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ABSTRACT

Paired bare-makeup facial images are essential for a wide range of beauty-related
tasks, such as virtual try-on, facial privacy protection, and facial aesthetics anal-
ysis. However, collecting high-quality paired makeup datasets remains a sig-
nificant challenge. Real-world data acquisition is constrained by the difficulty
of collecting large-scale paired images, while existing synthetic approaches of-
ten suffer from limited realism or inconsistencies between bare and makeup im-
ages. Current synthetic methods typically fall into two categories: warping-based
transformations and text-to-image generation. The former often distorts facial
geometry and compromises makeup precision, while the latter tends to alter fa-
cial identity and expression, undermining consistency. In this work, we present
FFHQ-Makeup, a high-quality synthetic makeup dataset that pairs each identity
with multiple makeup styles while preserving facial consistency in both identity
and expression. Built upon the diverse FFHQ dataset, our pipeline transfers real-
world makeup styles from existing datasets onto 18K identities by introducing an
improved makeup transfer method that disentangles identity and makeup. Each
identity is paired with 5 different makeup styles, resulting in a total of 90K high-
quality bare–makeup image pairs. We release FFHQ-Makeup as the first large-
scale, multi-style, paired bare–makeup dataset, which we expect will serve as a
valuable resource for future research in beauty-related tasks.

1 INTRODUCTION

Makeup plays a multifaceted role in human appearance, influencing not only facial aesthetics but
also perceptions of identity, personality, and even social behavior. In the context of computer vi-
sion, the ability to analyze, manipulate, and transfer makeup styles has drawn increasing attention,
enabling applications such as virtual try-on (VTO) Zhang et al. (2024); Alashkar et al. (2017b); Sun
et al. (2022); Li et al. (2018a), face recognition under makeup variations Dantcheva et al. (2012);
Chen et al. (2013); Sajid et al. (2018), facial privacy protection Hu et al. (2022); Li et al. (2018b),
and beauty assessment Xiao et al. (2021). While the field has made remarkable progress in recent
years, a critical bottleneck remains: the lack of open-source, large-scale, high-quality paired makeup
datasets containing both bare and makeup images. This limitation hinders the development of robust
and generalizable models, and significantly impedes progress in makeup-related applications.

A well-constructed paired makeup dataset is expected to meet several key requirements. First, it
must maintain high makeup realism, ensuring that the applied styles are both plausible and visually
convincing. Second, it should exhibit diversity in both facial identities and makeup styles to reflect
real-world variability. Third, it should ensure facial consistency across pairs, preserving identity
and facial structure despite the presence of makeup. In addition, the dataset should ideally be large
enough to support the data requirements of modern deep learning models.

Despite ongoing efforts, existing makeup datasets construction still fail short of key requirements,
as summarized in Tab. 1. Real-world data collection is hindered by logistical constraints, lim-
ited resources, and privacy concerns. As a result, these datasets are typically either limited in
scale Dantcheva et al. (2012); Chen et al. (2017); Hu et al. (2013) or lack paired bare and makeup
images Li et al. (2018a); Gu et al. (2019); Jiang et al. (2020); Nguyen et al. (2021); Yan et al. (2023).
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Table 1: Existing makeup datasets. Summary of existing makeup datasets, comparing scale, reso-
lution, type, and availability.

Datasets Subjects Images per
Subject

Makeup
Images

Non-makeup
Images Resolution Type Paired Public

avail.

YMU Dantcheva et al. (2012) 151 4 302 302 130 × 150 Real ✓ ✗
MIW Chen et al. (2013) 125 1-2 77 77 – Real ✗ ✗
MIFS1 Chen et al. (2017) 214 2 or 4 214 428 – Real ✓ ✗
FAM Hu et al. (2013) 519 2 519 519 64 × 64 Real ✓ ✗
MT Li et al. (2018a) 2719 1-2 2719 1115 361 × 361 Real ✗ ✓
LADN Gu et al. (2019) 635 1 302 333 ≈ 320× 320 Real ✗ ✓
Wild Jiang et al. (2020) 772 1 403 369 256 × 256 Real ✗ ✓
CPM-Real Nguyen et al. (2021) 2895 1 2895 – – Real ✗ ✓
BeautyFace Yan et al. (2023) 44 1+ 3000 – 512 × 512 Real ✗ ✓

VMU Dantcheva et al. (2012) 51 4 153 51 130 × 150 Synthetic (Manually edited) ✓ ✗
LADN-Syn Gu et al. (2019) 333 355 120K 333 ≈ 320× 320 Synthetic (Warp-Paste) ✓ ✓
Stable-Makeup Zhang et al. (2024) 20K 1 20K 20K 512 × 512 Synthetic (Text-to-Image2) ✓ ✗
BeautyBank Lu et al. (2025) 70K 1+ 324K 70K 512 × 512 Synthetic (Text-to-Image2) ✓ ✓

FFHQ-Makeup (Ours) 18K 5 90K 18K 512 × 512 Synthetic (Generation) ✓ ✓

1 For MIFS, makeup images = 214 (imposters only), non-makeup images = 214 (imposters) + 214 (targets) = 428 in total.
2 Stable-Makeup uses LEDITS Tsaban & Passos (2023) for makeup synthesis, while BeautyBank adopts a same strategy with improved
LEDITS++ Brack et al. (2024).

BeautyBank (Text-to-Image)

Target Makeup-applied images Target Makeup-applied images

LADN-Syn (Warp-Paste)

Figure 1: Examples of existing large-scale syn-
thetic paired bare–makeup datasets. Existing
methods often introduce artifacts or alter the iden-
tity and expression of the subject.

To address these issues, synthetic approaches
have recently gained popularity. However, as
illustrated in Fig. 1, they still suffer from var-
ious limitations: warping-based methods Gu
et al. (2019) often leading to artifacts or dis-
tortions, while text-to-image generation Zhang
et al. (2024); Lu et al. (2025) frequently causes
identity drift and inconsistencies in facial ex-
pression, and struggles to capture fine-grained
makeup details due to the inherent ambiguity
of language in describing subtle color gradi-
ents, eyeshadow geometry, and cheek contours.
Consequently, existing resources offer limited
utility for makeup-related applications.

12379

13524

51102

FFHQ FFHQ-Makeup (Makeup-applied images with multiple styles)

Figure 2: Examples of FFHQ-Makeup dataset.
Each identity is paired with a bare image and mul-
tiple makeup-applied images.

To address these challenges, we present
FFHQ-Makeup: an open-source, large-scale,
high-quality multiple paired synthetic makeup
dataset designed to overcome the limitations of
prior work. We introduce a novel data gen-
eration method built upon the state-of-the-art
makeup transfer method Zhang et al. (2024),
with key improvements in both facial struc-
ture control and makeup feature extraction. For
structure control, our method eliminates the re-
liance on paired bare-makeup images, which
are difficult to obtain in real-world scenarios.
Instead, given a single makeup image, we em-
ploy a 3D Morphable Model (3DMM) fitting to
reconstruct an approximate bare face counter-
part.

The fitted 3DMM not only captures the subject’s identity, expression, pose, and skin tone, but also
the illumination. This self-supervised approach enables scalable and flexible for synthetic makeup
dataset generation. For makeup feature extraction, we introduce a 3DMM-based residual represen-
tation of makeup appearance, combined with sampling and re-rendering augmentation strategies.
These techniques extend limited makeup data across diverse facial variations in FFHQ Karras et al.
(2019), helping disentangle facial structure from makeup appearance and facilitating the generation
of semantically consistent bare–makeup pairs. During dataset construction, we manually filtered out
failed cases and samples with visual artifacts to ensure data quality. The final FFHQ-Makeup dataset
comprises 18K identities derived from FFHQ, each paired with 5 distinct makeup styles, resulting
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in a total of 90K paired images, as illustrated in Fig. 2. We evaluate the effectiveness of both our
dataset and method through extensive experiments and comparisons. We anticipate that this high-
quality, multi-style paired dataset will greatly benefit a wide range of future makeup-related research
and applications.

Our main contributions are as follows:

• FFHQ-Makeup Dataset: We introduce a large-scale synthetic dataset with 18K identities
and 5 diverse makeup styles per identity, providing 90K high-quality paired bare–makeup
images.

• Pair-free Structure Control: We propose a scalable generation pipeline that reconstructs
bare faces from single makeup images via 3DMM fitting, removing the need for paired
supervision.

• Decoupled Makeup Synthesis: We extract residual makeup features based on 3DMM,
then transfer them across diverse faces using sampling and re-rendering augmentation, ef-
fectively disentangling facial structure from makeup appearance.

2 RELATED WORKS

2.1 MAKEUP DATASETS AND TASKS

We summarize representative makeup-related datasets in Tab. 1. Early studies primarily focused on
face recognition and verification tasks under makeup conditions Dantcheva et al. (2012); Chen et al.
(2013); Hu et al. (2013); Chen et al. (2017); Sajid et al. (2018), where small-scale, low-resolution
datasets were collected to support experimental evaluations. In recent years, the scope of makeup-
related research has significantly expanded, including tasks such as facial privacy protection Hu
et al. (2022); Li et al. (2018b); Wang et al. (2020), beauty assessment Xiao et al. (2021), makeup
recommendation Liu et al. (2022); Alashkar et al. (2017a), and 3D facial makeup Yang & Taketomi
(2022); Yang et al. (2023; 2024); Bao et al. (2024). Makeup transfer Li et al. (2018a); Gu et al.
(2019); Chen et al. (2019); Jiang et al. (2020); Lyu et al. (2021); Deng et al. (2021); Nguyen et al.
(2021); Sun et al. (2022); Yang et al. (2022); Yan et al. (2023); Sun et al. (2024b); Lu et al. (2025);
Jin et al. (2024); Sun et al. (2024a); Zhang et al. (2024), in particular, has emerged as the domi-
nant research focus, with deep learning approaches increasingly requiring large-scale, high-quality
training data.

Makeup transfer aims to apply the makeup style of a reference image to a target face, while keeping
the target’s identity, pose, and expression unchanged. Achieving this goal is particularly difficult
due to the lack of ground-truth training pairs. Early works adopted GAN-based pipelines. Beauty-
GAN Li et al. (2018a) utilized a dual input/output architecture with a color histogram loss to guide
region-wise color matching. To train the model, they collected a non-paired dataset (MT) with
2,719 makeup and 1,115 non-makeup images. LADN Gu et al. (2019) introduced multiple local dis-
criminators to better handle heavy makeup styles, collecting 302 makeup and 333 non-makeup im-
ages. To augment data, they generated 120K synthetic samples (LADN-Syn) using warp-and-paste,
though the realism remains limited. PSGAN Jiang et al. (2020) addressed spatial misalignment via
an attention-based makeup projection module, using a dataset of 403 makeup images (mostly side
profiles) for evaluation. CPM Nguyen et al. (2021) tackled both color and pattern transfer via UV
map representations and synthetic pattern datasets. They also collected a 2,895-image real makeup
dataset (CPM-Real). Compared to previous datasets, BeautyREC Yan et al. (2023) increased reso-
lution to 512× 512 and included 3,000 makeup images (BeautyFace).

Recently, diffusion-based approaches have enabled more flexible and fine-grained makeup transfer.
Stable-Makeup Zhang et al. (2024) proposed a detail-preserving encoder and incorporated cross-
attention layers. They also built a pseudo-parallel dataset of 20K image pairs for training, generated
via GPT-4-guided editing Tsaban & Passos (2023) and refined through manual quality filtering.
Unfortunately, the dataset is not publicly available. Inspired by Stable-Makeup, BeautyBank Lu
et al. (2025) adopted an improved LEDITS++ Brack et al. (2024) strategy to generate a larger dataset.
However, due to the lack of post-filtering, the resulting makeup and non-makeup images are often
misaligned.
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To compensate for the scarcity of high-quality datasets, we propose FFHQ-Makeup to fill a crit-
ical gap by offering a publicly available, high-quality, multi-reference paired makeup dataset that
supports more robust and scalable research in makeup-related tasks.

2.2 FACIAL ATTRIBUTES WITH 3DMM

Since its introduction by Blanz and Vetter Blanz & Vetter (1999), the 3D Morphable Model (3DMM)
has been widely used in a variety of face-related tasks Egger et al. (2020). It represents facial
shape and texture as linear combinations of basis components learned from a collection of 3D faces.
Through 3DMM fitting Zollhöfer et al. (2018), it is possible to recover 3D facial attributes—such
as identity, expression, and pose—from a single 2D image. These model-based attributes have
proven effective for controllable image synthesis and facial attribute editing, allowing structured
manipulation of identity, expression, texture, pose, and illumination Zhao et al. (2023); Jang et al.
(2025); Ding et al. (2023); Ponglertnapakorn et al. (2023).

In this work, we leverage the FLAME model Li et al. (2017) to reconstruct a bare face representation
from a given makeup image. This enables a synthetic pipeline that no longer relies on paired data,
facilitating more flexible dataset generation.

2.3 DIFFUSION MODELS FOR FACE EDITING

Diffusion models Ho et al. (2020) are generative models that iteratively transform random noise
into realistic images through a sequence of denoising steps. Pretrained latent diffusion models, such
as Stable Diffusion Rombach et al. (2022), have demonstrated strong capabilities in photorealistic
image synthesis and controllable image editing. Building on this foundation, recent works have
extended Stable Diffusion for face-related applications Ye et al. (2023); Wang et al. (2024); Li et al.
(2024).

Stable-Makeup Zhang et al. (2024) is the first work to introduce pre-trained Stable Diffusion into
the makeup transfer task, setting a new standard in the field. Its architecture consists of two main
components: (1) a feature extraction module that employs the CLIP image encoder Radford et al.
(2021), aggregating multi-layer features from the visual backbone to capture fine-grained details.
Additionally, it incorporates a self-attention-based mapping to more efficiently extract and align
makeup features; (2) a structure control module based on ControlNet Zhang et al. (2023), which
enables conditional generation guided by specific structural inputs without altering the basic dif-
fusion model. To further improve facial feature extraction, FreeUV Yang et al. (2025) builds on
Stable-Makeup by introducing a channel-attention mapping mechanism, which enhances feature
discrimination while mitigating the spatial interference introduced by self-attention.

Our method builds upon Stable-Makeup, incorporating the improved feature extraction design from
FreeUV to enable robust and reliable makeup dataset generation.

3 APPROACH: FFHQ-MAKEUP

We propose that a high-quality paired makeup dataset should satisfy the following three properties:

• Makeup Realism (Pmakeup): The makeup should appear natural and realistic in terms of
texture, color, and spatial placement (e.g., lipstick, eyeshadow, blush), closely resembling
real-world cosmetic applications.

• Facial Diversity (Pdiversity): The dataset should cover a wide range of facial identities and
attributes.

• Facial Consistency (Pconsistency): Each bare-makeup image pair should preserve consistent
underlying facial attributes except for the makeup itself.

However, satisfying all three properties simultaneously remains a significant challenge. Real-world
makeup datasets Li et al. (2018a); Gu et al. (2019); Nguyen et al. (2021); Dantcheva et al. (2012);
Jiang et al. (2020) typically offer high makeup realism (Pmakeup), but collecting paired images
with consistent pose, lighting, and expression is costly and scale-limited. Consequently, they of-
ten lack subject diversity and pairwise consistency (¬Pdiversity, ¬Pconsistency). In contrast, synthetic

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

datasets Gu et al. (2019); Zhang et al. (2024); Lu et al. (2025) enable large-scale pair generation and
broader identity coverage, but often fail to produce realistic makeup (¬Pmakeup) or to maintain facial
consistency across pairs (¬Pconsistency).

To address these limitations, we develop an improved makeup transfer approach and apply it to
transplant real-world makeup styles onto a diverse set of subjects from FFHQ Karras et al. (2019).
This strategy leverages authentic cosmetic styles to preserve makeup realism, while substantially
enhancing subject diversity to better reflect real-world variability. Due to limited subject diversity
(Pdiversity) in real-world makeup sources, our method may occasionally fail to perfectly replicate
every fine-grained detail of the original makeup. However, rather than pursuing for pixel-perfect
makeup reproduction, our goal and key innovation lie in creating a dataset that better fulfills the key
criteria of Pmakeup, Pdiversity, and Pconsistency.

This section is organized in three parts: (1) data preparation, (2) method description, and (3) final
dataset construction.

3.1 DATA PREPARATION

We use existing makeup datasets (MT Li et al. (2018a) and LADN Gu et al. (2019)) as the makeup
style source S to ensure high makeup realism (Pmakeup), and employ FFHQ as the target identity
set T to ensure facial diversity (Pdiversity). The resulting transferred dataset, denoted as G, is con-
structed by applying makeup styles from S onto subjects from T , and is expected to preserve facial
consistency (Pconsistency) with respect to T .

During training, we exclusively use the makeup dataset S. For each makeup image IS ∈ S, we
obtain the following data: a facial mask M, detected 2D landmarks L, and a reconstructed 3D face
F via 3DMM fitting Yang et al. (2023). Using the facial mask M, we blend the reconstructed
face F with the background of IS to produce a reconstructed bare face Îb. By subtracting this
bare face from the original image, we derive the makeup residual R = IS − Îb. To augment the
residuals, vertex-wise colors are sampled from R via the geometry of a reconstructed 3D face F .
These sampled colors are then re-rendered onto another reconstructed 3D face FT , randomly chosen
from the target identity set T . This process produces the augmented residual R̃. Each of the 3,068
makeup images in S undergoes 100 such augmentations to ensure sufficient diversity.

3.2 METHOD

Makeup image
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U-Net

ControlNet

Noisy latent

Makeup Residual Detail Encoder

CLIP Image
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Makeup image 𝐼𝑆

with fitted 3DMM ℱ
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bare face መ𝐼b

Landmark ℒ 

Figure 3: Overview of the FFHQ-Makeup dataset gen-
eration method. We extract structure-invariant appearance
features from augmented makeup residuals, and guide im-
age synthesis with structural priors to ensure facial consis-
tency.

As illustrated in Fig. 3, our method
adopts Stable-Makeup Zhang et al.
(2024) as the backbone for makeup
transfer, which is built upon the pre-
trained Stable Diffusion model Rom-
bach et al. (2022). The control-
lable components are divided into
two parts: feature extraction and
structural control.

For feature extraction, the Makeup
Residual Detail Encoder is designed
to extract structure-invariant appear-
ance features from the augmented
makeup residual R̃. This module
consists of a frozen CLIP image en-
coder Radford et al. (2021) and a
Makeup Residual Learner, which is
based on the channel-attention ar-
chitecture proposed in FreeUV Yang
et al. (2025). This design enables the
model to ignore spatial information
and selectively capture relevant ap-
pearance features. For structural control, structural guidance is provided using ControlNet Zhang
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Figure 4: Examples of FFHQ-Makeup dataset. Our FFHQ-Makeup dataset inherits the diversity
of FFHQ. As shown, it includes multiple bare-makeup pairs examples across different ethnicities,
ages, genders, expressions, and cases with occlusions or shadows.

et al. (2023), which leverages both the reconstructed bare face Îb and facial landmarks L to guide
the generation process and enhance structural consistency. Notably, unlike Stable-Makeup, our
approach removes the reliance on paired bare–makeup data during training. The training setup,
including the optimization strategy and hyperparameter configuration, follows that of FreeUV.

3.3 DATASET CONSTRUCTION

After training, we apply the trained model for dataset construction. To ensure the quality of the
generated dataset, we incorporate careful human inspection and refinement during this phase.

For the makeup source set S used in appearance extraction, we first remove extreme makeup styles,
which are overly rare and may introduce distributional bias. To improve quality, we manually mask
out areas in makeup residual R where facial segmentation fails, particularly in cases with hair over-
lap or occluded regions. After this cleaning process, a curated subset of 2,257 high-quality makeup
residuals is retained.

For the target identity set T from FFHQ used in structural control, we manually filter out samples ex-
hibiting inaccurate 3DMM fitting or failed facial segmentation. For each identity in T , we randomly
select 5 makeup styles from the curated makeup source set S and perform makeup transfer accord-
ingly. To further refine the results, we apply a mask-guided background blending post-processing:
the facial region is taken from the generated makeup image, while the background and clothing
regions are preserved from the target identity image, since the generation process often introduces
undesirable color shifts in non-facial areas.

After generation, we conduct a group-wise visual inspection to eliminate samples with artifacts or
insufficient visual quality. Supplementary details are provided in Appendix 5.1. As a result, the final
FFHQ-Makeup dataset comprises 18K unique identities and a total of 90K high-quality images.
Examples of the final FFHQ-Makeup dataset are shown in Fig. 2 and 4.

4 EVALUATION

We evaluate both the dataset and the data generation method. For dataset-level quantitative evalua-
tion, we compare our FFHQ-Makeup dataset against existing publicly available large-scale synthetic
makeup datasets, including LADN-Syn Gu et al. (2019) and BeautyBank Lu et al. (2025). To ensure
a fair comparison, we randomly sample 90K images from each dataset to match the scale of our
FFHQ-Makeup. For generation method evaluation, we conduct an ablation study to assess different
input variants and compare against a baseline that directly uses makeup transfer for data generation.
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Table 2: Visual preference results. Scores represent the percentage of times each dataset was
selected as best in makeup realism (Pmakeup) and facial consistency (Pconsistency). Our dataset notably
outperforms others, especially in maintaining facial consistency.

GPT-4o Gemini 2.5 Pro Claude Sonnet 4
L-S BB Ours L-S BB Ours L-S BB Ours

Pmakeup 0% 48% 52% 0% 24% 76% 0% 46% 54%
Pconsistency 0% 8% 92% 0% 8% 92% 0% 18% 82%

L-S = LADN-Syn, BB = BeautyBank.

In this setting, the evaluation is conducted on a randomly selected subset of 5,000 unfiltered (i.e.,
not manually cleaned) outputs.

4.1 DATASET EVALUATION

LADN-Syn BeautyBank FFHQ-Makeup (Ours)

84

114

Figure 5: Qualitative comparison of makeup
datasets. Our FFHQ-Makeup dataset achieves
realistic makeup effects while preserving facial
structure and identity.

As shown in Fig. 1 and 5, LADN-Syn con-
structs its dataset via a warp-and-paste strategy,
which directly overlays makeup regions onto
target faces. This naive compositing approach
often leads to unrealistic appearances and no-
ticeable artifacts. In contrast, BeautyBank
employs a text-to-image generation paradigm.
However, due to the inherent ambiguity of nat-
ural language prompts, the generated results of-
ten exhibit unintended changes in identity and
facial expression. Our method, by comparison,
produces realistic bare-makeup face pairs while
preserving facial structure and identity.

To evaluate dataset quality, we select 50 groups of paired samples and conduct a visual preference
study using vision-language models (GPT-4o Hurst et al. (2024), Gemini 2.5 Pro Gemini Team
(2025) and Claude Sonnet 4 Anthropic (2025)). The evaluation considers two criteria: makeup real-
ism (Pmakeup) and facial consistency (Pconsistency), with their definitions. We use the following prompt
for the evaluation: ”The following three sets of images are from different makeup datasets. Please se-
lect the one you consider the best in terms of Makeup Realism, and Facial Consistency.” As shown in
Tab. 2, our approach achieves the highest scores, especially in facial consistency (Pconsistency) across
bare–makeup pairs.

4.2 ABLATION STUDIES

w/o 

makeup residual

Ours full modelTargetSource

069909

Figure 6: Ablation study on feature extraction
without using makeup residual. Feeding the full
makeup image causes identity leakage and entan-
glement between makeup style and source facial
features.

We compare two ablated training variants to
validate the effectiveness of our residual-based
representation and augmentation strategy.

The first variant (w/o makeup residual) directly
feeds the makeup image IS into the feature ex-
traction module, instead of using the residual
representation R or R̃. This setting is similar to
Stable-Makeup Zhang et al. (2024), where the
source image inherently contains both makeup
and identity features. As shown in Fig. 6, this
approach leads to entanglement between source
identity and makeup, causing identity leakage:
the transferred result reflects both makeup style
and facial features of the source, thereby compromising identity preservation of the target. In con-
trast, our residual is derived by subtracting a self-reconstructed face (via 3DMM) from the original,
effectively suppressing identity cues and achieving better disentanglement.
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SHMTCSD-MTEleGANtBeautyRECSCGANPSGANTargetSource
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Ours Stable-Makeup
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Figure 8: Comparison of makeup transfer methods for dataset generation. Our method best
preserves the target identity and expression while producing visually plausible makeup. In contrast,
other methods often introduce artifacts or alter key facial attributes such as identity and expression.

w/o sample and re-rendering Ours full model
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98Figure 7: Ablation study on feature extraction without
sampling and re-rendering augmentation. Direct use of
raw residual leads to structural artifacts leaking from the
source face into the generated results.

The second variant (w/o sample and
re-rendering) uses the raw resid-
ual R directly without applying the
proposed sampling and re-rendering
augmentation. As illustrated in
Fig. 7, this leads to residual arti-
facts where subtle structural traits of
the source face (e.g., the shape of
nostrils) are still present in the out-
put. Our full model mitigates this by
re-rendering the residual on diverse
FFHQ geometries, encouraging the
network to focus purely on makeup-
related features and remain invariant
to facial structure.

4.3 MAKEUP TRANSFER FOR DATASET GENERATION

Our makeup dataset generation method is built upon the Stable-Makeup Zhang et al. (2024) as a
baseline, with several improvements introduced to enhance quality and structural control. To vali-
date the effectiveness of our method, we compare it against direct dataset generation using existing
makeup transfer methods. Specifically, we evaluate GAN-based methods including PSGAN Jiang
et al. (2020), SCGAN Deng et al. (2021), BeautyREC Yan et al. (2023), EleGANt Yang et al.
(2022), and CSD-MT Sun et al. (2024b), as well as diffusion-based methods such as SHMT Sun
et al. (2024a) and Stable-Makeup Zhang et al. (2024).

As shown in Fig. 8, the GAN-based methods often produce unstable results with significant visual
artifacts. While the baseline method Stable-Makeup effectively captures source makeup appear-
ance, it often alters the target’s identity and expression, as it relies on paired training data without
mechanisms to properly disentangle appearance from structure. In contrast, our method achieves
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the best preservation of target identity and expression, while generating a makeup style that closely
resembles the source in a perceptually plausible manner.

4.4 QUANTITATIVE EVALUATION

Table 3: Quantitative comparison of bare–makeup pairs across
different dataset and methods. Both our dataset and method
achieve the highest scores in identity similarity and semantic consis-
tency, highlighting their superior ability to preserve facial consistency.
Bolded values represent the best performance.

Id ↑ DINO-I ↑ SSIM ↑
LADN-Syn 0.4973 0.9163 0.9173
BeautyBank 0.5034 0.9008 0.8060
FFHQ-Makeup 0.5880 0.9561 0.8656

Stable-Makeup 0.5191 0.9010 0.8431
w/o makeup residual 0.5346 0.9053 0.8104
w/o augmentation 0.5586 0.8983 0.8126
w/o background blending 0.5743 0.9251 0.8206
Ours full model 0.5802 0.9478 0.8613

We focus the evaluation
on the effectiveness of
bare–makeup image pairs
in maintaining Facial Con-
sistency (Pconsistency) using
the following metrics.
ArcFace Deng et al. (2019)
is adopted to measure
identity similarity between
bare and makeup images,
reflecting whether both
faces belong to the same
person. DINO-I Caron
et al. (2021) is employed to
assess high-level semantic
consistency, such as pose
and expression preserva-
tion. SSIM is included as
a low-level structural similarity metric to provide additional insights into pixel-level geometry
consistency.

The proposed dataset and its underlying generation method demonstrate superior performance in
both identity preservation and semantic structural consistency, validating the effectiveness of our full
model in producing high-quality bare–makeup pairs with enhanced facial consistency (Pconsistency).

5 CONCLUSION AND FUTURE WORK

We presented FFHQ-Makeup, a new large-scale multiple paired bare–makeup dataset with over 90K
image pairs, designed to better balance makeup realism, facial diversity, and facial consistency. Each
identity is paired with multiple makeup styles, enabling more diverse and robust usage scenarios.
To generate high-quality data without relying on paired training data, we introduce a structure-
aware diffusion framework that disentangles identity from makeup using 3DMM-guided residuals
and facial re-rendering augmentation. Extensive evaluations show that FFHQ-Makeup outperforms
existing datasets in both visual quality and facial consistency.

5.1 DISCUSSION AND FUTURE WORK

While our method achieves strong makeup realism and facial consistency, the current dataset has
several limitations. First, since our approach relies on a relatively small set of makeup reference
images, the generated dataset is biased toward common daily makeup styles. As a result, more
dramatic or artistic styles are difficult to represent, and some fine-grained makeup details (e.g., subtle
eye shadow textures or precise lip contours) are not well preserved. Second, the accuracy of 3DMM
fitting and facial segmentation still affects the results, sometimes introducing local artifacts around
sensitive regions such as the eyes or teeth, and leaving subtle identity-related cues in the makeup
residuals, which hinders full disentanglement. Third, makeup residual strategy is less effective to
preserve certain intrinsic identity-related cues, such as moles or facial hair, which can often result in
the removal of beards in the generated images.

For future work, we plan to adopt more accurate 3DMM fitting methods (e.g., Pixel3DMM Gieben-
hain et al. (2025)) to reduce geometric and segmentation errors. Moreover, we plan to expand the
variety of makeup sources and adopt more diverse face datasets. We also aim to incorporate auto-
matic evaluation metrics to efficiently scale up the data generation process.

9
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ETHICS STATEMENT

Our work focuses on constructing a synthetic facial makeup dataset. We strictly use publicly avail-
able datasets (FFHQ, MT, LADN) that do not contain personally identifiable or sensitive informa-
tion, and adhere to their respective licenses and usage policies. The generated dataset is intended
solely for research in computer vision and beauty-related applications. We are aware that facial
datasets may raise concerns regarding privacy, fairness, and potential misuse. We strongly encour-
age responsible use of our dataset and discourage any applications that may infringe on individual
rights or reinforce harmful stereotypes.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of data preprocessing, model architectures, and evaluation metrics
within the paper. Ablation studies are included to clarify the contribution of each component. Upon
acceptance, we will release the dataset and code.

LLM USAGE DISCLOSURE

Large language models were used in two ways during this work: (1) to polish the writing style and
improve grammar in parts of the manuscript, and (2) as automated evaluators in the visual prefer-
ence study, where multiple VLMs (Vision-language models) were queried to provide comparative
judgments of generated images. The LLMs are did not produce novel scientific content or techni-
cal contributions. All statements and claims are verified and edited by the authors. We take full
responsibility for all content.
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APPENDIX

In this appendix, we provide additional details related to the dataset construction process (Sec. 3.3).
Specifically, we illustrate the effect of our mask-guided background blending post-processing, and
provide examples of manually filtered-out results during quality control.

MASK-GUIDED BACKGROUND BLENDING

Target Ours full 

model

Facial mask

352

w/o bg 

blending

Figure 9: Ablation study on mask-guided back-
ground blending.

As shown in Fig. 9, some generated images ex-
hibit undesired background color shifts com-
pared to the target image. To mitigate this is-
sue, we employ a mask-guided blending strat-
egy: the facial region is taken from the gener-
ated makeup image, while the background and
clothing regions are preserved from the target
image. In the blending process, we further ap-
ply a morphological erosion with a kernel size
of 5 to the facial mask boundary, followed by a
Gaussian blur with a kernel size of 15, which
helps produce smoother transitions and more
natural blending effects. This post-processing step effectively reduces color artifacts outside the
facial region.

FILTERED-OUT SAMPLES
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Figure 10: Examples of filtered-out results.

As shown in Fig. 10, we manually discarded
samples exhibiting the following issues:

1. The target image itself contains
makeup, which contradicts the
bare–makeup pairing assumption.

2. Inaccurate 3DMM fitting, particularly
around the lips, leading to local mis-
alignment and artifacts in the gener-
ated images.

3. Generated results with unnatural ar-
tifacts. Notably, if one sample in
a multi-style group fails, the entire
group is discarded to preserve the in-
tegrity of the multiple-style pairing.
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