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Fig. 1: We present IRIS, an Immersive Robot Interaction System designed to support various simulators and real-world
scenarios.

Abstract—This paper introduces IRIS, an Immersive Robot
Interaction System leveraging Extended Reality (XR). Existing
XR-based systems enable efficient data collection but are often
challenging to reproduce and reuse due to their specificity to
particular robots, objects, simulators, and environments. IRIS
addresses these issues by supporting immersive interaction and
data collection across diverse simulators and real-world sce-
narios. It visualizes arbitrary rigid and deformable objects,
robots from simulation, and integrates real-time sensor-generated
point clouds for real-world applications. Additionally, IRIS en-
hances collaborative capabilities by enabling multiple users to
simultaneously interact within the same virtual scene. Extensive
experiments demonstrate that IRIS offers efficient and intuitive
data collection in both simulated and real-world settings.

I. INTRODUCTION

Robot learning relies on diverse and high-quality data to
acquire complex behaviors [6, 54]. Recent studies indicate that
models trained on more varied and complex datasets generalize
more effectively across diverse scenarios [33, 46, 20]. By
providing immersive perspectives and interactions, Extended
Reality1 (XR) has emerged as a promising tool for efficient
and intuitive large-scale data collection in both simulation
[25, 58, 42] and real-world environments [22, 13]. How-

1Extended Reality (XR) is an umbrella term encompassing Augmented
Reality, Mixed Reality, and Virtual Reality [2].



ever, existing XR approaches face significant challenges when
reused or reproduced in new scenarios, primarily due to
three limitations: asset diversity, platform dependency, and XR
device compatibility.

Current approaches [29, 25, 58, 21, 37] rely heavily on
predefined sets of objects and robot models, thereby ex-
hibiting limited asset diversity. Furthermore, most methods
[36, 26, 42, 58] are specifically tailored to particular simulators
or real-world conditions, resulting in substantial platform
dependency. This limitation significantly reduces reusability
and complicates adaptation to different simulation platforms.
Additionally, existing XR frameworks [26, 39, 22, 34] are typ-
ically optimized for specific XR headset versions, leading to
poor device compatibility. Together, these limitations severely
constrain reproducibility and broader adoption of XR-based
data collection and robot interaction methodologies within the
research community.

To address these challenges, we propose IRIS—an
Immersive Robot Interaction System, demonstrated in Fig-
ure1. IRIS is a general and extensible framework that sup-
ports various simulators and real-world environments, with
compatibility across different XR headsets. It is designed
to generalize across six key features: Cross-Scene, Cross-
Embodiment, Cross-Simulator, Cross-Reality, Cross-Platform,
and Cross-User.

Cross-Scene enables XR systems to handle arbitrary sim-
ulated objects, removing constraints from predefined models.
IRIS introduces a unified scene specification representing all
objects as data structures with meshes, materials, and textures.
This specification is transmitted to XR headsets for consistent
scene rendering, with dynamic updates during simulation.
Through its flexible and dynamic architecture, IRIS is also
the first XR-based system that supports deformable objects
manipulation. Cross-Embodiment is achieved by modeling
robots as compositions of standard objects, enabling seam-
less compatibility with diverse robot embodiments without
requiring specialized configurations. Cross-Simulator ensures
compatibility with a range of simulation engines. Since the
unified scene specification is simulator-agnostic, new simula-
tors can be supported by implementing a parser to translate
their scenes into this format. This flexibility is demonstrated
by IRIS’s support for MuJoCo [52], IsaacSim [35], Cop-
peliaSim [49], and Genesis [11]. Cross-Reality allows IRIS
to operate across both simulated and real-world environments.
For real-world applications, IRIS incorporates point cloud
visualization using camera data, facilitating immersive data
collection. Cross-Platform ensures compatibility across XR
devices. IRIS implements its XR application using the Unity
framework [51], with modular design separating visualization
and interaction logic. This allows developers to deploy the
system on new XR headsets by reusing visualization modules
and implementing device-specific input handling. IRIS has
been successfully deployed on the Meta Quest 3 and HoloLens
2. Cross-User supports collaborative multi-user interaction
within a shared scene via a communication protocol that
synchronizes XR headsets. This enables coordinated tasks and

collective data collection in both virtual and real environments.
Table I highlights the advantages of IRIS over existing XR-
based systems across these features.

The contributions of IRIS are summarized as follows: (1)
A unified scene specification that integrates seamlessly with
multiple robot simulators, enabling consistent visualization
and interaction across diverse XR headsets, while promoting
reproducibility and reusability. (2) The first XR-based system
to support deformable object manipulation, allowing realistic
interaction and data collection for soft-body tasks. (3) A
collaborative, multi-user framework for XR applications that
enhances robot data collection through synchronized interac-
tions in shared virtual or physical environments.

II. RELATED WORK

Teleoperation-Based Data Collection on Real Robots.
Collecting data using tele-operation on real robots has been
explored by many previous works. Aloha [60] introduced a
low-cost teleoperation system that collects real-world demon-
strations for imitation learning. A bimanual workspace is set
up, where leader robots are used to control the follower robots.
Followup work [6] improved the performance, ergonomics,
and robustness compared to the original design. In addition, a
mobile version of Aloha [19] improved data collection outside
of lab settings. GELLO [57] supports a variety robot arms
through a 3D-printed low-cost leader robots with off-the-shelf
motors. In order to tele-operate dexterous end effectors prior
work has retrieved hand motion data through visual hand
tracking [44] or customized gloves [54]. In contrast to IRIS,
none of these approaches leverages the immersive advantages
of XR.

XR-Based Data Collection in Real World. Common XR
systems show virtual robots to help users understand how their
movements control real robots [44]. For instance, recent work
developed mobile apps to allow data collection in augmented
reality without the need for XR headsets [16, 55] while XR
headsets allows for more intuitive robot manipulation [58, 39,
25]. Instead of displaying the virtual robot in a third-person
view, Cheng et al. [13], Iyer et al. [22] directly provide the
first-person camera feed of the real robot to the user. Other
systems [37, 7, 56, 10, 61, 17] visualize the real-world scene
in the headset and control robot arms with controllers [61]
or hand tracking [56]. XR-based data collection for dexterous
hands has also been explored. For example, Arunachalam et al.
[8] tracks hand motion using camera and retargets it on the real
robot hand. Chen et al. [12] controls robot hand and robot arm
at the same time. While these approaches do use XR, the robot
data collection and interaction is limited to the real world, as
no simulators used in the process.

XR-Based Data Collection in Simulation. Real robot
data collection is limited by available environments and ob-
jects. Virtual data collection offers a more efficient way to
gather demonstrations while providing access to extensive
3D asset libraries. For instance, DART [42] runs a cloud-
based simulation, and users collect demonstrations in any
virtualized environment from any location. Mosbach et al. [36]



Cross-Scene Cross-Embodiment Cross-Simulator Cross-Reality Cross-Platform Cross-User Control Space

Fan et al. [17] Limited Single Robot Unity Real Meta Quest 2 N/A Cartesian
ARC-LfD [29] N/A Single Robot N/A Real HoloLens N/A Cartesian
Zhu et al. [61] Limited Single Robot N/A Real HTC Vive Pro N/A Cartesian
Jiang et al. [25] Limited Single Robot N/A Real HoloLens 2 N/A Joint & Cartesian
Mosbach et al. [36] Available Single Robot IsaacGym Sim Vive N/A Joint & Cartesian
Holo-Dex [9] N/A Single Robot N/A Real Meta Quest 2 N/A Joint
ARCADE [58] N/A Single Robot N/A Real HoloLens 2 N/A Cartesian
DART [42] Limited Limited Mujoco Sim Vision Pro N/A Cartesian
ARMADA [39] N/A Limited N/A Real Vision Pro N/A Cartesian
Meng et al. [34] Limited Single Robot PhysX Sim & Real HoloLens 2 N/A Cartesian
Bunny-VisionPro [15] N/A Single Robot N/A Real Vision Pro N/A Cartesian
IMMERTWIN [10] N/A Limited N/A Real HTC Vive N/A Cartesian
Open-TeleVision [13] N/A Limited N/A Real Meta Quest, Vision Pro N/A Cartesian
Szczurek et al. [50] N/A Limited N/A Real HoloLens 2 Available Joint & Cartesian
OPEN TEACH [22] N/A Available N/A Real Meta Quest 3 N/A Joint & Cartesian

Ours Available Available Mujoco, CoppeliaSim, IsaacSim Sim & Real Meta Quest 3, HoloLens 2 Available Joint & Cartesian

TABLE I: Comparison of XR-based system. IRIS is compared with related works in seven aspects.

collects dexterous hand manipulation data with a special glove
device in physics simulations. Although Meng et al. [34] also
leverages simulators, their virtual scene is a replica of the real
scene, thus the flexibility of simulation is not fully exploited.

III. SYSTEM OVERVIEW

This section presents the hardware and software architecture
of IRIS, along with several applications explored in this paper.
An overview of its paradigm is shown in Figure 2.

A. System Architecture

Node Communication Protocol. The IRIS system operates
on simulation / sensor processing computers, XR headsets, and
other programs, requiring robust network connectivity between
all components. While Robot Operating System (ROS) [45]
offers a general communication framework, it is not easily
adaptable to Unity and XR development. Hence, IRIS built an
lightweight communication protocol based on ZeroMQ (ZMQ)
[5], and extended it by auto-node discovery features. To ensure
node discovery, the master node broadcasts UDP messages to
the broadcast port on the network at a specific frequency. The
network is built via Wi-Fi or cable. When a new XR node
launches, it listens to the broadcast port and receives messages
from the master node. Then it extracts connection details
from these messages and establishes a ZMQ connection. This
protocol (Fig. 3) achieves Cross-User ability, ensures reliable
communication, automatic reconnection, and smooth recovery
from disconnections, making it ideal for dynamic multi-device
XR systems.

Unified Scene Specification. To visulaize simulation scenes
in XR headsets, Current solutions use predefined models in XR
applications, limiting flexibility and support for new objects
and robots. IRIS solves this by introducing a unified scene
specification which is parsed from simulations. The unified
scene specification includes all objects with their geometry,
meshes, materials, and textures. All the objects is loaded
in this specification using a kinematic tree structure and
serialized into byte format. IRIS XR application rebuild an
identical scene upon received this specification from simu-
lation node. IRIS provides a custom Python library named

SimPublisher that automatically generates specifications from
simulation data, then it continuously collects simulation states
and transmits them to headsets at a fixed frequency. This
scene specification enables IRIS to all kinds of robots and ob-
jects in simulation, facilitating both Cross-Scene and Cross-
Embodiment capabilities. The unified scene specification is a
general definition that does not rely on any specific simulator.
Hence, IRIS can be easily adapted to various simulators by
implementing a new simulation parser to generate a scene
specification from the simulator and a new publisher to update
the states of the scene. Currently, IRIS supports scene parsers
for MuJoCo, IsaacSim, CoppeliaSim, and Genesis, with the
potential to be extended to other simulation engines as desired.
This demonstrates that IRIS can be easily adapted to various
benchmarks and simulators, highlighting its Cross-Simulator
capability.

Multiple Headsets Compatibility. IRIS implements an
XR application using Unity. This application can be directly
deployed to other headset platforms using the Unity deploy-
ment pipeline, showcasing IRIS’s Cross-Platform capability.
Currently, IRIS has been tested on HoloLens 2 [28] and Meta
Quest 3 [4]. Due to Meta Quest 3 visualization resolution is
better than HoloLens 2, this paper conducted experiments and
displayed XR scenes using this headset.

Intuitive Robot Control Interface. In data collection tasks
or robot interaction, robot control interfaces are used to operate
the robot in both simulated and real-world environments.
Based on prior work [25, 22], IRIS implemented Kinesthetic
Teaching (KT) and Motion Controller (MC) as its default robot
controllers. These two methods were used and evaluated with
other interfaces in Sec. IV-A. IRIS’s flexible framework allows
users to easily customize and implement additional control
interfaces, including hand tracking, gloves, smartphones, and
motion tracking systems. Fig. 4 shows how these two inter-
faces work in IRIS.

Affiliated Monitor Tools The extensibility of IRIS opens
up numerous possibilities for creating new applications. IRIS
includes a web-based monitoring tool for managing all XR
headsets. This tool allows users to easily start and stop align-
ment processes, as well as rename devices. Additionally, the



(a) Interact with Robots in Simulation (b) Interact with Robots in Real World

Fig. 2: Paradigms of the system architecture in both simulation (left) and real world (right). All the devices are connected
through a Wi-Fi router. In the left image, the simulation updates the scene to all headsets using the SimPublisher. A spatial
anchor is used to align the virtual scenes across different headsets. In the right image, a sensor generates a point cloud
transmitted to the XR headset, allowing the operator to clearly observe the manipulated object in front of the follower robot.

Fig. 3: The master node broadcasts UDP messages containing
its details to the broadcast address (e.g., 192.168.0.255) at port
7720. Each IP address in the diagram (e.g., 192.168.0.100/0)
represents a device’s unique address on the network, where
’0’ indicates a dynamically assigned port provided by the
operating system. XR nodes, upon startup, listen on the
broadcast port (7720) to receive these messages, extract the
master node’s IP and ZMQ socket address, and build a stable
connection. This architecture supports both request-response
and publish-subscribe communication patterns, ensuring ro-
bust, multi-device connectivity with automatic reconnection
capabilities.

tool supports real-time scene visualization using three.js [1],
using the unified scene specification. An example screenshot
is shown in Fig. 5.

B. System Application

IRIS is a versatile platform with great potential for various
applications for the robot learning and robotics research com-
munities. This paper explores several possible applications as
described below.

General Manipulation Data Collection. Through its flex-
ible framework design, IRIS supports four simulators and

Fig. 4: This image illustrates examples of using two interfaces
to control robots in simulation: Kinesthetic Teaching (left)
and Motion Controller (right), shown from a third-person
perspective.

Fig. 5: The IRIS Dashboard, accessible via a web interface,
allows the control and monitoring of all connected nodes. The
scene streamed by IRIS is rendered on the right-hand side.
The left panel displays the connected XR devices, providing
an interface through which users can control all services made
available by each device.

various robot manipulation benchmarks. IRIS has been tested
in some MuJoCo-based benchmarks including Meta World
[59], LIBERO [27], RoboCasa [38], robosuite [62], Fancy
Gym [40], and CoppeliaSim-based benchmark like PyRep



[23], Colosseum [43]. Robots can be operated using either our
default controllers (Sec. III-A) or user-customized controllers.

Deformable Object Manipulation. IRIS supports de-
formable object manipulation by dynamically updating the
mesh state in real time, making it possible to train and test
robotic algorithms for tasks that involve soft objects. As far
as we know, no existing work has explored the manipulation
of deformable objects using XR. This paper conducted a
experiment to valid the data collected by IRIS based on
IsaacSim. The results are in the Sec. IV-B.

Fig. 6: Collaborative manipulation in the simulation via XR.
The left image shows the collaborative manipulation for hand
over a hammer between two Franka Panda robots by Kines-
thetic Teaching, and the right image shows that collaborative
manipulation for hand over a red board between two Aloha 2
Arms by Motion Controller.

Collaborative Manipulation. Collaborative manipulation,
where multiple users provide demonstrations simultaneously,
is vital for human-robot systems [53]. Previous approach
[44] often use multiple screens, lacking XR’s immersion,
and typically limit control to one person while others merely
observe [50]. IRIS’s communication protocol enables seamless
integration of devices for controlling multiple robots in shared
scenes, supporting additional XR headsets with minimal setup
for dynamic collaborative environments. Fig. 6 shows collab-
orative manipulation for handover task.

High-Dynamic Task Data Collection and Interaction
Previous works on robot tasks utilized interfaces such as
keyboards [31], 3D mouse [30, 27] or smartphone [32].
However, these methods are insufficient for tasks that require
complex motions. Motion controllers enable IRIS to capture
user movements for complex tasks like competitive sports,
where responsiveness and precision are essential. To demon-
strate IRIS’s capabilities, this paper designed an experiment
where participants played table tennis against an episodic RL
agent trained with BBRL [41] in simulation. Using a motion
controller and XR headset, the participant can return the ball
to the RL agent just like in the real world. Fig. 7 shows
the interactive table tennis setup where a human participant
play with an RL agent in a simulation. Apart from enabling
human-agent interaction, this paper also leverage collected
data to train policies that learn human behavior patterns for
ball returns. The relevant experiment is in the Sec. IV-B.

Real World Teleoperation and Data Collection. IRIS
can support both simulation and real-world applications. To
minimize physical interference from humans during data

(a) Interact with RL Agent in the first-person view (left) and
simulation (right)

(b) Interact with RL Agent in the third-person view

Fig. 7: Playing table tennis with RL agent in Fancy Gym
environment, the RL agent policy is trained with Deep Black-
Box Reinforcement Learning (BBRL) [41]

collection, XR-based tele-operation is frequently utilized for
data collection. Current approaches [22, 13] that utilize video
streaming to XR headsets are restricted to fixed viewpoints.
IRIS overcomes this limitation by projecting point cloud from
depth cameras to XR headsets, ensuring both immersion and
interactivity. Fig. 2b illustrates the paradigm of real-world
interaction, while Fig. 8 demonstrates the practical application
of IRIS in a real-world setting.

IV. EXPERIMENT

This section evaluates IRIS’s capability to create demon-
strations, focusing on the efficiency and intuitiveness of data
collection pipeline. (1) How effective and intuitive is the IRIS
system for data collection? (2) Can data collected by IRIS in
simulation be utilized for policy training? (3) Is IRIS suitable
for data collection in real-world scenarios? To answer these
questions, we evaluate the performance of IRIS across three
groups of tasks, including user study, policy evaluation in
simulation, and real world evaluation.

A. User Study

To assess the efficiency and intuitiveness of IRIS data
collection application, a user study was conducted by col-
lecting demonstrations for LIBERO benchmark tasks [27].
Four tasks (Fig. 9 in the Appendix) were selected in the
dimension of translation, rotation, and compound movement,
including close the microwave, turn off the stove, pick up the



Fig. 8: Real-world application of IRIS. This setup features two Franka robots: a leader robot controlled by a user wearing a
Meta Quest 3 headset and a follower robot that mirrors its movements. A depth camera captures the environment for real-time
point cloud visualization in XR.

Interface Task 1 Task 2 Task 3 Task 4

KB (LIBERO) 0.90 0.725 0.750 0.500
3M (LIBERO) 1.00 0.950 0.375 0.900
KT (Ours) 1.00 1.00 0.975 0.950
MC (Ours) 1.00 0.900 0.975 1.00

TABLE II: Success rate of four interfaces. KT and MC lead
to higher success rate across four tasks.

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

Fig. 9: Four tasks from LIBERO in simulation (top row: a1, b1,
c1, d1) and corresponding view from Meta Quest 3 (bottom
row: a2, b2, c2, d2): (a) Close the microwave, (b) Turn off the
stove, (c) Pick up the book and place it on the shelf, (d) Turn
on the stove and place the frying pan on it.

book in the middle and place it on the cabinet shelf, and
turn on the stove and put the frying pan on it. The control
interface baselines for this study are two control interfaces
from LIBERO: the Keyboard (KB) and the 3D Mouse (3M),
they will be compared with Kinesthetic Teaching (KT) and
Motion Controller (MC) from IRIS (Sec. III-A) for the user
study.

User Study Design This study involved eight participants
with no prior experience using IRIS or XR headsets. They
evaluated each interface through both objective and subjective
metrics. Objective measurements included success rate and
average time per task, while subjective assessments were gath-
ered via a questionnaire based on the UMUX framework [18].
The questionnaire evaluates each interface by a 7-point Likert
scale in four dimensions including Experience, Usefulness,
Intuitiveness, and Efficiency. This paper employed the Kruskal-

Wallis test [3] for a better and more robust statistical analysis
for the study.

User Study Result In the result of objective metrics, Tab.
II and Fig. 10 present the success rates and the average
time consumed for each interface across the tasks. The result
shows a success rate of over 90% across all four tasks
when using the KT and MC interfaces from IRIS, and these
XR-based interface significantly outperformed the non-XR
interface (p < 0.05 2) in all conditions except MC in Task
2. The KT and MC interfaces consistently demonstrate lower
task completion times than KB and 3M (p < 0.05) particularly
for Task 3 and Task 4, indicating higher efficiency. The result
of subjective result is shown in Fig. 11. The KT and MC
interfaces consistently receive significant (p < 0.05) high
scores than KB and 3M across all criteria, indicating positive
user perception and ease of use. This study demonstrates that
IRIS outperformed baseline interfaces in both objective and
subjective metrics, indicating it provides a more intuitive and
efficient approach for data collection.

B. Policy Evaluation in Simulation

General Manipulation To evaluate the quality of data
collected using IRIS, we employ two standard imitation learn-
ing algorithms: BC-Transformer [24] and BESO [47]. These
models are trained separately on datasets collected with IRIS
and on the original LIBERO dataset, with results shown in
Figure 12. To ensure a fair comparison, we collect the same
number of trajectories using IRIS as in LIBERO, using only
the MC interface (instead of KT), since LIBERO operates in
Cartesian space rather than joint space. Each model is trained
for 50 epochs with three random seeds to capture performance
variance, and all experiments use identical training parameters.
The results confirm IRIS maintains the same high data quality
as the original LIBERO dataset while offering advantages in
intuitive control, operational efficiency, and flexible adaptation
to diverse collection scenarios.

Deformable Objects We also evaluate the data collected by
IRIS from deformable object manipulation. Three tasks were

2level of statistical significance by Kruskal-Wallis test
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Fig. 10: This graph shows the average task completion time
(in seconds) for each interface across tasks. The KT and
MC interfaces consistently perform more efficiently, while the
Keyboard and 3D Mouse interfaces result in longer completion
times, particularly on more complex tasks.
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Fig. 11: Subjective evaluation scores for usefulness, experi-
ence, intuitiveness, and efficiency across four interfaces. The
KT and MC interfaces perform favorably in all categories,
while the Keyboard and 3D Mouse interfaces receive lower
ratings, particularly in intuitiveness and efficiency.

designed to evaluate the data including Fold Cloth, Lift Teddy,
and Stow Teddy. The policy used in this experiment is the U-
Net diffusion model [14]. Observations are robot EEF pose,
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Fig. 12: Performance comparison of policies trained on differ-
ent datasets across LIBERO tasks

depth, and image data. The success rate of each task are Fold
Cloth: 0.97±0.018, Lift Teddy: 0.90±0.035, and Stow Teddy:
0.85± 0.053.

Dynamic Task Data Collection To evaulate the data
quality of highly dynamic task collected by IRIS, this pa-
per uses the table tennis from Fancy Gym [40] by motion
controllers. The observation includes bat proprioceptive state
and dual camera images, and the action is the desired bat
position and orientation in task space. Fig. 14a shows the
performance of models [48] trained on the collected data,
using ball interception rate and successful return rate as
evaluation metrics.

These experiments valid the data from three data collection
scenarios in Section III-B, The results demonstrate that IRIS
collects data of comparable quality to traditional methods,
while offering significantly greater efficiency.

C. Real World Evaluation

This experiment assesses the effectiveness of IRIS for
real-world data collection through two designed manipulation
tasks: Cup Inserting and Picking Up Lego. IRIS was compared
against Tele-Op, a widely used method for real robot data col-
lection. For each task, 30 demonstrations were collected using
both methods. These two datasets were used to train two BC-
Transformer policies [24] by using the same hyper parameters.
Our evaluation was twofold: data collection success rate (the
percentage of successful attempts during data collection) and
policy success rate after training. These reuslts (Fig. 14 b)
demonstrate that IRIS provides a higher data collection control
success rate, and policies trained using IRIS better quality to
those trained with Tele-Op.



(a) Soft object manipulation in IsaacSim (b) Real-world data collection by IRIS(left) and Tele-Op(right)

Fig. 13: The experiment of deformable manipulation and real-world data collection
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Fig. 14: Performance evaluation of policies trained on IRIS-
collected data across diverse scenarios

V. CONCLUSION

In this work, we introduced IRIS, an innovative framework
that seamlessly integrates Extended Reality (XR) technologies
with robotics data collection. IRIS addresses key challenges in
reproducibility and reusability that are common in current XR-
based systems. Its flexible, extendable design supports multiple
simulators, benchmarks, real-world applications, and multi-
user use cases. Our experiments confirm that IRIS performs
effectively in three distinct data collection pipelines across
simulation and real world, while validating that data collected
through IRIS has comparable quality for training models.
As an open-source project, IRIS codebase promotes further
research and adaptation across diverse use cases and hardware
platforms.
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