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ABSTRACT

Topological data analysis (TDA) is a powerful technique for extracting complex
and valuable shape-related summaries of high-dimensional data. However, the
computational demands of classical algorithms for computing TDA are exorbi-
tant, and quickly become impractical for high-order characteristics. Quantum
computers offer the potential of achieving significant speedup for certain com-
putational problems. Indeed, TDA has been purported to be one such problem,
yet, quantum computing algorithms proposed for the problem, such as the orig-
inal Quantum TDA (QTDA) formulation by Lloyd, Garnerone and Zanardi, re-
quire currently unavailable fault-tolerance. In this study, we present NISQ-TDA,
a fully implemented end-to-end quantum machine learning algorithm needing only
a short circuit-depth, that is applicable to high-dimensional classical data, and with
provable asymptotic speedup for certain classes of problems. The algorithm nei-
ther suffers from the data-loading problem nor does it need to store the input data
on the quantum computer explicitly. The algorithm was successfully executed on
quantum computing devices, as well as on noisy quantum simulators, applied to
small datasets. Preliminary empirical results suggest that the algorithm is robust
to noise.

1 INTRODUCTION

With the advent of modern technology, the collection of information-rich, high-dimensional data
has become prevalent. These high-dimensional datasets are typically characterized by multidimen-
sional correlation structures that are difficult to uncover. Extracting and analyzing such structural
information is crucial in machine learning as well as in accelerating scientific discovery. Topolog-
ical data analysis (TDA) is a powerful unsupervised machine learning technique for the extraction
of valuable shape-related features of large datasets (Zomorodian & Carlsson, 2005; Ghrist, 2008;
Wasserman, 2018). It represents one of the few data analysis algorithms that can process high-
dimensional datasets and reduce them to a small set of local and global signature values that are
interpretable and laden with predictive and analytical value. TDA has been shown to be useful in
various scientific applications, including machine learning and artificial intelligence (AI) for the
analysis of deep neural network architectures (e.g., estimate the capacity (Guss & Salakhutdinov,
2018) and topological complexity (Naitzat et al., 2020) of neural networks); neuroscience (Giusti
et al., 2015), where topology is used to reveal intrinsic geometric structures in neural correlations;
cosmology (Cole & Shiu, 2018b), where TDA is used for detecting non-Gaussianity of the cosmic
microwave background (CMB); and genetics (Rabadán et al., 2020; Mandal et al., 2020b), for pre-
dicting phenotypes from gene co-expression or raw genomics data. Despite such progress in some
applications, the true potential of TDA has been severely limited because classical algorithms for

∗These authors contributed equally to this work. Corresponding authors
†IBM Research, USA and South Africa
‡University of the Witwatersrand, South Africa
§Royal Institution, UK

1



Published as a conference paper at ICLR 2024

TDA have proven to be computationally prohibitive, only mitigated to some extent by sampling or
by limiting calculations to low-dimensional properties.

Quantum computers represent one potential approach to address these prohibitive computational re-
quirements of TDA. The power of quantum computers lies in their ability to perform computations
in large computational (Hilbert) spaces, accessed via relatively small physical systems (Deutsch,
1985; Lloyd, 1996). With the recognition of this novel computational power in the 1980s (Feyn-
man, 1982), there has been an arduous search for algorithms that achieve significant computational
speedups over classical algorithms (Shor, 1994; Grover, 1996; Nielsen & Chuang, 2010). Such
quantum algorithms offer the potential to solve problems that can not be solved using conventional
computers. Quantum computers outperforming current classical supercomputers has been termed
quantum advantage in the literature (Bravyi et al., 2018; Arute et al., 2019; Deshpande et al., 2022;
Rinott et al., 2022). However, this has not yet been achieved for any problem of practical value.

In a seminal paper, Lloyd et al. (2016) proposed Quantum TDA (QTDA), an algorithm that achieves
an expected exponential speedup in solving an approximation of TDA. Recent works (Gyurik et al.,
2020; Cade & Crichigno, 2021; Crichigno & Kohler, 2022; Schmidhuber & Lloyd, 2022) have
studied the hardness of the approximation problem solved by QTDA, and discussed the conditions
under which the algorithm provably enjoys speedup over classical algorithms. Furthermore, this
speedup is not overshadowed by the data-loading cost (Aaronson, 2015), which plagues several
other quantum algorithms (Harrow et al., 2009; Gilyén et al., 2019), especially those related to
machine learning (Biamonte et al., 2017; Schuld et al., 2015). However, the QTDA algorithm still
requires long-lasting quantum coherence and low computational error to store and process the loaded
data. Indeed, it requires fault-tolerant quantum computing (Shor, 1996; Aaronson, 2015; Preskill,
2018), an error-corrected quantum computer needing a very large overhead in resources (number
of low-noise qubits and operations) (Arute et al., 2019; Zhao et al., 2020). Many components of
the Lloyd et al. (2016) algorithm require fault-tolerance: Grover’s search (Grover, 1996), Quantum
Phase Estimation (Nielsen & Chuang, 2010), and repeated access to the input data. However, fault-
tolerance has not yet been achieved on currently available quantum devices, and is likely several
years away from full realization (goo, 2023). Intriguingly, the qubit numbers and noise levels that are
currently realized in hardware are not classically simulatable, which raises the question of whether
some algorithm could make use of these non-fault-tolerant noisy devices (Noisy Intermediate-Scale
Quantum (NISQ) (Preskill, 2018)) for quantum advantage?

In this paper we present a quantum algorithm for solving the same problem as QTDA with an im-
proved runtime, shorter circuit depth, and without fault tolerance requirements. Our NISQ-TDA al-
gorithm solves the principal problem of TDA, estimating the Betti numbers of the given data (Ghrist,
2008). The algorithm only requires pairwise distances of the n data-points as input and outputs an
estimate for the (normalized) Betti numbers of the data, which are signature values that describe
the shape of the data. However, the calculation of these Betti numbers by current methods requires
operating on large exponential-sized matrices (details of TDA and Betti numbers are provided in
the next section). The approximation problem solved by our algorithm is believed to be intractable
classically (likely belonging to a class of problems called DQC1-hard (Morimae et al., 2014)) under
certain settings (Gyurik et al., 2020; Cade & Crichigno, 2021; Crichigno & Kohler, 2022), and in
this sense potentially enjoys super-polynomial to exponential speedup over classical algorithms for
certain classes of problems (Schmidhuber & Lloyd, 2022). We present a theoretical error analysis
for the proposed algorithm, establishing error guarantees for the estimated Betti numbers, and show
that the algorithm requires only Õ(n/

√
δ)-depth circuit complexity. We then present preliminary

empirical results from implementations on real hardware and quantum simulations that illustrate the
noise resiliency of our algorithm. Our presented theoretical and numerical results demonstrate that
NISQ-TDA has the potential to be the first generically useful NISQ algorithm.

2 PRELIMINARIES

We begin by introducing the key concepts of quantum computing, TDA and quantum TDA (QTDA).

Quantum computing: Quantum computing is characterized by operations on the quantum state of
n quantum bits or qubits, representing a vector in 2n dimensional complex vector (Hilbert) space.
The quantum operations or measurements correspond to multiplying the quantum state vector by
certain 2n × 2n matrices. Quantum circuits represent these operations in terms of a set of quantum
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gates operating on the qubits. The number of these gates and the depth of the circuit define the circuit
complexity of a given quantum algorithm. Quantum computers are difficult to build (preparing and
maintaining the quantum states is extremely hard) and are very noisy. Therefore, the principles of
quantum error correction were proposed to protect the quantum system from information loss and
other damages (Gottesman, 2010). A (large-scale) quantum computer with many qubits is said to be
fault-tolerant if the device is capable of such quantum error correction. However, realization of such
fault-tolerant quantum systems is likely several years away. Currently available quantum computers
are termed “Noisy Intermediate-Scale Quantum” (NISQ) (Preskill, 2018), and these devices are
prone to considerable error rates and are limited in size by the number of logical qubits available
in the system. In order to obtain results with reasonable accuracies on a NISQ device, the quantum
circuit implementing a given algorithm needs to be of short depth.

Topological data analysis: TDA represents one of the few data analysis methodologies that can
process high-dimensional datasets and reduce them to a small set of local and global signature values
that are interpretable and laden with predictive and analytical value. Given a set of n data-points
{xi}n−1

i=0 in some space together with a distance metric D, a Vietoris-Rips (Ghrist, 2008) simplicial
complex is constructed by selecting a resolution/grouping scale ε that defines the “closeness” of the
points with respect to the distance metric D, and then connecting the points that are a distance of
ε from each other (i.e., connecting points xi and xj whenever D(xi, xj) ≤ ε, forming a so-called
1-skeleton). A k-simplex is then added for every subset of k + 1 data-points that are pair-wise
connected (i.e., for every k-clique, the associated k-simplex is added).

Let Sk denote the set of k-simplices in the Vietoris–Rips complex Γ = {Sk}n−1
k=0 , with sk ∈ Sk

written as {j0, . . . , jk} where ji is the ith vertex of sk. Let Hk denote an
(

n
k+1

)
-dimensional Hilbert

space, with basis vectors corresponding to each of the possible k-simplices (all subsets of size k +
1). Further let H̃k denote the subspace of Hk spanned by the basis vectors corresponding to the
simplices in Sk, and let |sk⟩ denote the basis state corresponding to sk ∈ Sk. Then, the n-qubit
Hilbert space C2n is given by C2n ∼=

⊕n
k=0 Hk. The boundary map (operator) on k-dimensional

simplices ∂k : Hk → Hk−1 is a linear operator defined by its action on the basis states as follows:

∂k |sk⟩ =
k−1∑
l=0

(−1)l |sk−1(l)⟩ , (1)

where |sk−1(l)⟩ is the lower simplex obtained by leaving out vertex l (i.e., sk−1 has the same
vertex set as sk except without jl), and sk−1 is k − 1-dimensional, a dimension less than sk. The
factor (−1)l produces the oriented (Ghrist, 2008) sum of boundary simplices, which keeps track of
neighbouring simplices so that ∂k−1∂k |sk⟩ = 0, given that the boundary of the boundary is empty.

The boundary map ∂̃k : H̃k → H̃k−1 restricted to a given Vietoris–Rips complex Γ is given by
∂̃k = ∂kP̃k, where P̃k is the projector onto the space Sk of k simplices in Γ. The full boundary
operator on the fully connected complex (the set of all subsets of n points) is the direct sum of the k-
dimensional boundary operators, namely ∂ =

⊕
k ∂k. The k-homology group is the quotient space

Hk := ker(∂̃k)/img(∂̃k+1), representing all k-holes which are not “filled-in” by k+1 simplices and
counted once when connected by k simplices (e.g., the two holes at the ends of a tunnel count once).
Such global structures moulded by local relationships is what is meant by the “shape” of data. The
kth Betti Number βk is the dimension of this k-homology group, namely βk := dimHk.

These Betti numbers therefore count the number of holes at scale ε, as described above. By comput-
ing the Betti numbers at different scales ε, we can obtain the persistence barcodes/diagrams (Ghrist,
2008), i.e., a set of powerful interpretable topological features that account for different scales while
being robust to small perturbations and invariant to various data manipulations. These stable per-
sistence diagrams not only provide information at multiple resolutions, but they also help identify,
in an unsupervised fashion, the resolutions at which interesting structures exist. The Combinatorial
Laplacian, or Hodge Laplacian, of a given complex is defined as ∆k := ∂̃†k∂̃k + ∂̃k+1∂̃

†
k+1. From

the Hodge theorem (Friedman, 1998; Lim, 2019), we can compute the kth Betti number as

βk := dimker(∆k). (2)

Therefore, computing Betti numbers for TDA can be viewed as a rank estimation problem (i.e.,
βk = dim H̃k − rank(∆k)). Additional TDA details can be found in Appendix A.2. The problem
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of normalized Betti number estimation (BNE) is defined as (Gyurik et al., 2020): Given a set of n
points, its corresponding Vietoris–Rips complex Γ, an integer 0 ≤ k ≤ n − 1, and the parameters
(ϵ, η) ∈ (0, 1), find the value χk ∈ [0, 1] that satisfies with probability 1− η the condition∣∣∣∣χk − βk

|Sk|

∣∣∣∣ ≤ ϵ, (3)

where |Sk| is the the number of k-simplices Sk ∈ Γ or dim H̃k, the dimension of the Hilbert space
spanned by the set of k-simplices in the complex.

Quantum TDA: Lloyd et al. (2016) proposed Quantum TDA (QTDA), an algorithm for solving
an approximation of TDA in polynomial time for a class of simplicial complexes. Recent works
have shown, e.g., (Gyurik et al., 2020; Schmidhuber & Lloyd, 2022), that the problem QTDA
solves approximately is intractable classically for certain classes of complexes. The TDA problem
of computing Betti numbers exactly has been shown to be intractable for even quantum computers
as decision clique homology has been proven to be QMA1-hard (Crichigno & Kohler, 2022) for
clique complexes; and promise weighted clique homology has been shown to be QMA1-hard and
contained in QMA (King & Kohler, 2023). The approximative version that QTDA actually solves
involves a different computational class: DQC1-hard. This normalized Betti number estimation
problem has been shown to be DQC1-hard for general chain complexes (Cade & Crichigno, 2021)
and is conjectured to hold for clique complexes (Cade & Crichigno, 2021; King & Kohler, 2023).

QTDA involves two main steps, namely: (a) repeatedly constructing the simplices in the given
simplicial complex as a mixed quantum state using Grover’s search algorithm (Boyer et al., 1998);
and (b) projecting this onto the eigenspace of ∆k in order to calculate the Betti numbers of the
complex, using quantum phase estimation (QPE) (Nielsen & Chuang, 2010) (details are provided
in the Appendix A). The computational complexity is O(n5/(δk

√
ζk)) where n is the number of

data points, δk denotes the smallest nonzero eigenvalue of ∆k, and ζk is the fraction of all simplices
of order k in the given complex, resulting in significant speedup over known classical algorithms.
However, QTDA requires long-lasting quantum coherence to store the loaded data for the length of
the long-depth circuits thus requiring fault-tolerant quantum computing. In particular, Grovers and
QPE require precise phase information where any errors would accumulate multiplicatively.

3 NISQ-TDA

We now present our proposed quantum algorithm, NISQ-TDA, for estimating the (normalized) Betti
numbers of datasets (simplicial complexes) defined through vertices and edges. The algorithm in-
volves three key components, namely: (a) an efficient representation of the full boundary operator as
a sum of Pauli operators; (b) a quantum rejection sampling technique to project onto the data-defined
simplicial complex; and (c) a stochastic rank estimation method to estimate the output signature Betti
numbers. In order to calculate the Betti numbers, the first of two major tasks is to construct a quan-
tum circuit that applies the data-defined Laplacian to any input set of simplices. In our algorithm,
this involves three main sub-components.

The first is a quantum representation of the complete (not data-defined) boundary map operator
(say B), called the Fermionic boundary operator (Cade & Crichigno, 2021; Akhalwaya et al.,
2022). It acts on all possible simplices with n points and returns their corresponding boundary
simplices. The representation involves only unitary operators written as a sum of Pauli (fermionic)
operators. The Hermitian boundary operatorB is written asB =

∑n−1
i=0 ai+a

†
i ,where the ai are the

Jordan-Wigner (Jordan & Wigner, 1928) Pauli embeddings corresponding to the n-spin fermionic
annihilation operators. The implementation of this fermionic boundary operator B on a quantum
computer requires only n qubits,O(n2) gates, and anO(n)-depth circuit; see Appendix B for details.

The second sub-component, which we call Projection onto simplices, consists of projecting onto
the simplicial complex (Γ) corresponding to the given data by implementing the projector (PΓ) using
multi-qubit gates and auxiliary flag-registers. A series of multi-control-NOT gates, one for each edge
in the complement of the ε-close graph (precomputed classically), checks if the edges of the input
simplices (in superposition) are not present in the data. The result is stored in a flag register which
can either be measured (causing a collapse) or used reversibly allowing for uncomputation. Since
there are

(
n
2

)
∼ O(n2) potential edges, this seems to require O(n2) depth. However the checks can

be run in parallel and in batches using a round-robin procedure for a depth of O(n).
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The result of the checks on a maximum of n/2 pairs of vertices at a time, needs n/2 flag qubits
in n − 1 rounds, thereby covering all possible

(
n
2

)
pairs of vertices not ε-close. The n/2 pairs are

chosen such that the C-C-NOT (Toffoli) gates, controlling on pairs of vertex qubits, targeting the
flag register, are executed in parallel.

If the flag registers are measured, then just n/2 flag qubits suffice in total and can be reused using
the power of mid-circuit measure and reset. In each round, we measure the flag register and proceed
only if we receive all zeros. This collapses the simplex superposition into those simplices that only
have pairs which are not missing from the adjacency graph.

If the flag registers are not measured due to the need for reversibility (which is our case when
performing qubitization), then the auxiliary qubits cannot be measured and reused and O(n2) inde-
pendent auxiliary qubits are needed.

The ‘all-orders’ data-defined Laplacian can now be expressed as ∆ = PΓBPΓBPΓ.

Although this simple linear-depth circuit implementation of PΓ suggests a requirement of quantum
computers with all-to-all connectivity (as used in our experiments), we can indeed implement it on
quantum computers with only linear qubit connectivity using a sorting network approach in O(n)
depth (Beals et al., 2013; O’Gorman et al., 2019). The network uses nearest-neighbor SWAP gates
and with n layers of such ‘qubit swaps’, all

(
n
2

)
pair of qubits become nearest-neighbors at some

layer; see O’Gorman et al. (2019) for details.

Most importantly, the ability to write the Laplacian in terms of a circuit that does not require ac-
cessing stored quantum data is one of the key enabling innovations of NISQ-TDA. The input edge
data is not stored on the quantum computer but enters through the presence or absence of the multi-
qubit control gates of the projector. Every time the complex projection is called, the data is freshly
and accurately injected into the quantum computer. This suggests that NISQ-TDA is partially self-
correcting, and under noise presence, the last application of PΓ mitigates the noise. When noise-
levels only allow for one coherent application of PΓ, this application meaningfully represents the
data and can be used for alternate machine learning tasks.

The third sub-component, which we call Projection to a simplicial order, is the construction of
the projector (Pk) onto the k-simplex subspace. The circuit is a sequence of control-‘add one’ sub-
circuits that conditions on each vertex qubit of the simplex register and increments a log(n)-sized
count register. The operation is equivalent to implementing conditional-permutation, and can be
efficiently implemented using diagonalization (Shende et al., 2006) in the Fourier basis. Similarly
to PΓ, the projection can be executed by measurement collapse (by measuring the count register) or
reversibly, enabling uncomputation. The cost in depth is O(n), since each vertex qubit must take a
turn to control onto a count register qubit. The data-defined Laplacian corresponding to simplicial
order k can thus be written as ∆k = Pk∆Pk.

The second major part of the NISQ-TDA algorithm, which we call the Stochastic Chebyshev
method, consists of using the above quantum circuit in a larger classically controlled framework,
making NISQ-TDA a hybrid quantum-classical algorithm. The classical framework is a stochas-
tic rank estimation using the Chebyshev polynomials (Ubaru & Saad, 2016; Ubaru et al., 2017).
Once we obtain the rank of the Laplacian, we have the Betti numbers βk = dim(ker(∆k)) =
|Sk| − rank(∆k), where Sk ⊆ Γ is the set of k-simplices in the given complex Γ. Stochastic rank
estimation recasts the eigen-decomposition problem into the estimation of the matrix function trace.

Assuming the smallest nonzero eigenvalue of ∆̃k = ∆k/n is greater than or equal to δ, we have

rank(∆k)
def
= trace(h(∆̃k)), where h(x) =

{
1 if x > δ
0 otherwise .

Supposing ∆̃k =
∑

i λi|ui⟩⟨ui| is the eigen-decomposition, we have h(∆̃k) =
∑

i h(λi)|ui⟩⟨ui|,
where the step function h(·) takes a value of 1 above the threshold δ > 0 and the eigenvalues of ∆̃k

are in the interval {0}∪[δ, 1]. Next, h(∆̃k) is approximated using a truncated Chebyshev polynomial
series (Trefethen, 2019) as h(∆̃k) ≈ ∑m

j=0 cjTj(∆̃k), where Tj(·) is the jth-degree Chebyshev
polynomial of the first kind and cj are the coefficients with closed-form expressions. The trace is
approximated using the stochastic trace estimation method (Hutchinson, 1990) given by trace(A) ≈
1
nv

∑nv

l=1⟨vl|A|vl⟩, where |vl⟩, l = 1, . . . ,nv, are random vectors with zero mean and uncorrelated
coordinates. It can be shown that a set of random columns of the Hadamard matrices works well as
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a choice for |vl⟩, both in theory and practice (see the supplementary material). Sampling a random
Hadamard state vector in a quantum computer can be conducted with a short-depth circuit. Given an
initial state |0⟩, we randomly flip the n qubits (by applying a NOT gate as determined by a random
n-bit binary number generated classically). Thereafter, we apply the n-qubit Hadamard gate to
produce a state corresponding to a random column of the 2n × 2n Hadamard matrix. Therefore, the
rank of ∆k can be approximately estimated as rank(∆k) ≈ 1

nv

∑nv

l=1

[∑m
j=0 cj⟨vl|Tj(∆̃k)|vl⟩

]
,

where the cj are Chebyshev coefficients for approximating the step function. Given a circuit that
block-encodes ∆̃k, we can block-encode a j-degree Chebyshev polynomial Tj(∆̃k) using the idea
of qubitization (Low & Chuang, 2019; Gilyén et al., 2019). Details are given in Appendix B.

NISQ-TDA Algorithm: We now have all the ingredients to present our NISQ-TDA algorithm:

Algorithm 1 NISQ-TDA Algorithm
Input: Pairwise distances of n data points and encoding of the ε-close pairs; parameters ϵ, δ, and
nv = O(ϵ−2); and nv n-bit random binary numbers.
Output: Betti number estimates χk, k = 0, . . . , n− 1.
for l = 1, . . . ,nv = O(ϵ−2) do

for j = 0, . . . ,m = O(log(1/ϵ)) do
1. Prepare a random Hadamard state vector |vl⟩ from |0⟩ using the l-th random number.
2. Use the circuits for Pk, PΓ, and B̃ = B/

√
n to compute

|ϕl⟩ = |0q⟩ ∆̃k |vl⟩+
∣∣∣⊥̃〉, where q = #auxiliary qubits needed for projections.

3. Use qubitization to form:
∣∣∣ψ(j)

l

〉
=
∣∣0q+1

〉
Tj(∆̃k) |vl⟩+ |⊥⟩ from |ϕl⟩.

4. Compute the Chebyshev moments θ(j)l = ⟨vl|Tj(∆̃k) |vl⟩ from
∣∣∣ψ(j)

l

〉
.

end for
For j = 0, estimate |Sk| using the average norm of the PΓPk |vl⟩.

end for
Estimate χk = 1− 1

nv

∑nv

l=1

[∑m
j=0 cjθ

(j)
l

]
.

Repeat for k = 0, . . . , n− 1.

Analyses: Our NISQ-TDA algorithm returns the estimates χk for the normalized Betti numbers
βk/|Sk|, for each order k = 0, . . . , n − 1, where |Sk| is the number of k-simplices in the given Γ.
We discuss potential scientific machine learning and AI applications of NISQ-TDA in the Appendix.
The remainder of this section focuses on theoretical analyses of our NISQ-TDA algorithm, with the
formal details and proofs provided in Appendix C. We begin with the following main result.
Theorem 1. Assume we are given the pairwise distances of any n data points and the encoding
of the corresponding ε-close pairs, together with an integer 0 ≤ k ≤ n − 1 and the parameters
(ϵ, δ, η) ∈ (0, 1). Further assume the eigenvalues of the scaled Laplacian ∆̃k are in the interval
{0} ∪ [δ, 1], and choose nv and m such that

nv = O

(
log(1/η)

ϵ2

)
and m >

log(1/ϵ)√
δ

.

Then, the Betti number estimation χk ∈ [0, 1] by NISQ-TDA, with probability at least 1−η, satisfies∣∣∣∣χk − βk
|Sk|

∣∣∣∣ ≤ ϵ.

Our analysis accounts for errors due to (a) polynomial approximation of the step function; (b)
stochastic trace estimator; and (c) also shot noise, i.e., errors in Chebyshev moments estimation
and their propagation in classical computation; for details, see Appendix C.

We next discuss the circuit and computational complexities of our proposed algorithm and show that
it is NISQ implementable under certain conditions, such as the requirement for simplices-dense com-
plexes, which commonly occur for large resolution scale. The main quantum component of the algo-
rithm comprises the computation of θ(j)l = ⟨vl|Tj(∆̃k) |vl⟩, for j = 0, . . . ,m ∼ O(log(1/ϵ)/

√
δ),
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with nv ∼ O(ϵ−2) random Hadamard vectors. The random Hadamard state preparation requires
n single-qubit Hadamard gates in parallel and O(1) time. For a given k, constructing ∆̃k involves
implementing the boundary operator B̃ and the projectors PΓ and Pk. The operator B, involving
the sum of n Pauli operators, can be implemented using a circuit with O(n) gates. Pk requires
O(n log2 n) gates, while PΓ requires O(n2) gates, but with both fitting within O(n) depth due to
parallelization. Our implementation of PΓ requires n/2 auxiliary qubits for measured projection but
O(n2) auxiliary qubits when uncomputation is needed.

The total time complexity of our algorithm is

O

(
1

ϵ2
max

{
n log(1/ϵ)√

δ
,
n

ζk

})
.

Supposing δk is the spectral gap of ∆k and ∆̃k = ∆k

n , then δ = δk
n . The best-known classical

algorithm for Betti number estimation of order k has a time complexity of O(poly(nk)) (Gyurik
et al., 2020) or O(n1/δ log(1/ϵ)) (Apers et al., 2022). Thus, the QTDA algorithms can achieve super-
polynomial to exponential speedups over the best-known classical algorithms whenever we have:

• Simplices/Clique dense complexes – the given complex Γ is simplices/clique dense, i.e.,
ζk is large or |Sk| ∼ O(poly(n));

• O(1/poly(n)) spectral gap – the spectral gap between zero and nonzero eigenvalues of
∆k is not exponentially small, i.e., δ of ∆̃k is O(1/poly(n)) (Apers et al., 2022); and

• Large Betti number – the Betti number βk (and the ratio βk/|Sk|) needs to be large so
that a large ϵ suffices to estimate it to a reasonable precision.

A few examples for simplicial complexes that satisfy these conditions are discussed in the Appendix.
Further examples and discussions on the potential speedups for quantum TDA algorithms are pre-
sented in (Schmidhuber & Lloyd, 2022).

We wish to remark that known examples of simplicial complexes with exponentially many holes
(Betti number) are limited. An example family of graphs with exponentially many high-dimensional
holes are presented in (Fendley & Schoutens, 2005). More importantly, our algorithm still likely
achieves exponential advantage over known classical approaches in efficiently answering the ques-
tion: does the given simplicial complex have exponentially many holes or not? In that regard, our
algorithm is indeed applicable to non-handcrafted high-dimensional classical data.

From a different point of view, the Chebyshev moments capture the spectral information of ∆k

and have even more information than the Betti numbers. This therefore opens the door for these
(PΓ-corrected) noisy moments to be used directly as input features in downstream contexts such as
machine learning classification, further relieving the depth and noise requirements of NISQ-TDA.

4 EXPERIMENTAL RESULTS

With the theory promising short depths, it remains to demonstrate that NISQ-TDA is sufficiently
noise-robust for quantum advantage to be achieved for the actual depths in realizable hardware and
under realistic noise levels. Currently optimized classical TDA algorithms cannot compute all Betti
numbers for 64 generic vertices (we have empirically verified with a popular public package called
GUDHI (Maria et al., 2014)). Hence, quantum advantage could possibly be achieved when running
NISQ-TDA on 64 vertices. Such large NISQ-TDA circuits are also beyond what is simulatable
classically (Pednault et al., 2017; 2019).

We first present the actual depths needed in the form of a depth versus number of vertices plot, which
also empirically confirms that circuit depth grows linearly with the number of vertices. Figure 1
shows depths for both actual quantum hardware circuits and generic all-to-all quantum simulator
circuits. For the quantum hardware, we employed the public-cloud accessible ‘H1’ 12-qubit trapped-
ion quantum computer from Quantinuum (powered by Honeywell) (Honeywell, 2022). We selected
the most conservative number of edges to cover the worst-case depth scenario. The magenta solid
points of sub-figure A correspond to Laplacian circuit depths obtained from Quantinuum’s own
native compiler, and the blue circled points correspond to those obtained from a quantum simulator.

7



Published as a conference paper at ICLR 2024

1

4
3

2

X

1

5

8

6

7

3

2

X

21

2 vertices and an edge A square with 4 vertices A cube with 8 vertices

A. B. C.
B. D.

Edge (2 vertices) Square (4 vertices) Cube (8 vertices)
C.

Depth vs Vertices (log scale)

Depth vs. vertices (log scale)

Vertices

QASM all-to-all
Ion-trap

De
pt

h

2
16

32

64

128

256

512

1024

2048

4096

4 8 16 32 64 128

A.

Figure 1: Results from real hardware of Laplacian applications (using measure and reset projec-
tions): A. Circuit depth versus the number of vertices for degree m = 1 and 3; (B., C. and D.)
Histograms of the probability measurements as obtained from the hardware (right, magenta bars)
and from a simulator (left, blue bars) for three different datasets namely, an edge (2 vertices), a
square (4 vertices), and a cube (8 vertices). ϕ defines the null state, and ‘X’ denotes the probability
mass with incorrect flag readings.

We observe that the circuit depth for the Laplacian scales linearly with respect to the number of data
points. As discussed earlier, our algorithm can be implemented on quantum computers with linear
qubit connectivity as well, using the sorting network approach (Beals et al., 2013).

The remaining three sub-figures (B, C, D) present the histograms of the top probability measure-
ments for different numbers of vertices (2, 4, 8) for both hardware runs (right, magenta bars) and
simulation runs (left, blue bars). These measurements are the raw outputs of the quantum circuit
before being converted into expectations (where flag values play a role). The respective complexes
chosen correspond to easily understandable shapes (edge, square, cube) represented by the (green)
edges. The input simplex set corresponds to a uniform superposition over all simplices (including
not shown triangles, tetrahedrons, and all higher-order polytopes). Due to projection onto the spec-
ified complexes and interference (correctly eliminating boundaries, sending mass to the null state
ϕ), not all simplices will appear/remain after the application of the Laplacian, demonstrating that
the hardware is truly performing a coherent quantum calculation. These sub-figures clearly show
that there is agreement between hardware and noise-free simulations on which simplices receive the
top probability measurements. Three types of errors are, however, visible by the hardware: reduced
probability mass for correct simplices, some small probability mass on incorrect simplices (also not
shown are the non-top measurements), and correct simplex mass but incorrect flag readings (marked
with a red ’X’ in sub-figures B and D). Even with these errors, Figure 1 unequivocally demonstrates
that at real-world noise-levels there is sufficient coherence to reproduce the correct interference at
the depths of these circuits.

The next task would be to demonstrate that these errors, which inevitably enter, do not dramatically
disturb the downstream Betti number calculation. For this we chose complexes with large eigenvalue
gaps, and sufficiently many random vectors and shots. The Chebyshev parameters we selected
are such that, in the noise-free scenario, the algorithm would calculate the Betti number almost
perfectly (i.e., with a mean error of close to zero). Thus, any Betti-number errors involving the
noisy simulations are due mainly to the quantum noise and only minimally on downstream classical
approximations. In this setup, the error that can naturally be considered tolerable is 0.5, since any
error less than 0.5 rounds to exactly the correct Betti number. In Figure 2, we present results from
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Figure 2: Results from noisy simulations: A. Mean error surface as a function of the noise levels
in (1-qubit, 2-qubits) gates and (number of vertices n, circuit depth). B. Mean and the variance of
the Betti number estimated as a function of the number of random vectors nv with n = 8 vertices,
degree m = 5 and the noise-level: (0.001, 0.01).

extensive noisy quantum simulations of the non-qubitized version of the algorithm. The right plot
shows the mean and the variance (as error bars) of the Betti number estimated as a function of the
number of random vectors nv. We note that the mean converges to ∼ 1.84 (the true Betti number
is β0 = 2) and, most importantly, the variance reduces as we increase nv. This variance-reduction
mitigates errors due to shot noise and randomness in the trace estimation, illustrating the precision-
versus-number-of-trials benefit of NISQ-TDA. In the left figure, we present the mean error surface
plot for Betti number estimation, as a function of noise levels (chosen triples of measurement, one
and two-qubit gate errors) and number of vertices (with concomitant circuit depth). The first number
of the listed noise-level pair corresponds to the one-qubit error probability. The measurement and
the two-qubit error probabilities are both set to the second value. In the surface plot, the solid
region (for n = 2 to n = 8) corresponds to actual noisy simulations and the translucent region
(from 16 to 64 vertices) corresponds to an extrapolation of the surface for larger n, which we cannot
simulate classically (even n = 16 was not simulatable using a large classical machine with 2 GPUs).
The surface plot extrapolations provide the minimum noise-level requirements for NISQ-TDA to
successfully run on future larger NISQ devices. See Appendix D for additional results, including
preliminary results on cosmic microwave background (CMB) data.

5 CONCLUSIONS

The true potential of TDA for machine learning has been severely limited because of the compu-
tationally prohibitive requirements of classical algorithms. To address this critical issue and revive
the potential of TDA as a viable machine learning approach, we presented a new quantum algo-
rithm for Betti number estimation with comprehensive error and complexity analyses. This is one
of the first quantum machine learning algorithms with short depth and potential significant speedup
under certain assumptions. Our algorithm neither suffers from the data-loading problem nor does
it likely require fault-tolerant coherence for even mid-size datasets. The algorithm fits the hybrid
quantum-classical scheme but within a recently developed randomized-approximation framework.
The implementation and successful execution of the entire algorithm on real quantum hardware and
noisy simulations was demonstrated, illustrating noise-resiliency at realistic noise-levels. These ad-
vantages imply that this algorithm may be one of the few noise-robust quantum algorithms capable
of performing an important and useful AI task on near-term (non-fault tolerant) quantum devices,
beyond the reach of classical computation. Possible future research directions include: improve-
ments to the algorithm in order to efficiently deploy it on sparsely connected quantum devices;
achieving substantial asymptotic speedups under more general settings; and identifying interesting
domain problems for which NISQ-TDA can be employed for practical purposes.
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Topological data analysis on noisy quantum computers
Supplemental material

Here in the appendix, we present numerous details related to NISQ-TDA, including background
information, fleshed out details related to the novel ideas in the proposed algorithm, theoretical
analyses and proofs, and additional numerical simulation results.

A DETAILS ON QUANTUM ALGORITHMS, TDA, AND QTDA

We begin with a list of desiderata of a quantum algorithm, and technical background details related
to TDA and QTDA, including several applications and use cases.

A.1 DESIDERATA OF A QUANTUM ALGORITHM

An end-to-end algorithm that successfully achieves such quantum advantage on near-term (or even
currently available) devices and has practical, real-world and commercial value must arguably sat-
isfy a set of desiderata. Similar to the famous seven DiVincenzo criteria (DiVincenzo, 2000) for
quantum hardware, we propose a seven-criteria counterpart for quantum software that such a quan-
tum algorithm needs to satisfy, as depicted in Figure 3. Although quantum computers can operate
on large (exponential) computational spaces, a well-known quantum information bottleneck is the
so-called data-loading problem (Aaronson, 2015), in that if the process of loading the data requires
exponential time, then the subsequent quantum computational benefits are over-shadowed by this
loading time, and do not convey any asymptotic advantage. Indeed, information theory precludes
the possibility of lossless exponential compression for generic unstructured data. Therefore, the data
size must be small compared to the computational space, and hence, the first criterion is that the algo-
rithm should be effective on small arbitrary classical input data. Many quantum machine learning
(QML) algorithms (Biamonte et al., 2017; Schuld et al., 2015; Schuld & Killoran, 2019) suffer from
this inherent data-loading issue. The term “arbitrary” conveys the desirable property of the general
applicability of the algorithm to non-handcrafted classical input data and excludes the data access
through an oracle assumptions. A few recent works (Havlı́ček et al., 2019; Liu et al., 2021; Huang
et al., 2022) have demonstrated quantum speedups for different machine learning tasks, but they are
restricted to specially tailored classical data, or data from well-defined quantum experiments.

The second requirement of the algorithm is that it should achieve significant asymptotic (ideally
exponential) speedup (Knill & Laflamme, 1998; Watrous, 2012) on a provably1 hard problem. Re-
cently, many hybrid classical-quantum algorithms have been proposed, including variational quan-
tum eigen-solvers (VQE) (Peruzzo et al., 2014) and the quantum approximate optimization algo-
rithm (QAOA) (Zhou et al., 2020), that heuristically exploit the exponential computation space.
However, these algorithms do not achieve a provable speedup (Cerezo et al., 2021). Moreover,
recent developments of “dequantized” algorithms (Chia et al., 2020; Chepurko et al., 2020; Tang,
2021) have reduced the potential speedups of many of the linear-algebraic QML proposals (Reben-
trost et al., 2014; Biamonte et al., 2017; Schuld et al., 2015; Schuld & Killoran, 2019) to be between
a nil and at most a modest polynomial.

There are, of course, many quantum algorithms that provably achieve polynomial-to-exponential
speedups over the best-known classical methods (Shor, 1994; Grover, 1996; Nielsen & Chuang,
2010; Gilyén et al., 2019). However, the majority of these algorithms require fault-tolerant quan-
tum computers (Shor, 1996; Aaronson, 2015; Preskill, 2018), which are error-corrected quantum
systems needing a considerably large overhead in resources (number of low-noise qubits and oper-
ations) (Arute et al., 2019; Zhao et al., 2020). Fault tolerance has not yet been achieved at scale on
currently available quantum devices, and it is likely several years away from full realization. Intrigu-
ingly, the qubit numbers, coherence times and noise levels that are currently realized in hardware
are not classically simulatable (Pednault et al., 2017; 2019), which raises the question of whether
some algorithm could make use of these non-fault-tolerant noisy devices (Noisy Intermediate-Scale
Quantum (NISQ) (Preskill, 2018)) for quantum advantage. Hence, the third and fourth requirements
of the ideal algorithm are: it should compile to a short-depth circuit, allowing execution within

1By “provably” we mean the problem is provably as hard as a computational class that is widely accepted
to be classically hard (Watrous, 2012).
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Desiderata of a quantum algorithm

1. Arbitrary classical input

2. Provable speed-up

3. Shallow depth circuit 

4. Noise resilient

5. Small-size output

6. Correctness guarantees

7. Usefulness
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theory

Theorem of 
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𝒏 qubits - 𝟐𝒏 complex 
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Figure 3: The armed quantum computing advantage race: a set of seven criteria that an aspired
quantum algorithm should satisfy (left), and the end-to-end quantum computational model (right),
where the funnels symbolize the narrow input and output bottlenecks and the boxes represent the
other desired properties.

the achievable coherence times, and it should be noise resilient, thereby tolerating the inevitably
introduced noise with each operation.

The fifth requirement demands that the output should be small in size. This represents another infor-
mation theory bottleneck of quantum computing, where Holevo’s theorem (Holevo, 1973) suggests
we can only read up to n classical bits from an n-qubit device, even though the output quantum
state is exponential in size. Many QML and other algorithms suffer also from this issue (Aaronson,
2015). Another desirable property of the output forms our sixth desideratum, namely that the output
of the algorithm should have correctness guarantees. This could be achieved by algorithms with
a certain probability of success followed by a procedure to classically verify the correctness of the
output, or by algorithms that converge to the correct solution with statistical error guarantees.

The final requirement of the algorithm is that it should solve a useful problem of real-world appli-
cations. The algorithm should be end-to-end and solve a problem with practical use-cases. Recent
quantum advantage results (Arute et al., 2019; Zhong et al., 2020; Madsen et al., 2022) fall short
with respect to this crucial requirement.

Next, we discuss how our algorithm fares against the set of seven criteria introduced in this paper
that should be satisfied by an aspired quantum algorithm.
Criterion 1 is satisfied with respect to arbitrary small classical input in that the inputs to our al-
gorithm and the quantum computer are just edges between the data-points, with up to n/2 edges
considered in parallel, and the input can be any dataset or complex defined by its vertices and edges.
Moreover, the data is not stored on the quantum computer explicitly, and is input each time the pro-
jector PΓ is applied.
Criterion 2, that of NISQ-TDA achieving provable asymptotic speedups is likely satisfied for certain
instances and classes of complexes (for which the problem is DQC1-hard) as previously discussed;
also refer to the discussions in (Crichigno & Kohler, 2022; Schmidhuber & Lloyd, 2022).2 Since the
NISQ-TDA algorithm only requires the complex to be defined by its vertices and edges, one may

2We note that recent results (Crichigno & Kohler, 2022; Schmidhuber & Lloyd, 2022) have shown the
problem of estimating exact Betti numbers of clique complexes to be hard (QMA-1 and NP hard) even for
quantum computers, and thus NISQ-TDA is unlikely to achieve quantum advantage for estimation of exact
Betti numbers of clique complexes.
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Figure 4: A: k-simplices or k-chains (fully connected sets of k+1 data points) shown for k =
0, 1, 2, 3. B: Point cloud of raw data (left); Points can be connected using any arbitrary distance
metric ε (middle), i.e., edges are inserted between points that are within ε of each other (alternatively,
the data could already come with edge information); higher-order k-simplices are created for every
k-clique (right). C. Input data represented as a graph or network, or is given as (D) an arbitrary
complex. E: Persistent homology, where the top region shows the edge connections and simplices at
different scales, and the bars represent the formation and cessation of connected components (H0)
and 2D holes (H1); The number of bars at a given scale ε equals the Betti numbers β0 and β1,
respectively. F. Chain complex and homology: Sequence of chain groups connected by boundary
operators that map k-chains to their boundaries.

consider estimation of Betti numbers of other classes of complexes (Schmidhuber & Lloyd, 2022),
such as abstract simplicial complexes, Erdos-Renyi complexes and other possible chain complexes.
For example, the cube (n = 8 instance) considered in our experiments is not a Vietoris-Rips com-
plex (in that case, the cube would have been filled in), but offers one with an example of a complex
with a 3D hole with just 8 vertices. Our algorithm should achieve superpolynomial to exponential
speedups for complexes with very large number of simplices (|Sk| ∼ O(poly(n))), very large Betti
number (βk ≈ |Sk|), and large spectral gap (1/

√
δ ∼ O(

√
n)).

Criterion 3 is satisfied since the algorithm compiles to a short depth quantum circuit that is im-
plementable on present-day and near-term quantum devices, where the circuit depth will be data
dependent (depending on the number of edges, and also on the spectral gap for the polynomial
degree). Preliminary experiments show linear scaling of the circuit depths for a fixed polynomial
degree.
Criterion 4 seems to be satisfied as suggested by the preliminary simulation and hardware imple-
mentation results, which show that NISQ-TDA is noise-resilient. The noise-resiliency stems from
two factors: (a) repeated data loading through the projectors PΓ; and (b) the stochastic trace estima-
tor. Each application of PΓ inputs the clean data information afresh, correcting the errors introduced
due to noise up to the previous step. The stochastic trace estimator estimates the trace by averaging
over many random samples, hence averaging out the noise effects.
Criterion 5 of small output is naturally satisfied in that the algorithm output is an estimate of the
normalized Betti number, and the outputs measured from the quantum computer are the moments.
Criterion 6 is satisfied, as we presented error guarantees for NISQ-TDA and discussed the condi-
tions under which the algorithm will likely achieve speed up over classical algorithms.
Criterion 7 is likely satisfied in that it can certainly solve interesting useful problems, such as esti-
mating whether or not a given complex has exponentially many holes and extracting spectral infor-
mation of high-order Laplacians, with substantial speedups over known classical approaches, even if
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it is unclear whether NISQ-TDA will achieve substantial speedups on arbitrary data for Betti number
estimation; some specific useful applications are discussed below.

A.2 TOPOLOGICAL DATA ANALYSIS

Figure 4 illustrates the key concepts of TDA. A k-simplex or a k-clique or k-chain is a collection of
k + 1 fully connected points (see Figure 4(A)), and a simplicial complex (clique or chain complex)
is a collection of such (nested) simplices (Figure 4(B)). Formally, an abstract simplicial complex
Γ (Figure 4(D)) is a set of simplices satisfying: (a) if a simplex is in Γ, then all its faces are in Γ,
and (b) intersection of two simplices in Γ is through a face of each of them. A clique complex is
typically defined for a graph, and is a simplicial complex with the k-simplices given by the k-cliques
of the graph. A simplicial complex also defines a collection of abelian groups. A chain complex is
a sequence of modules (groups) connected by boundary operators (defined later); see Figure 4(F).

Homology provides us with a linear-algebraic tool to extract, from simplicial complexes derived
from data, values that describe the shape of the data, such as the number of connected compo-
nents (clusters), tunnels (e.g., a doughnut shape), holes (as in Swiss cheese cavities), or higher-
dimensional voids, together known as the Betti numbers (Ghrist, 2008) (see Figure 4(C)). As the
ϵ-distance (Figure 4(B)) is varied the simplicial complex changes, altering the Betti numbers (Fig-
ure 4(C)). The pattern of changing Betti numbers (persistent homology (Ghrist, 2008)) provides a
topological characterization of the data distribution that is scale-independent, invariant under rota-
tion and translation, and robust under variations due to data representation, data sampling, and data
noise. These Betti numbers are defined in terms of a Laplacian matrix (∆k), which takes a set of
simplices and returns an oriented sum of all simplices connected via the boundary simplices of the
input. The signed orientations allow simplices to cancel out if they encompass a hole, where the
hole-surrounding boundaries form the kernel set of the Laplacian. The Betti numbers are precisely
the size of these kernels of various simplicial orders. The Laplacian can be very large for high-order
k, and classical algorithms for Betti number calculation become intractable even for k ≥ 3. In this
paper, we present a new quantum representation of the Laplacian separating the boundary action
from simplicial complex construction enabling implementation on near-term devices.

A.3 QTDA ALGORITHM

The seminal approach of Lloyd et al. (2016) to estimate the Betti numbers using quantum computers,
which was further analyzed by (Gunn & Kornerup, 2019) and (Gyurik et al., 2020), comprises two
main steps. The first step of the algorithm is to create a mixed state ρk over the states |sk⟩ of k-
simplices (over H̃k) that are in the complex Γ. The second step is to use Hamiltonian simulation
(of the boundary operator or the Laplacian ∆k) and quantum phase estimation (QPE) with ρk in
the input register (repeatedly projecting simplices from the complex onto the kernel) to estimate the
kernel dimension of the Laplacian.

In order to prepare the maximally mixed state ρk as part of the first step, the QTDA algorithm first
uses Grover’s search algorithm (Boyer et al., 1998) to construct the k-simplex state

|ψk⟩ =
1√
|Sk|

∑
sk∈Sk

|sk⟩ ,

for the set Sk with |Sk| = dim H̃k. Then, the mixed state

ρk =
1

|Sk|
∑

sk∈Sk

|sk⟩ ⟨sk|

can be prepared from |ψk⟩ by applying the CNOT gate to each qubit and tracing out into the
auxiliary zero qubits. The time complexity of this step is O

(
k2
√
ζ

)
, where ζ := |Sk|

( n
k+1)

is the

fraction of k-simplices that are in the complex Γ. The number of gates required for this step is
O
(
kn2 + nk√

ζ

)
(Gunn & Kornerup, 2019). We believe this step is unnecessary, because a random

simplex of order k can be drawn from the complex efficiently. Nevertheless, the same Grover’s
search is needed to restrict the boundary operator to the complex in the next step.
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The second step uses QPE to estimate the kernel dimension of the Laplacian ∆k. For this, the
following Dirac operator (the square root of the generalized Laplacian)

B̃ =



0 ∂̃1 0 · · · · · · 0

∂̃†1 0 ∂̃2 0 · · · 0

0 ∂̃†2 0
. . . · · · 0

...
...

. . . . . . . . .
...

...
...

...
. . . 0 ∂̃n−1

0 0 0 · · · ∂̃†n−1 0


(4)

is first simulated such that B̃2 = Blockdiag [∆1, . . . ,∆n] is a block diagonal matrix3, since
∂̃k∂̃k+1 = 0. Given that B̃ has the same nullity (kernel) as B̃2, the idea is to use Hamiltonian
simulation of B̃ (i.e., implement U = eiB̃), and use QPE with ρk (computed in the first step) as the
input state to estimate its eigenvalues. Since B̃ is an n-sparse Hermitian with entries {0,±1}, it is
claimed that this can be simulated using O(n) qubits and O(n2) gates (Low & Chuang, 2017).4

QPE yields an approximate estimate of the eigenvalues of ∆k. We need to scale ∆k such that
its spectrum is in the interval [0, 1], in order to avoid multiples of 2π; see Section C for details on
scaling. Supposing the smallest nonzero eigenvalue of (the scaled) ∆k is greater than δ > 0, we then
need to estimate the eigenvalues with a precision of at least 1

δ in order to distinguish an estimated
zero eigenvalue from others. Therefore, the time complexity of this step is O(n

2

δ ) and requires as
many gates for its implementation.

This use of QPE provides us with an approximate estimate of some random eigenvalue of ∆k. For
BNE with additive error ϵ, we need to repeat the two steps O(ϵ−2) times. Hence, the total time
complexity of QTDA (original Lloyd et al. (2016) version5) for BNE with

∣∣∣χk − βk

dim H̃k

∣∣∣ ≤ ϵ is
given by

O

(
n4

ϵ2δ
√
ζ

)
.

Remark 1 (Time Complexity Discrepancy). We note that there is a discrepancy in the total time
complexity of the QTDA algorithm reported in (Lloyd et al., 2016) and in the subsequent articles
by (Gunn & Kornerup, 2019) and (Gyurik et al., 2020), primarily due to differences in the underlying
assumptions. This relates to simulation of the matrix B̃ or ∆k, where Lloyd et al. (2016) suggest the
requirement of constructing and applying the projector P̃k at each round (possibly using Grover’s
search algorithm, although some implementation details are missing). Hence, the total time com-
plexity in (Lloyd et al., 2016) is a product of the time complexity of the two steps. In contrast, the
follow-up studies by (Gunn & Kornerup, 2019) and (Gyurik et al., 2020) assume that we have access
to B̃ or ∆k as an n-sparse matrix, in order to simulate it in the second step, and therefore the time
complexities of the two main steps are added in (Gunn & Kornerup, 2019; Gyurik et al., 2020) to
obtain the total computational time complexity.

The subsequent articles by (Gunn & Kornerup, 2019) and (Gyurik et al., 2020) do not address the
issue of efficient quantum construction of B̃ or ∆k from the pairwise distances of the n points, and
assume that oracle access is given to the nonzero entries of B̃ and their locations.

A.4 POTENTIAL USE-CASES

The proposed NISQ-TDA method is advantageous for computing the Betti numbers of simplices-
dense complexes, especially higher order Betti numbers (the regime where classical methods fail).
Here, we briefly discuss some of the potential applications where NISQ-TDA can be extremely useful
and even revolutionary.

3The block diagonal form is obtained in the Hamming weight sorted representation of the simplices.
4The serious issue is that the restricted Dirac operator is not on hand, and requires P̃k to be known; see

Remark 1.
5Except that we adjust the cost of QPE under our spectral interval assumption.
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Neural networks. The training and application of artificial Neural Networks (NN) is a key
methodology of artificial intelligence, and understanding the processing and capabilities of neu-
ral networks is critical to that methodology. TDA has been proposed for the analysis of neural
networks; in one such proposal (Naitzat et al., 2020), the dataset points are considered to comprise
a sample of a surface and the topological complexity T0, considered here to be the sum the Betti
numbers, is estimated for the dataset surface. Each layer ℓi computes a transformation of its input,
and so yields a sample of a surface, whose topological complexity Ti can also be estimated. In
the analysis of (Naitzat et al., 2020), the resulting sequence T0, T1, . . . , Th, for a trained network
with h layers, is found to decrease rapidly, so that network processing can be understood as a se-
quence of topological simplifications. By considering the nature and rapidity of this simplification,
insights into network architecture and processing are obtained. Another application of TDA (Guss
& Salakhutdinov, 2018) considers the question of the appropriate width and height of networks,
via the estimation of the capacity of a network as a function of the network height and maximum
width. Here the network is used for classification, dividing the input space into positive and negative
instances, and with the decision boundary between these two sets. The capacity of the network is
considered to be the maximum topological complexity of the decision boundary determined by the
network. TDA can be applied to the analysis of decision boundaries. Most importantly, we note
that where both (Naitzat et al., 2020) and (Guss & Salakhutdinov, 2018) consider only small Betti
numbers, and mainly low-dimensional datasets, further insights could be obtained via estimation of
higher Betti numbers of higher-dimensional data, reachable via NISQ-TDA.

Cosmic microwave background. Next, we consider the CMB application, a potential use-case
of NISQ-TDA, for further discussion due to three favourable reasons. The first is due to the im-
mense scientific and cosmic value that is to be gained from a meticulous study of the available and
prospective high-quality CMB data, including the testing of theories of fundamental physics, the
constraining of the fundamental constants of the universe, and even the probing of the existence of
parallel and past universes. Secondly, the CMB use-case has been extensively studied from a clas-
sical TDA perspective. Indeed, promising results have already been empirically demonstrated for
low-order Betti numbers (Cole & Shiu, 2018a; Biagetti et al., 2021). A few papers have even pro-
duced convincing theoretical results demonstrating the power of Betti numbers to shed light on the
CMB use-case, in particular (Feldbrugge et al., 2019b) have derived analytic expressions for low-
order Betti numbers proving their usefulness. Thirdly, (Adler et al., 2014) have proven that low and,
more importantly, high-order Betti numbers associated with a random sample of points generated
from different probability distributions contain valuable characterizing properties.

We make the novel connection between the results in (Adler et al., 2014) and its application to the
study of the CMB. As a proof of principle, we have implemented the insights from their paper and
empirically demonstrated distinguishability of the studied distributions, experimenting with a small
number of points to match the regime of interest for NISQ-TDA; see section D.2 for these results.
The preliminary results suggest the Betti numbers of a small sample set can be used for the detection
of non-Gaussianity in the CMB data, and NISQ-TDA can be used for the estimation of these Betti
numbers of all order.

Neuroscience. Topology-based methods have been used to detect interpretable structures from
neural activity and connection data in Neuroscience (Giusti et al., 2015). Such structural features
can yield key insights into neurological processes. In (Giusti et al., 2015), clique topology was used
to extract invariant features from neural data that reveal geometric structures of neural correlations in
the rat hippocampus. In particular, Betti curves, the distribution of the Betti numbers βk as a function
of the edge density ρ, and integrated Betti values β̄k, defined as β̄k =

∫ 1

0
βk(ρ)dρ, were considered

as clique topology features and were computed from neural connectivity data. The article showed
that the geometric signatures observed using these topological features in the neural correlations
revealed many interesting insights. Neural connections have many unknown non-linearities, and
clique topology can extract such nonlinear features present in the connectivity data, presenting novel
insights in brain activity and connectivity. Indeed, the clique topology features such as Betti curves
and integrated Betti values considered in this application require us to compute the Betti numbers
of many clique-dense complexes. Thus far, only small order Betti numbers have been considered
due to computational impediments. Higher order clique topology features might reveal many new
insights in neural connectivity.
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Genetics. TDA is also playing an important role in various aspects of genetics. As one repre-
sentative example, TDA has been exploited to address an important problem in the sequencing of
a sample of a collection of genomes en masse when distinct organisms with very similar genomes
are present (Guzman-Saenz et al., 2019). This problem arises in the investigation of the community
of constituent microorganisms in a micro-environment where differentiating between similar organ-
isms leads to many false positive identifications because of the numerous possible assignments of
short sequencing reads to reference genomes. TDA is used to address this problem by extracting
information from the geometric structure of data, where said structure is defined by relationships
between sequencing reads and organisms in a reference database, resulting in separation of true
positives from false positives and capturing the non-obvious structure defined by the reads indis-
criminately mapping to multiple organisms (Guzman-Saenz et al., 2019). As another representative
example, TDA has been exploited to address an important problem in phenotype prediction as to
whether RNA sequencing-based gene expression contains enough information to separate healthy
and afflicted individuals (Mandal et al., 2020a). This problem is particularly difficult given the poor
phenotype predictions from standard machine learning methods. By taking into account the topo-
logical information and features relevant to classification from gene expression data, TDA is used
to understand the shape of the very high-dimensional gene expression data and to obtain topological
summaries of the gene expressions of subjects contained within this data, rendering a significant im-
provement in phenotype prediction of disease and confirming that gene expression can be a useful
indicator of the presence or absence of a health condition (Mandal et al., 2020a). In both of these ex-
amples, only small Betti numbers are considered, whereas significant insights should be obtainable
using the higher Betti numbers within reach via NISQ-TDA.

B NISQ-TDA DETAILS

Here, we present additional details related to different aspects of the proposed algorithm. The first
key innovation of NISQ-TDA is the fermionic representation of the full boundary operator B.

B.1 FERMIONIC BOUNDARY OPERATOR

Fermionic fields obey Fermi–Dirac statistics, which means that they admit a mode expansion in
terms of creation and annihilation oscillators that anticommute. Exploiting this fact, it is convenient
to map Pauli spin operators to fermionic creation and annihilation operators. The Jordan–Wigner
transformation (Jordan & Wigner, 1928) is one such mapping. In this section, we will make use of
it to express the boundary matrix.

The Lloyd et al. (2016) restricted boundary operator given in (1) is not in a form that can be easily
executed on a quantum computer, nor does it act on all orders, k, at the same time. In particular, it
is a high-level description of the action of the boundary operator on a single generic k-dimensional
simplex with the location of the ones assumed to be known. Furthermore, this representation is in
tensor product form composed of quantum computing primitives that directly map to quantum gates
in the quantum circuit model. To begin, define the operator:

Q+ :=
1

2
(σx + iσy) =

(
0 1
0 0

)
. (5)

This allows writing the full boundary operator in terms of the above operator:

∂(n) := σz ⊗ . . .⊗ σz ⊗Q+

+ σz ⊗ . . .⊗ σz ⊗Q+ ⊗ I

...

+ σz ⊗Q+ ⊗ I ⊗ . . .

+Q+ ⊗ I ⊗ I ⊗ . . .

=

n−1∑
i=0

ai , (6)

22



Published as a conference paper at ICLR 2024

qm0
: • • •

qm1
: • • •

qm2
: • • •

qm3
: • • •

qa0 : |0〉 |0〉 |0〉

qa1 : |0〉 |0〉 |0〉

c0 : /
6

0 1 2 3 4 5

Figure 5: Projection onto the simplicial complex PΓ: Example circuit diagram with n = 4 vertices
(and six edges)
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Figure 6: Projection onto the simplicial order Pk: Example circuit diagram with n = 4 vertices

where the ai are the Jordan–Wigner (Jordan & Wigner, 1928) Pauli embeddings corresponding
to the n-spin fermionic annihilation operators. This fermionic boundary map representation was
presented in (Cade & Crichigno, 2021) and (Akhalwaya et al., 2022). For details on its correctness
and O(n)-depth unitary circuit to construct it on a quantum computer, see Akhalwaya et al. (2022).

B.2 PROJECTION OPERATORS

In the main paper, we discussed the two projection operators, namely, projection onto the simplicial
complex PΓ and projection onto the order Pk, which are key components of the proposed NISQ-
TDA algorithm. Here, we present example circuit diagrams for these two operations. Figure 5
presents an example circuit for PΓ with n = 4 vertices, assuming all possible six edges are present.
We have n = 4 main qubits, and n/2 auxiliary qubits needed, along with n − 1 measure and reset
operations.

As discussed in the main text, we can alternatively use
(
n
2

)
auxiliary qubits, one for each possible

edge. Then, we can implement the projector PΓ reversibly. With this approach, we can obtain
a block-encoding of the Laplacian ∆̃k using O(n2) auxiliary qubits. The key advantage of this
approach is that block-encoding the Chebyshev polynomial Tj(∆̃k) is now possible. See details in
the next section.

Figure 6 presents a sample circuit for Pk, again with n = 4 vertices. We use Fourier transform
(QFT/iQFT circuits) as a change of basis, followed by the permutation circuit (phase rotations) to
implement the count increment.
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B.3 STOCHASTIC RANK ESTIMATION

Another key ingredient of our proposed NISQ-QTDA algorithm is a stochastic rank estimation pro-
cedure that estimates the Betti number βk by estimating the rank of ∆k, which replaces the QPE
component of the Lloyd et al. (2016) algorithm. The standard approach to estimate the rank of a
square matrix is to compute all of its eigenvalues and count the number of nonzero eigenvalues, for
which prior work (Lloyd et al., 2016) has employed QPE. In this paper, we propose a rank estima-
tion procedure that does not require any decomposition of the corresponding matrix. In particular,
our rank estimation approach is based on the classical stochastic Chebyshev method (Ubaru & Saad,
2016; Ubaru et al., 2017). Namely, the proposed approach recasts the rank estimation problem to
one of estimating the trace of a certain (step) function of the matrix. The trace is then approximated
by a stochastic trace estimator, where the step function is approximated by a Chebyshev polynomial
approximation.

Stochastic trace estimator: Given a Hermitian matrix A ∈ RN×N , the stochastic trace estima-
tion method (Hutchinson, 1990; Avron & Toledo, 2011) uses only the moments of the matrix to
approximate the trace. In the classical setting, trace(A) is estimated by first generating random
vector states |vl⟩ with random independent and identically distributed (i.i.d.) entries, l = 1, ..,nv,
and then computing the average over the moments ⟨vl|A|vl⟩; namely,

trace(A) ≈ 1

nv

nv∑
l=1

⟨vl|A|vl⟩. (7)

Any random vectors |vl⟩ with zero mean and uncorrelated coordinates can be used (Avron & Toledo,
2011).

In the quantum setting, however, particularly with NISQ computations, generating random states
|vl⟩ of exponential size with i.i.d. entries is not viable. Alternatively, it has been shown that random
columns drawn from the Hadamard matrix work very well in practice for stochastic trace estima-
tion (Fika & Koukouvinos, 2017). Sampling a random Hadamard state vector in a quantum com-
puter is extremely simple and can be conducted with a short-depth circuit. Given an initial state |0⟩,
we randomly flip the n qubits (possibly by applying a NOT gate as determined by a random n-bit
binary number ∈ [0, 2n − 1] generated classically). Thereafter, we simply apply Hadamard gates
to all qubits. This produces a state corresponding to a random column of the 2n × 2n Hadamard
matrix. The columns of a Hadamard matrix have pairwise independent entries. Hence, we consider
the random state vector |vl⟩ = |hc(l)⟩, i.e., some random Hadamard column with c(l) defining the
random index, and then we estimate the moments ⟨hc(l)|A|hc(l)⟩ and average over the nv samples
to approximate the trace. The error analysis for this approach is presented in the next section.

Alternatively, quantum t-design circuits are a popular way to generate pseudo-random states (Am-
bainis & Emerson, 2007; Brakerski & Shmueli, 2019). A t-design circuit outputs a state that is
indistinguishable from states drawn from a random Haar measure. These t-designs in a quantum
computer are equivalent to t-wise independent vectors in the classical world (Ambainis & Emerson,
2007). Short-depth circuits exist (though not as short as above) that are approximate t-designs (Brak-
erski & Shmueli, 2019). Such t-design circuits can be used to generate the random states |vl⟩ for
trace estimation. Indeed, random vectors with just 4-wise independent entries suffice for trace es-
timation (we omit the details here because this approach is less competitive than the above super-
short-depth Hadamard construction).

Chebyshev approximation: Assuming the smallest nonzero eigenvalue of A is greater than or
equal to δ, then the rank of A can be written as

rank(A)
def
= trace(h(A)), where h(x) =

{
1 if x > δ
0 otherwise . (8)

Given the eigen-decomposition A =
∑

i λi|ui⟩⟨ui|, we have the matrix function h(A) =∑
i h(λi)|ui⟩⟨ui| where the step function h(·) takes a value of 1 above the threshold δ > 0. The

parameter δ is assumed to be known (or, in the classical setting, can be estimated using the spectral
density method (Ubaru & Saad, 2016)). In the case of TDA, for many simplicial-complex types, a
lower bound for the smallest nonzero eigenvalue of ∆k can be estimated; refer to Section C.3 for a
few examples.

24



Published as a conference paper at ICLR 2024

Next, the approach of Ubaru et al. (Ubaru & Saad, 2016; Ubaru et al., 2017) consists of approx-
imating the matrix function h(A) by employing Chebyshev polynomials (Trefethen, 2019), and
estimating the trace using the stochastic estimator (7). More specifically, h(A) is approximately
expanded in the following manner

h(A) ≈
m∑
j=0

cjTj(A),

where Tj(x) is the jth-degree Chebyshev polynomial of the first kind, formally defined as Tj(x) =
cos(j cos−1(x)). We therefore have T0(x) = 1, T1(x) = x and Tj+1(x) = 2xTj(x) − Tj−1(x).
The expansion coefficients cj for the polynomial to approximate a step function h(t), taking value
1 in [a, b] and 0 elsewhere, are known to be given by

cj =

{
1
π (cos

−1(a)− cos−1(b)) : j = 0
2
π

(
sin(j cos−1(a))−sin(j cos−1(b))

j

)
: j > 0

.

Therefore, the rank of a given matrix A, with the smallest nonzero eigenvalue greater than or equal
to δ, can be approximately estimated using the stochastic Chebyshev method as:

rank(A) ≈ 1

nv

nv∑
l=1

 m∑
j=0

cj⟨vl|Tj(A)|vl⟩

 . (9)

The method estimates the rank using only the Chebyshev moments of the matrix ⟨vl|Tj(A)|vl⟩.
Classically, these moments are typically built using the three-term recurrence (Ubaru & Saad, 2016).
Therefore, we need to compute the Chebyshev moments ⟨vl|Tj(∆̃k)|vl⟩ for j = 0, . . . ,m on the
quantum computer using qubitization6.

Qubitization - Block encoding Chebyshev polynomial of a Hermitian matrix: Suppose we
are given a (1, q)-block encoding UA of a Hermitian matrix A (Lin, 2022). Then we can use the
qubitization idea (Low & Chuang, 2019; Gilyén et al., 2019) to obtain a block encoding of Tj(A).

Given the eigen-decomposition A =
∑

i λi|ui⟩⟨ui|, we have for any eigenstate |ui⟩ that

UA |0q⟩ |ui⟩ = |0q⟩A |ui⟩+
∣∣∣⊥̃i

〉
= λi |0q⟩ |ui⟩+

∣∣∣⊥̃i

〉
,

where
∣∣∣⊥̃i

〉
is an unnormalized state that is orthogonal to all states of the form |0m⟩ |ψ⟩. From

above, we have
∣∣∣⊥̃i

〉
=
√

1− λ2i |⊥i⟩ for a normalized state |⊥i⟩. If UA is Hermitian, we can show
that Hi = span(|0q⟩ |ui⟩ , |⊥i⟩) is an invariant subspace of UA.

Next, we consider a projection operator to the basis Bi = span(|0q⟩ |ui⟩ , |⊥i⟩) such that:

[ZΠ]Bi
=

[
1 0
0 −1

]
.

That is, ZΠ is as a reflection operator restricted to each subspace Hi. Next, if we define a rotation
matrix

O = UAZΠ,

then Hi is invariant to this matrix and its powers. We can show that

Oj =

[
Tj(A) ∗

∗ ∗
]
.

Namely, Oj = (UAZΠ)
j is a (1, q)-block encoding of Tj(A).

6A previous version of this paper proposed an algorithm that did not make use of qubitization but instead
used the relationship between the Chebyshev polynomials and the moments of the Laplacian. However this
approach incurs an additional complexity factor (see Table C.3) as pointed out to us by Adam Connolly and
Julien Sorci, necessitating the use of qubitization to remove this overhead.
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For q = 1, ZΠ is just a Pauli Z gate (defined on the subspace of the projection). For q > 1, ZΠ

can be implemented using one additional qubit, two control gates, and a Pauli Z gate. For details,
see Chapter 7 in (Lin, 2022). Therefore, given a Hermitian block encoding of A, we can compute a
(1, q + 1)-block encoding of Tj(A) using qubitization.

In our case, if we use an
(
n
2

)
auxiliary approach for PΓ, then using the circuits for Pk, PΓ and

B̃ = B/
√
n, we can compute a (1, q)-Hermitian block encoding of ∆̃k, with q = O(n2), and form

|ϕl⟩ = |0q⟩ ∆̃k |vl⟩+
∣∣∣⊥̃〉 .

Then, using the above approach, we can obtain a (1, q + 1)-block encoding of Tj(∆̃k), and form∣∣∣ψ(j)
l

〉
=
∣∣0q+1

〉
Tj(∆̃k) |vl⟩+ |⊥⟩

from |ϕl⟩. We can next compute the Chebyshev moments θ(j)l = ⟨vl|Tj(∆̃k) |vl⟩ from
∣∣∣ψ(j)

l

〉
for

j = 0, . . . ,m and l = 1, . . . ,nv. If we use the measure-and-reset approach for PΓ (n/2 auxiliary
and n− 1 measure and resets), then implementing ZΠ will be more involved.

The next section presents our analysis of the error and the computational complexities of the above
NISQ-TDA algorithm.

C THEORETICAL ANALYSES

We turn to the theoretical analysis of our proposed NISQ-QTDA algorithm, first discussing the error
analysis that provides bounds on the number of random vectors nv and the polynomial degree m
needed to achieve BNE with

∣∣∣χk − βk

|Sk|

∣∣∣ ≤ ϵ, and subsequently presenting the gate and time com-
plexities of the algorithm. We then discuss different scenarios under which the QTDA algorithms
can achieve significant speedups over classical algorithms, including when our proposed algorithm
can be NISQ implementable.

C.1 ERROR ANALYSIS

Algorithm 1 returns a Betti number estimate χk for each order k = 0, . . . , n − 1. Our main result
in Theorem 1 shows that, for the appropriate choice of m and nv, this estimate is a BNE with an
additive error ϵ ∈ (0, 1). Here we present the detailed proof of this theorem.

Proof: The proof of the theorem comprises of two parts. The first is related to the error due to the
stochastic trace estimator. The random state vector in our algorithm |vl⟩ = |hc(l)⟩ is some random
Hadamard column with c(l) defining the random index, then the estimate ⟨hc(l)|A|hc(l)⟩ can be
viewed as a uniform random sample of the transformed matrix M = HAHT with the Hadamard
matrix H , i.e., ⟨hc(l)|A|hc(l)⟩ = ⟨ec(l)|M |ec(l)⟩ where |el⟩ are basis vectors. Hence, we can use the
analysis of unit vector estimators in (Avron & Toledo, 2011) to obtain error bounds. In particular,
we apply Theorem 16 of (Avron & Toledo, 2011).
Lemma 1. (Avron & Toledo, 2011, Theorem 16) Assume we are given a Hermitian matrix A ∈
RN×N , error tolerance ϵ ∈ (0, 1) and probability parameter η ∈ (0, 1). Then, for random state
vectors |vl⟩ = |hc(l)⟩ as random Hadamard columns, l = 1, . . . ,nv, and for nv ≥ r2H(A) log(2/η)

ϵ2

where rH(A) = maxiAii, we have

P

(∣∣∣∣∣ 1nv
nv∑
l=1

⟨vl|A|vl⟩ − trace(A)

∣∣∣∣∣ ≤ ϵ ·N
)

≥ 1− η . (10)

The proof follows from the arguments establishing Theorem 16 in (Avron & Toledo, 2011), where
we set t = ϵ ·N in the Hoeffding’s inequality, the samples take values in the interval [0,maxiMii],
and we know Mii = N ·Aii since H has orthogonal columns with ∥hi∥2 = N .

The second part is due to the error in the Chebyshev polynomial approximation of the step func-
tion. For our analysis, since the step function is a discontinuous function, we consider a surrogate
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function to approximate using the Chebyshev polynomials. In particular, we consider the following
polynomial, which was considered in (Musco & Musco, 2015) for the analysis of Krylov subspace
methods.
Lemma 2 (Chebyshev Minimizing Polynomial (Musco & Musco, 2015)). Let α > 0 be a specified
parameter, and the gap γ ∈ (0, 1], and let q ≥ 1. Then, there exists a degree m polynomial p(x)
such that:

• p((1 + γ)α) = (1 + γ)α,

• p(x) ≥ x for all x ≥ (1 + γ)α,

• |p(x)| ≤ α
2m

√
γ−1 for all x ∈ [0, α].

Furthermore, when q is odd, the polynomial only contains odd powered monomials and the polyno-
mial is given by

p(x) = (1 + γ)α
Tm(x/α)

Tm(1 + γ)
.

Here Tm(x) is the m-degree Chebyshev polynomial of the first kind. Utilizing this polynomial, we
have the following result.
Proposition 1. The Betti number estimate ξ given by

ξ =
trace(p̃(∆̃k))

|Sk|
, (11)

where p̃(x) = p(1 − x) and p(·) is the polynomial in Lemma 2, for parameters α = (1 − δ), and
γ = δ

1−δ and a degree m ≥ log(1/ϵ)√
δ

, satisfies∣∣∣∣ξ − βk
|Sk|

∣∣∣∣ ≤ ϵ.

Proof. Suppose the eigenvalues of ∆̃k are in the interval {0}∪ [δ, 1], then the eigenvalues of I− ∆̃k

will be in the interval [0, 1− δ] ∪ {1}, and by Lemma 2 with α = (1− δ) and γ = δ
1−δ , we have

βk − |Sk|
α

2m
√
γ−1

≤ trace(p̃(∆̃k)) ≤ βk + |Sk|
α

2m
√
γ−1

,

since (1 + γ)α = 1 and the function is |p̃(x)| ≤ α
2m

√
γ−1 for all x ∈ [δ, 1]. For selecting an

appropriate degree m, we want α
2m

√
γ−1 ≤ ϵ, for which m ≥ log(α/ϵ)√

γ suffices. By substituting the
values we conclude that

m ≥ log(1/ϵ)√
δ

suffices.

We are now ready to complete the proof of the main theorem. The stochastic Chebyshev method
approximates the trace as tracenv

(p̃(∆̃k)) = 1
nv

∑
l⟨vl|p̃(∆̃k)|vl⟩, for random vector states |vl⟩.

The Betti number estimate χk can then be written as χk =
tracenv (p̃(∆̃k))

|Sk| . We therefore need to
bound ∣∣∣∣χk − βk

|Sk|

∣∣∣∣ = 1

|Sk|
∣∣∣tracenv

(p̃(∆̃k))− βk

∣∣∣ .
By triangle inequality, we have∣∣∣tracenv

(p̃(∆̃k))− βk

∣∣∣ ≤ ∣∣∣tracenv
(p̃(∆̃k))− trace(p̃(∆̃k))

∣∣∣+ ∣∣∣trace(p̃(∆̃k))− βk)
∣∣∣ .

From Lemma 1, since the maximum diagonal entry of ∆̃k is 1, the size is |Sk and |p̃(x)| ≤ 1 for
x ∈ [0, 1], and we obtain for nv = O( log(2/η)ϵ2 )∣∣∣tracenv(p̃(∆̃k))− trace(p̃(∆̃k))

∣∣∣ ≤ ϵ · |Sk|.
Moreover, from Proposition 1, we have∣∣∣trace(p̃(∆̃k))− βk

∣∣∣ ≤ ϵ · |Sk|.
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Additional errors: In addition to these errors, during the actual hardware implementation, we
will encounter additional errors due to noise. Two sources of noise exist, namely (a) shot noise
due to measurement and (b) hardware noise. The shot noise is typically modelled using a Gaussian
assumption, and hence is assumed to reduce as O(1/

√
T ) for T repeated measurements/shots. This

implies that the Chebyshev moments we compute will have errors. Suppose the additive error/noise
in the moment computations is ϵT after T shots and the noise is independent. That is, each moment
we compute θ(j)l = ⟨vl|Tj(∆̃k) |vl⟩ ± ϵT for j = 0, . . . ,m. Then, the error due to shot noise in

the normalized Betti number estimation χk = 1 − 1
nv

∑nv

l=1

[∑m
j=0 cjθ

(j)
l

]
, under the independent

noise assumption, will be

errshot =

m∑
j=0

cjϵT .

If we use the step function expansion, then we have |cj | ≤ (2/j) and the shot noise error will be
errshot ≤ 4ϵT . If we consider the polynomial in the analysis above, then we only have the mth
degree polynomial, and |cm| ≤ 1/|Tm(1 + γ)| ≤ 1. The shot noise error will be even lower.
For the expansion of any analytic function (e.g., we can consider a scaled tanh function for rank
estimation (Ubaru et al., 2021)), the Chebyshev coefficients decay exponentially (Trefethen, 2019).

The hardware noise is much more difficult to characterize, since it is hardware and technology
dependent. Therefore, in order to account for errors due to these two sources of noise, we will need
to repeat the whole experiment several times and draw statistics to compute the Betti numbers.

Combining the results yields the desired bound in the theorem.

C.2 COMPLEXITY ANALYSIS

We now discuss the circuit and computational complexities of our proposed algorithm and show
that it is NISQ implementable under certain conditions, such as clique-dense complexes which com-
monly occur for large resolution scale and high order k. The main quantum component of the algo-
rithm comprises the computation of θ(j)l = ⟨vl|Tj(∆̃k) |vl⟩, for j = 0, . . . ,m ∼ O(log(1/ϵ)/

√
δ),

with nv ∼ O(ϵ−2) random Hadamard vectors. The random Hadamard state preparation requires n
single-qubit Hadamard gates in parallel and O(1) time.

For a given k, constructing ∆̃k involves implementing the boundary operator B̃ and the projectors
PΓ and Pk. The operator B, involving the sum of n Pauli operators, can be implemented using a
circuit withO(n) gates. Constructing Pk requiresO(n log2 n) gates, and this succeeds for a random
order k. Then for PΓ, we need to find all the simplices that are in the complex Γ. This can be
achieved in two ways. The first is the measure-and-reset approach which uses n/2 auxiliary qubits
in parallel and n − 1 rounds, and thus the time complexity is O(n). The number of gates required
will be O(n2). The second approach is to use

(
n
2

)
auxiliary qubits, one per edge, and uncompute

when done. Here, since we can consider n/2 edges at a time, the time and depth of this approach
will also be O(n) (once an initial projection from uniform is successful, which takes O

(
n
ζ

)
time).

Since we need to construct Tj(∆̃k) up to the power m = O(log(1/ϵ)/
√
δ), the circuit has a total

gate complexity of O(n2 log(1/ϵ)/
√
δ) with a depth of O(n log(1/ϵ)/

√
δ). The first projection Pk

yields a random order k, and the subsequent projections onto a simplicial order needed for higher
moments will also have to be onto the same order k. Due to the application of the boundary operator
B, the subsequent simplicial order projections will result in a projection onto one of the simplicial
orders k−1 or k+1 (after one application) and k−2, k or k+2 (after two applications). Hence, we
need to repeatedly apply the order projection (a constant number of times) in order to ensure that we
are operating on the right order (in addition to the complex projection). The procedure of computing
them Chebyshev moments is repeated nv = O(ϵ−2) times with different random Hadamard column
vectors, and thus the total time complexity of our algorithm to compute the BNE χk is given by

O

(
1

ϵ2
max

{
n log(1/ϵ)√

δ
,
n

ζ

})
.
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That is, we need O
(

n
ζ

)
time for the initial projection PΓ to succeed, and then O(n log(1/ϵ)/

√
δ)

for Chebyshev moments estimation using qubitization. Suppose δk is the spectral gap of ∆k and
∆̃k = ∆k

n , then δ = δk
n .

C.3 QUANTUM ADVANTAGE

Table 1 summarizes the circuit and computational complexities of our algorithm and compares them
to that for the QTDA algorithm of Lloyd et al. (2016). As remarked earlier, the gate and time
complexities for this QTDA algorithm reported in Gyurik et al. (2020) and Gunn & Kornerup (2019)
are different from those reported in Lloyd et al. (2016), since Gyurik et al. (2020) and Gunn &
Kornerup (2019) both assume the operator B̃ is given and thus they add the complexities of the two
steps (Grover’s algorithm and QPE); refer to Remark 1 above.

Table 1: Comparisons of the circuit and computational complexities for QTDA to compute BNE
with an ϵ error, a ζ fraction of order-k simplices in the complex, and a δ smallest nonzero eigenvalue
of ∆̃k.

Methods # Qubits # Gates Depth Time

Lloyd et al. (2016) 2n+ log n+ 1
δ O

(
n2

δ
√
ζ

)
O
(

n2

δ
√
ζ

)
O
(

n4

ϵ2δ
√
ζ

)
Ours (NISQ-QTDA-1) 3n/2 O(n2 log(1/ϵ)/

√
δ) O(n log(1/ϵ)/

√
δ) O

(
1

ϵ2
max

{
n log(1/ϵ)√

δ
,
n

ζ

}
× ∥c∥22

)
Ours (NISQ-QTDA-2) Õ(n2) O(n2 log(1/ϵ)/

√
δ) O(n log(1/ϵ)/

√
δ) O

(
1

ϵ2
max

{
n log(1/ϵ)√

δ
,
n

ζ

})

In NISQ-TDA-1, auxiliary qubits in PΓ are heavily reused due to the power of measurement and
reset. Unfortunately, this qubit-saving strength comes at a large sampling cost factor which can
only be ignored for constant δ 7 and ∥c∥22, which is the 2-norm of the coefficients of the Chebyshev
approximation to the step function. NISQ-TDA-2 uses reversible computation and qubitization,
completely avoiding the large sampling overhead, but instead requiring

(
n
2

)
auxiliary qubits.

Simplices/Clique dense complexes: We first discuss examples of complexes that are sim-
plices/clique dense. Gyurik et al. (2020) presented a few examples of a family of graphs that
are clique-dense. Using the clique-density theorem (Reiher, 2016), we can consider a class of
graphs/complexes that are clique-dense. Let γ > k−2

2(k−1) be a constant. Then, for a graph with
n nodes and γn2 edges and for a given order k ≥ 3, we have |Sk| = Ω(nk+1) by the clique-
density theorem (Reiher, 2016). If γ ≥ k−1

k , then the graph will be even denser. Such clique-dense
complexes occur in TDA when the resolution scale ε is large (close to maximum distance between
points), and therefore QTDA algorithms can achieve a significant speedup for BNE over classical
algorithms, particularly when we are interested in larger (and many) orders of k. We also refer to
the discussions in Lloyd et al. (2016); Gyurik et al. (2020) on when quantum TDA algorithms are
advantageous.

Laplacian spectral gap: We next discuss different settings, namely when the Laplacian of a given
simplicial complex has a sufficiently large spectral gap such that a small degree m will suffice for
BNE. Not much is known for general simplicial complexes in terms of lower bounds for δ, the
smallest nonzero eigenvalue of the combinatorial Laplacians (Gyurik et al., 2020). However, we can
identify many specific examples of simplicial complexes for which δ can be large. Indeed, several
articles (Goldberg, 2002; Horak & Jost, 2013; Yamada, 2019; Lew, 2020a;b) have studied the spectra
of the Laplacian of different simplicial complexes, including random simplicial complexes (Gundert
& Wagner, 2016; Kahle, 2016; Knowles & Rosenthal, 2017; Adhikari et al., 2020; Beit-Aharon &
Meshulam, 2020).

Some specific complexes: First, let us consider a few specific types of simplicial complexes. The
articles by Horak & Jost (2013) and Yamada (2019) consider the Laplacian spectra of k-regular

7Details of this corrected runtime (see acknowledgements and the section on Qubitization), an alternate
approach and improvements to the qubitization approach is in preparation, Akhalwaya et al.
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complexes and orientable complexes. A simplicial complex Γ is k-regular if and only if all of its k-
faces have the same degree dk, whereas a k+1-dimensional simplicial complex Γ is orientable if and
only if all k-faces of Γ have orientation such that any two simplices which intersect on a (k − 1)-
face induce a different orientation on that face. For k-regular simplicial complexes with degree
dk = 1, the Laplacian ∆k has all nonzero eigenvalues equal to k + 2. Horak & Jost (2013) show
similar results for higher degree and for orientable k-dimensional simplicial complexes. Yamada
(2019) presents lower bounds on the nonzero eigenvalues of the Laplacian for these two types of
complexes in terms of the Ricci curvature (Bauer et al., 2011) of the complex. For an orientable
k-dimensional simplicial complex Γ with maximum degree dk for the (k − 1)-faces, the smallest
nonzero eigenvalues of ∆k, denoted by δk, satisfies

δk ≥ (k + 1)(κc − 1) +
2

dk
,

where κc is the Ricci curvature on Γ. If the complex is orientable k-regular, then the minimal eigen-
values of ∆k satisfies δk ≥ (k+1)κc. We refer to Yamada (2019) for bounds on the Ricci curvature
κc for k-regular complexes. Such complexes therefore can have a large spectral gap between zero
and nonzero eigenvalues (i.e., large δ for the scaled Laplacian) when k is sufficiently large.

Next, the article by Goldberg (2002) considers the Laplacian spectra of a few specific complexes. For
a finite simplicial complex Γ that contains distinct flapoid clusters of size dc, the nonzero eigenvalues
of the Laplacian are all equal to dc = o(n). The article by Lew (2020b) presents a lower bound for
the spectral gap of the k-Laplacian ∆k for complexes without missing faces. In particular, for an n-
vertex simplicial complex Γ without missing faces of dimension larger than ℓ, the smallest nonzero
eigenvalue (spectral gap) of ∆k, for k ≤ ℓ, satisfies

δk ≥ (ℓ+ 1)(dk + k + 1)− ℓn,

where dk is the minimal degree of a k-simplex in Γ. These complexes therefore can also have a
large spectral gap, under appropriate conditions.

Random complexes: Let us now consider random simplicial complexes. For a random complex Γ
with n vertices and constants C1, C2 and p ≥ (k + C1) log(n)/n, Gundert & Wagner (2016) show
that, if the expected degree of k − 1 faces is dk := p(n − k), then the normalized Laplacian12 ∆̂k

has all its nonzero eigenvalues in the interval[
1− C2√

dk
, 1 +

C2√
dk

]
,

with high probability. It was recently shown by Adhikari et al. (2020) that, for random dense
graphs/complexes, the limiting spectral gap (between zero and nonzero eigenvalues) of the nor-
malized Laplacian approaches 1/2. Another interesting and relevant result related to the spectra of
random complexes was obtained by Beit-Aharon & Meshulam (2020), who consider random subset
complexes. Suppose Γ is a full complex (also called a homological sphere) with all possible sim-
plices of order up to n− 1, i.e., an n-simplex. Let G̃ be a random subset of Γ, G̃ ⊂ Γ, of size ñ and
let δk be the minimal (smallest nonzero) eigenvalue of the k-Laplacian ∆k of G̃ for k < n. Then,
for k ≥ 1 and ξ > 0, if the size ñ = ⌈ 4k2 logn

ξ2 ⌉, we have (Beit-Aharon & Meshulam, 2020)

P [δk < (1− ξ)ñ] ≤ O

(
1

n

)
.

These results therefore suggest that random dense complexes will likely have a large spectral gap
between zero and nonzero eigenvalues. Indeed, this is exactly the regime (large ζ) where the quan-
tum algorithms are advantageous. As discussed by Lloyd (1996), such dense complexes occur in
TDA when the resolution scale ε is large. For such complexes, our proposed QTDA algorithm has
great prospects to be NISQ implementable.

Approximate BNE: When the spectral gap of the Laplacian ∆̃k is not larger than the chosen
threshold δ, our NISQ-QTDA algorithm estimates an approximate Betti number by counting the

12The normalized Laplacian is defined as ∆̂k := D−1
k ∆k, where Dk is the diagonal matrix with the degrees

of the faces as its diagonal entries.
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Figure 7: Results from classical and noisy simulations: Betti number estimation as a function
of Chebyshev degree m for (A.) simplicial complexes with stable connections/shape, i.e., large
spectral-gap and (B.) complexes with weak connections/shape. C. Fidelity of NISQ-QTDA circuit
(measured using Hellinger distance) as a function of circuit depth for different noise-levels.

(larger) eigenvalues above the threshold δ. This was defined in Gyurik et al. (2020) as the problem
of approximate Betti number estimation (ABNE). Such ABNE will be useful in certain situations,
since our method provides an approach to filter out small (noisy) eigenvalues and only consider
larger (dominant) eigenvalues for estimating the Betti number. These small nonzero eigenvalues
occur when there are thinly (loosely) connected components in the complex. Such connections likely
occur when the resolution scale ε is small, and they might not persist when ε increases. Our approach
therefore provides a way to filter out noise and estimate the features that persist at larger resolution
scale. Moreover, we note that computing the moments of the Laplacians ∆k (exponential in size) for
different k is non-trivial, and these moments can be used as features for certain downstream learning
tasks, for example.

D ADDITIONAL EXPERIMENT RESULTS

In this section, we present a few additional experimental results that provide further insights into
TDA and our NISQ-QTDA.

D.1 CLASSICAL TDA RESULTS

We first illustrate the performance of the classical version of the proposed stochastic Chebyshev
method for Betti number estimation. Figure 7 (A and B) plot the Betti number estimated as a function
of the Chebyshev polynomial degree m for two classes of simplicial complexes, respectively. The
first class in Figure 7(A) correspond to complexes that have stable shape (well connected), as in
if we remove few edges, the shape (and hence the Betti numbers) do not change. The Laplacian
corresponding to such complexes have a large spectral gap. We note that the Betti number estimated
by our method for such complexes are fairly accurate and a small degree polynomial approximation
suffices to get a good estimate of the Betti numbers. The black dash lines are the true Betti numbers
and the star-solid lines correspond to the Betti numbers estimated for four different complexes all
with 8 vertices, respectively (2 squares, 4 squares, 6 squares/cube and 2 squares with diagonals
included).
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The second class in Figure 7(B) correspond to complexes that have weak connections, such that
removing a few edges changes the shapes (and Betti numbers) significantly. Such complexes have
relatively Laplacian small spectral gap. We note that, we require a higher degree approximation for
accurate Betti number estimation. We considered four different complexes (1 square and 4 dangling
points, 2 squares with two edges connecting them, 3 squares, and 5 squares). Interestingly, we
observe that the Betti vs. degree curves for the 3 similar complexes have a similar shape and we can
be distinguish between them, even though the Betti numbers estimated are not correct. This shows
our method is provides a way to distinguish complexes/shape even with a low degree approximation.

Figure 7(C) plots the Hellinger distance (a measure of fidelity) of our NISQ-QTDA circuit as a
function of the circuit depth, i.e., number of vertices/qubits for different noise levels in simulations.
The square Hellinger distance between two probability measures P and Q is defined as

H2(P,Q) =
1

2

∫ (√
dP −

√
dQ
)2
.

In the figure, we consider the Hellinger distance between the measured probabilities using noiseless
simulations and noisy simulations. Four different noise levels were considered. The noise-level pairs
show the 1-qubit and 2-qubit gate error rates. The measurement error rate was set to be same as the
2-qubit gate error rate. We plot the Hellinger distance restricted to the top 10% of the noise-free
outcomes, thereby focusing only those outcomes with sufficient probability mass at the given shot
count. As expected, the Fidelity/noise-error increases as the circuit depth (and number of qubits)
increase.

D.2 CMB RESULTS

The cosmic microwave background (CMB) is the remnant after-glow of the Big Bang, forming
an opaque background curtain in the sky. The curtain dates back to when the Universe was about
380, 000 years old (redshift z ≈ 1100) when the universe first became transparent to radiation. CMB
photons produce a nearly perfect black-body spectrum with a present day temperature of around
2.725 K (Aghanim et al., 2020). This temperature fluctuates by around one part in 104 depending
upon the angle in the sky one looks. The uniformity corroborates an epoch of cosmological inflation
and provides a window into physics in the early Universe. Recalling that a function ϕ is Gaussian
when the vector v⃗ = (ϕ(x1), . . . , ϕ(xn)) is drawn from an n-dimensional Gaussian distribution for
all n and for all xi, of particular interest are deviations from Gaussianity in the CMB. These are
typically assessed by looking at three-point and four-point correlation functions, the spatial bispec-
trum and trispectrum. An application of TDA compares simulations of the CMB with a Gaussian
probability distribution to those with particular local injections of non-Gaussianity, e.g., by consid-
ering φ(x) = ϕ(x) + fNL

(
ϕ(x)− ⟨ϕ⟩

)2
, with ϕ(x) a Gaussian field and fNL a parameter capturing

the amount of non-Gaussianity. Preliminary investigations in this direction using classical TDA in-
clude (Cole & Shiu, 2018a; Feldbrugge et al., 2019a; Biagetti et al., 2021), and the present state
of the art detects fNL ∼ O(10). Benchmarking against different values of fNL, NISQ-TDA could
compute higher-order Betti numbers associated with the actual sky and test for non-Gaussianity in
the CMB to a potentially greater degree of sensitivity.

Here, we present preliminary results to illustrate how we might apply the insights of Adler et al.
(2014) (for example drawing high-dimensional points and excluding the ‘core’) for the detection
of non-Gaussianity in the CMB data. We consider random sets of n = 64 sample points in three
dimensions from Gaussian and exponential distributions. The visualization of the data distributions
in 3D and the norm distributions are presented in Figure 8 (first two rows). Our goal is to illustrate
that by only using homological information (Betti numbers in the form of ‘persistent diagrams’) of
very small sample sets (forced to have zero-mean and unit-variance, making the task much more
difficult), we can still distinguish the two distributions. Furthermore, we wish to show that each
extra Betti number considered boosts the accuracy. Such an illustration would suggest that we can
detect non-Gaussianity in CMB data using NISQ-QTDA to a greater degree than low-order classical
TDA since QTDA furnishes all high probability Betti numbers of any order.

In order to run our experiment, we use the GUDHI (Maria et al., 2014) package for Betti number
estimation of the data at different resolutions ε to create the persistence diagrams (representing oc-
currence/birth and disappearance/death of holes at resolution scale ε). See the last row of Figure 8
for an example output of the GUDHI pipeline. Directly visualizing the points and the norm dis-
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Figure 8: Results for CMB data: Random n = 64 sample points per sample set in three dimensions
from the Gaussian distribution (in left column) and the exponential distribution (right column). The
first row is the visualization of all 50 sample sets (30 train and 20 test). The second row is the
histogram of norms of all the points, and the last row are example persistence diagrams for two
sample sets, one from each distribution.

tributions illustrates that the distinguishability task is non-trivial (especially when the form of the
distribution is unknown). Secondly, it is only when viewing the persistence diagrams (PDs) does the
differing behavior become easier to detect. However, a single sample set’s associated PD is unlikely
to be rigorously helpful in telling apart another single sample set. Fortunately, in the simulation
use-case as well as for the real CMB data (considering it’s presumed rotational invariance) we may
repeatedly draw sample sets, creating a set of PDs to train and test on. Therefore, we next employ a
Bayesian (learning) package called BayesTDA (Maroulas et al., 2020) with train (30) and test (20)
sample sets, to calculate two Poisson point-process posteriors from the training data, allowing for
the calculation of the Bayesian likelihoods of the test data given the two competing posteriors, and
culminating in a single Bayes factor for each test data set. The Bayes factors can then be used for
classification by comparing to a threshold. To obviate the choice of a threshold we simply calcu-
late the Area Under the Curve (AUC) measure of classification accuracy (0.5 is as bad as random
guessing and 1 is perfect classification).
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Figure 9: Results for simulated ‘CMB’ data (Gaussian vs exponential (Adler et al., 2014) , but with
an enforced mean of zero and variance of unity (element-wise)): Bayes factors and AUC obtain for
the data distributions when β1 (top left), β2 (top right) and both β1 and β2 combined (bottom) were
used in the learning model

In Figure 9, we present the Bayes factors and AUC obtained for the data distributions when β1 (top
left), β2 (top right) and both β1 and β2 combined (bottom) were used in the learning model. We
observe that we can clearly distinguish the two distributions using the Bayes factors. Moreover,
we note that the different Betti numbers contain independent valuable information. Therefore, by
potentially computing all relevant Betti numbers of the CMB data using NISQ-QTDA, and using the
above approach, we expect to detect non-Gaussianity in the CMB data to higher sensitivity levels
than is possible classically (since even for moderate numbers of data points, we cannot compute
higher order Betti numbers classically).
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