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Abstract001

Large Language Models (LLMs) exhibit emer-002
gent capabilities beyond core language tasks,003
and demonstrate certain cognitive alignment004
between humans. However, the potential of005
LLMs to simulate human-like cross-modal cog-006
nitive alignments, such as synesthesia, remains007
unexplored. Synesthesia involves consistent008
associations between concepts and sensory ex-009
periences (e.g., linking numbers to colors), a010
phenomenon also reflected in cross-modal cor-011
respondences observed even in non-synesthetes.012
In this work, we conduct the study of whether013
modern LLMs replicate such synesthetic align-014
ment by evaluating their responses on color015
association tasks across diverse conceptual do-016
mains: digits, letters, temporal concepts (e.g.,017
days, months), spatial directions, and abstract018
entities. Using standardized prompts, we ana-019
lyze responses from multiple LLMs and com-020
pare them to human data collected from 260021
participants. Colors are mapped to a perceptu-022
ally uniform space (CIELAB), with alignment023
quantified via the CIEDE2000 metric. Our re-024
sults reveal that LLMs show significant align-025
ment with human consensual patterns, partic-026
ularly for temporal concepts like seasons and027
months, achieving color differences compara-028
ble to human variability. However, abstract029
concepts (e.g., directions) exhibit greater diver-030
gence. Cultural influences (e.g., Western vs.031
Chinese contexts) impact alignment, while gen-032
der differences in humans do not translate to033
LLMs. Model size and architecture also affect034
performance, with larger models demonstrat-035
ing stronger alignment. These findings high-036
light LLMs’ ability to capture certain cross-037
modal associations, offering insights into their038
implicit grounding of abstract concepts and im-039
plications for multimodal applications requir-040
ing sensory-conceptual integration.041

1 Introduction042

Large Language Models (LLMs) have demon-043

strated remarkable generalization capabilities be-044

yond core language tasks (Floridi and Chiriatti, 045

2020; Touvron et al., 2023; Liu et al., 2024), hint- 046

ing at emergent competencies in domains like color 047

perception (Pi et al., 2024; Abdou et al., 2021), spa- 048

tial reasoning (Chen et al., 2024; Fu et al., 2024), 049

and orientation understanding (Yang et al., 2025; 050

Stogiannidis et al., 2025). Despite being trained 051

only on textual data, recent studies suggest that 052

LLM representations implicitly capture aspects of 053

grounded concepts (Pavlick, 2023; Harnad, 2024). 054

However, human cognition contains more com- 055

plex abilities, such as the phenomenon of synes- 056

thesia (Ward, 2013), which is a perceptual cross- 057

ing of senses or concepts (Hubbard, 2007; Spector 058

and Maurer, 2013). In synesthesia, stimulation of 059

one cognitive pathway triggers involuntary expe- 060

riences in another (Grossenbacher and Lovelace, 061

2001; Rich and Mattingley, 2002). For instance, 062

some individuals consistently perceive specific col- 063

ors when thinking of particular numbers or let- 064

ters (known as grapheme–color synesthesia) (Cy- 065

towic and Eagleman, 2011; Parise, 2016). More 066

broadly, even non-synesthetes exhibit cross-modal 067

associations (Spence, 2011) such as the famous 068

Bouba–Kiki effect (Ramachandran and Hubbard, 069

2001), where people intuitively match nonsense 070

words like “bouba” with round shapes and “kiki” 071

with spiky shapes (Maurer et al., 2006). These 072

cross-modal correspondences appear to reflect fun- 073

damental alignments in human cognitive system 074

(Boroditsky et al., 2009; Spence, 2011), which are 075

widespread and often consistent across different 076

people (Marks, 1987; Lacey et al., 2021), yet can 077

also show individual or cultural variations (Spence 078

and Deroy, 2012). 079

Given the above findings, an intriguing re- 080

search question arises: can modern LLMs simu- 081

late synesthesia-like cognitive alignments across 082

modalities? Addressing this question is crucial 083

for practical applications of LLMs. For example, 084

when tasked with designing a promotional poster 085
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for spring travel, an LLM should ideally select086

appropriate colors (e.g., green). However, if the087

model lacks synesthetic cognitive capabilities, it088

may fail to produce aesthetically appealing results.089

Prior research has extensively probed LLMs’ abili-090

ties on basic perceptual (Yuksekgonul et al., 2022)091

and cognitive tasks (Misra et al., 2021). However,092

it remains underexplored whether LLMs possess093

any synesthesia alignment abilities. This leaves094

a significant research gap: we lack a clear under-095

standing of whether advanced language models096

exhibit any form of synesthetic alignment akin to097

humans, and what implications this might have for098

their integration into multimodal tasks.099

Our work aims to fill this gap by conducting the100

first systematic study of synesthesia alignment in101

LLMs. We design a suite of synesthesic color asso-102

ciation tasks inspired by human synesthesia, cover-103

ing a diverse range of conceptual domains, includ-104

ing digits (0–9), letters (A–Z), temporal concepts105

(e.g. days of week, months), cardinal directions106

(e.g. north, south, etc.), and other spatial or abstract107

concepts, and ask LLMs to link each concept with108

a color. Using a standardized questionnaire-style109

prompting, we evaluate multiple mainstream LLMs110

on these tasks, capturing their preferred “color” for111

each concept. To benchmark performance, we also112

collected a dataset of 260 human participants’ re-113

sponses on the same tasks, allowing direct compar-114

ison between model-generated associations and hu-115

man intuition. For rigorous analysis, we represent116

colors in a perceptually uniform color space and117

quantify differences using the CIEDE2000 color118

difference metric (Sharma et al., 2005), ensuring an119

objective measure of how closely an LLM’s color-120

choice aligns with human consensual patterns. This121

experimental design enables us to probe whether122

LLMs can align abstract concepts with concrete123

sensory dimensions in a manner comparable to hu-124

man cross-modal cognition. The results indicate125

that while there are notable differences between126

human participants and LLMs in synesthetic re-127

sponses to abstract concepts, alignment is observed128

in temporal concepts, such as seasons and months.129

Additionally, individual identity differences, such130

as gender and culture, exhibit varying impacts on131

synesthetic performance. Gender differences do132

not affect synesthesia of LLMs, whereas cultural133

influences are observed. Differences caused by134

model type and sizes are also observed.135

In summary, our contributions are as follows:136

• First exploration of synesthetic alignment 137

in LLMs: We present the first system- 138

atic investigation into whether LLMs exhibit 139

synesthesia-like cross-modal cognitive align- 140

ments, a previously unexamined aspect of 141

their capabilities. 142

• Synesthesia task and human comparison: 143

We introduce a synesthesia evaluation frame- 144

work consisting of color-association tasks 145

across multiple concept domains (numbers, 146

letters, time, directions, space), and we gather 147

responses from both several trending LLMs 148

and 260 human subjects for comprehensive 149

comparison. 150

• Objective alignment analysis: We propose 151

an evaluation method using the CIEDE2000 152

color difference standard to quantify the align- 153

ment between model-generated color associ- 154

ations and human synesthetic patterns, ensur- 155

ing results are measured with perceptual accu- 156

racy. 157

2 Related Work 158

2.1 Perceptual and Cognitive Tasks of LLMs 159

Despite being trained only on textual data, recent 160

studies suggest that LLM representations implic- 161

itly capture aspects of grounded concepts (Pavlick, 162

2023; Harnad, 2024). For example, LLMs are 163

able to encode certain spatial relationships with- 164

out explicit spatial inputs (Ji and Gao, 2023; Hu 165

et al., 2024). Such cognitive abilities are of vi- 166

tal importance for downstream applications in hu- 167

man–computer interaction and embodied intelli- 168

gence (Anderson, 2003; Bisk et al., 2020a). An 169

LLM capable of reasoning about space, color, or di- 170

rection can more naturally interface with the phys- 171

ical world (Driess et al., 2023; Pan et al., 2024), 172

enhancing interactive systems ranging from visual 173

dialog agents (Schumann et al., 2024) to robotic 174

assistants (Ahn et al., 2022). 175

2.2 Cognitive Alignment of LLMs 176

Prior research has extensively probed LLMs’ align- 177

ment on basic perceptual (Yuksekgonul et al., 2022) 178

and cognitive tasks (Misra et al., 2021), from un- 179

derstanding physical commonsense (Bisk et al., 180

2020b) and visual attributes (Park et al., 2023), 181

to theory-of-mind (Kosinski, 2023; Strachan et al., 182

2024) and social reasoning (Shapira et al., 2023; 183

Gandhi et al., 2023). These studies show that LLMs 184
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can sometimes achieve human-level performance185

on certain cognitive tests (Binz and Schulz, 2023;186

Webb et al., 2023; Hubert et al., 2024) (for in-187

stance, GPT-4 matches or exceeds humans on many188

theory-of-mind tasks (Bubeck et al., 2023; Kosin-189

ski, 2023)).190

Until now, a few isolated efforts have begun to191

test cross-modal preferences in LLMs (Loakman192

et al., 2024) (e.g. probing vision–language models193

for the Bouba–Kiki sound-shape mapping), but194

with inconclusive results (Verhoef et al., 2024).195

2.3 Human Cross-Modal Perceptual196

Capability197

Emerging evidence indicates that cross-modal per-198

ceptual mapping mechanisms analogous to synes-199

thetic experiences may develop in the general pop-200

ulation through environmental learning. Synes-201

thesia, a distinct neurocognitive phenomenon, is202

characterized by automatic elicitation of supple-203

mentary sensory experiences triggered by specific204

stimulus attributes (Ward, 2013). Typical manifes-205

tations include chromatic representations of tem-206

poral units (e.g., color associations for weekdays207

(Cytowic and Eagleman, 2011)) and spatial local-208

ization of color perception (Arend et al., 2016). Re-209

cent interdisciplinary investigations have revealed210

systematic perceptual mapping phenomena within211

non-synesthetic populations. Current scholarship212

underscores the metaphorical significance of space-213

color/time-color associations in human cognition214

(Bremner et al., 2013). However, critical knowl-215

edge gaps persist regarding the neurocognitive216

foundations of these associations and their interac-217

tion with environmental learning mechanisms.218

3 Method219

Understanding the alignment between LLMs and220

human synesthetic patterns holds significant im-221

plications for cognitive modeling. However, the222

variable space of synesthetic is vast and complex.223

Human synesthetic responses are influenced by a224

multitude of factors, including cultural background,225

linguistic framing, conceptual familiarity, and sub-226

jective perception. Meanwhile, LLM outputs re-227

flect biases rooted in their training data and archi-228

tectural constraints.229

To address this complexity, our experimental230

design aims to balance between variable control231

and interpretive richness. Rather than attempting232

to account for every possible factor, we adopt a233

principled approach to simplification—selecting 234

conceptual domains where prior literature suggests 235

relatively stable cross-modal associations. This 236

allows us to reduce extraneous noise while preserv- 237

ing theoretical relevance. 238

Accordingly, we designed a comparative exper- 239

iment to evaluate the responses of humans and 240

LLMs to identical synesthetic stimuli. Our method- 241

ology consists of three core components: (i) con- 242

trolled elicitation of color associations through 243

standardized questionnaires, (ii) rigorous compu- 244

tational analysis of the resulting response patterns, 245

and (iii) cross-modal comparison metrics to quan- 246

tify human–LLM alignment in perceptual space. 247

3.1 Stimulus Design 248

Our synesthetic stimuli were adapted from the stan- 249

dardized Synesthesia Battery framework, with mod- 250

ifications to enable cross-modal human-LLM com- 251

parison. The questionnaire comprised 85 items 252

across 8 categories, as is demonstrated in Table 253

1, designed to cover both universal and culture- 254

general associations. 255

The category selection was rigorously validated 256

by referencing established protocols from the 257

Synesthesia Battery studies, ensuring methodologi- 258

cal consistency with prior research. Our stimulus 259

set was designed to incorporate both concrete (e.g., 260

numbers) and abstract (e.g., temporal) concepts 261

across different cognitive levels, while deliberately 262

excluding culturally specific items such as zodiac 263

signs to maintain cross-cultural applicability. This 264

balanced approach provides comprehensive cov- 265

erage of synesthetic inducers while minimizing 266

cultural biases in the assessment. 267

3.2 Language Localization 268

To control for linguistic bias: 269

• Human participants receive questionnaires in 270

their native languages (e.g., Simplified Chinese 271

for Chinese speakers). 272

• LLMs are queried in their dominant training lan- 273

guages or official language of the assigned cul- 274

tural identity. We consider two kinds of models: 275

(i) Chinese models (Doubao, DeepSeek) with na- 276

tive Chinese prompts; and (ii) English models 277

(GPT series) with native English prompts con- 278

taining identical semantic content. Building on 279

this, LLMs use their mainstream training lan- 280

guage when no identity is assigned; otherwise, 281
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Categories Questionnaire Contents # Items

Numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 10
Weekdays Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday 7

Letters A, B, C, D, E, F, G, H, I ,J, K, L, M, N, O, P, Q..., X, Y, Z 26
Months January, February, ..., December 12
Seasons Spring, Summer, Fall, Winter 4

Spatial Orientations
Basic: Up, Down, Left, Right, Front, Back, Center

15Cardinal: East, West, South, North
Intermediate: Southeast, Northeast, Southwest, Northwest

Abstract Concepts
Dimensional: Far/Near, High/Low

8
Density: Dense/Sparse, Deep/Shallow

Temporal Concepts Past, Present, Future 3

Table 1: A detailed listing of questionnaire categories along with their specific contents. Each category encompasses
a variety of items designed to comprehensively cover multiple cognitive dimensions such as numbers, temporal
concepts, spatial orientations, and abstract ideas. This table serves as a foundational framework for subsequent
comparative analyses by clearly outlining the distribution of items across different conceptual domains.

they use the official language of the assigned282

cultural identity.283

3.3 Response Format Design284

To address perceptual variability in color naming285

among individuals (e.g., divergent RGB interpre-286

tations of "dark red"), we implemented distinct287

response protocols to bypass linguistic ambiguity:288

• Human participants: we implemented a con-289

strained 15-color selection interface grounded290

in the Berlin-Kay basic color theory. All par-291

ticipants were required to select one color for292

each concept item. If none of the 15 col-293

ors was considered suitable, they could write294

down the color they thought most appropriate295

and provide a rationale. The procedure took296

approximately 5-10 minutes per participant to297

complete.1298

• LLM models: we enforced a strict299

RGB output format specification (e.g.,300

"[1]A:(255,0,0)") to enable automated301

parsing.302

3.4 Metrics303

We conduct a fine-grained quantitative anslysis to304

evaluate the alignment between LLMs and human305

synesthetic color associations. For each concept,306

1Prior to the study, all participants provided informed con-
sent, which explicitly outlined the purpose of data collection
and its use for research purposes. The procedures were ap-
proved by the Ethics Committee of the XXX (masked due to
double blind review policy). All data were analyzed using
IBM SPSS Statistics version 20.0.

we first identify the dominant color—defined as 307

the most frequently selected color by human partic- 308

ipants and the highest-probability prediction gen- 309

erated by each LLM. The perceptual difference 310

between the human and model-assigned colors 311

was then calculated using the CIEDE2000 formula 312

(∆E00), a widely used metric for quantifying per- 313

ceptual color dissimilarity. For detailed introduc- 314

tion and formulation, please refer to Appendix A. 315

4 Experiment 316

4.1 Data Collection 317

• Human participants We distributed an online 318

questionnaire via Tencent Docs (a Chinese cloud- 319

based survey platform comparable to Google 320

Forms) to collect human synesthetic associations. 321

The survey required approximately 10–15 min- 322

utes for completion and yielded 289 valid re- 323

sponses after excluding incomplete or inconsis- 324

tent submissions. Participants were presented 325

with identical stimulus words used for LLM eval- 326

uation to ensure direct comparability. 327

• LLMs We evaluated the following models: 328

– Doubao: doubao-1-5-pro-32k, doubao-1- 329

5-lite-32k, doubao-1-5-vision-pro-32k (AI, 330

2024) (3 items) 331

– Deepseek:deepseek-r1-distill-qwen-32b 332

(Bai et al., 2023), deepseek-r1 (Guo et al., 333

2025), deepseek-v3 (Liu et al., 2024)(3 334

items) 335

– ChatGPT: gpt-4 (Achiam et al., 2023), gpt- 336

4-32k, gpt-4o (Hurst et al., 2024), gpt-4o- 337
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Figure 1: Figure (a) shows the legend, including the response colors and the definition of the radial coordinate.
Figures (b), (c), (d), and (e) respectively present the month-related synesthetic color responses from the human
group, DeepSeek series, Doubao series, and ChatGPT series. The radial axis represents months from December
(center) to January (outer edge), and the angular direction indicates cleaned response data.

mini (4 items)338

We implemented two types of experimental set-339

tings: one with default identity (no assigned cul-340

tural or gender identity) and another with explicit341

cultural and gender assignments. All API pa-342

rameters remained at their platform-default set-343

tings throughout the experiment, with no man-344

ual adjustment of temperature, top_p, or other345

generation parameters. In the identity-assigned346

setting, we assigned six cultures (Chinese, Amer-347

ican, Japanese, Korean, British, and Russian) and348

two genders to the models.349

4.2 Data Processing350

Human responses: After applying response com-351

pleteness and attention checks to the initial 289352

submissions, we retained 260 valid human ques-353

tionnaires from online, yielding an 89.7% valid354

response rate. Among these, 143 were male and355

114 female participants, primarily drawn from the356

Chinese cultural context with ages concentrated357

between 20 and 30 years old.358

LLM responses: For the responses generated by359

large language models (LLMs), we first excluded360

all outputs that did not conform to the predefined 361

format (e.g., textual descriptions instead of numer- 362

ical RGB values). Under the default (no assigned 363

identity) condition, each model produced 300 sam- 364

ples. When cultural and gender identities were as- 365

signed, each model generated 50 samples for each 366

culture-gender combination. For both the default 367

and identity-assigned settings, we constructed bal- 368

anced datasets for the same series of LLMs respec- 369

tively. To ensure balanced representation across 370

models, we employed a stratified sampling strat- 371

egy, randomly selecting an equal number of quali- 372

fied responses from each model to form balanced 373

datasets containing 300 samples each. This sam- 374

pling process strictly adhered to two principles: (i) 375

maintaining equal contribution weights across all 376

models, and (ii) ensuring uniform coverage of all 377

stimulus words. 378

4.3 Data Analysis 379

To examine broader patterns, we grouped the ques- 380

tions into several conceptual categories (e.g., spa- 381

tial directions, temporal concepts, sequences, let- 382

ters) and computed the average ∆E00 within each 383

category. This group-level aggregation enabled us 384

5



to assess how consistently different semantic do-385

mains are mapped to color by LLMs compared to386

humans.387

To provide a comprehensive view of model-388

human alignment, we computed the residuals for389

each individual model, question, and concept390

triplet. These residuals, defined as the CIEDE2000391

color distance (∆E00) between the model-assigned392

and human-assigned dominant colors, serve as a393

fine-grained metric of perceptual deviation. All394

computed residuals are presented in the appendix395

to support transparency and reproducibility of our396

analysis.397

5 Results398

In order to compare the concept-color associa-399

tions between the human and LLMs (deepseek and400

doubao). A three-way log-linear analysis: concept401

(85) × color (15) × group (2), on the choosing fre-402

quency of colors showed that there was a significant403

difference in concept-color associations between404

the two groups (e,g., weekdays, χ2 = 1791.978,405

df = 168, p < .0001), except for the letters-color406

associations.407

5.1 Overall408

Statistical analysis revealed non-random color as-409

sociations for all concepts including human and410

LLMs (for examples, Numbers, human: χ2 =411

1149.626; GPT: χ2 = 3153.075; deepseek: χ2 =412

7496.427, doubao: χ2 = 5730.481; all df = 126413

and p < .0001), and some colors were chosen more414

frequently than others for specific concept. Each415

concept exhibited different patterns (e.g., num-416

ber 0-color associations, human: χ2 = 345.054,417

df = 13, p < .0001). For number 0-color associa-418

tion in human group, white was chosen more fre-419

quently than other colors (with an adjusted residual420

z = 23.09). Other significant associations were421

observed. For examples, 1 with red (z = 5.40)422

and 9 with black (z = 4.03). Overall, our results423

demonstrate that temporal concepts—particularly424

months and seasons—yield the smallest average425

color difference between humans and LLMs.426

5.2 Differences in Color Preferences427

Human participants and LLMs exhibit pronounced428

differences in synesthetic responses. As shown in429

Appendix B, the color selections of LLMs form a430

distinct and concentrated circular pattern, whereas431

human responses appear much sparser and more432

dispersed. This divergence manifests not only in 433

hue preference—with humans favoring blue tones 434

and LLMs leaning toward reds. LLMs demonstrate 435

a far higher degree of uniformity in color choices, 436

indicating a more systematic and stable associative 437

mechanism, while human synesthesia is shaped 438

by individual differences and perceptual variabil- 439

ity. These findings underscore the fundamental 440

differences between human and AI cross-modal 441

representation systems. 442

Notably, human responses revealed a primacy ef- 443

fect in sequential concepts (e.g., days of the week, 444

months), with a significantly higher tendency to as- 445

sign red hues to the first item in each sequence. 446

This pattern may reflect attentional salience or 447

learned associations in cognitive processing. In 448

contrast, LLMs did not exhibit such a primacy ef- 449

fect; their color assignments appeared evenly dis- 450

tributed across the sequence, suggesting that their 451

associative mappings are less influenced by ordinal 452

positioning and more likely governed by statistical 453

co-occurrence or embedding structure. 454

5.3 Characteristics of Conceptual Alignment 455

Between human participants and LLMs, color asso- 456

ciations for seasonal and temperature-related con- 457

cepts exhibit a high degree of consistency. As 458

shown in the Figure 1, “July” is commonly associ- 459

ated with warm hues, while “Winter” is generally 460

linked to cool tones. Figure 4 illustrates the color 461

differences between humans and LLMs. These con- 462

cepts show the smallest color differences between 463

humans and LLMs, with seasons having the highest 464

consistency, followed by months. This cross-modal 465

consistency indicates that LLMs can effectively en- 466

code sensory mappings related to natural regulari- 467

ties. The relatively small color distances in these 468

concepts further corroborate the ability of LLMs to 469

capture synesthetic patterns associated with natural 470

phenomena and shared cultural contexts. 471

5.4 Differences Due to Model Size and Type 472

LLMs of different size and architectures showed 473

varying performance in the color synesthesia task. 474

Generally, larger models tended to produce more 475

distinct and differentiated color choices, while 476

smaller models leaned towards more conservative 477

outputs in grayscale or low-saturation colors. Sig- 478

nificant differences were also observed among mod- 479

els within the same series, indicating that model 480

scale is not the sole determinant of performance. 481
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Figure 2: Top-3 most frequent color choices for number-related concepts across different models. Each cell
represents the top three RGB colors selected for a given number item by a specific model under a given gender
identity, along with the number of responses selecting each color and the total number of valid responses. While no
consistent gender-based differences were observed within models, there are clear discrepancies between human
responses and those generated by large language models (LLMs), suggesting a fundamental divergence in synesthetic
patterns.

5.5 Differences Due to Individual Identity482

Variations483

Individual identity factors significantly influence484

synesthetic experiences, highlighting the diversity485

and complexity of synesthesia.486

In terms of gender, the experimental results487

(shown in Figure 2 ) do not show a significant488

gender difference. Possible explanations include489

insufficient sample size, the specific item’s lim-490

ited sensitivity to gender effects. Future research491

may explore potential gender influences on color492

synesthesia by increasing sample size or employing493

more detailed categorization methods. In terms of494

culture, LLMs exhibit noticeable changes in synes-495

thetic patterns under different cultural contexts496

(shown in Figure 3 ). Although all models were497

exposed to the same semantic content, their color498

associations varied when assigned identities from499

distinct cultural backgrounds. This suggests that500

LLMs may internalize and reflect culture-specific501

associations encoded during training. These varia-502

tions highlight the influence of cultural framing on503

AI-generated cross-modal mappings and point to504

the importance of identity conditioning in studying505

AI perception.506

6 Discussion 507

Despite meaningful progress in examining the 508

alignment of synesthetic associations between 509

LLMs and humans, this study has several limi- 510

tations. First, human participants were predom- 511

inantly from China, resulting in a relatively ho- 512

mogenous cultural background that may limit the 513

generalizability of the findings. Second, the sam- 514

ple size of human participants was modest, poten- 515

tially reducing statistical power and robustness of 516

conclusions. Third, the range of LLMs evaluated 517

remains limited in terms of architectures and train- 518

ing paradigms, particularly regarding multimodal 519

and cross-lingual models. Expanding the diversity 520

and number of models will provide a more com- 521

prehensive understanding of synesthetic behavior 522

across AI systems. Additionally, synesthesia mea- 523

surements were based primarily on questionnaires, 524

which may not fully capture dynamic or implicit 525

synesthetic experiences; integrating physiological 526

or neuroscientific measures could yield deeper in- 527

sights. Lastly, given the complexity of cultural 528

and individual differences in synesthesia, LLMs 529

trained solely on language data lack the biological 530

and emotional mechanisms underpinning human 531

synesthetic perception, restricting their ability to 532

fully emulate human-like synesthesia. 533
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Figure 3: Color synesthetic patterns generated by the Doubao-1.5-lite model under different cultural and gender
identity settings. The model shows markedly different responses depending on the assigned cultural context. Under
the Chinese identity, the outputs tend to cluster around achromatic tones (e.g., black, white, gray), suggesting lower
activation of synesthetic associations. In contrast, the American, Russian, and Japanese settings exhibit more vivid
and consistent patterns, each reflecting distinct cultural color tendencies.

Figure 4: Color differences in synesthetic associations between large language models and human data across
conceptual categories. For each concept, the most salient color was extracted, and the CIEDE2000 color difference
was calculated between model and human responses. Average differences were then computed within each
conceptual group. Notably, the smallest discrepancies occurred in time-related concepts such as months and seasons.

This study primarily elucidated the alignment534

between LLMs and human synesthetic associations535

across various conceptual domains. Future work536

can be advanced along two key directions. First,537

scaling up the scope of research by increasing both538

human and model samples. Expanding human par-539

ticipants’ cultural and linguistic diversity, as well540

as sample sizes, will enhance the generalizability541

and statistical robustness of findings. Concurrently,542

incorporating a broader spectrum of LLM archi-543

tectures, training paradigms, and multimodal in-544

tegrations will enable a systematic evaluation of545

how model design influences synesthetic behav-546

ior, contributing to a comprehensive AI synesthesia547

cognitive map.548

Second, deeper investigation into the internal549

structures and training mechanisms of LLMs that550

govern synesthetic expressions. While the current551

work focuses on descriptive results, future studies552

should examine how prompt engineering and lan-553

guage cues can modulate LLM synesthetic outputs,554

shedding light on the role of linguistic context in555

shaping cross-modal associations. Additionally, 556

fine-tuning and targeted training approaches could 557

be explored to guide models toward more human- 558

like synesthetic representations. These efforts will 559

not only deepen our understanding of LLM cog- 560

nitive processes but also provide theoretical and 561

practical foundations for developing AI with richer, 562

human-aligned multimodal perception. 563

7 Conclusion 564

In this study, we compared synesthetic associations 565

between large language models and humans, reveal- 566

ing both notable alignments and clear differences 567

across conceptual domains. Findings highlight the 568

significant impact of model scale and architecture 569

on synesthetic behavior. Future efforts to scale up 570

samples and probe model mechanisms will advance 571

AI’s multimodal cognitive capabilities. Overall, 572

this work provides a valuable foundation for under- 573

standing and enhancing human-like perception in 574

artificial intelligence. 575
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A CIEDE2000 819

A.1 Formula 820

The CIEDE2000 formula takes into account not 821

just the Euclidean distance between colors in the 822

CIELAB space but also factors like lightness, 823

chroma, and hue differences. The general form 824

of the CIEDE2000 color difference formula is: 825

∆E2
00 =

(
∆L′

kLSL

)2

+

(
∆C ′

kCSC

)2

+

(
∆H ′

kHSH

)2

826

+RT
∆C ′

kCSC

∆H ′

kHSH
, 827

where ∆L′ is Lightness difference, ∆C ′ denotes 828

Chroma difference, ∆H ′ means Hue difference, 829

SL, SC , SH are Weighting functions for lightness, 830

chroma, and hue, respectively. kL, kC , kH are 831

Parametric factors (usually set to 1 for standard 832

conditions), and RT = Rotation term accounting 833

for interactions between chroma and hue differ- 834

ences. The detailed introduction to each parts are 835

as follow: 836

• Lightness Difference: ∆L′ = L∗
2 − L∗

1 837

• Chroma Difference: C∗ =
√
(a∗)2 + (b∗)2 838

with ∆C ′ = C ′
2 − C ′

1. 839

• Hue Difference: 840

∆H ′ = 2
√

C ′
1C

′
2 sin

(
∆h′

2

)
841

• Weighting Functions: 842

– SL = 1 + 0.015(L′−50)2√
20+(L′−50)2

843

– SC = 1 + 0.045C ′ 844

– SH = 1 + 0.015C ′T 845

• Hue Rotation Term: RT = −2RC sin(2∆θ) 846

with RC =
√

C′7

C′7+257
. 847

A.2 Usage in Academic Context 848

The CIEDE2000 formula is commonly used in im- 849

age processing, textile engineering, printing, and 850

quality control where precise color matching is 851

critical. It is considered more accurate than ear- 852

lier formulas (like CIELAB and CIE94) due to its 853

nuanced handling of chroma and hue interactions, 854

particularly in cases of significant hue angle differ- 855

ences. 856
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B Supplementary Information for the857

Synesthesia Task858

In this section, we provide the synesthesia prompt859

instructions used for LLMs under different cul-860

tural settings, along with additional detailed results.861

These include comparisons between LLMs and hu-862

man participants across conceptual categories, per-863

item color residual analyses for each model series,864

and culture-specific outputs from different LLMs865

on the "months" category.866

B.1 LLM prompt867

Please, based on your default associations, sequen-868

tially provide the colors corresponding to the fol-869

lowing nouns and represent them using RGB values870

(such as 255, 87, 51). Please answer in the order of871

the questions, in the format of [Question Number:872

Content of the Question]: (r, g, b), and do not omit873

any.874

1:0875

2:1876

3:2877

4:3878

5:4879

6:5880

7:6881

8:7882

9:8883

10:9884

11:Monday885

12:Tuesday886

13:Wednesday887

14:Thursday888

15:Friday889

16:Saturday890

17:Sunday891

18:January892

19:February893

20:March894

21:April895

22:May896

23:June897

24:July898

25:August899

26:September900

27:October901

28:November902

29:December903

30:Spring904

31:Summer905

32:Autumn906

33:Winter 907

34:A 908

35:B 909

36:C 910

37:D 911

38:E 912

39:F 913

40:G 914

41:H 915

42:I 916

43:J 917

44:K 918

45:L 919

46:M 920

47:N 921

48:O 922

49:P 923

50:Q 924

51:R 925

52:S 926

53:T 927

54:U 928

55:V 929

56:W 930

57:X 931

58:Y 932

59:Z 933

60:Up 934

61:Down 935

62:Left 936

63:Center 937

64:Right 938

65:Forward 939

66:Backward 940

67:East 941

68:West 942

69:South 943

70:North 944

71:Southeast 945

72:Northeast 946

73:Southwest 947

74:Northwest 948

75:High 949

76:Low 950

77:Far 951

78:Near 952

79:Deep 953

80:Shallow 954

81:Sparse 955

82:Dense 956

83:Past 957

84:Present 958
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85:Future959

B.2 LLM and Human Responses by960

Conceptual Category961

we provide the extra results of Table 1, as is illus-962

trated in Figure 5 to Figure 15.963

B.3 Per-Item Color Residuals by Model Series964

We present the Per-Item Color Residuals by Model965

Series analysis, as is illustrated in Figure 16 to966

Figure 27.967

Each cell displays the three colors with the968

largest residuals along with their corresponding969

residual values, making it easier for readers to as-970

sess the significance of the colors.If the residual971

is greater than 5, it is highlighted in bold. If the972

residual is less than 0, its opacity is set to 30%.973

B.4 Culture-Specific Outputs of LLMs on the974

"Months" Category975

We present the Culture-Specific Outputs of LLMs976

on the "Months" Category, as is illustrated in Figure977

28 to Figure 35.978
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Mon.

Sun.

Weekdays

a

b

c

d

e

…

Figure 5: Figure (a) shows the legend, including the response colors and the definition of the radial coordinate.
Figures (b), (c), (d), and (e) respectively present the weekday-related synesthetic color responses from the human
group, DeepSeek series, Doubao series, and ChatGPT series. The radial axis represents numbers from Sunday
(center) to Monday (outer edge), and the angular direction indicates cleaned response data.

Numbers

a

b

c

d

e

0

9

…

Figure 6: Figure (a) shows the legend, including the response colors and the definition of the radial coordinate.
Figures (b), (c), (d), and (e) respectively present the number-related synesthetic color responses from the human
group, DeepSeek series, Doubao series, and ChatGPT series. The radial axis represents numbers from 9 (center) to
0 (outer edge), and the angular direction indicates cleaned response data.
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A

M

Letters (A - M)

a

b

c

d

e

…

Figure 7: Figure (a) shows the legend, including the response colors and the definition of the radial coordinate.
Figures (b), (c), (d), and (e) respectively present the weekday-related synesthetic color responses from the human
group, DeepSeek series, Doubao series, and ChatGPT series. The radial axis represents numbers from A (outer
edge) to M(center), and the angular direction indicates cleaned response data.

N

Z

Letters (N - Z)

a

b

c

d

e

…

Figure 8: Figure (a) shows the legend, including the response colors and the definition of the radial coordinate.
Figures (b), (c), (d), and (e) respectively present the weekday-related synesthetic color responses from the human
group, DeepSeek series, Doubao series, and ChatGPT series. The radial axis represents numbers from N (outer
edge) to Z(center), and the angular direction indicates cleaned response data.
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Spring

Seasons

a

b

c

d

e

Summer
Autumn
Winter

Figure 9: Figure (a) shows the legend, including the response colors and the definition of the radial coordinate.
Figures (b), (c), (d), and (e) respectively present the season-related synesthetic color responses from the human
group, DeepSeek series, Doubao series, and ChatGPT series. The radial axis represents numbers from spring (outer
edge) to winter(center), and the angular direction indicates cleaned response data.

Up

Directions

a

b

c

d

e

Down
Left
Right

Figure 10: Figure (a) shows the legend, including the response colors and the definition of the radial coordinate.
Figures (b), (c), (d), and (e) respectively present the direction-related synesthetic color responses from the human
group, DeepSeek series, Doubao series, and ChatGPT series. The radial axis represents numbers of up, down, left
and right, and the angular direction indicates cleaned response data.
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a

b

c

d

e

Front

Directions

Center

Back

Figure 11: Figure (a) shows the legend, including the response colors and the definition of the radial coordinate.
Figures (b), (c), (d), and (e) respectively present the direction-related synesthetic color responses from the human
group, DeepSeek series, Doubao series, and ChatGPT series. The radial axis represents numbers of front, center and
back, and the angular direction indicates cleaned response data.

East

Directions

a

b

c

d

e

West
South
North

Figure 12: Figure (a) shows the legend, including the response colors and the definition of the radial coordinate.
Figures (b), (c), (d), and (e) respectively present the direction-related synesthetic color responses from the human
group, DeepSeek series, Doubao series, and ChatGPT series. The radial axis represents numbers of east, west, south
and north, and the angular direction indicates cleaned response data.
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Directions

a

b

c

d

e

Southeast

Northeast
Southwest
Northwest

Figure 13: Figure (a) shows the legend, including the response colors and the definition of the radial coordinate.
Figures (b), (c), (d), and (e) respectively present the direction-related synesthetic color responses from the human
group, DeepSeek series, Doubao series, and ChatGPT series. The radial axis represents numbers of southeast,
northeast, southwest and northwest, and the angular direction indicates cleaned response data.

Dimension

a

b

c

d

e

High

Low
Far
Near

Figure 14: Figure (a) shows the legend, including the response colors and the definition of the radial coordinate.
Figures (b), (c), (d), and (e) respectively present the abstract-concept-related synesthetic color responses from the
human group, DeepSeek series, Doubao series, and ChatGPT series. The radial axis represents numbers of high,
low, far and near, and the angular direction indicates cleaned response data.
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Density

a

b

c

d

e

Deep

Shallow
Sparse
Dense

Figure 15: Figure (a) shows the legend, including the response colors and the definition of the radial coordinate.
Figures (b), (c), (d), and (e) respectively present the density-concept-related synesthetic color responses from the
human group, DeepSeek series, Doubao series, and ChatGPT series. The radial axis represents numbers of deep,
shallow, sparse and dense, and the angular direction indicates cleaned response data.

Figure 16: Color Residuals by Model Series for the Number Group
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Figure 17: Color Residuals by Model Series for the Weekday Group

Figure 18: Color Residuals by Model Series for the Letters Group (from A to G)

Figure 19: Color Residuals by Model Series for the Letters Group (from H to N)
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Figure 20: Color Residuals by Model Series for the Letters Group (from O to T)

Figure 21: Color Residuals by Model Series for the Letters Group (from U to Z)

Figure 22: Color Residuals by Model Series for the Season and Time Group

21



Figure 23: Color Residuals by Model Series for the Month Group (from Jan to Jun)

Figure 24: Color Residuals by Model Series for the Month Group (from Jul to Dec)

Figure 25: Color Residuals by Model Series for the Direction Group
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Figure 26: Color Residuals by Model Series for the Direction Group

Figure 27: Color Residuals by Model Series for the Abstract Concept Group
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Figure 28: Culture-Specific Outputs of Deepseek-r1 on the "Months" Category
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Figure 29: Culture-Specific Outputs of Deepseek-v3 on the "Months" Category
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Figure 30: Culture-Specific Outputs of Deepseek-qwen on the "Months" Category
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Figure 31: Culture-Specific Outputs of Doubao-pro on the "Months" Category
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Figure 32: Culture-Specific Outputs of Doubao-vision on the "Months" Category
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Figure 33: Culture-Specific Outputs of Doubao-lite on the "Months" Category
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Figure 34: Culture-Specific Outputs of GPT-4o on the "Months" Category
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Figure 35: Culture-Specific Outputs of GPT-4o-mini on the "Months" Category
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