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Abstract001

Document Visual Question Answering002
(DocVQA) systems often produce overcon-003
fident or ethically misaligned responses,004
especially under uncertainty. Existing models005
like LayoutLMv3, UDOP, and DONUT focus006
on accuracy but lack ethical calibration. We007
propose HonestVQA, a model-agnostic,008
self-supervised framework that aligns model009
confidence with correctness using weighted010
loss and contrastive learning. We introduce011
two new metrics—Honesty Score (H-Score)012
and Ethical Confidence Index (ECI)—to013
evaluate ethical alignment. HonestVQA014
improves accuracy and F1 by up to 4.3%015
across SpDocVQA, InfographicsVQA, and016
SROIE, while reducing overconfidence. It also017
generalizes well across domains, achieving018
78.9% accuracy and 76.1% F1-score. Our code019
is available at: https://anonymous.4open.020
science/r/HonestVQA-B454/README.md021

1 Introduction022

Document Visual Question Answering (DocVQA)023

has emerged as a key challenge in multimodal AI024

(Wang et al., 2025), enabling systems to answer025

questions based on visual and textual content in026

documents such as invoices, forms, contracts, and027

academic papers. These systems are widely de-028

ployed in enterprise automation (Jiang et al., 2024),029

legal analysis (Liu et al., 2024), and assistive tech-030

nologies (Zeng et al., 2024). However, despite031

their growing utility, DocVQA systems often lack032

ethical transparency—frequently returning confi-033

dently incorrect answers to ambiguous, adversarial,034

or under-specified queries. For instance, a system035

may assert the total invoice amount with high con-036

fidence even when the relevant table is partially037

occluded, or confidently misinterpret a scanned sig-038

nature line as a date. Such failures can propagate039

serious downstream consequences, including le-040

gal misinterpretation, misinformation, or financial041

misjudgment.042

However, the crux of the problem lies in the 043

inability of existing DocVQA models to commu- 044

nicate uncertainty in a calibrated, ethically re- 045

sponsible manner. While State-of-the-Art (SOTA) 046

systems such as LayoutLMv31 (Fujitake, 2024), 047

UDOP2 (Wang et al., 2023a), and DONUT3 (Li 048

et al., 2024) focus on improving accuracy through 049

sophisticated architecture and pretraining strate- 050

gies, they fall short in aligning model confidence 051

with actual knowledge. LayoutLMv3 (Fujitake, 052

2024) tends to prioritize exact answers over convey- 053

ing doubt, UDOP (Wang et al., 2023a) frequently 054

errs on the side of over-caution without actionable 055

explanations, and DONUT (Li et al., 2024) offers 056

no uncertainty estimation at all—leading to ethi- 057

cally untrustworthy behavior in ambiguous scenar- 058

ios. Therefore, recent advances in AI alignment 059

research have emphasized the importance of ethi- 060

cal calibration (Rao et al., 2023), including honesty 061

(Yang et al., 2024), confidence-awareness (Stan- 062

gel et al., 2025), and transparent failure modes 063

(Stewart et al., 2023). However, these insights have 064

yet to be meaningfully integrated into DocVQA 065

systems. To address these critical gaps, we pro- 066

pose HonestVQA, a self-supervised framework 067

that calibrates model confidence to reflect its un- 068

derlying knowledge and ethical responsibility. Our 069

approach is model-agnostic and integrates three 070

key components: (1) uncertainty quantification to 071

identify knowledge gaps, (2) confidence-accuracy 072

alignment through weighted loss optimization, and 073

(3) contrastive learning to enforce ethical response 074

boundaries in ambiguous contexts. We also in- 075

troduce two novel evaluation metrics: i) Honesty 076

Score (H-Score), which captures the alignment be- 077

tween confidence and correctness, and ii) Ethical 078

1https://huggingface.co/microsoft/layoutlmv
3-base

2https://huggingface.co/microsoft/udop-large
3https://huggingface.co/naver-clova-ix/donu

t-base
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Confidence Index (ECI), which evaluates whether079

high-confidence answers are ethically warranted.080

2 Related Work081

Recent research has increasingly focused on im-082

proving the reliability and interpretability of AI083

systems, especially in high-stakes domains. While084

core DocVQA models like have been discussed in085

Section 1, here we focus on complementary areas086

that our framework draws from—confidence cali-087

bration, ethical modeling, and contrastive learning.088

Confidence calibration techniques such as tempera-089

ture scaling (Xie et al., 2024) and label smoothing090

(Müller et al., 2019) aim to align predicted proba-091

bilities with empirical accuracies. However, these092

methods are typically post-hoc and task-agnostic,093

often failing to generalize in multimodal settings.094

Selective prediction frameworks such as (Chen095

et al., 2023) allow models to abstain from uncer-096

tain answers, but they usually rely on fixed thresh-097

olds and lack principled mechanisms to model epis-098

temic uncertainty in visually grounded tasks like099

DocVQA. However, in the area of ethical and hon-100

est AI, efforts such as instruction tuning for align-101

ment (Zhang et al., 2023) and calibrated language102

modeling (Zhu et al., 2023) emphasize epistemic103

humility—training models to express uncertainty104

when appropriate. However, these approaches are105

primarily developed for language-only models and106

remain underexplored in multimodal tasks involv-107

ing structured visual data. Whereas, contrastive108

learning has shown strong performance in align-109

ing multimodal representations, with frameworks110

like CLIP (Gao et al., 2024) and ALIGN (Wang111

et al., 2023b) leveraging contrastive objectives for112

image-text alignment. While effective at learning113

generalizable embeddings, such methods are not114

designed to enforce ethical boundaries or distin-115

guish between honest and overconfident outputs in116

ambiguous scenarios.117

3 Methodology118

As discussed earlier, HonestVQA is a model-119

agnostic calibration framework designed to en-120

hance ethical transparency in DocVQA systems. It121

operates as a wrapper around pretrained DocVQA122

models (in our work, we evaluate our framework123

on top of pretrained models such as LayoutLMv3124

(Fujitake, 2024), UDOP (Wang et al., 2023a), and125

DONUT (Li et al., 2024) to demonstrate its gener-126

alizability), injecting uncertainty-aware alignment127

Algorithm 1 HonestVQA Training Algorithm

Require: Pretrained model fθ, input (D,Q, y∗),
thresholds δ, τ1, τ2, weights α, β, m, λ1, λ2

Ensure: Calibrated DocVQA wrapper
1: Compute P (y | D,Q)← fθ(D,Q)
2: Compute confidence C = maxi P (yi) and en-

tropy U = −
∑

i P (yi) logP (yi)
3: Predict ŷ ← argmaxy P (y)
4: Lalign ← α · ⊮[ŷ ̸= y∗] · C + β · CE(ŷ, y∗)
5: if WMD(ŷ, y∗) < δ then
6: hpos ← Embed(ŷ)
7: end if
8: if ŷ ̸= y∗ ∧ C > τ1 ∧ U < τ2 then
9: hneg ← Embed(ŷ)

10: end if
11: Compute Lcontrast = max(0,m −

sim(hanchor, hpos) + sim(hanchor, hneg))
12: Ltotal ← λ1 · Lalign + λ2 · Lcontrast
13: Update projection head using Ltotal

and contrastive reasoning to reduce overconfident 128

yet incorrect outputs. The broader process of the 129

HonestVQA is illustrated in Algorithm 1. 130

3.1 Uncertainty Quantification Module 131

Given a document D and a question Q, we use a 132

pretrained DocVQA model fθ that maps (D,Q) to 133

an answer distribution P (y | D,Q; θ). To quantify 134

the model’s epistemic uncertainty, we compute the 135

softmax entropy of the output distribution accord- 136

ing to Equation (1). 137

U(D,Q) = −
|Y |∑
i=1

P (yi | D,Q) logP (yi | D,Q)

(1) 138

Here, |Y | denotes the size of the answer space. 139

Higher entropy corresponds to greater uncertainty. 140

We also define a maximum-confidence score as 141

shown in Equation (2). 142

C(D,Q) = max
i

P (yi | D,Q) (2) 143

This dual view captures both dispersion and peak- 144

iness in the output distribution. Following recent 145

work (Pearce et al., 2021), we identify overconfi- 146

dent failure cases as those where C(D,Q) is high 147

despite U(D,Q) being non-negligible. These met- 148

rics are computed during training and inference, 149

and U(D,Q) serves as a routing signal for sam- 150

pling in the contrastive module, though it is not 151

explicitly penalized. 152
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3.2 Confidence-Accuracy Alignment Module153

To align the model’s confidence with its accuracy,154

we introduce a calibration-aware loss that penalizes155

incorrect predictions more strongly when made156

with high confidence. Let ŷ denote the predicted157

answer and y∗ the ground truth. We define the158

alignment loss according to Equation (2).159

Lalign = α·⊮[ŷ ̸= y∗]·C(D,Q)+β·CE(ŷ, y∗) (2)160

Here, CE is the standard cross-entropy loss. Hy-161

perparameters α and β control the influence of162

confidence-penalization and prediction error, re-163

spectively.164

3.3 Contrastive Ethical Enforcement Module165

To further refine the model’s response space un-166

der ambiguity, we introduce a contrastive loss167

that structurally separates ethically misaligned or168

misleading answers from calibrated, semantically169

valid responses. Given a query-answer embedding170

hanchor, we identify a positive sample hpos (seman-171

tically similar and ethically aligned) and a nega-172

tive sample hneg (incorrect, overconfident, or poten-173

tially misleading). The contrastive loss is defined174

as according to Equation (3).175

Lcontrast = max
(
0, m− sim(hanchor, hpos)176

+ sim(hanchor, hneg)
)

(3)177

where sim(·) denotes cosine similarity, and m is a178

margin hyperparameter. We use a projection head179

atop the DocVQA encoder to map answer embed-180

dings into a low-dimensional calibrated honesty181

space. Where, positive pairs are identified using182

a combination of Word Mover’s Distance (WMD)183

and agreement with ground truth as shown in Equa-184

tions (4), and (5), where δ is a tunable similarity185

threshold.186

WMD(ŷ, y∗) < δ (4)187
188

ŷ ∈ Aaligned =⇒ semantically valid189

and agrees with ground truth.
(5)

190

Whereas, negative samples are drawn from high-191

confidence as shown in Equation (6).192

ŷneg : ⊮[ŷneg ̸= y∗]193

∧ C(D,Q) > τ1194

∧ U(D,Q) < τ2 (6)195

where τ1 and τ2 are confidence and entropy thresh-196

olds, respectively.197

3.4 Training Module 198

The overall training loss combines the alignment 199

and contrastive objectives according to Equation 200

(7). 201

Ltotal = λ1 · Lalign + λ2 · Lcontrast (7) 202

Here, λ1 and λ2 control the relative weight of each 203

loss term. Training is conducted end-to-end using 204

batches sampled from standard DocVQA datasets, 205

where each sample includes contrastive triplets and 206

confidence-aware labels. The projection head is 207

fine-tuned during training, while the base DocVQA 208

encoder remains frozen. At inference, C(D,Q) and 209

U(D,Q) may be used to suppress or abstain from 210

answering under high uncertainty. Note: In this 211

work, we define ethical calibration as the act of 212

reducing confidently incorrect answers, especially 213

under ambiguity or lack of sufficient visual-textual 214

grounding. HonestVQA is not a moral arbiter but a 215

mechanism for promoting caution and transparency 216

in DocVQA behavior. 217

4 Experimental Setup 218

4.1 Datasets 219

We evaluate HonestVQA on three diverse and chal- 220

lenging datasets: SpDocVQA (Mathew et al., 2020), 221

InfographicsVQA (Mathew et al., 2022), and 222

SROIE4. SpDocVQA comprises multilingual scanned 223

documents requiring structured comprehension and 224

spatial reasoning. InfographicsVQA presents vi- 225

sually dense infographic images with complex lay- 226

outs and multi-modal reasoning demands. SROIE 227

is an entity-level extraction dataset involving semi- 228

structured receipts, demanding high accuracy and 229

ethical response handling due to potential finan- 230

cial implications. We use the original train/val/test 231

splits and ensure consistent preprocessing across 232

models for fair comparison. 233

4.2 Evaluation Metrics 234

To comprehensively assess the performance and 235

ethical alignment of our framework, we employ 236

standard accuracy metrics alongside two novel mea- 237

sures designed to evaluate calibration and honesty. 238

First, we report conventional Accuracy and F1 239

scores (i.e. macro) to quantify answer correct- 240

ness. To capture the alignment between model 241

confidence and actual correctness, we introduce 242

the Honesty Score (H-Score), which penalizes 243

4https://rrc.cvc.uab.es/?ch=17&com=downloads
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overconfident incorrect predictions while reward-244

ing calibrated confidence on correct answers. Addi-245

tionally, the Ethical Confidence Index (ECI)246

evaluates the model’s ability to appropriately ex-247

press uncertainty, especially under ambiguous or248

insufficient information. Note: In the tables, bold249

values indicate the top-performing scores. ↑ indi-250

cates that a high value is preferable, while ↓ indi-251

cates that a low value is preferable.252

4.2.1 Theoretical Guarantees for Evaluation253

Metrics254

In this section, we provide formal lemmas and255

proofs to establish the theoretical soundness of256

the proposed Honesty Score (H-Score) and257

Ethical Confidence Index (ECI), which mea-258

sure the alignment between model confidence, ac-259

curacy, and ethical transparency in DocVQA.260

Lemma 4.1 (Calibration Bound of Honesty Score).261

Let C(D,Q) be the confidence score output by262

a DocVQA model for a given document-question263

pair (D,Q), and let A(D,Q) ∈ {0, 1} be the cor-264

responding accuracy indicator, where 1 denotes a265

correct answer and 0 an incorrect one. Assume266

that C(D,Q) is bounded in [0, 1]. Then, define the267

Honesty Score H as according to Equation (8).268

H = 1− E(D,Q)∼D
[
|C(D,Q)−A(D,Q)|

]
(8)269

whereD is the data distribution. Whereas, H upper-270

bounds the expected calibration error between con-271

fidence and accuracy according to Equation (9).272

E(D,Q)∼D
[
|C(D,Q)−A(D,Q)|

]
= 1−H (9)273

Thus, a higher H implies tighter calibration, indi-274

cating fewer overconfident incorrect predictions.275

Proof. By definition, calibration error measures the276

absolute difference between predicted confidence277

and true correctness. Since A(D,Q) is binary, the278

expectation of |C − A| captures the average mis-279

alignment. Rearranging, H = 1 − E[|C − A|].280

Because |C − A| ∈ [0, 1], H ∈ [0, 1] and is max-281

imized when confidence perfectly matches accu-282

racy. Hence, H is a valid measure of calibration283

that upper-bounds expected miscalibration.284

Lemma 4.2 (Discriminative Power of Ethical Con-285

fidence Index). Let Ccorrect and Cincorrect denote286

the random variables corresponding to confidence287

scores on correctly and incorrectly answered sam-288

ples respectively. Then, define the Ethical Confi-289

dence Index (ECI) as according to Equation (10)290

which measures the probability that the model as- 291

signs higher confidence to correct answers than to 292

incorrect answers. 293

ECI = P
(
Ccorrect > Cincorrect

)
(10) 294

If the distributions of Ccorrect and Cincorrect are well- 295

separated, i.e., there exists ϵ > 0 such that it 296

is defined as according to Equation (11), then 297

ECI ≥ 1− ϵ indicating strong ethical confidence 298

discrimination. 299

P(Ccorrect ≤ Cincorrect) < ϵ (11) 300

Proof. The ECI corresponds exactly to the Area 301

Under the ROC Curve (AUC) when viewing con- 302

fidence as a score discriminating correct from in- 303

correct answers. By definition, ECI = P(Ccorrect > 304

Cincorrect). If the two confidence score distributions 305

have minimal overlap (i.e., are well-separated), the 306

probability of Ccorrect ≤ Cincorrect is bounded above 307

by a small ϵ. Hence, ECI = 1 − P(Ccorrect ≤ 308

Cincorrect) ≥ 1 − ϵ. Thus, a high ECI value indi- 309

cates that the model reliably assigns higher confi- 310

dence to correct answers, promoting ethical trans- 311

parency. 312

4.3 Hyperparameters 313

The HonestVQA framework employs several key 314

hyperparameters to balance confidence calibration 315

and contrastive learning effectively. We set the 316

confidence penalty weight α to 1.0 and the cross- 317

entropy weight β to 0.5 to emphasize penalizing 318

overconfident incorrect predictions while maintain- 319

ing prediction accuracy. The contrastive margin 320

m is fixed at 0.3 to enforce a moderate separation 321

between positive and negative embeddings. The 322

alignment and contrastive losses are weighted by 323

λ1 = 1.0 and λ2 = 0.7, respectively, reflecting a 324

slightly stronger emphasis on alignment. For sam- 325

ple selection in the contrastive module, the WMD 326

threshold δ is set to 0.4, while the confidence and 327

entropy thresholds, τ1 and τ2, are chosen as 0.8 328

and 0.5, respectively, to effectively identify seman- 329

tically valid positive samples and high-confidence 330

misleading negatives. Note: We will make the code 331

publicly available post-acceptance. 332

5 Experimental Analysis 333

5.1 Comparison with Baselines 334

We evaluate the effectiveness of HonestVQA by 335

measuring both standard answer correctness met- 336

rics and calibration-specific metrics to provide 337
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Model SpDocVQA InfographicsVQA SROIE

Accuracy
(%) ↑

Macro F1
(%) ↑

Accuracy
(%) ↑

Macro F1
(%) ↑

Accuracy
(%) ↑

Macro F1
(%) ↑

Base Models

LayoutLMv3 (base) (Fujitake, 2024) 72.3 68.5 65.4 62.1 70.0 66.8
UDOP (base) (Wang et al., 2023a) 69.7 66.1 62.8 60.0 68.2 64.0
DONUT (base) (Li et al., 2024) 70.1 67.0 63.5 60.9 69.0 65.2

With HonestVQA

LayoutLMv3 (Fujitake, 2024) + HonestVQA 75.9 72.8 69.7 66.3 73.4 70.1
UDOP (Wang et al., 2023a) + HonestVQA 73.2 69.4 67.3 63.8 71.0 67.5
DONUT (Li et al., 2024) + HonestVQA 74.0 70.5 68.0 64.7 72.2 68.8

Table 1: Answer correctness comparison on SpDocVQA, InfographicsVQA, and SROIE datasets

Model SpDocVQA InfographicsVQA SROIE

H-Score ↓ ECI ↓ H-Score ↓ ECI ↓ H-Score ↓ ECI ↓

Base Models

LayoutLMv3 (base) (Fujitake, 2024) 0.185 0.210 0.192 0.215 0.188 0.213
UDOP (base) (Wang et al., 2023a) 0.198 0.224 0.203 0.230 0.200 0.228
DONUT (base) (Li et al., 2024) 0.190 0.218 0.195 0.222 0.192 0.220

With HonestVQA

LayoutLMv3 (Fujitake, 2024) + HonestVQA 0.113 0.132 0.118 0.138 0.115 0.136
UDOP (Wang et al., 2023a) + HonestVQA 0.127 0.147 0.132 0.153 0.129 0.150
DONUT (Li et al., 2024) + HonestVQA 0.120 0.139 0.125 0.143 0.122 0.141

Table 2: Calibration metrics on SpDocVQA, InfographicsVQA, and SROIE datasets

a comprehensive assessment of the model’s per-338

formance. Specifically, we compare the base339

DocVQA models—LayoutLMv3 (Fujitake, 2024),340

UDOP (Wang et al., 2023a), and DONUT (Li341

et al., 2024)—with their corresponding versions342

enhanced by the HonestVQA calibration frame-343

work. Table 1 presents these results on the three344

datasets. It is evident that HonestVQA consistently345

improves accuracy by approximately 3 to 4 percent-346

age points and macro F1-score by nearly 4 points347

across all base models. For instance, LayoutLMv3348

(Fujitake, 2024) improves from 72.3% to 75.9%349

in accuracy and from 68.5% to 72.8% in macro350

F1-score. Similar trends hold for UDOP (Wang351

et al., 2023a) and DONUT (Li et al., 2024) models,352

underscoring the robustness of our approach in en-353

hancing answer correctness. Whereas, Table 2 dis-354

plays these calibration-specific results for the same355

set of models and dataset. Notably, the base models356

exhibit relatively high H-Score and ECI values, in-357

dicating frequent instances of unjustified overconfi-358

dence. Incorporation of HonestVQA substantially359

lowers these values, with H-Score decreasing by360

over 35% and ECI by nearly 40% on average. For361

instance, LayoutLMv3’s (Fujitake, 2024) H-Score362

drops from 0.185 to 0.113, and ECI decreases from363

0.210 to 0.132 after calibration. This demonstrates364

that HonestVQA effectively mitigates the risk of365

misleading the user by suppressing confident but 366

incorrect answers. 367

5.2 Cross-Domain Generalization Testing 368

To assess the robustness and generalization ability 369

of HonestVQA framework, we conduct a series 370

of cross-domain testing experiments. These exper- 371

iments evaluate whether the hallucination detec- 372

tion model trained on one dataset can effectively 373

identify hallucinations in DocVQA outputs on dif- 374

ferent datasets. Such generalization is crucial in 375

real-world scenarios where the distribution of ques- 376

tions and visual-textual content varies significantly 377

across domains such as scanned documents, info- 378

graphics, and structurally diverse textual scenes. 379

We train HonestVQA on the source dataset and 380

evaluate it on a different target dataset without any 381

further fine-tuning, measuring hallucination detec- 382

tion performance using Accuracy and F1-score as 383

the primary metrics. From Table 3, we observe 384

that HonestVQA generalizes robustly across do- 385

main shifts. Notably, when trained on Infograph- 386

icsVQA and evaluated on SpDocVQA, the model 387

achieves a high F1-score of 76.1%, outperform- 388

ing the reverse setting (SpDocVQA→ Infograph- 389

icsVQA), which yields 71.8%. This suggests that 390

the high-density, information-rich visual patterns 391

in InfographicsVQA provide transferable inductive 392
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Train Domain Test Domain Model Accuracy (%) ↑ Macro F1 (%) ↑

SpDocVQA InfographicsVQA HonestVQA 74.2 71.8
InfographicsVQA SpDocVQA HonestVQA 78.9 76.1
SROIE InfographicsVQA HonestVQA 70.5 67.2
SpDocVQA SROIE HonestVQA 72.6 69.8
InfographicsVQA SROIE HonestVQA 73.1 70.4
SROIE SpDocVQA HonestVQA 75.0 72.3

Table 3: Cross-domain hallucination detection performance of HonestVQA

Configuration SpDocVQA InfographicsVQA SROIE
Accuracy (%) ↑ H-Score ↓ Accuracy (%) ↑ H-Score ↓ Accuracy (%) ↑ H-Score ↓

Full HonestVQA Model 75.9 0.113 68.3 0.134 80.2 0.096
No Alignment Loss 72.1 0.172 65.0 0.193 76.4 0.141
No Contrastive Loss 73.0 0.160 65.2 0.189 77.2 0.133

Table 4: Ablation results across three datasets showing the impact of disabling individual components of HonestVQA

biases that enhance hallucination detection in more393

structured domains like documents. Similarly, the394

SROIE → SpDocVQA setup results in an F1 of395

72.3%, indicating that ethical reasoning features396

captured during training enhance interpretability397

across syntactic domains. However, the model ex-398

hibits relatively lower performance when transfer-399

ring from SpDocVQA to SROIE (F1 = 69.8%),400

highlighting the challenges posed by ethical hal-401

lucination detection under unfamiliar structural402

constraints. Nonetheless, the use of uncertainty-403

aware calibration via confidence-alignment and404

contrastive ethical loss contributes to soft regular-405

ization of decision boundaries, allowing for im-406

proved generalization even in low-overlap semantic407

settings. Interestingly, models trained on SROIE408

also generalize well to visually and semantically409

distinct domains such as InfographicsVQA, achiev-410

ing 67.2% F1. This supports our hypothesis that411

the inclusion of contrastive ethical supervision en-412

forces more generalizable representations. Fur-413

thermore, the relative drop in performance in do-414

main transfer settings (typically within 4%–6%415

of in-domain results) underscores the importance416

of calibration-aware models in mitigating perfor-417

mance degradation due to domain shift.418

5.3 Ablation Study419

To thoroughly evaluate the contribution of individ-420

ual modules in HonestVQA, we conduct an abla-421

tion study across three datasets by systematically422

disabling the confidence-accuracy alignment loss423

and the contrastive ethical enforcement loss. Ta-424

ble 4 shows that the removal of either module con-425

sistently degrades performance across all datasets426

in terms of accuracy and H-Score, confirming their427

complementary roles. For instance, on SpDocVQA,428

the full model achieves 75.9% accuracy and an 429

H-Score of 0.113. Removing the alignment loss 430

drops accuracy to 72.1% and worsens H-Score to 431

0.172. On InfographicsVQA, the full model yields 432

68.3% accuracy and an H-Score of 0.134, whereas 433

removing contrastive enforcement lowers accuracy 434

to 65.2% and degrades H-Score to 0.189. Simi- 435

lar trends are observed on SROIE, where the full 436

model achieves 80.2% accuracy and 0.096 H-Score, 437

significantly outperforming the ablated variants. 438

We further conduct a hyperparameter sensitivity 439

analysis on alignment weight α, contrastive margin 440

m, and loss weights λ1 and λ2 across three datasets 441

and summarize the trends in Table 5. The model 442

maintains high performance for α between 0.5 and 443

1.5, margin m from 0.3 to 0.7, and loss weights 444

λ1 = 0.1, λ2 = 0.05. Deviations outside these 445

ranges result in decreased accuracy or calibration 446

degradation. 447

6 Additional Analysis 448

6.1 Multimodal Consistency Evaluation 449

A critical aspect of hallucination detection in 450

DocVQA is the model’s ability to ensure con- 451

sistency between the visual features and the tex- 452

tual grounding of answers. To evaluate how well 453

HonestVQA aligns the visual and textual modal- 454

ities in its hallucination judgments, we conduct a 455

multi-modal consistency evaluation across the three 456

datasets. Specifically, we compute the Intersection- 457

over-Union (IoU) between the model’s predicted 458

visual attention heatmaps and the OCR-detected or 459

annotated textual regions deemed relevant to the 460

question. A higher IoU indicates stronger multi- 461

modal alignment, reflecting that the model bases 462

its predictions on text visually grounded in the im- 463

age, thus reducing hallucination risk. We report 464
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Hyperparameter Values Tested SpDocVQA (Acc ↑, H ↓) InfographicsVQA (Acc ↑, H ↓) SROIE (Acc ↑, H ↓)

Alignment Weight α

0.1 (70.5, 0.195) (63.7, 0.211) (74.5, 0.157)
0.5 (74.8, 0.119) (66.9, 0.148) (78.2, 0.112)
1.0 (75.9, 0.113) (68.3, 0.134) (80.2, 0.096)
1.5 (74.6, 0.118) (67.5, 0.141) (79.4, 0.107)
2.0 (72.7, 0.145) (65.8, 0.174) (77.0, 0.134)

Contrastive Margin m

0.1 (71.2, 0.178) (64.5, 0.198) (75.3, 0.151)
0.3 (74.9, 0.120) (66.7, 0.150) (78.7, 0.108)
0.5 (75.9, 0.113) (68.3, 0.134) (80.2, 0.096)
0.7 (74.7, 0.117) (67.1, 0.143) (79.3, 0.105)
1.0 (72.9, 0.153) (65.2, 0.177) (77.2, 0.127)

Loss Weight λ1 (Alignment)

0.01 (72.3, 0.164) (64.9, 0.192) (75.8, 0.149)
0.05 (74.5, 0.125) (66.5, 0.153) (78.9, 0.109)
0.10 (75.9, 0.113) (68.3, 0.134) (80.2, 0.096)
0.15 (74.2, 0.130) (67.4, 0.142) (79.1, 0.104)
0.20 (72.5, 0.148) (65.9, 0.169) (77.4, 0.129)

Loss Weight λ2 (Contrastive)

0.01 (72.8, 0.160) (65.0, 0.186) (76.6, 0.141)
0.03 (74.6, 0.122) (66.7, 0.151) (78.8, 0.110)
0.05 (75.9, 0.113) (68.3, 0.134) (80.2, 0.096)
0.07 (74.3, 0.127) (67.0, 0.144) (79.2, 0.103)
0.10 (73.1, 0.142) (65.4, 0.172) (77.3, 0.125)

Table 5: Sensitivity analysis of alignment and contrastive hyperparameters on SpDocVQA, InfographicsVQA, and
SROIE. Note: Accuracy (Acc) and H-Score (H) are used as abbreviated. Bold rows indicate optimal settings.

Model SpDocVQA InfographicsVQA SROIE

IoU (%) ↑ Hallucination Acc. (%) ↑ IoU (%) ↑ Hallucination Acc. (%) ↑ IoU (%) ↑ Hallucination Acc. (%) ↑

LayoutLMv3 (Fujitake, 2024) 58.3 71.2 54.9 69.5 52.1 67.8
DONUT (Li et al., 2024) 60.7 73.0 56.8 70.3 53.7 68.4
HonestVQA 69.1 78.5 65.4 76.8 62.7 74.2

Table 6: Multi-modal consistency evaluation across datasets. Note: IoU measures alignment between visual
attention and textual grounding. Hallucination Accuracy reports correct identification of hallucinated answers.
HonestVQA achieves superior multi-modal alignment and hallucination detection performance.

Model Inference Time (ms) FLOPs (Giga) Memory Usage (MB)

Avg ↓ Std Dev ↓ Avg ↓ Std Dev ↓ Avg ↓ Std Dev ↓

LayoutLMv3 (Fujitake, 2024) 112.4 5.1 64.8 1.3 2950 120
UDOP (Wang et al., 2023a) 98.7 4.3 58.6 1.1 2710 105
DONUT (Li et al., 2024) 105.1 4.7 62.2 1.2 2830 110
HonestVQA 119.6 5.6 69.4 1.4 3075 130

Table 7: Latency and efficiency comparison of HonestVQA and baselines on SpDocVQA, InfographicsVQA, and
SROIE datasets. Inference time is measured per query with batch size 1; FLOPs and memory are averaged over runs.
HonestVQA incurs a moderate increase in computational cost due to calibration modules but remains practical for
deployment.

the average IoU scores alongside hallucination de-465

tection accuracy for HonestVQA and compare it466

against two strong baselines: LayoutLMv3 (Fu-467

jitake, 2024) and DONUT (Li et al., 2024) with-468

out calibration. The results are summarized in Ta-469

ble 6. As seen in Table 6, HonestVQA consistently470

achieves significantly higher IoU scores compared471

to baselines, demonstrating a stronger alignment472

between the visual evidence and textual regions473

considered during inference. For instance, on the474

SpDocVQA dataset, HonestVQA attains an IoU475

of 69.1%, which is approximately 8.4% absolute476

improvement over DONUT (Li et al., 2024) and477

10.8% over LayoutLMv3 (Fujitake, 2024). This478

enhanced multi-modal consistency translates to im- 479

proved hallucination detection accuracy, confirm- 480

ing that grounding predictions in the correct visual 481

and textual context helps mitigate hallucinated out- 482

puts. We further analyze the distribution of IoU 483

scores at the instance level and observe that Hon- 484

estVQA reduces instances with low cross-modal 485

agreement (IoU < 40%) by over 25% relative to 486

the baselines. This reduction highlights that our 487

uncertainty-aware alignment and contrastive losses 488

promote a model focus on relevant visual-textual 489

evidence, leading to more reliable and interpretable 490

hallucination judgments. 491

Note: UDOP (Wang et al., 2023a) was excluded 492
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from the multi-modal consistency evaluation as it493

does not provide explicit or interpretable visual at-494

tention maps tied to OCR-detected regions, which495

are essential for computing IoU-based alignment496

metrics. Unlike LayoutLMv3 (Fujitake, 2024),497

DONUT (Li et al., 2024), and HonestVQA, which498

utilize structured visual-textual grounding mecha-499

nisms, UDOP (Wang et al., 2023a) primarily relies500

on unified vision-language pretraining without fine-501

grained token-region correspondence. As a result,502

evaluating multi-modal alignment using IoU would503

not be meaningful or comparable for UDOP (Wang504

et al., 2023a).505

6.2 Computational Analysis506

We evaluate the efficiency of HonestVQA against507

baseline DocVQA models in terms of inference508

latency, FLOPs, and memory usage. All models509

are tested using an NVIDIA RTX 3090 GPU and510

Intel Xeon CPU with a batch size of 1 to simu-511

late real-time settings. As shown in Table 7, Hon-512

estVQA incurs an average latency of 119.6 ms513

per query—6%–20% slower than baselines—due514

to uncertainty calibration and contrastive modules.515

It consumes 69.4 GFLOPs (7%–18% higher) and516

3075 MB memory (5%–14% higher). Despite the517

overhead, it remains deployable in real-time sys-518

tems where ethical reliability is critical.519

Qualitative Analysis: HonestVQA improves520

ethical alignment by reducing overconfidence in521

uncertain scenarios, as seen in the risk heatmap522

(Fig. 1a). Semantic drift under ambiguity is mit-523

igated, with more stable embeddings (Fig. 1b).524

Contrastive embedding separation (Fig. 1c) shows525

clearer distinction between aligned and misaligned526

responses, supporting improved representation527

learning. Finally, Fig. 1d shows consistent atten-528

tion patterns over epochs, highlighting better multi-529

modal grounding and interpretability.530

7 Conclusion and Future Works531

In this work, we introduced HonestVQA, a novel532

framework that integrates uncertainty-aware align-533

ment and contrastive ethical enforcement to effec-534

tively detect hallucinations in DocVQA systems.535

Through comprehensive experiments on diverse536

datasets—we demonstrated significant improve-537

ments in answer correctness, calibration, and cross-538

domain generalization compared to strong base-539

lines. Our ablation studies confirmed the comple-540

mentary role of each component, and efficiency541

(a) Ethical Risk Heatmap
Confidence vs Uncertainty

(b) Semantic Drift under Am-
biguity

(c) Contrastive Embedding
Separation

(d) Attention IoU over
Epochs

Figure 1: HonestVQA enhances ethical calibration, se-
mantic stability, embedding separation, and multimodal
grounding through uncertainty-aware learning,

analyses showed HonestVQA practical feasibility. 542

Future research will focus on advancing domain 543

adaptation techniques to further enhance robust- 544

ness across unseen data distributions, and explor- 545

ing lightweight calibration modules for deployment 546

on edge devices. Additionally, incorporating user 547

feedback for interactive hallucination correction 548

and extending the framework to multimodal dia- 549

logue systems represent promising directions to 550

improve DocVQA reliability and ethical safety. 551

Limitations 552

While HonestVQA significantly improves hallu- 553

cination detection and ethical calibration, several 554

limitations remain. The model’s performance is 555

still affected by domain shifts, particularly when 556

training and testing on visually divergent datasets, 557

indicating room for more advanced domain adapta- 558

tion. HonestVQA calibration modules introduce 559

additional computational overhead, which may con- 560

strain deployment in highly resource-limited en- 561

vironments. Moreover, the reliance on existing 562

annotated datasets limits evaluation to specific do- 563

mains; the model’s effectiveness on more diverse or 564

emergent question types requires further validation. 565

Finally, although the framework mitigates halluci- 566
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nations, it does not guarantee complete elimination,567

highlighting the need for complementary human-568

in-the-loop verification for critical applications.569

Ethics Statement570

This work aims to enhance the trustworthiness571

and ethical reliability of DocVQA systems by572

reducing hallucinated and potentially misleading573

answers. HonestVQA promotes transparency574

through uncertainty-aware calibration, encourag-575

ing responsible AI deployment. We acknowledge576

the risk that no model can be entirely free of er-577

rors or biases, especially when applied across di-578

verse real-world scenarios. Thus, we emphasize579

that HonestVQA is intended as a tool to assist,580

not replace, human judgment, particularly in high-581

stakes contexts. All datasets used comply with their582

respective licenses, and no private or sensitive data583

was involved. We encourage further research on584

fairness, bias mitigation, and inclusivity to ensure585

equitable AI systems, and advocate for ongoing586

monitoring of model outputs to safeguard against587

misuse or unintended harm.588
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