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Abstract

Large Language Models (LLMs) exhibit emer-
gent capabilities beyond core language tasks,
and demonstrate certain cognitive alignment
between humans. However, the potential of
LLMs to simulate human-like cross-modal cog-
nitive alignments, such as synesthesia, remains
unexplored. Synesthesia involves consistent
associations between concepts and sensory ex-
periences (e.g., linking numbers to colors), a
phenomenon also reflected in cross-modal cor-
respondences observed even in non-synesthetes.
In this work, we conduct the study of whether
modern LLMs replicate such synesthetic align-
ment by evaluating their responses on color
association tasks across diverse conceptual do-
mains: digits, letters, temporal concepts (e.g.,
days, months), spatial directions, and abstract
entities. Using standardized prompts, we ana-
lyze responses from multiple LLMs and com-
pare them to human data collected from 260
participants. Colors are mapped to a perceptu-
ally uniform space (CIELAB), with alignment
quantified via the CIEDE2000 metric. Our re-
sults reveal that LLMs show significant align-
ment with human consensual patterns, partic-
ularly for temporal concepts like seasons and
months, achieving color differences compara-
ble to human variability. However, abstract
concepts (e.g., directions) exhibit greater diver-
gence. Cultural influences (e.g., Western vs.
Chinese contexts) impact alignment, while gen-
der differences in humans do not translate to
LLMs. Model size and architecture also affect
performance, with larger models demonstrat-
ing stronger alignment. These findings high-
light LLMs’ ability to capture certain cross-
modal associations, offering insights into their
implicit grounding of abstract concepts and im-
plications for multimodal applications requir-
ing sensory-conceptual integration.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable generalization capabilities be-

yond core language tasks (Floridi and Chiriatti,
2020; Touvron et al., 2023; Liu et al., 2024), hint-
ing at emergent competencies in domains like color
perception (Pi et al., 2024; Abdou et al., 2021), spa-
tial reasoning (Chen et al., 2024; Fu et al., 2024),
and orientation understanding (Yang et al., 2025;
Stogiannidis et al., 2025). Despite being trained
only on textual data, recent studies suggest that
LLM representations implicitly capture aspects of
grounded concepts (Pavlick, 2023; Harnad, 2024).

However, human cognition contains more com-
plex abilities, such as the phenomenon of synes-
thesia (Ward, 2013), which is a perceptual cross-
ing of senses or concepts (Hubbard, 2007; Spector
and Maurer, 2013). In synesthesia, stimulation of
one cognitive pathway triggers involuntary expe-
riences in another (Grossenbacher and Lovelace,
2001; Rich and Mattingley, 2002). For instance,
some individuals consistently perceive specific col-
ors when thinking of particular numbers or let-
ters (known as grapheme—color synesthesia) (Cy-
towic and Eagleman, 2011; Parise, 2016). More
broadly, even non-synesthetes exhibit cross-modal
associations (Spence, 2011) such as the famous
Bouba—Kiki effect (Ramachandran and Hubbard,
2001), where people intuitively match nonsense
words like “bouba” with round shapes and “kiki”
with spiky shapes (Maurer et al., 2006). These
cross-modal correspondences appear to reflect fun-
damental alignments in human cognitive system
(Boroditsky et al., 2009; Spence, 2011), which are
widespread and often consistent across different
people (Marks, 1987; Lacey et al., 2021), yet can
also show individual or cultural variations (Spence
and Deroy, 2012).

Given the above findings, an intriguing re-
search question arises: can modern LLMs simu-
late synesthesia-like cognitive alignments across
modalities? Addressing this question is crucial
for practical applications of LLMs. For example,
when tasked with designing a promotional poster



for spring travel, an LLLM should ideally select
appropriate colors (e.g., green). However, if the
model lacks synesthetic cognitive capabilities, it
may fail to produce aesthetically appealing results.
Prior research has extensively probed LLMs’ abili-
ties on basic perceptual (Yuksekgonul et al., 2022)
and cognitive tasks (Misra et al., 2021). However,
it remains underexplored whether LLMs possess
any synesthesia alignment abilities. This leaves
a significant research gap: we lack a clear under-
standing of whether advanced language models
exhibit any form of synesthetic alignment akin to
humans, and what implications this might have for
their integration into multimodal tasks.

Our work aims to fill this gap by conducting the
first systematic study of synesthesia alignment in
LLMs. We design a suite of synesthesic color asso-
ciation tasks inspired by human synesthesia, cover-
ing a diverse range of conceptual domains, includ-
ing digits (0-9), letters (A-Z), temporal concepts
(e.g. days of week, months), cardinal directions
(e.g. north, south, etc.), and other spatial or abstract
concepts, and ask LLMs to link each concept with
a color. Using a standardized questionnaire-style
prompting, we evaluate multiple mainstream LLMs
on these tasks, capturing their preferred “color” for
each concept. To benchmark performance, we also
collected a dataset of 260 human participants’ re-
sponses on the same tasks, allowing direct compar-
ison between model-generated associations and hu-
man intuition. For rigorous analysis, we represent
colors in a perceptually uniform color space and
quantify differences using the CIEDE2000 color
difference metric (Sharma et al., 2005), ensuring an
objective measure of how closely an LLM’s color-
choice aligns with human consensual patterns. This
experimental design enables us to probe whether
LLMs can align abstract concepts with concrete
sensory dimensions in a manner comparable to hu-
man cross-modal cognition. The results indicate
that while there are notable differences between
human participants and LLMs in synesthetic re-
sponses to abstract concepts, alignment is observed
in temporal concepts, such as seasons and months.
Additionally, individual identity differences, such
as gender and culture, exhibit varying impacts on
synesthetic performance. Gender differences do
not affect synesthesia of LLMs, whereas cultural
influences are observed. Differences caused by
model type and sizes are also observed.

In summary, our contributions are as follows:

* First exploration of synesthetic alignment
in LLMs: We present the first system-
atic investigation into whether LLMs exhibit
synesthesia-like cross-modal cognitive align-
ments, a previously unexamined aspect of
their capabilities.

Synesthesia task and human comparison:
We introduce a synesthesia evaluation frame-
work consisting of color-association tasks
across multiple concept domains (numbers,
letters, time, directions, space), and we gather
responses from both several trending LLMs
and 260 human subjects for comprehensive
comparison.

Objective alignment analysis: We propose
an evaluation method using the CIEDE2000
color difference standard to quantify the align-
ment between model-generated color associ-
ations and human synesthetic patterns, ensur-
ing results are measured with perceptual accu-
racy.

2 Related Work
2.1 Perceptual and Cognitive Tasks of LLMs

Despite being trained only on textual data, recent
studies suggest that LLM representations implic-
itly capture aspects of grounded concepts (Pavlick,
2023; Harnad, 2024). For example, LLMs are
able to encode certain spatial relationships with-
out explicit spatial inputs (Ji and Gao, 2023; Hu
et al., 2024). Such cognitive abilities are of vi-
tal importance for downstream applications in hu-
man—computer interaction and embodied intelli-
gence (Anderson, 2003; Bisk et al., 2020a). An
LLM capable of reasoning about space, color, or di-
rection can more naturally interface with the phys-
ical world (Driess et al., 2023; Pan et al., 2024),
enhancing interactive systems ranging from visual
dialog agents (Schumann et al., 2024) to robotic
assistants (Ahn et al., 2022).

2.2 Cognitive Alignment of LLMs

Prior research has extensively probed LLMs’ align-
ment on basic perceptual (Yuksekgonul et al., 2022)
and cognitive tasks (Misra et al., 2021), from un-
derstanding physical commonsense (Bisk et al.,
2020b) and visual attributes (Park et al., 2023),
to theory-of-mind (Kosinski, 2023; Strachan et al.,
2024) and social reasoning (Shapira et al., 2023;
Gandhi et al., 2023). These studies show that LLMs



can sometimes achieve human-level performance
on certain cognitive tests (Binz and Schulz, 2023;
Webb et al., 2023; Hubert et al., 2024) (for in-
stance, GPT-4 matches or exceeds humans on many
theory-of-mind tasks (Bubeck et al., 2023; Kosin-
ski, 2023)).

Until now, a few isolated efforts have begun to
test cross-modal preferences in LLMs (Loakman
et al., 2024) (e.g. probing vision—language models
for the Bouba—Kiki sound-shape mapping), but
with inconclusive results (Verhoef et al., 2024).

2.3 Human Cross-Modal Perceptual
Capability

Emerging evidence indicates that cross-modal per-
ceptual mapping mechanisms analogous to synes-
thetic experiences may develop in the general pop-
ulation through environmental learning. Synes-
thesia, a distinct neurocognitive phenomenon, is
characterized by automatic elicitation of supple-
mentary sensory experiences triggered by specific
stimulus attributes (Ward, 2013). Typical manifes-
tations include chromatic representations of tem-
poral units (e.g., color associations for weekdays
(Cytowic and Eagleman, 2011)) and spatial local-
ization of color perception (Arend et al., 2016). Re-
cent interdisciplinary investigations have revealed
systematic perceptual mapping phenomena within
non-synesthetic populations. Current scholarship
underscores the metaphorical significance of space-
color/time-color associations in human cognition
(Bremner et al., 2013). However, critical knowl-
edge gaps persist regarding the neurocognitive
foundations of these associations and their interac-
tion with environmental learning mechanisms.

3 Method

Understanding the alignment between LLMs and
human synesthetic patterns holds significant im-
plications for cognitive modeling. However, the
variable space of synesthetic is vast and complex.
Human synesthetic responses are influenced by a
multitude of factors, including cultural background,
linguistic framing, conceptual familiarity, and sub-
jective perception. Meanwhile, LLM outputs re-
flect biases rooted in their training data and archi-
tectural constraints.

To address this complexity, our experimental
design aims to balance between variable control
and interpretive richness. Rather than attempting
to account for every possible factor, we adopt a

principled approach to simplification—selecting
conceptual domains where prior literature suggests
relatively stable cross-modal associations. This
allows us to reduce extraneous noise while preserv-
ing theoretical relevance.

Accordingly, we designed a comparative exper-
iment to evaluate the responses of humans and
LLMs to identical synesthetic stimuli. Our method-
ology consists of three core components: (i) con-
trolled elicitation of color associations through
standardized questionnaires, (ii) rigorous compu-
tational analysis of the resulting response patterns,
and (iii) cross-modal comparison metrics to quan-
tify human—LLM alignment in perceptual space.

3.1 Stimulus Design

Our synesthetic stimuli were adapted from the stan-
dardized Synesthesia Battery framework, with mod-
ifications to enable cross-modal human-LL.M com-
parison. The questionnaire comprised 85 items
across 8 categories, as is demonstrated in Table
1, designed to cover both universal and culture-
general associations.

The category selection was rigorously validated
by referencing established protocols from the
Synesthesia Battery studies, ensuring methodologi-
cal consistency with prior research. Our stimulus
set was designed to incorporate both concrete (e.g.,
numbers) and abstract (e.g., temporal) concepts
across different cognitive levels, while deliberately
excluding culturally specific items such as zodiac
signs to maintain cross-cultural applicability. This
balanced approach provides comprehensive cov-
erage of synesthetic inducers while minimizing
cultural biases in the assessment.

3.2 Language Localization

To control for linguistic bias:

* Human participants receive questionnaires in
their native languages (e.g., Simplified Chinese
for Chinese speakers).

e LLMs are queried in their dominant training lan-
guages or official language of the assigned cul-
tural identity. We consider two kinds of models:
(i) Chinese models (Doubao, DeepSeek) with na-
tive Chinese prompts; and (ii) English models
(GPT series) with native English prompts con-
taining identical semantic content. Building on
this, LLMs use their mainstream training lan-
guage when no identity is assigned; otherwise,



Categories \ Questionnaire Contents # Items
Numbers 0,1,2,3,4,5,6,7,8,9 10
Weekdays Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday 7
Letters A,B,C,D,E.FG HI,J,K,L,M,N,O,P,Q...X, Y, Z 26
Months January, February, ..., December 12
Seasons Spring, Summer, Fall, Winter 4

Spatial Orientations

Basic: Up, Down, Left, Right, Front, Back, Center
Cardinal: East, West, South, North 15
Intermediate: Southeast, Northeast, Southwest, Northwest

Abstract Concepts

Dimensional: Far/Near, High/Low
Density: Dense/Sparse, Deep/Shallow

Temporal Concepts | Past, Present, Future

Table 1: A detailed listing of questionnaire categories along with their specific contents. Each category encompasses
a variety of items designed to comprehensively cover multiple cognitive dimensions such as numbers, temporal
concepts, spatial orientations, and abstract ideas. This table serves as a foundational framework for subsequent
comparative analyses by clearly outlining the distribution of items across different conceptual domains.

they use the official language of the assigned
cultural identity.

3.3 Response Format Design

To address perceptual variability in color naming
among individuals (e.g., divergent RGB interpre-
tations of "dark red"), we implemented distinct
response protocols to bypass linguistic ambiguity:

* Human participants: we implemented a con-
strained 15-color selection interface grounded
in the Berlin-Kay basic color theory. All par-
ticipants were required to select one color for
each concept item. If none of the 15 col-
ors was considered suitable, they could write
down the color they thought most appropriate
and provide a rationale. The procedure took
approximately 5-10 minutes per participant to
complete.!

* LLM models: we enforced a strict
RGB output format specification (e.g.,
"[1]JA:(255,0,0)") to enable automated
parsing.

3.4 Metrics

We conduct a fine-grained quantitative anslysis to
evaluate the alignment between LLMs and human
synesthetic color associations. For each concept,

"Prior to the study, all participants provided informed con-
sent, which explicitly outlined the purpose of data collection
and its use for research purposes. The procedures were ap-
proved by the Ethics Committee of the XXX (masked due to
double blind review policy). All data were analyzed using
IBM SPSS Statistics version 20.0.

we first identify the dominant color—defined as
the most frequently selected color by human partic-
ipants and the highest-probability prediction gen-
erated by each LLM. The perceptual difference
between the human and model-assigned colors
was then calculated using the CIEDE2000 formula
(A Eq), a widely used metric for quantifying per-
ceptual color dissimilarity. For detailed introduc-
tion and formulation, please refer to Appendix A.

4 Experiment

4.1 Data Collection

* Human participants We distributed an online
questionnaire via Tencent Docs (a Chinese cloud-
based survey platform comparable to Google
Forms) to collect human synesthetic associations.
The survey required approximately 10-15 min-
utes for completion and yielded 289 valid re-
sponses after excluding incomplete or inconsis-
tent submissions. Participants were presented
with identical stimulus words used for LLM eval-
uation to ensure direct comparability.

* LLMs We evaluated the following models:

— Doubao: doubao-1-5-pro-32k, doubao-1-
5-lite-32k, doubao-1-5-vision-pro-32k (Al,
2024) (3 items)

— Deepseek:deepseek-r1-distill-qwen-32b
(Bai et al., 2023), deepseek-r1 (Guo et al.,
2025), deepseek-v3 (Liu et al., 2024)(3
items)

— ChatGPT: gpt-4 (Achiam et al., 2023), gpt-
4-32k, gpt-4o (Hurst et al., 2024), gpt-4o-
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Figure 1: Figure (a) shows the legend, including the response colors and the definition of the radial coordinate.
Figures (b), (c), (d), and (e) respectively present the month-related synesthetic color responses from the human
group, DeepSeek series, Doubao series, and ChatGPT series. The radial axis represents months from December
(center) to January (outer edge), and the angular direction indicates cleaned response data.

mini (4 items)

We implemented two types of experimental set-
tings: one with default identity (no assigned cul-
tural or gender identity) and another with explicit
cultural and gender assignments. All API pa-
rameters remained at their platform-default set-
tings throughout the experiment, with no man-
ual adjustment of temperature, top_p, or other
generation parameters. In the identity-assigned
setting, we assigned six cultures (Chinese, Amer-
ican, Japanese, Korean, British, and Russian) and
two genders to the models.

4.2 Data Processing

Human responses: After applying response com-
pleteness and attention checks to the initial 289
submissions, we retained 260 valid human ques-
tionnaires from online, yielding an 89.7% valid
response rate. Among these, 143 were male and
114 female participants, primarily drawn from the
Chinese cultural context with ages concentrated
between 20 and 30 years old.

LLM responses: For the responses generated by
large language models (LLMs), we first excluded

all outputs that did not conform to the predefined
format (e.g., textual descriptions instead of numer-
ical RGB values). Under the default (no assigned
identity) condition, each model produced 300 sam-
ples. When cultural and gender identities were as-
signed, each model generated 50 samples for each
culture-gender combination. For both the default
and identity-assigned settings, we constructed bal-
anced datasets for the same series of LLMs respec-
tively. To ensure balanced representation across
models, we employed a stratified sampling strat-
egy, randomly selecting an equal number of quali-
fied responses from each model to form balanced
datasets containing 300 samples each. This sam-
pling process strictly adhered to two principles: (i)
maintaining equal contribution weights across all
models, and (ii) ensuring uniform coverage of all
stimulus words.

4.3 Data Analysis

To examine broader patterns, we grouped the ques-
tions into several conceptual categories (e.g., spa-
tial directions, temporal concepts, sequences, let-
ters) and computed the average A Fyy within each
category. This group-level aggregation enabled us



to assess how consistently different semantic do-
mains are mapped to color by LLMs compared to
humans.

To provide a comprehensive view of model-
human alignment, we computed the residuals for
each individual model, question, and concept
triplet. These residuals, defined as the CIEDE2000
color distance (A Fyg) between the model-assigned
and human-assigned dominant colors, serve as a
fine-grained metric of perceptual deviation. All
computed residuals are presented in the appendix
to support transparency and reproducibility of our
analysis.

5 Results

In order to compare the concept-color associa-
tions between the human and LLMs (deepseek and
doubao). A three-way log-linear analysis: concept
(85) x color (15) x group (2), on the choosing fre-
quency of colors showed that there was a significant
difference in concept-color associations between
the two groups (e,g., weekdays, x2 = 1791.978,
df =168, p < .0001), except for the letters-color
associations.

5.1 Overall

Statistical analysis revealed non-random color as-
sociations for all concepts including human and
LLMs (for examples, Numbers, human: x? =
1149.626; GPT: x? = 3153.075; deepseek: \? =
7496.427, doubao: x? = 5730.481; all df = 126
and p < .0001), and some colors were chosen more
frequently than others for specific concept. Each
concept exhibited different patterns (e.g., num-
ber 0-color associations, human: X2 = 345.054,
df = 13, p < .0001). For number O-color associa-
tion in human group, white was chosen more fre-
quently than other colors (with an adjusted residual
z = 23.09). Other significant associations were
observed. For examples, 1 with red (z = 5.40)
and 9 with black (z = 4.03). Overall, our results
demonstrate that temporal concepts—particularly
months and seasons—yield the smallest average
color difference between humans and LLMs.

5.2 Differences in Color Preferences

Human participants and LLMs exhibit pronounced
differences in synesthetic responses. As shown in
Appendix B, the color selections of LLMs form a
distinct and concentrated circular pattern, whereas
human responses appear much sparser and more

dispersed. This divergence manifests not only in
hue preference—with humans favoring blue tones
and LLMs leaning toward reds. LLMs demonstrate
a far higher degree of uniformity in color choices,
indicating a more systematic and stable associative
mechanism, while human synesthesia is shaped
by individual differences and perceptual variabil-
ity. These findings underscore the fundamental
differences between human and Al cross-modal
representation systems.

Notably, human responses revealed a primacy ef-
fect in sequential concepts (e.g., days of the week,
months), with a significantly higher tendency to as-
sign red hues to the first item in each sequence.
This pattern may reflect attentional salience or
learned associations in cognitive processing. In
contrast, LLMs did not exhibit such a primacy ef-
fect; their color assignments appeared evenly dis-
tributed across the sequence, suggesting that their
associative mappings are less influenced by ordinal
positioning and more likely governed by statistical
co-occurrence or embedding structure.

5.3 Characteristics of Conceptual Alignment

Between human participants and LLMs, color asso-
ciations for seasonal and temperature-related con-
cepts exhibit a high degree of consistency. As
shown in the Figure 1, “July” is commonly associ-
ated with warm hues, while “Winter” is generally
linked to cool tones. Figure 4 illustrates the color
differences between humans and LLMs. These con-
cepts show the smallest color differences between
humans and LLMs, with seasons having the highest
consistency, followed by months. This cross-modal
consistency indicates that LLMs can effectively en-
code sensory mappings related to natural regulari-
ties. The relatively small color distances in these
concepts further corroborate the ability of LLMs to
capture synesthetic patterns associated with natural
phenomena and shared cultural contexts.

5.4 Differences Due to Model Size and Type

LLMs of different size and architectures showed
varying performance in the color synesthesia task.
Generally, larger models tended to produce more
distinct and differentiated color choices, while
smaller models leaned towards more conservative
outputs in grayscale or low-saturation colors. Sig-
nificant differences were also observed among mod-
els within the same series, indicating that model
scale is not the sole determinant of performance.



Questions Numbers

Models 0 1 2 3 4 5 6 7 8 9
©135/143 | @25/143 | ©27/143 | ©26/143 | @25/143 | @ 18/143 | ©25/143 | @23/143 | 20/143 | @ 19/143
Male | ©23/143 | ©15/143 | ©17/143 | ©18/143 | ©25/143 | ©17/143 | @19/143 | @ 17/143 | @ 14/143 | ©14/143
Human ©21/143 | ©15/143 | @17/143 | ©16/143 | ©15/143 | @ 17/143 | @17/143 | ©16/143 | ©13/143 | @ 13/143
S353/117 | ®26/117 | ©23/117 | o21/117 | o 19/117 | o 17/117 | @ 17/117 | ®21/117 | @ 15/117 | @ 14/117
Female | o 11/117 | @ 15/117 | o 19/117 | © 15/117 | @ 15/117 | @ 14/117 | @ 16/117 | @ 18/117 | ®15/117 | @ 12/117
09117 | 015117 | o 14/117 | ©14/117 | ©13/117 | 0 14/117 | @ 12/117 | @ 13/117 | @ 13/117 | @ 10/117
@ 111/150 | © 108/150| 65/150 | ©38/150 | ®37/150 | ©23/150 | @27/150 | @26/150 | ©29/150 | ©25/150
Male | @27/150 | ©16/150 | ®21/150 | ®29/150 | ©26/150 | @ 18/150 | ©19/150 | ©22/150 | ©25/150 | ®24/150
GPT o12/150 | @9/150 | @ 18/150 | ©26/150 | ©23/150 | ©17/150 | @19/150 | @ 19/150 | ©16/150 | ©21/150
@ 114/150| = 101/150| ©87/150 | 39/150 | ®26/150 | ®24/150 | @24/150 | @20/150 | ©26/150 | @ 26/150
Female | 25/150 | ®17/150 | ®21/150 | ©32/150 | ®24/150 | ®20/150 | ©20/150 | ©20/150 | ©23/150 | 20/150
o 11/150 | @ 14/150 | @ 12/150 | ©22/150 | ©23/150 | @ 18/150 | @ 18/150 | ©19/150 | ©22/150 | ©19/150
®32/150 | ®61/150 | ®64/150 | ©75/150 | ®359/150 | ©56/150 | ©50/150 | ©39/150 | ©33/150 | o 50/150
Male | ©62/150 | ©49/150 | ©39/150 | ®26/150 | ©22/150 | ©27/150 | ©24/150 | ©38/150 | ©28/150 | o 18/150
D " ©3/150 | @33/150 | @ 16/150 | ©12/150 | ©18/150 | ®24/150 | 22/150 | ©30/150 | @20/150 | e 15/150
v ®82/150 | @57/150 | @ 71/150 | @85/150 | @58/150 | ©63/150 | @60/150 | @43/150 | @41/150 | e 34/150
Female | o61/150 | ©50/150 | @31/150 | @24/150 | ©26/150 | ®26/150 | ©25/150 | ©40/150 | ©26/150 | 30/150
©7/150 | 40/150 | ©20/150 | ©11/150 | ©22/150 | ©23/150 | @25/150 | @32/150 | ©17/150 | ©18/150
® 150/150| ©127/150| @51/150 | @49/150 | @44/150 | @45/150 | @49/150 | ©35/150 | ®54/150 | @ 60/150
Male ©23/150 | @49/150 | ©47/150 | ®43/150 | ®28/150 | ©32/150 | ®29/150 | ©29/150 | ®34/150
Doubao ©28/150 | ®28/150 | @28/150 | @ 19/150 | @28/150 | ©28/150 | ©17/150 | ©19/150
® 146/150 | ©133/150| ®51/150 | @48/150 | ®39/150 | ®39/150 | @49/150 | ©37/150 | ®37/150 | ©51/150
Female | o4/150 | @17/150 | @48/150 | ©42/150 | ©36/150 | ©33/150 | 28/150 | ©32/150 | ®36/150 | ©30/150
©22/150 | ©22/150 | ©34/150 | @ 18/150 | ©23/150 | @24/150 | ©26/150 | ©29/150

Figure 2: Top-3 most frequent color choices for number-related concepts across different models. Each cell

represents the top three RGB colors selected for a given number item by a specific model under a given gender
identity, along with the number of responses selecting each color and the total number of valid responses. While no
consistent gender-based differences were observed within models, there are clear discrepancies between human
responses and those generated by large language models (LLMs), suggesting a fundamental divergence in synesthetic

patterns.

5.5 Differences Due to Individual Identity
Variations

Individual identity factors significantly influence
synesthetic experiences, highlighting the diversity
and complexity of synesthesia.

In terms of gender, the experimental results
(shown in Figure 2 ) do not show a significant
gender difference. Possible explanations include
insufficient sample size, the specific item’s lim-
ited sensitivity to gender effects. Future research
may explore potential gender influences on color
synesthesia by increasing sample size or employing
more detailed categorization methods. In terms of
culture, LL.Ms exhibit noticeable changes in synes-
thetic patterns under different cultural contexts
(shown in Figure 3 ). Although all models were
exposed to the same semantic content, their color
associations varied when assigned identities from
distinct cultural backgrounds. This suggests that
LLMs may internalize and reflect culture-specific
associations encoded during training. These varia-
tions highlight the influence of cultural framing on
Al-generated cross-modal mappings and point to
the importance of identity conditioning in studying
Al perception.

6 Discussion

Despite meaningful progress in examining the
alignment of synesthetic associations between
LLMs and humans, this study has several limi-
tations. First, human participants were predom-
inantly from China, resulting in a relatively ho-
mogenous cultural background that may limit the
generalizability of the findings. Second, the sam-
ple size of human participants was modest, poten-
tially reducing statistical power and robustness of
conclusions. Third, the range of LLMs evaluated
remains limited in terms of architectures and train-
ing paradigms, particularly regarding multimodal
and cross-lingual models. Expanding the diversity
and number of models will provide a more com-
prehensive understanding of synesthetic behavior
across Al systems. Additionally, synesthesia mea-
surements were based primarily on questionnaires,
which may not fully capture dynamic or implicit
synesthetic experiences; integrating physiological
or neuroscientific measures could yield deeper in-
sights. Lastly, given the complexity of cultural
and individual differences in synesthesia, LLMs
trained solely on language data lack the biological
and emotional mechanisms underpinning human
synesthetic perception, restricting their ability to
fully emulate human-like synesthesia.
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Figure 3: Color synesthetic patterns generated by the Doubao-1.5-lite model under different cultural and gender
identity settings. The model shows markedly different responses depending on the assigned cultural context. Under
the Chinese identity, the outputs tend to cluster around achromatic tones (e.g., black, white, gray), suggesting lower
activation of synesthetic associations. In contrast, the American, Russian, and Japanese settings exhibit more vivid
and consistent patterns, each reflecting distinct cultural color tendencies.
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Figure 4: Color differences in synesthetic associations between large language models and human data across
conceptual categories. For each concept, the most salient color was extracted, and the CIEDE2000 color difference
was calculated between model and human responses. Average differences were then computed within each
conceptual group. Notably, the smallest discrepancies occurred in time-related concepts such as months and seasons.

This study primarily elucidated the alignment  shaping cross-modal associations. Additionally,

between LLMs and human synesthetic associations
across various conceptual domains. Future work
can be advanced along two key directions. First,
scaling up the scope of research by increasing both
human and model samples. Expanding human par-
ticipants’ cultural and linguistic diversity, as well
as sample sizes, will enhance the generalizability
and statistical robustness of findings. Concurrently,
incorporating a broader spectrum of LLM archi-
tectures, training paradigms, and multimodal in-
tegrations will enable a systematic evaluation of
how model design influences synesthetic behav-
ior, contributing to a comprehensive Al synesthesia
cognitive map.

Second, deeper investigation into the internal
structures and training mechanisms of LLMs that
govern synesthetic expressions. While the current
work focuses on descriptive results, future studies
should examine how prompt engineering and lan-
guage cues can modulate LLM synesthetic outputs,
shedding light on the role of linguistic context in

fine-tuning and targeted training approaches could
be explored to guide models toward more human-
like synesthetic representations. These efforts will
not only deepen our understanding of LLM cog-
nitive processes but also provide theoretical and
practical foundations for developing Al with richer,
human-aligned multimodal perception.

7 Conclusion

In this study, we compared synesthetic associations
between large language models and humans, reveal-
ing both notable alignments and clear differences
across conceptual domains. Findings highlight the
significant impact of model scale and architecture
on synesthetic behavior. Future efforts to scale up
samples and probe model mechanisms will advance
AT’s multimodal cognitive capabilities. Overall,
this work provides a valuable foundation for under-
standing and enhancing human-like perception in
artificial intelligence.
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A CIEDE2000

A.1 Formula

The CIEDE2000 formula takes into account not
just the Euclidean distance between colors in the
CIELAB space but also factors like lightness,
chroma, and hue differences. The general form
of the CIEDE2000 color difference formula is:
AL AC! )2

2 2
kLSL> - <k050> +<

AC" AH'
"keSc kuSu’

where AL’ is Lightness difference, AC” denotes
Chroma difference, AH’ means Hue difference,
St, Sc, Sg are Weighting functions for lightness,
chroma, and hue, respectively. kr, ko, kg are
Parametric factors (usually set to 1 for standard
conditions), and R = Rotation term accounting
for interactions between chroma and hue differ-
ences. The detailed introduction to each parts are
as follow:

AH'
krSH

AEgo = (

* Lightness Difference: AL’ = L; — L}

¢ Chroma Difference: C* =
with AC" = C — CY.

((I*)Q + (b*)Q

¢ Hue Difference:

A

AH' =2,/C1CY sin < >
* Weighting Functions:

0.015(L' —50)?

VA0 (D507
- Sc =1+0.045C"

- Sy =1+0.015C'T

- S, =1+

 Hue Rotation Term: Ry = —2R¢ sin(2A0)

. C/7
with RC’ =14/ CT¥o57

A.2 Usage in Academic Context

The CIEDE2000 formula is commonly used in im-
age processing, textile engineering, printing, and
quality control where precise color matching is
critical. It is considered more accurate than ear-
lier formulas (like CIELAB and CIE94) due to its
nuanced handling of chroma and hue interactions,
particularly in cases of significant hue angle differ-
ences.



B Supplementary Information for the
Synesthesia Task

In this section, we provide the synesthesia prompt
instructions used for LLMs under different cul-
tural settings, along with additional detailed results.
These include comparisons between LLMs and hu-
man participants across conceptual categories, per-
item color residual analyses for each model series,
and culture-specific outputs from different LLMs
on the "months" category.

B.1 LLM prompt

Please, based on your default associations, sequen-
tially provide the colors corresponding to the fol-
lowing nouns and represent them using RGB values
(such as 255, 87, 51). Please answer in the order of
the questions, in the format of [Question Number:
Content of the Question]: (r, g, b), and do not omit
any.

1:0

2:1

3:2

4:3

5:4

6:5

7:6

8:7

9:8

10:9

11:Monday

12:Tuesday

13:Wednesday

14:Thursday

15:Friday

16:Saturday

17:Sunday

18:January

19:February

20:March

21:April

22:May

23:June

24:July

25:August

26:September

27:October

28:November

29:December

30:Spring

31:Summer

32:Autumn

33:Winter
34:A

35:B

36:C

37:D

38:E

39:F

40:G

41:H

42:1

43:]

44:K

45:L

46:M

47:N

48:0

49:p

50:Q

51:R

52:S

53:T

54:U

55V

56:W

57:X

58:Y

59:7Z

60:Up
61:Down
62:Left
63:Center
64:Right
65:Forward
66:Backward
67:East
68:West
69:South
70:North
71:Southeast
72:Northeast
73:Southwest
74:Northwest
75:High
76:Low
77:Far
78:Near
79:Deep
80:Shallow
81:Sparse
82:Dense
83:Past
84:Present



85:Future

B.2 LLM and Human Responses by
Conceptual Category

we provide the extra results of Table 1, as is illus-
trated in Figure 5 to Figure 15.

B.3 Per-Item Color Residuals by Model Series

We present the Per-Item Color Residuals by Model
Series analysis, as is illustrated in Figure 16 to
Figure 27.

Each cell displays the three colors with the
largest residuals along with their corresponding
residual values, making it easier for readers to as-
sess the significance of the colors.If the residual
is greater than 5, it is highlighted in bold. If the
residual is less than 0, its opacity is set to 30%.

B.4 Culture-Specific Outputs of LLMs on the
"Months'" Category

We present the Culture-Specific Outputs of LLMs
on the "Months" Category, as is illustrated in Figure
28 to Figure 35.
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Figure 5: Figure (a) shows the legend, including the response colors and the definition of the radial coordinate.
Figures (b), (c), (d), and (e) respectively present the weekday-related synesthetic color responses from the human
group, DeepSeek series, Doubao series, and ChatGPT series. The radial axis represents numbers from Sunday
(center) to Monday (outer edge), and the angular direction indicates cleaned response data.
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Figure 6: Figure (a) shows the legend, including the response colors and the definition of the radial coordinate.
Figures (b), (¢), (d), and (e) respectively present the number-related synesthetic color responses from the human
group, DeepSeek series, Doubao series, and ChatGPT series. The radial axis represents numbers from 9 (center) to
0 (outer edge), and the angular direction indicates cleaned response data.
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Figure 7: Figure (a) shows the legend, including the response colors and the definition of the radial coordinate.
Figures (b), (c), (d), and (e) respectively present the weekday-related synesthetic color responses from the human
group, DeepSeek series, Doubao series, and ChatGPT series. The radial axis represents numbers from A (outer
edge) to M(center), and the angular direction indicates cleaned response data.
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Figure 8: Figure (a) shows the legend, including the response colors and the definition of the radial coordinate.
Figures (b), (c), (d), and (e) respectively present the weekday-related synesthetic color responses from the human
group, DeepSeek series, Doubao series, and ChatGPT series. The radial axis represents numbers from N (outer
edge) to Z(center), and the angular direction indicates cleaned response data.
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Figure 9: Figure (a) shows the legend, including the response colors and the definition of the radial coordinate.
Figures (b), (c), (d), and (e) respectively present the season-related synesthetic color responses from the human
group, DeepSeek series, Doubao series, and ChatGPT series. The radial axis represents numbers from spring (outer
edge) to winter(center), and the angular direction indicates cleaned response data.
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Figure 10: Figure (a) shows the legend, including the response colors and the definition of the radial coordinate.
Figures (b), (c), (d), and (e) respectively present the direction-related synesthetic color responses from the human
group, DeepSeek series, Doubao series, and ChatGPT series. The radial axis represents numbers of up, down, left
and right, and the angular direction indicates cleaned response data.
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Figure 11: Figure (a) shows the legend, including the response colors and the definition of the radial coordinate.
Figures (b), (c), (d), and (e) respectively present the direction-related synesthetic color responses from the human
group, DeepSeek series, Doubao series, and ChatGPT series. The radial axis represents numbers of front, center and
back, and the angular direction indicates cleaned response data.
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Figure 12: Figure (a) shows the legend, including the response colors and the definition of the radial coordinate.
Figures (b), (c), (d), and (e) respectively present the direction-related synesthetic color responses from the human
group, DeepSeek series, Doubao series, and ChatGPT series. The radial axis represents numbers of east, west, south
and north, and the angular direction indicates cleaned response data.
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Figure 13: Figure (a) shows the legend, including the response colors and the definition of the radial coordinate.
Figures (b), (c), (d), and (e) respectively present the direction-related synesthetic color responses from the human
group, DeepSeek series, Doubao series, and ChatGPT series. The radial axis represents numbers of southeast,
northeast, southwest and northwest, and the angular direction indicates cleaned response data.
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Figure 14: Figure (a) shows the legend, including the response colors and the definition of the radial coordinate.
Figures (b), (c), (d), and (e) respectively present the abstract-concept-related synesthetic color responses from the
human group, DeepSeek series, Doubao series, and ChatGPT series. The radial axis represents numbers of high,
low, far and near, and the angular direction indicates cleaned response data.

18



Deep m

deepseek-rl

Human Group doubao-1-5-lite-32k

o S
Sl ?®

gpt-40-mini

Figure 15: Figure (a) shows the legend, including the response colors and the definition of the radial coordinate.
Figures (b), (c), (d), and (e) respectively present the density-concept-related synesthetic color responses from the
human group, DeepSeek series, Doubao series, and ChatGPT series. The radial axis represents numbers of deep,
shallow, sparse and dense, and the angular direction indicates cleaned response data.
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GPT 010.64 | ©5.89 ©3.79 03.28 ®4.09 e 6.46 ©6.86
@5.03 0221 ©3.40 o 1.06 @3.38 02.98 04.24

010.83 [ 015.98 | o7.11 e4.15 e7.23 01041 | o11.50
Deepseek| @10.75 | ©2.92 ©6.36 03.97 e2.72 e5.77 e7.12
e5.25 o 1.86 206.08 ©3.47 el44 5.4 e2.66

030.22 | ©22.26 | @15.19 | 022.78 | @15.17 | ©7.85 o7.88
Doubao | @10.23 | o8.04 ©4.99 493 @06.16 02.36 0238
(.14 o144 e1.82 00.37 e 1.65 e 1.86 e 1.88

Figure 17: Color Residuals by Model Series for the Weekday Group

M A B C D E F G
@19.62 | ©3.81 07.93 04.61 ©4.08 e2.09 02.20

Human | 02.54 02.70 o].28 e2.06 el.79 02.02 e1.37
©2.03 o1.79 el.l1 0 1.59 el.14 e 1.39 e1.20

©34.30 | ©26.28

el1445 | 01588 | o7.11 e14.49 | 010.48
GPT 00.94 013.63 | o14.42

0442 @06.97 02.73 02.34

. 7 | e073 | 556 |e182 | o158

041.04 | ©35.23 | ©27.80 | ©26.27 | ©23.68 | ©18.12 | @ 14.51
Deepseek 20.88 ©9.96 o15.15 | ©5.76 012.26 | ©4.08
00.67 e(.31 e (.88 e(0.58 03.98

@30.36 | ©25.25 | ©22.77 | 034.71 | @26.97 | ©26.37 | @ 13.40
Doubao e7.35 29.63 el.74 e5.31 0941
e o o o(0.57 05.94

Figure 18: Color Residuals by Model Series for the Letters Group (from A to G)

H | J K L M N

e2.82 0223 e2.04 ®1.65 e2.04 ®1.63 02.53
Human | @2.65 02.19 el1.57 o1.39 e].22 e1.38 01.82
e2.28 el.77 @0.78 e1.39 e0.81 e1.22 e 1.67

@727 02038 | @5.24 03.81 08.28 e5.69 ©5.99
GPT e3.78 0437 ©3.27 ®3.51 ©7.82 @3.63 e2.64
@348 o1.95 e[.08 o231 ©7.57 e2.13 01.76

©20.82 | 023.65 | @6.82 024,50 | ©8.56 ©6.29 @6.76
Deepseek| @4.66 0721 e3.27 ©3.52 e5.22 e4.83 05.00
0251 @2.76 ®2.90 e0.41 ©2.03 235 e4.03

1528 | 012.40 | ©5.12 e 60.91 o8.10 e7.98 e 10.09
Doubao | ©7.87 o7.87 04.94 @4.68 @2.70 04.94 o5.85
e2.15 e5.21 @3.63 00.83 e2.15 e2.37 e3.84

Figure 19: Color Residuals by Model Series for the Letters Group (from H to N)
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Q

M (0] P Q R S T
05.27 e2.04 el.72 o1.00 02.30 e2.46
Human | e2.34 e].82 e1.25 00.88 ol.44 o2.04
00.61 el.16 0 0.86 00.82 el.4l1 e0.73
018.17 | @14.49 | 02.92 021.77 | ©14.22 | 08.15
GPT | e7.59 @ 8.50 e2.63 0727 @3.51 ©7.82
@4.66 e2.44 @0.04 e3.15 @3.02
o10.11 | @8.90 e 6.02 e15.41 | ©8.93 ¢8.09
Deepseek| e 7.75 @4.93 05.04 @2.76 e5.79 ©5.97
©2.03 el.75 0342 e1.62 ©1.98 el.24
22092 | @18.07 | @18.07 | ©20.94 | ©8.75 ©6.10
Doubao | @5.69 el11.41 | 29.03 @2.60 06.15 ©5.30
02.06 e2.60 04.72 e0.46 o191 o435

Figure 20: Color Residuals by Model Series for the Letters Group (from O to T)

Q
M U A% W X Y Z

@3.60 02.40 o1.34 e2.53 e1.97 ©3.98
Human | ©1.59 el.20 e].13 el1.73 e1.48 o149
©0.67 e0.92 00.88 01.36 o1.45 ol.4l

05.05 01742 | 03244 | ©10.41 | 025.08 | @12.08
GPT | e3.67 elldl | 0442 e9.23 o7.09 e5.78
@322 e 1.07 e3.61 02.69 e1.59

e11.63 | ¢12.01 | c15.15 | ©18.76 | ©13.94 | ©16.03
Deepseek| ©2.38 e8.71 0341 e4.44 @3.95 ®3.23
e1.78 e0.38 02.03 @1.60 02.24 e2.83

@6.71 @19.40 | 02424 | 0745 027.11 | e15.63
Doubao | ©5.17 e1.57 02.24 e7.32 e(0.54 e2.85
@2.99 o191 e2.28 e2.32

Figure 21: Color Residuals by Model Series for the Letters Group (from U to Z)

M Q Spring |Summer | Autumn | Winter M Q Past | Present | Future
014,90 | @13.42 | ©14.69 | 018.14 e573 | @226 | e3.13
Human | ©6.53 | @1.91 0820 | e5.24 Human | ©5.53 | ©2.08 [ o01.39
01.63 e 1.01 00.53 ®4.46 0234 |ol92 |[e01.39
027.24 | 017.12 | ©24.23 | 023.66 e12.04 | 09.15 | 09.77
GPT | 010.09 | 011,49 | ©2.08 | 014.93 GPT | 0685 [07.30 | e8.39
495 | 0000 |el.73 | e10.47 0344 | 0432 | 0329

©32.58 | @18.53 | ©24.89 | 018.08 e14.52 | 17.55 | ©19.89

Deepseek| 05.50 | 08.37 e17.68 Deepseekl 014.36 | @10.98 | o 11.14
e3.72 o15.50 01342 | 0791 | 06.40

©027.19 | 025.15 | ©25.08 | 017.01 ©29.40 | 024.28 | 024.79
Doubao | @245 | @245 | e7.12 | @15.66 Doubao | @3.17 | @828 | @6.56
0236 | 00.07 |e245 |[o11.03 02.00 | 0431 | 533

Figure 22: Color Residuals by Model Series for the Season and Time Group
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Jan Feb Mar Apr May Jun

06.43 04.05 08.98 ©6.81 ©4.08 e2.29
Human | @4.80 e2.80 04.81 03.54 o3.13 e2.10
©3.06 ©1.83 03.76 ©3.00 ©2.55 e1.69

014.67 | @23.53 | 026.21 | @14.03 | ©15.61 | ©10.36
GPT |[014.37 | 1642 | 04.44 0 11.67 | ©5.09 07.24
®5.77 @13.78 | 04.01 03.34 @4.99 02.28

019.70 | @30.72 | ©34.30 | 011.17 | ©5.62 <8.99
Deepseek| e 11.52 0232 08.76 0232 ©8.96
©5.23 el.74 | e2.11 0492

©25.60 | ©13.16 | ©20.99 | ©12.25 | ©8.67 o11.55
Doubao | ©3.72 0344 o1.95 08.07 o7.55 e4.13
@2.00 00.42 04.57 07.23 02.82

Figure 23: Color Residuals by Model Series for the Month Group (from Jan to Jun)

Jul Aug Sept Oct Nov Dec

@5.89 @5.60 © 6.47 e2.54 e7.03 o13.15
Human | @4.98 e3.79 e1.97 o1.66 o3.13 o419
e1.32 ®1.66 ®1.93 ol.18 @3.01 e4.01

@19.08 | ©12.98 | @3.68 014.00 | @18.73 | @15.51
GPT | 0.30 04.38 e3.21 e11.26 | ©7.48 010.94
o 20.10 e2.44 o ©0.40 010.76

@12.62 | ©9.52 08.10 @10.13 | 15.51 | @22.38
Deepseek| @3.94 e4.21 0421 08.73 @10.83 | 13.25
@0.88 (.52 0206 | e4.72 @10.71 | ©5.17

e12.83 | ¢10.05 | ©6.20 ©8.74 @9.37 o 15.57
Doubao | ®3.95 @2.95 e 6.05 @5.87 @5.55 e 06.34
e2.43 e0.58 0243 @2.60 e2.43 e3.05

Figure 24: Color Residuals by Model Series for the Month Group (from Jul to Dec)

Up Down Front Back Left Right | Center

e12.03 | 06.21 @392 e4.44 e3.64 e4.73 07.20
Human | 04.22 o192 @3.16 ®3.38 e2.61 @3.78 0249
o1.54 01.62 ol.12 o1.10 e1.23 e1.74 e1.77

01949 | @19.67 | ©3.50 29.97 015.81 | ©5.86 037.52
GPT 010.21 | ¢5.08 ©3.44 00.71 o031 04.76 o4.15
05.46 02.72 240 e(.18 e 1.59 03.24

026.53 | @34.29 | 09.42 010.73 [ 01391 | ©7.72 e32.39
Deepseek| o 11.88 | @3.09 ©5.26 ©9.40 e7.39 e2.05 o11.84
02.38 e2.82 0299 ©1.90 (.52 ©1.95

02436 | @17.83 | @10.90 | ©12.68 | ©24.59 | 8.52 025.95
Doubao | ©2.45 0220 05.66 08.36 e4.74 o8.17 012.68
o e(.22 0543 0247 e1.94 295 e(.51

Figure 25: Color Residuals by Model Series for the Direction Group
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M E A%Y% S N SE NE SW NW
e3.14 ©3.34 e 1.60 05.01 e2.96 @249 0439 03.34
Human | 01.26 02.73 @0.93 o1.54 02.68 o1.54 e1.54 e1.85
e1.22 e 1.81 ©0.89 e1.48 ©0.90 ¢0.93 o1.40 el.25
017.92 | @3.97 e5.20 014.46 | 01236 | 014.80 | @12.69 | @6.04
GPT 02.46 ®3.51 e4.64 e 0.64 e4.12 e5.601 @3.49 ©5.39
®2.606 04.36 e 1.89 @4.03 03.44 o1.41 ®4.56
@8.55 014.02 | ©14.01 | ©7.10 017.82 | 013.45 | ©5.90 e12.75
Deepseek| ©7.93 04.91 010.67 | 05.03 08.37 e7.19 0431 e9.73
03.64 o1.84 e3.01 04.63 o7.44 ®0.52 e4.11 e7.27
014.20 | @19.66 | ©13.18 | ©23.19 | ©18.68 | ©19.66 | 011.18 | @9.33
Doubao | 013.39 | @1.76 @0.36 02.85 05.90 o7.58 e7.53 e8.17
o 00.43 00.43 ol.21 04.53 4.25 e3.14 0721
Figure 26: Color Residuals by Model Series for the Direction Group
M Q High Low Far Near Deep | Shallow | Sparse | Dense
@3.74 04.53 ©2.20 02.96 e11.23 | 09.25 02.88 e4.01
Human | e2.81 02.76 e2.13 e2.54 e2.92 04.27 01.98 ®3.63
01.96 o1.25 e 1.58 e2.10 e 1.81 @ 1.80 e1.73 0242
o4.71 04.46 03.29 01487 | @28.34 | 01437 | 011.42 | ©22.17
GPT @3.68 e3.12 02.81 ®3.46 e1.04 04.28 09.68 ¢ 0.80
02.79 e2.79 o185 @3.19 @0.93 0327 ©7.98 o4.75
01449 | ©20.20 | 013.70 | ©14.65 | ©23.95 | 011.66 | ©9.57 e9.13
Deepseek| 09.54 04.27 05.91 e3.43 e 6.42 010.89 | 07.05 08.52
@3.58 ©2.20 e 1.67 e1.29 e4.67 @5.39 0451 e2.19
021.24 | 013.31 | @27.05 | @31.91 | @17.68 | ©19.48 | 013.45 | @16.54
Doubao | @20.22 | 012.30 | ©3.77 0 8.20 @093 e4.01 o
@3.78 02.24 ©1.98 04.30 C 03.62

Figure 27: Color Residuals by Model Series for the Abstract Concept Group
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g .C, American British Chinese Deepseek-rl

S

Jan
Feb
Mar
Apr

male

female May

Jun

female

Figure 28: Culture-Specific Outputs of Deepseek-r1 on the "Months" Category

24



G C American British Chinese Deepseek-v3

S

Jan
Feb
Mar
Apr

male

female May

Jun

male

female

Figure 29: Culture-Specific Outputs of Deepseek-v3 on the "Months" Category
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G C American British Chinese Deepseek-qwen

S

Jan
Feb
Mar
Apr
female May
Jun

male

female

Figure 30: Culture-Specific Outputs of Deepseek-qwen on the "Months" Category
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G C American British Chinese Doubao-pro

S

Jan
Feb
Mar
Apr

male

female May

Jun

Russian

female

Figure 31: Culture-Specific Outputs of Doubao-pro on the "Months" Category
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G c American British Chinese Doubao-vision

male
female
c' Korean Russian <
. ep
Oct
male Nov
Dec
B[
L1
female EI= E
O

Figure 32: Culture-Specific Outputs of Doubao-vision on the "Months" Category
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G c American British Chinese Doubao-lite

S

Jan
Feb
Mar
Apr

male

female May

Jun

male

female

Figure 33: Culture-Specific Outputs of Doubao-lite on the "Months" Category
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g .C American British Chinese GPT-40

female

male

female

Figure 34: Culture-Specific Outputs of GPT-40 on the "Months" Category
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G c American British Chinese GPT-40-mini

S

Jan
Feb
Mar
Apr

male

female May

Jun

female

Figure 35: Culture-Specific Outputs of GPT-40-mini on the "Months" Category
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