantization.

(3) The inter-frame main decoder in CC-Hybrid requires higher-precision network weights
than in MCR-Hybrid. From Table 2b, 8-bit quantization of network weights results in a significant
coding performance loss in CC-Hybrid, whereas MCR-Hybrid remains largely unaffected. This
is due to its conditional coding design (see Fig. 2b), where the conditional decoder must directly
output the reconstructed frame rather than residual signals as in MCR-Hybrid. Consequently, a
higher-capacity inter-frame decoder is required.

(4) QAT effectively mitigates the performance drop caused by weight quantization. Table 3
shows that the performance gap introduced by W8A16 quantization under PTQ can be substantially
mitigated through QAT. Notably, the inter-frame main decoder exhibits no significant degradation
when quantized with QAT. This suggests that the low-precision weights can be effectively adapted
to quantized activations, thereby compensating for potential losses in coding performance.

(5) The activations of the inter-frame main decoder remains critical even with QAT. Table 3
further indicates that while QAT alleviates the performance loss under W16A10, quantization of the
inter-frame main decoder still leads to notable degradation. This confirms that the activations of the
inter-frame main decoder require high precision to maintain coding performance.
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Table 4: The BD-rate comparison of different temporal buffering strategies under PTQ, with the
respective Hybrid FP32 configurations serving as anchors.

Coding Schemes MCR CC
Buffer Hybrid Implicit Explicit Hybrid Implicit Explicit
FP32 0.0 (Anchor) 8.3 9.3 0.0 (Anchor) 7.9 19.1
INT8 0.6 10.5 10.0 0.5 10.8 19.6
BDR (INT8) - BDR (FP32) 0.6 2.2 0.7 0.5 2.9 0.5

Table 5: The BD-rate comparison of MCR-Hybrid and MCR-Implicit with varying buffer sizes (B
= X) after PTQ. “X” denotes the number of channels of full-resolution feature maps for inter-frame
coding. The anchor is MCR-Hybrid FP32 with a buffer size of 5.

Buffering Scheme Hybrid (B=5) Hybrid (B=51) Implicit (B=5) Implicit (B=51)
FP32 0.0 (Anchor) -0.9 8.3 1.8
INT8 0.6 0.8 10.5 3.8

4.3 IMPACT OF QUANTIZATION ON TEMPORAL BUFFERING STRATEGIES

This experiment evaluates the impact of temporal buffer quantization on the coding performance
of the three buffering strategies: Hybrid, Explicit, and Implicit. In this experiment, all coding
components are kept at 32-bit floating-point when the quantization precision for the temporal buffer
is varied across six coding variants: MCR-Hybrid, MCR-Implicit, MCR-Explicit, CC-Hybrid, CC-
Implicit, and CC-Explicit. From Table 4, we arrive at the following finding:

(6) Hybrid is superior to Implicit and Explicit in the presence of temporal buffer quantization.
This is evident from the large positive BD-rates of Implicit and Explicit, with Hybrid serving as
the anchor. As discussed in Section 3.2, Hybrid employs an RNN structure that incorporates both
hidden-to-hidden and output-recurrence connections, theoretically offering greater expressiveness
than structures that utilize only hidden-to-hidden (Implicit) or output-recurrence (Explicit) connec-
tions. Furthermore, Implicit experiences slightly greater coding loss when the quantization precision
is reduced from FP32 to INT8. Table 5 further reports results for two buffer sizes: 5 channels (B=5)
and 51 channels (B=51). This experiment is conducted exclusively for Hybrid and Implicit with
MCR, in order to see which of the two is more efficient in terms of buffer usage.

(7) Hybrid (B=5) achieves better coding performance than Implicit (B=51), despite utilizing
a smaller buffer size and buffer quantization. This confirms that Hybrid is more efficient in
terms of buffer usage. Notably, Hybrid leverages the prior knowledge that the last reconstructed
frame x̂t−1 is highly correlated with the current coding frame xt. Therefore, it only needs to learn
a few additional latent features for prediction. In contrast, Implicit relies purely on data-driven
learning, often resulting in non-compact features with high-precision requirements. With Implicit,
a substantial BD-rate gap is observed between the 5-channel and 51-channel configurations, a trend
that does not occur in Hybrid.

4.4 MIXED-PRECISION QUANTIZATION FOR MCR-HYBRID DECODER

Previous sections have shown that different decoder components exhibit varying degrees of sensi-
tivity to quantization. To achieve a better rate-distortion-complexity, we focus on exploring mixed-
precision quantization for the MCR-Hybrid (B=5), assigning higher precision to components that
are more sensitive to quantization and lower precision to those that are less sensitive. Specifically,
based on our quantization analyses of the activations, weights, and temporal buffer in Tables 2 and
Table 4, we identify the minimum precision of activations and network weights precision for each
components configurations. We employ QAT to maintain acceptable coding performance of the
quantized codecs. The precision settings of individual components under the mixed-precision quan-
tization scheme for the MCR-Hybrid (B=5) and CC-Hybrid (B=5) decoder are provided in the sup-
plementary material. Admittedly, this approach does not account for interactions between decoder
components when determining their bit-widths, leaving ample room for further optimization. Even
with this ad-hoc strategy, we observe a clear improvement in the complexity-performance trade-off.

Table 6 presents a comprehensive analysis of its coding efficiency and complexity, contrasting the
configuration with mixed-precision quantization (w/ MP) against the full-precision FP32 model (w/o
MP). In Table 6, Decoder BO (G/pixel) measures the number of bit operations (Mart van Baalen,
2020) per pixel of decoding components while Weighted Peak Memory quantifies the largest feature
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Table 6: The complexity and coding performance analysis for MCR-Hybrid B=5 mixed-precision
quantization. ”w/ MP” denotes mixed-precision quantization with QAT. ”w/o MP” is the FP32
model. WPM: Weighted Peak Memory. Refer to Section 4.4 for details on the complexity metrics.

Setting Decoder BO
(G/pixel)

WPM
(Channels)

Buffer size
(Channels)

Model Size
(MB) BD-Rate

w/o MP 0.89 192 7.875 63.20 0.0 (Anchor)
w/ MP 0.12 84 2.476 29.78 3.5
Savings 87% 51% 69% 53% -

Table 7: The complexity and coding performance comparison with the SOTA learned video codecs.
The anchor is VTM 17.0 (Low-delay B). Refer to Section 4.4 for details on the complexity metrics.

Methods Decoder BO
(G/pixel)

WPM
(Channels)

Buffer size
(Channels)

Model Size
(MB) BD-Rate

DCVC-FM (FP32) 0.89 192 51.75 69.95 -19.1
DCVC-FM (Dec. W8A16) 0.14 96 25.875 24.17 -10.2
DCVC-RT (FP16) 0.04 20 2 39.47 5.0
DCVC-RT (Dec. W8A16) 0.02 20 2 22.38 25.9
MCR-Hybrid B=5 (FP32) 0.89 192 7.875 63.20 -26.4
MCR-Hybrid B=5 (Dec. W8A16) 0.12 96 3.938 27.55 -18.0
MCR-Hybrid B=5 (Dec. MP, PTQ) 0.12 84 2.476 29.78 -21.7
MCR-Hybrid B=5 (Dec. MP, QAT) 0.12 84 2.476 29.78 -23.7

size, measured by the number of 32-bit full-resolution feature maps. Buffer Size (Chen et al., 2024b)
is expressed as the number of 32-bit full-resolution feature maps stored in the buffer. Model Size
refers to the total number of bytes used for network parameters. Decoding time is not reported,
since the quantization is simulated in a floating-point computation environment, and the measured
decoding time does not reflect the actual reduction achieved by quantization. Further discussion
about the complexity is included the supplementary material. The full resolution refers to the spatial
resolution, W×H , of the input video frame. MCR-Hybrid benefits from the MP schemes, achieving
improvements of 51% to 87% over the baseline without MP, albeit at the cost of a 3.5% increase in
BD-rate.

4.5 COMPARISON WITH STATE-OF-THE-ART NEURAL VIDEO CODECS

This section presents a comparison of the rate-distortion performance between state-of-the-art NVCs
and MCR-Hybrid (B=5) in the presence of quantization. Following a quantization scheme (Koyuncu
et al., 2024) designed for JPEG-AI, we quantize the decoder with W8A16. Additionally, the mixed-
precision quantization introduced in the previous section is applied to MCR-Hybrid (B=5) to validate
the effectiveness. The encoder-only components remain at 32-bit floating point. Table 7 summa-
rizes the complexity characteristics of these codecs. Notably, the mixed quantization approach de-
scribed in Section 4.4 outperforms W8A16 at a similar complexity level for MCR-Hybrid. With the
mixed quantization, MCR-Hybrid (B=5, Dec. MP, PTQ) achieves comparable coding performance
to DCVC-FM (FP32), yet requires significantly lower complexity across multiple metrics. QAT
further improves the performance of MP schemes. The low-complexity codec DCVC-RT achieves
the minimal decoder BO, weighted peak memory, and buffer size; however, it incurs a substantial
performance drop with W8A16 compared with MCR-Hybrid B=5 (Dec. W8A16) under the same
settings.

5 CONCLUSION

This work presents the first systematic study of quantization effects across multiple neural video
coding frameworks and temporal buffering strategies. We contrast these coding frameworks and
conceptualize the temporal buffering strategies as distinct ways of creating an RNN along the tem-
poral dimension for video coding. Extensive analyzes are conducted to understand how these coding
frameworks, when combined with various temporal buffering strategies, respond to quantization.
Our major findings are as follows: (1) the inter-frame main decoder exhibits the highest sensitivity
to quantization, (2) the hybrid buffering strategy is superior to the implicit and explicit variants in
terms of coding efficiency and buffer usage, (3) CC requires a higher-precision inter-frame decoder
than MCR, and (4) mixed-precision quantization is able to strike a better balance between coding
performance and complexity than fixed-precision quantization. These conclusions hold ture for both
PTQ and QAT.
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Théo Ladune, Pierrick Philippe, Wassim Hamidouche, Lu Zhang, and Olivier Déforges. Modenet:
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6 APPENDIX

This supplementary document provides the following additional materials and results to assist with
the understanding of our work: On the Quantization of Neural Video Codecs.

• Notations for different coding variants in Section 6.1;
• BD-rate comparisons among coding variants in Section 6.2;
• Suggested precision in Section 6.3;
• Complexity metrics in Section 6.4;
• Complexity analysis for MCR-Hybrid and CC-Hybrid in Section 6.5;
• More rate-distortion comparisons with state-of-the-art methods in Section 6.6;
• Additional results on the sensitivity of decoder components are reported in 6.7;
• Different quantization schemes in Section 6.8;
• Configurations of VTM 17.0 in Section 6.9;
• Training details in Section 6.10;
• Detailed architectures in Section 6.11;
• License of Assets in Section 6.12;
• Use of Large Language Models in Section 6.13;

6.1 NOTATIONS FOR DIFFERENT CODING VARIANTS

Table 8 summarizes the notation used for these variants.

6.2 COMPARISONS OF BD-RATE AMONG CODING VARIANTS

Table 9 presents the coding performance of different variants mentioned in the main paper.

6.3 SUGGESTED PRECISION

As an example, to select the minimum bit-width for the inter-frame main decoder, we identify the
activation and weight configurations that result in a BD-rate increase of less than 1.0%. For instance,
Table 2a shows that 14-bit activation quantization (i.e. W16A14) satisfies this criterion. Similarly,
Table 2b suggests that 10-bit weight quantization (i.e. W10A16) is a suitable choice. Based on these
findings, we adopt W10A14 quantization for the inter-frame main decoder in Table 10.

6.4 COMPLEXITY METRICS

As discussed in Section 4.4 in the main paper, the complexity of the quantized codec is measured in
various metrics including Decoder bit operations (BO) (Mart van Baalen, 2020) per pixel, Weighted
Peak Memory, Buffer size, and Model size.

Decoder BO per pixel: the total number of bit operations is calculated similarly to (Mart van
Baalen, 2020), as such: BO =

∑L
i=1 bits(l

w
i )bits(l

a
i )MAC(li) where bits(lwi ), bits(l

a
i ) represent

the bit-widths of the weights and activations for layer li.

Weighted Peak Memory: The Weighted Peak Memory (WPM) is computed by measuring the
largest feature size in terms of the number of 32-bit full-resolution feature maps. For example,
without quantization, the largest feature size in CC-Hybrid belongs to the inter-frame main decoder
occupies 192 32-bit full-resolution feature maps. When quantizing the activations of the inter-frame
main decoder to INT14, the corresponding WPM is 84 (channels).

Buffer size: Buffer Size is expressed as the number of 32-bit full-resolution feature maps stored
in the buffer. For example, the FP32 MCR-Hybrid (B=5) variant buffers 2.375 channels for the
motion codec, 5 channels for the temporal buffer, and 0.5 channels for auxiliary information in the
hyperprior component, taking 7.875 channels in total.
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Model size: The model size is calculated as
∑L

i=1 bytes(l
w
i )Params(li).

6.5 COMPLEXITY ANALYSIS FOR MCR-HYBRID AND CC-HYBRID

The complexity savings for MCR-Hybrid and CC-Hybrid mixed-precision configurations are pre-
sented in Table 11. Further details on the complexity metrics can be found in Section 6.4.

6.6 MORE STATE-OF-THE-ART RESULTS

In this section, we provide additional rate-distortion performance comparisons with state-of-the-
art neural video codecs for BT.601 (see Fig. 5) and BT.709 (see Fig. 6) color space conversions.
Detailed BD-rate savings are shown in Tables 12 and 13. The trade-offs between complexity and
BD-rate savings for these methods in BT.601 and BT.709 color spaces are reported in Figs. 7 and 8.
Additionally, the rate-distortion performance with intra-period -1 can be found in Fig. 9, and the
corresponding BD-rate savings are detailed in Table 14.

6.7 ADDITIONAL ANALYSIS ON THE SENSITIVITY OF DECODER COMPONENTS

Additional results in Section and 4.3 for other variants (MCR-Implicit, MCR-Explicit, CC-Implicit,
CC-Explicit) are reported in Fig. 10,Fig. 11 and Table 15, 16.

6.8 DIFFERENT QUANTIZATION SCHEME

Table 17 provides different quantization schemes such as MSE and MinMax quantization.

6.9 VTM 17.0 CONFIGURATIONS VTM

Following the recommendation from Li et al. (2023), we encode videos in YUV444 format. We use
the encoder lowdelay vtm.cfg of VTM (vtm) with the following parameters:

–c {config file name}
–InputFile={input file name}
–InputBitDepth=8

–InputChromaFormat=444

–ChromaFormatIDC=444

–InternalBitDepth=10

–OutputBitDepth=8

–DecodingRefreshType=2

–FrameRate={frame rate}
–FrameSkip=0

–SourceWidth={width}
–SourceHeight={height}
–FramesToBeEncoded=96

–Level=4.1

–IntraPeriod=32

–QP={qp}
–BitstreamFile={bitstream file name}
–ReconFile={reconstruction file name}
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Figure 5: Rate-distortion performance comparison with state-of-the-arts video codecs under intra-
period 32 using BT.601 as colorspace.

6.10 TRAINING DETAILS

Tables 18, 19, and 20 present the training recipes for the coding variants discussed in the main paper,
following the setup described in Chen et al. (2024b). Variants that share the same buffering strategy
are trained using an identical procedure. To ensure a fair comparison, the final training stage for
all buffering strategies is extended until convergence. All training experiments are conducted on an
Intel(R) Xeon(R) Platinum 8480C processor with either an NVIDIA H200 or NVIDIA H100 GPU.

6.11 NETWORK ARCHITECTURE DETAILS

Fig. 12, 13, 14, 15, and 16 provide additional details on MCR-Hybrid and CC-Hybrid. Other
coding variants share similar components with MCR-Hybrid, and CC-Hybrid. The Entropy Model
in Fig.12, the Condition Network in Fig.14, and the Mask Generator in Fig.16 adopt the architecture
proposed in Chen et al. (2024b). The Refinement Network in Fig.12 follows the Frame Generator
design from Li et al. (2024).

6.12 LICENSE OF ASSETS USED

Table 21 summarizes the used assets in our work along with their license terms.

6.13 USE OF LARGE LANGUAGE MODELS

As the authors are not native speakers, we composed the sentences ourselves and use ChatGPT to
check the grammar and polish them.
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Figure 6: Rate-distortion performance comparison with state-of-the-arts video codecs under intra-
period 32 using BT.709 as colorspace.

Figure 7: Complexity-performance trade-offs in BT.601 colorspace. The complexity metrics include
the decoder BO, weighted peak memory, model size, and temporal buffer size. The vertical axis is
the BD-rate savings in terms of PSNR-RGB evaluated on all testing datasets with VTM 17.0 as an
anchor.

Figure 8: Complexity-performance trade-offs in BT.709 colorspace. The complexity metrics include
the decoder BO, weighted peak memory, model size, and temporal buffer size. The vertical axis is
the BD-rate savings in terms of PSNR-RGB evaluated on all testing datasets with VTM 17.0 as an
anchor.
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Figure 9: Rate-distortion performance comparison with state-of-the-arts video codecs under intra-
period -1 using BT.601 as colorspace.

Table 8: Notation of coding variants used in the experiments.

Variants Coding Schemes Buffer
MCR CC Explicit Implicit Hybrid

MCR-Explicit ✓ ✓
MCR-Implicit ✓ ✓
MCR-Hybrid ✓ ✓
CC-Explicit ✓ ✓
CC-Implicit ✓ ✓
CC-Hybrid ✓ ✓

Table 9: BD-rate (%) comparison of different coding variants (FP32) with the temporal buffer B=5
in terms of PSNR-RGB using BT.601 as colorspace. The anchor is MCR-Hybrid.

UVG HEVC-B HEVC-C HEVC-D HEVC-E HEVC-RGB MCL-JCV Avg.
MCR-Hybrid 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MCR-Implicit 10.6 6.6 5.8 5.7 16.6 8.7 4.6 8.4
MCR-Explicit 4.7 8.4 16.1 14.6 11.5 4.8 5.6 9.4
CC-Hybrid 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CC-Implicit 8.1 6.6 11.1 7.8 11.6 5.2 4.8 7.9
CC-Explicit 14.4 18.2 26.8 23.6 22.1 15.9 12.8 19.1

Table 10: Mixed-precision quantization for MCR-Hybrid and CC-Hybrid (B=5) decoders.

Model Components Inter-frame
main decoder Prediction Motion

decoder
Hyperprior

decoder Buffer

MCR-Hybrid W-bits 10 10 10 8 -
A-bits 14 12 14 12 8

CC-Hybrid W-bits 10 10 8 8 -
A-bits 14 12 12 12 8

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 10: Visualization of the BD-rate increases due to quantization. The component-wise analysis
of quantizing MCR-Explicit and CC-Explicit to W8A10. The BD-rate increases are measured with
the FP32 counterparts serving as anchors.

Figure 11: Visualization of the BD-rate increases due to quantization. The component-wise analysis
of quantizing MCR-Implicit and CC-Implicit to W8A10. The BD-rate increases are measured with
the FP32 counterparts serving as anchors.

Table 11: The complexity and coding performance analysis for MCR-Hybrid B=5 and CC-Hybrid
B=5 mixed-precision quantization. ”w/ MP” denotes mixed-precision quantization. ”w/o MP” is
the FP32 model. WPM: Weighted Peak Memory. Refer to Section 6.4 for details on the complexity
metrics.

Method Setting Decoder BO
(G/pixel)

WPM
(Channels)

Buffer size
(Channels)

Model Size
(MB) BD-Rate

MCR-Hybrid
w/o MP 0.89 192 7.875 63.20 0.0 (Anchor)
w/ MP 0.12 84 2.476 29.78 3.5
Savings 87% 51% 69% 53% -

CC-Hybrid
w/o MP 0.83 192 7.875 62.4 0.0 (Anchor)
w/ MP 0.11 84 2.328 28.8 2.3
Savings 87% 51% 70% 54% -
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Table 12: BD-rate (%) comparison with state-of-the-arts video codecs under intra-period 32 using
BT.601 as colorspace.

UVG HEVC-B HEVC-C HEVC-D HEVC-E HEVC-RGB MCL-JCV Avg.
VTM (LDB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DCVC-FM (FP32) -23.7 -10.2 -5.3 -26.9 -29.4 -18.4 -19.7 -19.1
DCVC-FM (Dec. W8A16) -12.7 -5.1 -1.5 -23.6 -6.4 -9.8 -13.1 -10.3
DCVC-RT (FP16) -12.6 9.5 31.3 9.0 -11.3 -5.4 14.8 5.0
DCVC-RT (Dec. W8A16) 1.0 28.9 43.8 25.2 43.1 3.5 35.7 25.9
MCR-Hybrid B=5 (FP32) -33.9 -22.6 -16.2 -35.5 -19.7 -26.9 -30.0 -26.4
MCR-Hybrid B=5 (Dec. W8A16) -26.9 -17.6 -11.6 -31.4 2.9 -20.9 -20.7 -18.0
MCR-Hybrid B=5 (Dec. MP, PTQ) -29.2 -19.7 -14.5 -34.1 -11.3 -22.6 -20.4 -21.7
MCR-Hybrid B=5 (Dec. MP, QAT) -31.4 -20.2 -15.6 -35.2 -16.1 -23.5 -24.0 -23.7
CC-Hybrid B=5 (FP32) -31.9 -19.2 -11.9 -31.9 -16.2 -22.9 -27.6 -23.1
CC-Hybrid B=5 (Dec. W8A16) -22.8 -14.4 -7.8 -27.8 4.7 -15.6 -16.2 -14.3
CC-Hybrid B=5 (Dec. MP, PTQ) -28.9 -16.8 -10.2 -30.4 -9.9 -18.9 -15.4 -18.6
CC-Hybrid B=5 (Dec. MP, QAT) -30.8 -17.9 -11.5 -31.6 -15.1 -20.5 -21.3 -21.2

Table 13: BD-rate (%) comparison with state-of-the-arts video codecs under intra-period 32 using
BT.709 as colorspace.

UVG HEVC-B HEVC-C HEVC-D HEVC-E HEVC-RGB MCL-JCV Avg.
VTM (LDB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DCVC-FM (FP32) -24.0 -16.0 -14.8 -31.0 -31.8 -22.6 -18.5 -22.7
DCVC-FM (Dec. W8A16) -11.9 -10.7 -10.6 -27.6 -8.4 -14.5 -11.1 -13.5
DCVC-RT (FP16) -13.6 0.0 17.6 0.5 -16.3 -10.5 7.3 -2.1
DCVC-RT (Dec. W8A16) -2.6 10.4 26.9 10.3 20.3 -2.1 21.7 12.1
MCR-Hybrid B=5 (FP32) -25.6 -18.0 -10.9 -28.0 -12.9 -29.7 -21.7 -21.0
MCR-Hybrid B=5 (Dec. W8A16) -17.6 -12.3 -5.9 -23.2 12.0 -24.0 -12.9 -12.0
MCR-Hybrid B=5 (Dec. MP, PTQ) -19.5 -14.7 -8.9 -26.2 -3.4 -25.6 -12.8 -15.9
MCR-Hybrid B=5 (Dec. MP, QAT) -21.8 -14.9 -10.1 -27.2 -8.0 -26.5 -15.1 -17.7
CC-Hybrid B=5 (FP32) -22.2 -15.0 -6.5 -23.7 -9.4 -26.1 -19.2 -17.4
CC-Hybrid B=5 (Dec. W8A16) -11.4 -9.5 -1.8 -18.8 13.4 -19.2 -9.3 -8.1
CC-Hybrid B=5 (Dec. MP, PTQ) -18.5 -12.2 -4.4 -22.0 -2.2 -22.3 -9.1 -13.0
CC-Hybrid B=5 (Dec. MP, QAT) -20.1 -13.6 -5.7 -23.4 -7.8 -23.9 -13.3 -15.4

Table 14: BD-rate (%) comparison with state-of-the-arts video codecs under intra-period -1 using
BT.601 as colorspace.

UVG HEVC-B HEVC-C HEVC-D HEVC-E HEVC-RGB MCL-JCV Avg.
VTM (LDB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DCVC-FM (FP32) -23.5 -8.4 -2.0 -27.7 -28.5 -18.3 -19.1 -18.2
DCVC-FM (Dec. W8A16) -8.4 -1.6 3.4 -23.1 8.8 -6.2 -10.6 -5.4
DCVC-RT (FP16) -13.0 11.0 37.4 8.5 -6.5 -7.4 15.9 6.6
DCVC-RT (Dec. W8A16) 0.8 29.8 48.2 23.4 75.7 3.1 34.6 30.8
MCR-Hybrid B=5 (FP32) -31.6 -19.7 -12.7 -35.5 -2.2 -25.2 -29.2 -22.3
MCR-Hybrid B=5 (Dec. W8A16) -22.6 -12.5 -6.7 -30.2 35.8 -16.0 -18.6 -10.1
MCR-Hybrid B=5 (Dec. MP, PTQ) -25.1 -15.8 -10.5 -33.7 13.7 -20.1 -18.2 -15.7
MCR-Hybrid B=5 (Dec. MP, QAT) -29.1 -16.9 -11.8 -35.3 0.9 -22.8 -22.8 -19.7
CC-Hybrid B=5 (FP32) -29.4 -15.6 -7.1 -30.7 1.4 -20.8 -26.1 -18.3
CC-Hybrid B=5 (Dec. W8A16) -18.0 -9.5 -0.3 -26.2 33.6 -11.0 -13.1 -6.4
CC-Hybrid B=5 (Dec. MP, PTQ) -26.1 -12.3 -4.7 -28.2 11.6 -16.5 -12.9 -12.7
CC-Hybrid B=5 (Dec. MP, QAT) -28.7 -14.0 -6.5 -30.6 1.0 -19.1 -19.5 -16.8
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Table 15: Effects of quantizing each decoder component in MCR-Explicit and CC-Explicit, with
FP32 as the respective anchor.

(a) Effect of quantizing activations (A) for each decoder component.

Component MCR-Explicit CC-Explicit
FP32 W16A14 W16A12 W16A10 W16A8 FP32 W16A14 W16A12 W16A10 W16A8

Inter-frame main decoder
0.0

(Anchor)

0.3 2.4 14.4 –
0.0

(Anchor)

0.4 0.9 11.7 –
Prediction 0.0 0.1 5.0 – 0.0 0 0.6 –
Motion decoder 1.2 1.4 5.0 – 0.1 0.4 4.3 –
Hyperprior decoder 0.0 0.2 1.4 – 0.0 0.3 1.2 –

(b) Effect of quantizing network weights (W) for each decoder component.

Component MCR-Explicit CC-Explicit
FP32 W14A16 W12A16 W10A16 W8A16 FP32 W14A16 W12A16 W10A16 W8A16

Inter-frame main decoder
0.0

(Anchor)

– 0.2 1.1 4.5
0.0

(Anchor)

– 0.2 0.1 14.9
Prediction – 0.2 1.2 8.9 – 0.1 0.4 5.3
Motion decoder – 1.1 1.1 1.2 – 0.1 0.2 0.2
Hyperprior decoder – 0.0 0.0 0.0 – 0.0 0.0 0.0

Table 16: Effects of quantizing each decoder component in MCR-Implicit and CC-Implicit, with
FP32 as the respective anchor.

(a) Effect of quantizing activations (A) for each decoder component.

Component MCR-Implicit CC-Implicit
FP32 W16A14 W16A12 W16A10 W16A8 FP32 W16A14 W16A12 W16A10 W16A8

Inter-frame main decoder
0.0

(Anchor)

0.3 1.4 12.4 –
0.0

(Anchor)

0.5 1.1 9.6 –
Prediction 0.0 0.1 1.4 – 0.0 0.1 0.9 –
Motion decoder 0.6 0.8 4.2 – 0.5 1.2 4.7 –
Hyperprior decoder 0.0 0.2 1.5 – 0.0 0.2 1.2 –

(b) Effect of quantizing network weights (W) for each decoder component.

Component MCR-Implicit CC-Implicit
FP32 W14A16 W12A16 W10A16 W8A16 FP32 W14A16 W12A16 W10A16 W8A16

Inter-frame main decoder
0.0

(Anchor)

– 0.2 0.2 1.8
0.0

(Anchor)

– 0.4 0.5 1.1
Prediction – -0.1 0.4 3.2 – 0.1 0.0 2.0
Motion decoder – 0.6 0.6 0.8 – 0.4 0.4 0.7
Hyperprior decoder – 0.0 0.0 0.1 – 0.0 0.1 0.2

Table 17: Different quantization schemes comparison. MCR-Hybrid FP32 serves as the anchor.

Coding Schemes MCR-Hybrid
Component I P M H

MSE 12.8 6.9 5.4 1.5
MinMax 47.1 9.6 6.5 4.8

Table 18: Training procedure of Explicit temporal buffer variants. MENet represents the motion
estimation network. EPA is the error propagation aware training in (Lu et al., 2020). Ref represents
the characteristic of reference temporal information in the inter-frame codec. TTC means ”training
to convergence”.

Phase # FramesTraining Modules Loss lr Epoch

Motion Coding
(Ref: Explicit) 3 Motion codec Rmotion

t + λ×D(xt, warp(xt−1, f̂t))1e-4 8

Motion Compensation
(Ref: Explicit) 3 Prediction Network λ×D(xt, xc) 1e-4 10

Inter-frame Coding
(Ref: Explicit) 2 Inter-frame codec and mask

generator Rt + λ×D(xt, x̂t) 1e-4 2

Motion Compensation
(Ref: Explicit) 3 Prediction Network Rt + λ× (D(xt, xc) +D(xt, x̂t))/2 1e-4 3

Inter-frame Coding
(Ref: Explicit)

3 All modules except MENet and Motion codecRt + λ×D(xt, x̂t) 1e-4 8
5 Rt + λ×D(xt, x̂t) 1e-4 5

Finetuning
(Ref: Explicit)

3 All modules except MENet Rt + λ×D(xt, x̂t) 1e-4 6
5 Rt + λ×D(xt, x̂t) 1e-4 5

Finetuning with EPA
(Ref: Explicit)

5 All modules except MENet Rt + λ×D(xt, x̂t) 1e-5 4
5 All modules Rt + λ×D(xt, x̂t) 1e-5 TTC
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Figure 12: Network architecture detail of the inter-frame codec in MCR-Hybrid.

Figure 13: Network architecture detail of the inter-frame codec in CC-Hybrid.
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Figure 14: Network architecture detail of the motion codec.

Figure 15: Network architecture detail of the prediction network in CC-Hybrid.
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Figure 16: Network architecture detail of the prediction network in MCR-Hybrid.

Table 19: Training procedure of Implicit temporal buffer variants. MENet represents the motion
estimation network. EPA is the error propagation aware training in Lu et al. (2020). Ref represents
the characteristic of reference temporal buffer in the inter-frame codec. TTC means ”training to
convergence”.

Phase # FramesTraining Modules Loss lr Epoch

Motion Coding
(Ref: Explicit) 3 Motion codec Rmotion

t + λ×D(xt, warp(xt−1, f̂t))1e-4 8

Motion Compensation
(Ref: Explicit) 3 Prediction Network λ×D(xt, xc) 1e-4 10

Inter-frame Coding
(Ref: Explicit) 2 Inter-frame codec and mask

generator Rt + λ×D(xt, x̂t) 1e-4 2

Motion Compensation
(Ref: Explicit) 3 Prediction Rt + λ× (D(xt, xc) +D(xt, x̂t))/2 1e-4 3

Inter-frame Coding
(Ref: Explicit)

3 All modules except MENet, Motion
codec and Transform

Rt + λ×D(xt, x̂t) 1e-4 8
5 Rt + λ×D(xt, x̂t) 1e-4 5

Finetuning
(Ref: Explicit)

3 All modules except MENet and TransformRt + λ×D(xt, x̂t) 1e-4 6
5 Rt + λ×D(xt, x̂t) 1e-4 5

Feature Generation
(Ref: Implicit) 3 Transform Rt + λ×D(xt, x̂t) 1e-4 3

Motion Compensation
(Ref: Implicit) 3 Prediction Network Rt + λ× (D(xt, xc) +D(xt, x̂t))/2 1e-4 4

Inter-frame Coding
(Ref: Implicit)

3 All modules except MENet and
Motion codec

Rt + λ×D(xt, x̂t) 1e-4 8
5 Rt + λ×D(xt, x̂t) 1e-4 4

Finetuning
(Ref: Implicit)

3 All modules except MENet Rt + λ×D(xt, x̂t) 1e-4 3
5 Rt + λ×D(xt, x̂t) 1e-4 4

Finetuning with EPA
(Ref: Implicit)

5 All modules except MENet Rt + λ×D(xt, x̂t) 1e-5 4
5 All modules Rt + λ×D(xt, x̂t) 1e-5 TTC
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Table 20: Training procedure of Hybrid temporal buffer variants. MENet represents the motion
estimation network. EPA is the error propagation aware training in Lu et al. (2020). Ref represents
the characteristic of reference temporal buffer in the inter-frame codec. TTC means ”training to
convergence”.

Phase # FramesTraining Modules Loss lr Epoch

Motion Coding
(Ref: Explicit) 3 Motion codec Rmotion

t + λ×D(xt, warp(xt−1, f̂t))1e-4 8

Motion Compensation
(Ref: Explicit) 3 Prediction Network λ×D(xt, xc) 1e-4 10

Inter-frame Coding
(Ref: Explicit) 2 Inter-frame codec and mask

generator Rt + λ×D(xt, x̂t) 1e-4 2

Motion Compensation
(Ref: Explicit) 3 Prediction Network Rt + λ× (D(xt, xc) +D(xt, x̂t))/2 1e-4 3

Inter-frame Coding
(Ref: Explicit)

3 All modules except MENet, Motion
codec and Transform in Fig. 12

Rt + λ×D(xt, x̂t) 1e-4 8
5 Rt + λ×D(xt, x̂t) 1e-4 5

Finetuning
(Ref: Explicit)

3 All modules except MENet and
Transform in Fig. 12

Rt + λ×D(xt, x̂t) 1e-4 6
5 Rt + λ×D(xt, x̂t) 1e-4 5

Feature Generation
(Ref: Hybrid) 3 Transform in Fig. 12 Rt + λ×D(xt, x̂t) 1e-4 3

Motion Compensation
(Ref: Hybrid) 3 Prediction Network Rt + λ× (D(xt, xc) +D(xt, x̂t))/2 1e-4 4

Inter-frame Coding
(Ref: Hybrid)

3 All modules except MENet and
Motion codec

Rt + λ×D(xt, x̂t) 1e-4 8
5 Rt + λ×D(xt, x̂t) 1e-4 4

Finetuning
(Ref: Hybrid)

3 All modules except MENet Rt + λ×D(xt, x̂t) 1e-4 3
5 Rt + λ×D(xt, x̂t) 1e-4 4

Finetuning with EPA
(Ref: Hybrid)

5 All modules except MENet Rt + λ×D(xt, x̂t) 1e-5 4
5 All modules Rt + λ×D(xt, x̂t) 1e-5 TTC

Table 21: List of assets used in the paper with their corresponding license.

Assets Licenses
Vimeo90K (Xue et al., 2019) MIT license
Compressai (Bégaint et al., 2020) BSD-3-Clause-Clear License
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