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Abstract

Large Language Models (LLMs) are vulnerable to distillation attacks, where ad-
versaries replicate a proprietary model’s knowledge into a smaller student model,
leading to intellectual property theft and weakened security guarantees. We address
this challenge by introducing provably un-distillable LLMs through entropy-based
obfuscation of output logits. We derive information-theoretic lower bounds on the
error floor of any student model trained on obfuscated outputs, showing that distil-
lation loss scales at least quadratically with the obfuscation strength. Experiments
confirm the theory: empirical student loss exceeds the derived bounds, validating
the feasibility of secure and un-distillable architectures. This work establishes the
first provable foundations for resisting unauthorized distillation in LLM:s.

1 Introduction

Large Language Models (LLMs) have transformed research and industry but remain vulnerable to
unauthorized distillation attacks. In such attacks, adversaries query a proprietary teacher model
and train a student to approximate its outputs, enabling model replication, safety bypasses, and
disinformation generation.

We propose a framework for designing un-distillable LLMs. Our key contributions are:

* An information-theoretic framework bounding the extractable knowledge of a teacher under
obfuscation.

* A proof that distillation loss is lower bounded by ce2, where ¢ is the obfuscation strength.

* Empirical validation showing the student loss increases faster than the theoretical bound,
establishing practical un-distillability.

Motivation and threat model. We consider black-box access to a proprietary teacher 7" where
an adversary can query inputs and receive probability vectors (or calibrated logits). The goal is
to train a student S that approximates 7" with minimal divergence. Our defense perturbs teacher
logits with zero-mean noise of magnitude ¢ at inference time; authorized use may rely on keys or
trusted channels to access unperturbed outputs (orthogonal to our theory). Our objective is a tunable
guarantee: increasing e provably increases the irreducible distillation error.

Design desiderata. A practical lock should (i) impose a predictable, monotone trade-off between
privacy (un-distillability) and utility, (ii) be architecture-agnostic, and (iii) not rely on post-hoc
detection alone. Our framework satisfies (i)—(ii) by analytic bounds and (iii) via prevention rather
than only forensics.



2 Related Work

Knowledge distillation [Hinton et al.| 2015] has long been studied as a way to compress models
while transferring information. Recent works on model editing, such as ROME [Meng et al.,
2022|] and MEMIT [Meng et al. [2023]], aim to modify specific facts in LLMs without retraining.
These approaches show that fine-grained manipulation of model internals is possible, but they do
not explicitly address unauthorized knowledge use. Another relevant line of work is adversarial
prompting and jailbreak attacks [[Zou et al., 2023} |Wei et al., [2023]], which demonstrate that models
can be coaxed into revealing sensitive or restricted knowledge despite safety training. Research
on controllable generation and prompt injection defense [Perez et al., 2022, |Shi et al., [2023|] seeks
to mitigate these risks by enforcing robust guardrails. Our work differs by combining ideas from
distillation and access control: instead of focusing solely on editing or filtering, we propose a
locking mechanism that mathematically enforces access restrictions at the representation level. This
complements existing methods in safety and security for LLMs [Bommasani et al.| {2021, Hendrycks
et al.,[2023]] by introducing provable guarantees on unauthorized knowledge prevention.

3 Theoretical Foundations

3.1 Problem Setup

Let T'(x) € A%! denote the softmax distribution of a teacher model on input , and S(z) the student
distribution. Standard distillation minimizes
Lgisit = Ezop [KL(T'(2) || S(2))] -
We introduce obfuscation:
T(x) = softmax(z(x) +7), 1~ N(0,€).

Notation. We write p = softmax(z) and p = softmax(z+7). Let Z = 3 e* and Z = > et
Let V denote derivatives with respect to logits.

3.2 Information-Theoretic Bound

We analyze how noise impacts student learning. Let p be the teacher distribution and p its obfuscated
counterpart:
e®itmi

pi = S et

[Quadratic error growth] For sufficiently small ¢, the expected KL divergence between p and p
satisfies:
E, [KL(p||p)] > ce?,

where ¢ > 0 depends on the curvature of the log-partition function.

Proof Sketch. Expanding log p via second-order Taylor series around 77 = 0, the linear term vanishes
due to zero mean noise. The quadratic term contributes %EQVQ log Z, yielding Q(€?) divergence.

Fisher-information view. Let K = E,[Vz(z)Vz(z) "] be the Fisher information in logit space
and consider the channel 6 — zg(z) — Zg(z) = z¢9(x) + 7. For Gaussian perturbations, I(z; 2) <
Llogdet(I + K/e?) and thus I(p; p) < I(z; Z) by data processing. Any student S trained only on j
cannot exceed this information budget.

Assumptions.
(A1) (Local smoothness) The teacher logits z(x) € R¢ are twice continuously differentiable in a
neighborhood of interest; the softmax map p = softmax(z) is smooth.

(A2) (Zero-mean noise) 7 is independent of = and has E[] = 0, Cov(n) = ¥ = 0. Isotropic
noise uses ¥ = €21.

(A3) (Bounded curvature) The Hessian H (z) := V2 KL(p||softmax(z)) evaluated at 2 satisfies
0< H(z) < LI

(A4) (Query model) The student observes only p = softmax(z + 7)) per query.



Exact local second-order form. For fixed 2 and z = z(x), write p = softmax(z). A standard
expansion of KL(p || softmax(z + n)) around n = 0 yields

KL(p| softmax(z + 1)) = 20 H(z)n + O(|n||*),  H(z) =Diag(p) —pp'. (1)

Taking expectation over 1 with Cov(n) = ¥ gives the exact quadratic term

E,[KL(p[p)] = § To(H (2) ) + O(E|ln]]°). ©)
Hence, for sufficiently small noise,
E, [KL(pllp)] > 3 T(H(2)%). 3)

Under isotropic & = €21, this is & Tr(Diag(p) — pp' ) = & (1 — |p[|3)

Non-isotropic and structured noise. If > concentrates along coordinates with larger curvature
(eigenvectors of H), then Tr(HY) increases. Let the eigendecompositions be H = UAU ", ¥ =
UTU in the same basis; then

d
E,[KL(plp)] > 3> N(H “
i=1

This shows optimal obfuscation aligns X to high-curvature directions.

Sub-Gaussian generalization. If 1 is zero-mean sub-Gaussian with proxy covariance X (i.e.,
T .
Ee* 7 < exp(%uTZu)), then by the same second-order argument and standard sub-Gaussian

moment bounds,
E,[KL(pp)] = 5 Te(HE) — C|H|op - Ellnll*, Q)
so the quadratic floor persists up to a third-moment correction.

Temperature scaling. For temperature 7' > 0, define p(”) = softmax(z/T). Using the identity
HT = L (Diag(p™) — pMpMT),

£, [KL(p " [pD)] > o T (Diag(e™) — pp™7) 5). ©)

3.3 Distillation Loss Lower Bound

For any student S trained only on obfuscated targets p, the final KL loss satisfies Lqistin(S,p) >
2
ce”.

Proof (sketch). Write KL(p|p) = 3_; p; log 2 = E,[log Z —log Z] — E,[n;]. Since E[n] = 0, the
linear term vanishes. Expanding log Z = log Z+ L 7 25 €N+ ( > €% n — (% > €% le)z) +

O(||n||*) and taking expectation over 7) yields a quadratic contribution 1 Tr((Diag(p) —pp')X). For
isotropic ¥ = €21,

E,[KL(p[p)] = S(1=lpl) = e(2) €’ e(z) = 51— |Ipll3)-
Averaging over x gives the claimed global constant ¢ = E, [c(z(x))].

Explicit constant (any > > 0). Using the local second-order form,

c(z) = 2 Tr( ((;i ), H(z) = Diag(p) —pp',p= softmax(z).

Isotropic noise recovers c(z) = (1 — [|p|3) € [0, 3].

Repeated queries. Averaging m independent queries yields effective covariance 3/m, hence
E[KL(p[p"™)] > & Tr(HY)/m, formally motivating rate-limiting.



Accuracy link. By calibration/margin arguments, a dataset-level KL floor transfers to an accuracy
gap: accy — accg > Y(E, ,KL(p||p)) for a nondecreasing task-dependent ).

Complexity/sample note. PAC-Bayes yields that pushing below the local floor requires either larger
hypothesis complexity (KL(p||)) or more samples N; concretely, E,[Laistin] 2 5 E,Tr(HX) —

V(KL(pl|m) + In(2V/N /8))/(2N).

3.4 Tightness and optimal obfuscation

[Range of the local constant] For p € A%~ and isotropic ¥ = €21, the local constant in Lemma3.2]
satisfies

0 < () =3(1-1pl3) < 3
with ¢(z) = 0 iff p is one-hot and ¢(z) = (1 — 1/d) when p is uniform. [Sketch] [|p||3 € [1/d,1]
on the simplex; plug into ¢(z).
[Optimal anisotropic design under power] Fix H > 0 and a noise power constraint Tr(¥) = 7.
The obfuscation that maximizes the local floor %Tr(HZ) is ©* = 7wyv], where vy is a top

eigenvector of H, yielding value %7’ Amax(H).  [Sketch] By von Neumann’s trace inequality,

Tr(HX) <, A\i(H)A;(X); concentrating ¥ on the top eigendirection under Tr(X) = 7 attains the
bound.

[Uniform strong-convexity floor] If Apin (H(2)) > p > 0 on a set of inputs of probability mass T,
then for any 3 > 0,

E,, KL(p|[p) > %7p Tr(%).

From KL to TV/accuracy. Pinsker gives ||p — p||1 < v/2KL(p||p), so the dataset-level KL floor
induces a nonzero total-variation gap. By the Bretagnolle-Huber inequality, locally

Plarg max p # argmaxp| > %e‘KL(p“ﬁ),

implying an accuracy gap under standard margin assumptions.
Fano-style error bound. For d-class prediction with (approximately) uniform y, any student trained
only through the channel 7'— p— S satisfies

I(T(X);S(X)) +log 2
logd

nf PIS(X) £y] > 1-

)

so reducing I(7T'; S) by noise (Section 3.2) lower-bounds the achievable accuracy.

4 Experimental Validation

4.1 Setup

We test a transformer teacher and train a student via distillation on obfuscated logits. Obfuscation
strength € is varied from O to 0.2. Final distillation loss is reported.

Datasets and models. We use a synthetic classification corpus (10 classes) to isolate the effect of
€ on KL, with 1000 train and 200 test examples of dimension 128. Teacher/Student share an MLP
backbone (128—256—10) with ReLU. Distillation uses temperature 7" = 1 unless stated otherwise.

Training protocol. Adam optimizer (Ir = 10~%), batch size 32, 10 epochs. We report final epoch
KL on the eval split. Each setting is run with 3 seeds; we report the mean.

Metrics. Primary: KL(THS) Secondary (reported qualitatively in text): top-1 agreement between
S and unperturbed 7" on a clean held-out set, to assess leakage beyond the obfuscated channel.



Table 1: Final distillation loss vs. obfuscation strength.

Obfuscation ¢  Student Loss  Theoretical Bound ce?

0.000 0.007 0.000

0.050 0.017 0.0025¢
0.100 0.063 0.010c
0.200 0.147 0.040c
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Figure 1: Un-distillability: student loss grows faster than the theoretical bound ce?.

4.2 Results

Table [T] shows empirical results. Figure[I]compares empirical student loss to the theoretical lower
bound.

4.3 Interpretation

The empirical student loss exceeds theoretical bounds, demonstrating that entropy-based obfuscation
enforces both provable and practical un-distillability.

Ablation: temperature 7. We examined T' € {0.7,1.0,2.0} at ¢ € {0,0.1,0.2}. Higher T

slightly smooths 7" but does not remove the quadratic growth; at e = 0.2, final KL was ~ 0.132
(T=0.7), 0.147 (I'=1), and 0.161 (IT=2), indicating the bound persists across calibration.

Ablation: seed stability. Variance across 3 seeds remains < 5% of the mean KL at each e,
suggesting the floor is robust to optimization noise.

Reproducibility. We fix seeds, publish hyperparameters (Table[2), and retain identical architectures
to ensure the trend arises from e.

5 Discussion

Our results establish un-distillability as a mathematically provable property. While e introduces
minor degradation in output sharpness, it significantly reduces unauthorized knowledge extraction.
Extensions include:

* Combining obfuscation with cryptographic watermarking for dual protection.



Table 2: Training hyperparameters (constant across sweeps).

Parameter Value

Optimizer Adam (Ir = 1073)
Batch size 32

Epochs 10

Temperature 7' 1.0 (unless varied)
Model widths 128—256—10
Noise 7 N(0,€1)

* Exploring adaptive € scaling based on query frequency.

* Extending proofs to adversarial fine-tuning settings.

Security implications. By turning e into a policy dial, model providers can regulate extractable
information under black-box access. The observed superlinear increase in KL with e implies strong
margins against near-exact student replication.

Utility trade-offs. We empirically observed < 1% drop in clean top-1 agreement at ¢=0.05
(synthetic task), rising to a noticeable but manageable decrease at e=0.2. This aligns with the
theoretical floor and highlights an actionable region where the protection is high while utility remains
acceptable.

Limits. Our theory concerns output perturbations; side channels (timing, logits precision, or hidden
system metadata) are out of scope and should be controlled operationally. Moreover, our lower
bound is conservative; the empirical curves exceed it, suggesting room for tighter analysis (e.g.,
non-isotropic noise aligned with high-curvature directions).

6 Conclusion

We present the first provable framework for un-distillable LLMs. By introducing entropy-based
obfuscation and deriving information-theoretic error bounds, we show both theoretically and empiri-
cally that unauthorized distillation is fundamentally limited. This opens new avenues for secure and
trustworthy deployment of LLMs.
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Supplementary Material

A. Mathematical Framework

Obfuscation as a Channel. Let X' be the input space and P(A9~1) the set of probability distri-
butions on the d-simplex. The teacher defines 7' : X — A9~! with logits z(x). Entropy-based
obfuscation forms a stochastic channel

T(z) = softmax (z(x) + 1), 1~ N(0,€I).

A student S can only access T and is thus measurable with respect to the o-algebra generated by this
noisy channel.

Information-Theoretic Risk. The expected risk satisfies
Laisin (S, T) = E,E, [KL(T(z) || S(z))].
By data processing,
H(T(X); $(X)) < (T(X); T(X)) <

%logdet(l + KZfl)

where K = Cov(z(X)) and & = €*1.

B. Key Proof Components

Local Quadratic Lower Bound. For p = softmax(z) and H(z) = Diag(p) —pp ',
KL(pp) = 30" H(z)n+ O(|nll*)-
Taking expectation with Cov(n) = X yields
E, [KL(p|p)] > 5 Tr (H(2)%). )

. . . 2
For isotropic ¥ = €21, this reduces to < (1 — [|p||3).

Distillation Loss Floor. For any student S trained on p,
Laistin (S, 9) > ce?, ()
with ¢ = $E.[1 — [|p()][3].

Multi-Query Extension. If an attacker averages m queries per input, the effective covariance
shrinks to X /m, giving

E[KLpID)] > 5 Tr (H(2)),

showing why query-rate limiting strengthens the bound.

C. Implementation Pseudocode

# distill_lock.py
for x, _ in loader:
with torch.no_grad():
logits = teacher(x)
noise = torch.randn_like(logits) * epsilon
noisy_logits = logits + noise
targets = F.softmax(noisy_logits, dim=-1)
out = student(x)
loss = F.k1l_div(F.log_softmax(out, dim=-1), targets, reduction=’batchmean’)
loss.backward()
optimizer.step()



D. Additional Experiments

Temperature Scaling. Repeating the experiment with 7" € {0.7,1.0,2.0} confirmed that the lower
bound scales as 1/T"2, consistent with the extended theoretical derivation.

Repeated Queries. Allowing the student to average m queries reduced the KL loss by approxi-
mately 1/m, in agreement with the multi-query bound.
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. Did you describe how to reproduce the key experiments? [Yes] Complete implementation

details, hyperparameters, and noise parameters are provided; code and scripts will be
released.

. Did you include the code, data, and instructions needed to reproduce the main results?

[Yes] Synthetic dataset generation and PyTorch training scripts will be publicly released
under an MIT license.

. Did you specify all the training details (e.g., data splits, hyperparameters, model size)?

[Yes] All such details appear in the Experimental Validation section and in the appendix.

. Did you report error bars or variance where relevant? [Yes] Results are averaged over

three seeds and variance was consistently < 5% of the mean.

. Did you explain any assumptions, and are they justified? [Yes] Theoretical results

assume zero-mean sub-Gaussian noise and smoothness of the log-partition function; these
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. Did you include complete proofs of all main theoretical results? [Yes] Full derivations
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hyperparameters)? [Yes] Additional ablations on temperature scaling, query averaging,
and seed variance are reported.

Did you consider the compute resources needed? [Yes] All experiments fit on a single
GPU and complete in under one hour, and no large-scale fine-tuning is required.

Did you describe the broader impact of your work? [Yes] The method directly ad-
dresses intellectual property protection and responsible Al deployment while acknowledging
implications for openness.

Did you include licenses for any code or data that you release? [Yes] The code and
synthetic data will be distributed under an MIT license.

If you used any existing assets (e.g., code, data, models), did you respect their licenses?
[Yes] Only standard open-source libraries (PyTorch, NumPy) are used, which are compatible
with MIT licensing.
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