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Abstract

Antibody-antigen interactions play a crucial role in identifying and neutralizing harmful
foreign molecules. In this paper, we investigate the optimal representation for predicting the
binding sites in the two molecules and emphasize the importance of geometric information.
Specifically, we compare different geometric deep learning methods applied to proteins’
inner (I-GEP) and outer (O-GEP) structures. We incorporate 3D coordinates and spectral
geometric descriptors as input features to fully leverage the geometric information. Our
research suggests that surface-based models are more efficient than other methods, and
our O-GEP experiments have achieved state-of-the-art results with significant performance
improvements.

1. Introduction

Identifying the binding sites of antibodies is essential for developing vaccines and synthetic
antibodies. These binding sites, called paratopes, can bind to antigens, wherein the corre-
sponding binding site is known as the epitope, thus neutralizing harmful foreign molecules in
the body. Experimental methods for determining the residues that belong to the paratope
and epitope are time-consuming and expensive, highlighting the need for computational
tools to facilitate the rapid development of therapeutics.

The shape and structure of molecules play a crucial role in determining their interactions
with other molecules, as complementary geometric shapes are required for successful bind-
ing (Fischer, 1894). Various approaches have been taken in the literature to address the task
of epitope and paratope prediction, including sequential (Liberis et al., 2018; Deac et al.,
2019) and structural (Krawczyk et al., 2014; Del Vecchio et al., 2021) methods. Further-
more, Geometric deep learning has emerged as a powerful tool for predicting protein-protein
interactions (Isert et al., 2023), with graph-based representations being one of the most
common approaches Tubiana et al. (2022); Stärk et al. (2022). These methods leverage the
geometric information of the molecules to learn complex relationships between epitopes and
paratopes. For instance, (Del Vecchio et al., 2021) and da Silva et al. (2022) use the graph
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structure to compute features based on neighbouring residues, which are then aggregated to
highlight the most probable region of interaction. An alternative approach is to represent
proteins as surfaces. MaSIF (Gainza et al., 2020) focuses on the more general problem
of protein interaction region prediction and uses a surface representation learned through
convolutions defined on the surface. PiNet (Dai and Bailey-Kellogg, 2021) represents the
protein surface as a point cloud and employs PointNet (Qi et al., 2017) to classify points as
interacting or not. On the contrary, Zhang et al. (2023) model the surface of a molecule as
a graph and apply an equivariant graph neural network (EGNN, (Satorras et al., 2021)) for
binding site prediction. Integrating structural and geometric information has proven to be
a promising approach for improving protein interaction prediction. Still, few studies have
focused on the specific case of epitope and paratope prediction (Cia et al., 2023).

Our approach, GEP (Geometric Epitope-Paratope) Prediction, proposes different geo-
metric representations of the molecules to create accurate predictors for predicting antibody-
antigen binding sites. Our paper introduces several contributions, including the analysis
of the importance of geometric information within graph learning using equivariant layers
for improved predictions. Moreover, we fully leverage molecular geometric information by
representing molecules as surfaces and employing spectral geometry techniques, leading to
state-of-the-art performance. Additionally, we will provide a dataset generation pipeline
for PDB molecules, offering molecular representations in both graph and surface formats,
facilitating comprehensive cross-method comparisons. The code is publically available.

2. Method

In our experiments, we considered two scenarios: a protein represented through its inner
structure (I-GEP) and outer structure (O-GEP). Details on the data and how we construct
the different representations for each model are reported in Appendix A.
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Figure 1: Our model architecture is represented with arrows indicating data flow between
modules, using color-coded blocks to represent layers or modules, with text inside
each block specifying the layer type. The model takes antibody-antigen pairs as
input, featuring node-level features for IGEP and surface point-level features for
OGEP, and produces binding probabilities for each input node or point.

I-GEP Our I-GEP model is a method for predicting epitopes and paratopes using a
graph-based approach that captures the inner structure of a protein. The I-GEP model has
two main components: a structural module that computes an embedding for each residue
using the graph structure and a graph attention network (GAT) that combines information
from both the antigen and antibody residues. The network then predicts both epitope
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and paratope residues simultaneously using a fully connected layer, as shown in Fig. 1(a).
To improve the accuracy of our predictions, we integrate geometric information into the
I-GEP model using two different approaches. In the first approach, EPMPxyz, we use
graph convolutional network layers in the structural module as in EPMP Del Vecchio et al.
(2021), but we include the centred 3D coordinates of residues in the input features. The
second approach, E(n)-EPMP, uses the E(n) invariant layer encoder from EGNN Satorras
et al. (2021) instead of graph convolutional networks. This approach considers only the
distances between residues, making it invariant to translations, rotations, and reflections on
the residue positions in each molecule.

O-GEP Our O-GEP model operates on the protein’s surface and includes a geometric
module that uses the surface’s geometry to spread information across it. This process gener-
ates features that are then combined and shared between the antibody and antigen through
fully connected layers (segmentation module), resulting in an interaction probability for
each point on the surface, as shown in Fig. 1(b).

We explore two different models for the geometric module. As a baseline, we use Point-
Net (Qi et al., 2017) to recreate the architecture proposed in PiNet Dai and Bailey-Kellogg
(2021). The second model employs diffusion layers from DiffNet (Sharp et al., 2022) to prop-
agate features on the surface. This makes our model robust against surface perturbations
and suitable for handling meshes and point clouds with fewer points.

We further examine the impact of using the Heat Kernel Signature (HKS) as an extra
geometric descriptor input. The HKS (Sun et al., 2009) is a concise point-wise spectral
signature which summarizes local and global information about the intrinsic geometry of a
shape by capturing the properties of the heat diffusion process on the surface. One of the
key benefits of using HKS is that it remains stable even under minor surface perturbations,
thus enabling it to withstand even conformational rearrangements of the proteins. To utilize
the HKS descriptor, we concatenate it with the input features at each point on the surface
and then pass the concatenated data through the geometric module.

To transfer the binding probabilities from the protein’s surface to the residues, we uti-
lized the average of all the points on the surface that correspond to the same residues. This
method ensures that the binding probabilities are accurately represented in the residue
space, enabling us to make reliable predictions about epitope and paratope locations.

Training and evaluation The networks were trained using the class-weighted binary
cross-entropy loss and the Adam SGD optimizer to handle imbalanced binary classification
tasks. We report training details in Appendix B. Given the significant disparity in class
sizes, we utilize Matthew’s correlation coefficient (MCC) between the residues’ classification
as our main benchmarking metric for model evaluation. We also report the area under the
receiver operating characteristic curve (AUC ROC) and the area under the precision-recall
curve (AUC PR) as used in Dai and Bailey-Kellogg (2021) and Del Vecchio et al. (2021).
All reported values are aggregated across five random seeds to ensure the robustness of our
findings.

3. Results

In this section, we report the results of our experiments and demonstrate the contribution
of geometric information on the task of epitope-paratope prediction.
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Antigen Antibody

MCC AUC ROC AUC PR MCC AUC ROC AUC PR

EPMP 0.09± 0.01 0.61± 0.01 0.12± 0.00 0.39± 0.02 0.79± 0.01 0.53± 0.01

EPMPxyz 0.10± 0.01 0.63± 0.01 0.15± 0.01 0.38± 0.02 0.79± 0.01 0.53± 0.01
E(n)-EPMP 0.14± 0.01 0.68± 0.02 0.16± 0.01 0.44± 0.11 0.82± 0.07 0.60± 0.10

(b) Quantitative results as mean and standard deviation (±)
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(a) Results from I-GEP models.
Antigen Antibody

MCC AUC ROC AUC PR MCC AUC ROC AUC PR

PiNet (xyz) 0.39± 0.05 0.89± 0.01 0.44± 0.02 0.26± 0.12 0.77± 0.03 0.52± 0.08
PiNet (xyz+hks) 0.30± 0.04 0.87± 0.02 0.37± 0.06 0.22± 0.05 0.74± 0.00 0.47± 0.02

DiffNetpc (xyz) 0.41± 0.06 0.90± 0.01 0.49± 0.02 0.30± 0.06 0.79± 0.01 0.56± 0.03
DiffNetpc (hks) 0.07± 0.05 0.66± 0.02 0.14± 0.01 0.44± 0.03 0.85± 0.00 0.68± 0.01
DiffNetpc (xyz+hks) 0.44± 0.03 0.90± 0.01 0.50± 0.02 0.23± 0.06 0.77± 0.04 0.51± 0.05

DiffNetm (xyz) 0.42± 0.03 0.90± 0.01 0.48± 0.05 0.24± 0.08 0.78± 0.02 0.52± 0.03
DiffNetm (hks) 0.09± 0.02 0.64± 0.02 0.14± 0.01 0.49± 0.01 0.85± 0.00 0.69± 0.01
DiffNetm (xyz+hks) 0.42± 0.06 0.90± 0.01 0.46± 0.07 0.28± 0.06 0.77± 0.02 0.52± 0.04

(e) Quantitative results as mean and standard deviation (±)
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(d) Results from O-GEP models.

Figure 2: Left: Quantitative results evaluated on the residues. We report the Matthew’s
correlation coefficient (MCC), area under the receiver operating characteristic
curve (AUR ROC), AUC PR the area under the precision-recall curve (AUC PR).
We write in bold the best results. Right: Representation of binding prediciton on
the antibody-antigen complex number ’4jr9’. The continuous binding predictions
are represented as a color gradient in blue and red for the antigen and antibody,
respectively.

I-GEP results We conducted experiments to evaluate the effectiveness of incorpo-
rating geometric information by comparing our proposed models from Section 2 with the
EPMP model proposed in Del Vecchio et al. (2021). Our results, presented in Table 3(b),
demonstrate that the inclusion of geometric information leads to a meaningful increase in
performance. Specifically, the use of the E(n) invariant layer (E(n)-EPMP) resulted in an
improvement in all metrics for both antibody and antigen.

O-GEP results To test the performance of O-GEP models, we consider the methods
proposed in Section 2 with different combinations of input features. In addition to the
physicochemical features, we test different combinations of geometric information: 3d co-
ordinates (xyz) and Heat Kernel Signature (HKS). For the DiffNet models, we consider
both the point cloud (pc) and the mesh (m) of the surface. The results are summarized
in Table 3(e). Incorporating diffusion layers (DiffNet) along with 3D coordinates and
Heat Kernel Signature as additional features consistently outperformed the baseline method
PiNet. The use of these techniques led to an MCC score twice as high as that obtained
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by the I-GEP models. However, unlike epitope prediction, the paratope prediction did not
show the same level of improvement with O-GEP models. In this case, the best results were
achieved by considering only the HKS features and diffusion layers. In Appendix C, we also
show the metrics computed only on residues with a representing point on the surface.

Qualitative results We plot the binding probability on the residuals computed by the
models as increasing intensity colours. Figure 3(c) shows the results of the E(n)-EPMP on
the residual graph. The epitope prediction focuses on sparse regions of the antigene, such as
the spiky edges. In contrast, paratope prediction concentrates on the residues closest to the
antigen. In Figure 3(f ), the predictions of DiffNetpc (xyz+hks) are shown on both the surface
and residues of the molecules. The predictions are highly localized on the region nearest
to the binding molecule. It’s worth noticing that the 3d coordinates given as input to the
models are centred and randomly rotated, providing no prior knowledge of the binding
region.

4. Conclusions

We investigated the effectiveness of geometric deep learning techniques in predicting antibody-
antigen interactions. Our results indicate that incorporating geometric information is cru-
cial for accurately predicting epitope and paratope regions. Specifically, the use of invariant
representation in I-GEP models outperformed previous models, and O-GEP models with dif-
fusion layers and additional geometric features achieved state-of-the-art performance. Our
study highlights the potential of geometric deep learning in computational biology. Future
research could explore using spectral shape analysis to address the more complex problem
of conformational rearrangement in antigen-antibody binding (Stanfield et al., 1994).
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Appendix A. Data representation

Comparing methods across different molecular representations is crucial for advancing re-
search in molecular modelling. We developed a reusable pipeline that generates a dataset to
evaluate methods using inner and outer structure representations. We collected a dataset of
133 protein complexes from Epipred Krawczyk et al. (2014), with 103 for training and 30 for
testing. The training and test sets have been selected to share no more than 90% pairwise
sequence identity. The PDB files were obtained from the Sabdab database Dunbar et al.
(2014). In the test set, 7.8% of antigen residues were labelled as positive. Additionally,
we used a separate set of 27 protein complexes from PECAN derived from a subset of the
Docking Benchmark v5 Vreven et al. (2015) to validate our results.

For each protein, we construct a residue graph (Figure 3(c)), representing residues as
nodes and establishing edges between the 15 nearest neighboring residues within a 10 Å ra-
dius. Each residue is characterized by a 28-dimensional physicochemical feature vector.
This vector encompasses a one-hot encoding of the amino acid, encompassing 20 possible
types along with one for an unclassified type. Additionally, seven other features are included
that portray the physical, chemical, and structural attributes of the amino acid type. These
supplementary features can be viewed as a consistent embedding, as outlined in Meiler et al.
(2001).

For each protein, we generated a surface mesh (Figure 3(f )) using the PyMOL API with
a 1.4 Å water probe radius. We associated each point on the protein’s surface with a residue
by finding the closest atom to that point. This association was then used to transfer the
feature of each residue to the points on the surface.
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Table 1: I-GEP quantitative results evaluated on the surface residues. We report the mean
and standard deviation (±) over multiple runs.

Antigen Antibody

MCC AUC ROC AUC PR MCC AUC ROC AUC PR

EPMP 0.08± 0.01 0.58± 0.01 0.13± 0.00 0.33± 0.03 0.74± 0.01 0.56± 0.01

EPMPxyz 0.08± 0.01 0.60± 0.01 0.16± 0.01 0.33± 0.02 0.74± 0.01 0.56± 0.01
E(n)-EPMP 0.11± 0.01 0.64± 0.01 0.16± 0.01 0.39± 0.11 0.78± 0.07 0.63± 0.08

Appendix B. Hyper-parameters

During training, we combined the losses from both tasks, paratope and epitope prediction.
To enhance model robustness, we applied random rotations to dataset instances. Hyperpa-
rameter tuning involved a search for the optimal learning rate from the set {10−2, 10−3, 5×
10−3, 10−5} and kept the model with the best performance on the validation set. . After
the hyperparameter search, we found that the best learning rates were: 10−3 for EPMP
and PiNet, 10−2 for E(n)-EPMP, 5 × 10−3 for DiffNet. All models were trained for
200 epochs to ensure validation loss saturation, and the weights yielding the best valida-
tion metrics during training were selected. We conducted training with five random seeds
for each model, evaluating performance using the weights yielding the best validation set
results in each run.

The surface generated by PyMOL is composed of around 14k points. To ease and fast
the training procedure we subsampled the surface considering only 2k points. In the case
of point clouds, we used a random subsampling during training, while for the mesh we used
a simplification method base on quadric error metrics.

B.1. Layer dimensions

For the EPMPxyz model, we use a graph convolution layer with inner dimension 31 and two
GAT layers with inner dimension 62. In contrast, for the E(n)-EPMP, we use one E(n)-
invariant layer with an inner dimension of 28 and two GAT layers with inner dimension
56.

For all the O-GEP models, the geometric module comprises two layers with dimensions
64 and 128, while the segmentation module is composed of two layers with dimensions 64
and 32.

Appendix C. Outer residues

The outer representation can’t include the inner residues because they are too far from the
protein’s surface representation. As a result, the O-GEP model can’t predict those residues.
To see how this affects the predictions, we show the results for both I-GEP and O-GEP in
Table 1, considering only the outer residues represented by the surface.
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Table 2: O-GEP quantitative results evaluated on the surface residues. We report the mean
and standard deviation (±) over multiple runs.

Antigen Antibody

MCC AUC ROC AUC PR MCC AUC ROC AUC PR

PiNet (xyz) 0.38± 0.04 0.87± 0.01 0.45± 0.02 0.26± 0.12 0.77± 0.03 0.52± 0.08
PiNet (xyz+hks) 0.29± 0.05 0.84± 0.02 0.37± 0.04 0.13± 0.06 0.64± 0.01 0.47± 0.04

DiffNetpc (xyz) 0.40± 0.05 0.88± 0.01 0.49± 0.02 0.26± 0.06 0.71± 0.02 0.56± 0.04
DiffNetpc (hks) 0.05± 0.04 0.58± 0.03 0.14± 0.01 0.40± 0.02 0.81± 0.01 0.69± 0.01
DiffNetpc (xyz+hks) 0.43± 0.03 0.88± 0.01 0.50± 0.02 0.19± 0.05 0.68± 0.06 0.51± 0.05

DiffNetm (xyz) 0.41± 0.03 0.88± 0.01 0.49± 0.05 0.20± 0.07 0.69± 0.03 0.53± 0.03
DiffNetm (hks) 0.05± 0.01 0.56± 0.02 0.14± 0.01 0.43± 0.02 0.80± 0.01 0.70± 0.01
DiffNetm (xyz+hks) 0.41± 0.06 0.88± 0.02 0.46± 0.07 0.23± 0.06 0.68± 0.04 0.52± 0.04
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