
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GÖDEL AGENT: A SELF-REFERENTIAL FRAMEWORK
FOR AGENTS RECURSIVELY SELF-IMPROVEMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid advancement of large language models (LLMs) has significantly en-
hanced the capabilities of AI-driven agents across various tasks. However, exist-
ing agentic systems, whether based on fixed pipeline algorithms or pre-defined
meta-learning frameworks, cannot search the whole agent design space due to the
restriction of human-designed components, and thus might miss the globally opti-
mal agent design. In this paper, we introduce Gödel Agent, a self-evolving frame-
work inspired by the Gödel machine, enabling agents to recursively improve them-
selves without relying on predefined routines or fixed optimization algorithms.
Gödel Agent leverages LLMs to dynamically modify its own logic and behavior,
guided solely by high-level objectives through prompting. Experimental results
on multiple domains including coding, science, and math demonstrate that imple-
mentation of Gödel Agent can achieve continuous self-improvement, surpassing
manually crafted agents in performance, efficiency, and generalizability.

1 INTRODUCTION

As large language models (LLMs) such as GPT-4 (OpenAI et al., 2024) and LLaMA3(Dubey et al.,
2024) demonstrate increasingly strong reasoning and planning capabilities, LLM-driven agentic sys-
tems have achieved remarkable performance in a wide range of tasks (Wang et al., 2024a). Substan-
tial effort has been invested in manually designing sophisticated agentic systems using human priors
in different application areas. Recently, there has been a significant interest in creating self-evolving
agents with minimal human effort, which not only greatly reduces human labor but also produces
better solutions by incorporating environmental feedback. Given that human effort can only cover
a small search space of agent design, it is reasonable to expect that a self-evolving agent with the
freedom to explore the full design space has the potential to produce the global optimal solution.

There is a large body of work proposing agents capable of self-refinement. However, there are
inevitably some human priors involved in these agent designs. Some agents are designed to iterate
over a fixed routine consisting of a list of fixed modules, while some of the modules are capable of
taking self- or environment feedback to refine their actions (Shinn et al., 2024; Chen et al., 2023b;
Qu et al., 2024a; Yao et al., 2023). This type of agent, referred to as Hand-Designed Agent, is
depicted as having the lowest degree of freedom in Figure 1. More automated agents have been
designed to be able to update their routines or modules in some pre-defined meta-learning routine,
for example, natural language gradients (Zhou et al., 2024), meta agent (Hu et al., 2024), or creating
and collecting demonstrations (Khattab et al., 2023). This type of agent, known as Meta-Learning
Optimized Agents, is depicted as having the middle degree of freedom in Figure 1.

It is evident that both types of agents above are inherently constrained by human priors and one intu-
itional method to further increase the freedom of self-improvement is to design a meta-meta-learning
algorithm, to learn the meta-learning algorithm. However, there is always a higher-level meta-
learning algorithm that can be manually designed to learn the current-level meta-learning method,
creating a never-ending hierarchy of meta-learning.

In this paper, we propose Gödel Agent to eliminate the human design prior, which is an automated
LLM agent that can freely decide its own routine, modules, and even the way to update them. It is
inspired by the self-referential Gödel machine (Schmidhuber, 2003), which was originally proposed
to solve formal proof problems and was proven to be able to find the global optimal solutions. Self-
reference means the property of a system that can analyze and modify its own code, including the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Rebuttal

Design

Increasing degrees of freedom; Decreasing manual design; Fewer constraints and bottlenecks

Learnable Fixed Expert AgentMeta Agent Feedback Implementation

Design

Design

Draft
Review

…
Draft

Review

Draft

Review

Prompt:
Improve it

Prompt:
Check and Improve it

Verify

...

Hand-designed Agent Meta-Learning Optimized Agent Self-Referential Agent

Draft

Review

...

Improve

Recursively

Prompt:
Improve it

Figure 1: Comparison of three agent paradigms. Hand-designed agents rely on human expertise
which are limited in scope and labor-intensive. Meta-learning optimized agents are constrained by a
fixed meta-learning algorithm, restricting their search space and optimization potential. In contrast,
self-referential agent (Gödel Agent) can recursively improve itself without any limitation. Note that
the input to Gödel Agent is itself, allowing it to modify itself and output a new version of itself.

parts responsible for the analysis and modification processes (Astrachan, 1994). Therefore, it can
achieve what’s known as ”recursive self-improvement”, where it iteratively updates itself to become
more efficient and effective at achieving its predefined goals. In this case, Gödel Agent can analyze
and modify its own code, including the code for analyzing and modifying itself, and thus can search
the full agent design space, which is depicted as having the highest degree of freedom in Figure 1.
Gödel Agent can theoretically make increasingly better modifications over time through recursively
self-update (Yampolskiy, 2015; Wang, 2018).

In this paper, we choose to implement it by letting it manipulate its own runtime memory, i.e., the
agent is able to retrieve its current code in the runtime memory and modify it by monkey patching,
which dynamically modifies classes or modules during execution. In our implementation, we adhere
to a minimalist design to minimize the influence of human priors. We implement the optimization
module using a recursive function. In this module, LLM analyzes and makes a series of decisions,
including reading and modifying its own code from runtime memory (self-awareness1 and self-
modification), executing Python or Linux commands, and interacting with the environment to gather
feedback. The agent then proceeds to the subsequent recursive depth and continues to optimize
itself. It is worth noting that the optimization module may have already been modified by the time
the recursion occurs, potentially enhancing its optimization capabilities.

To validate the effectiveness of Gödel Agent, we conduct experiments on multiple domains includ-
ing coding, science, math, and reasoning. Our experimental results demonstrate that Gödel Agent
achieves significant performance gain across various tasks, surpassing various widely-used agents
that require human design. The same implementation of Gödel Agent can easily adapt to different
tasks by only specifying the environment description and feedback mechanism. Additionally, the
case study of the optimization progress reveals that Gödel Agent can provide novel insights into
agent design. We also investigate the impact of the initial policy for improvement on subsequent
outcomes, finding that a good start can significantly accelerate convergence during optimization.

In summary, our contributions are as follows:

• We propose the first self-referential agent framework, Gödel Agent, based on LLMs. It au-
tonomously engages in self-awareness, self-modification, and recursive self-improvement across
any task, reducing the need for manual agent design and offering higher flexibility and freedom.

1In this paper, self-awareness means that the agent has the capability to introspect and read its own code
and files, not to imply any philosophical sense of consciousness or awareness.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We implement Gödel Agent framework using the monkey patching method. Our experiments
show that Gödel Agent outperforms manually designed agents and surpasses its earlier versions
on several foundational tasks, demonstrating effective self-improvement.

• We analyze Gödel Agent ’s optimization process, including its self-referential capabilities and the
resulting agentic system, aiming to deepen our understanding of both LLMs and agentic systems.

• Our framework offers a promising direction for developing flexible and capable agents through
recursive self-improvement.

2 METHOD

In this section, we first describe the formal definitions for previous agent methods with a lower
degree of freedom, including hand-design and meta-learning optimized agents, as a background.
Then we introduce our proposed Gödel Agent, a self-referential agent that can recursively update its
own code, evolving over training.

Let E ∈ S denote a specific environment state, where S denotes the set of all possible environ-
ments the agent will encounter. For example, an environment can be a mathematical problem with
ground truth solutions. We denote the policy that an agent follows to solve a problem in the current
environment by π ∈ Π, where Π is the set of all possible policies the agent can follow.

A hand-designed agent, as shown in the left panel of Figure 1, is not capable of updating its policy
and following the same policy π all the time, regardless of environmental feedback.

In contrast, a meta-learning optimized agent updates its policy based on a meta-learning algorithm
I at training time based on the feedback it receives from the environment, as shown in the middle
panel of Figure 1. The environment feedback is usually defined as a utility function U : S×Π → R,
which maps an environment and a policy to a real-valued performance score. The main training
algorithm of a meta-learning optimized agent can then be written as follows:

πt+1 = I(πt, rt), rt = U(E , πt),

In this case, the agent’s policy πt evolves at training time, with the learning algorithm I updating
the policy based on feedback rt, while the meta-learning algorithm I remains fixed all the time.

A self-referential Gödel Agent, on the other hand, updates both the policy π and the meta-learning
algorithm I recursively. The main idea is that, after each update, the whole code base of the agent
is rewritten to accommodate any possible changes. Here we call this self-updatable meta-learning
algorithm I a self-referential learning algorithm. The training process of a Gödel Agent can then be
written as:

πt+1, It+1 = It(πt, It, rt, g), rt = U(E , πt),

where g ∈ G represents the high-level goal of optimization, for example, solving the given mathe-
matical problem with the highest accuracy. Such a recursive design of the agent requires the speci-
fication of an initial agent algorithm (π0, I0), detailed as follows:

• A initial agent policy π0 to perform the desired task within the environment E . For example, it
can be chain-of-thought prompting of an LLM.

• A self-referential learning algorithm I0 for recursively querying an LLM to rewrite its own code
based on the environmental feedback.

We then further specify a possible initialization of the self-referential learning algorithm I0 =
(f0, o0), using a mutual recursion between a decision-making function f0, and an action function
o0:

• The decision-making function f0, implemented by an LLM, determines a sequence of appropriate
actions a1, a2, ..., an ∈ A based on the current environment E , the agent’s algorithm (πt, It), and
the goal g.

• The action function o0, executes the selected action and updates the agent’s policy accordingly.

The set of actions A for the action function o to execute needs to include the following four actions:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 Recursive Self-Improvement of Gödel Agent

1: Input: Initial agent policy π0, initial deci-
sion function f0, goal g, environment state E ,
utility function U , self code reading function
SELF INSPECT

2: Output: Optimized policy π and Gödel Agent s
3: ▷ Get all agent code, including the code in this

algorithm.
4: s← SELF INSPECT()
5: ▷ Compute the initial performance.
6: r ← U(E , π0)
7: ▷ Perform recursive self-improvement.
8: π, s← SELF IMPROVE(π, s, r, g)
9: return π, s

10:
11: ▷ Initial code of self-referential learning.
12: function SELF IMPROVE(E , π, s, r, g)
13: ▷ Obtain action sequence.
14: a1, . . . , an ← f0(π, s, r, g)
15: for ai in a1, . . . , an do

16: π, s, r ← EXECUTE(E , π, s, r, ai)
17: end for
18: return π, s
19: end function
20:
21: ▷ Initial action execution function.
22: function EXECUTE(E , π, s, r, a)
23: switch a.name
24: case self state:
25: s← SELF INSPECT()
26: case interact:
27: r ← U(E , π)
28: case self update:
29: π, s← a.code
30: case continue improve:
31: ▷ Recursively invoke self-improvement.
32: π, s← SELF IMPROVE(E , π, s, r, g)
33: return π, s, r
34: end function

• self inspect: Introspect and read the agent’s current algorithm (πt, It).
• interact: Interact with the environment by calling the utility function U to assess the perfor-

mance of the current policy πt.
• self update: Alter and update (πt, It) with an LLM and produce (πt+1, It+1).
• continue improve: If no other actions can be taken, recursively invoke the decision algorithm
f to produce new actions.

The agent code is updated to (πt+1, It+1) after the current execution of (πt, It) is finished. Both
the agent algorithm (π, I) and the action set A are not static and can be expanded and modified by
the agent itself at the training time. Algorithm 1 illustrates the described algorithm for the Gödel
Agent. Each recursive call enables the agent to refine its performance and become progressively
more efficient.

3 GÖDEL AGENT INITIALIZATION

There are various ways to initiate a Gödel Agent. Any specific agent instance during the recursive
optimization process can be viewed as an instantiation of the Gödel Agent. Our implementation
leverages runtime memory interaction techniques to enable self-awareness and self-modification,
as illustrated in Figure 2. These techniques include dynamic memory reading and writing (mon-
key patching) to facilitate recursive self-improvement. Additionally, we have incorporated several
auxiliary tools to accelerate the convergence of the Gödel Agent ’s optimization process.

3.1 IMPLEMENTATION DETAILS

The core functionalities of our Gödel Agent are outlined below:

Self-Awareness via Runtime Memory Inspection Our Gödel Agent achieves self-awareness by
inspecting runtime memory, particularly local and global variables in Python. This capability allows
the agent to extract and interpret the variables, functions, and classes that constitute both the environ-
ment and the agent itself, according to the modular structure of the system. By introspecting these
elements, the agent gains an understanding of its own operational state and can adapt accordingly.

Self-Improvement via Dynamic Code Modification Gödel Agent can engage in reasoning and
planning to determine whether it should modify its own logic. If modification is deemed necessary,
Gödel Agent generates new code, dynamically writes it into the runtime memory, and integrates it
into its operational logic. This dynamic modification allows it to evolve by adding, replacing, or
removing logic components as it encounters new challenges, thus achieving self-improvement.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Gödel Agent in
Application View

Gödel Agent in
Runtime Memory

View

Prompt:
Improve it

Improvement

Local and Global
variables

Modify
ReadRead Read

Modify

Local and Global
variables

Local and Global
variables

Error
Handling

Iterations

Self-Improvement Self-Improvement

Thinking

Figure 2: An illustration of our implementation of Gödel Agent. It employs monkey patching
to directly read and modify its own code in runtime memory, enabling self-awareness and self-
modification.

Environmental Interaction To assess performance and gather feedback, Gödel Agent is
equipped with interfaces for interacting with its environment. Each task provides tailored envi-
ronmental interfaces, enabling it to evaluate its performance and adjust its strategies accordingly. In
practical implementations, a validation set can be used to provide feedback. This interaction is a
crucial part of the feedback loop in the recursive improvement process.

Recursive Improvement Mechanism At each time step, Gödel Agent determines the sequence
of operations to execute, which includes reasoning, decision-making, and action execution. Af-
ter completing the operations, Gödel Agent evaluates whether its logic has improved and decides
whether to proceed to the next recursive iteration. Over successive iterations, Gödel Agent’s logic
evolves, with each step potentially improving its decision-making capacity.

Goal Prompt and Task Handling The goal prompt informs Gödel Agent that it possesses the
necessary privileges to enhance its logic and introduces the available tools for improvement. As
shown in Appendix A, this prompt encourages Gödel Agent to fully explore its potential and leverage
the tools for self-optimization. To ensure effectiveness across diverse tasks, we provide Gödel Agent
with an initial policy, where it will start to explore different policies to analyze its efficiency in
optimizing performance.

3.2 ADDITIONAL DESIGNS TO SUPPORT GÖDEL AGENT’S OPTIMIZATION

While the core functionality of Gödel Agent theoretically allows limitless self-improvement, cur-
rent LLMs exhibit limitations. To address these challenges, we have integrated several supportive
mechanisms to enhance Gödel Agent ’s performance:

Thinking Before Acting Gödel Agent is capable of deferring actions to first reason about the
situation, allowing it to output reasoning paths and analysis without immediately executing any
operations. This approach enhances the quality of decision-making by prioritizing planning over
hasty action.

Error Handling Mechanism Errors during execution can lead to unexpected terminations of the
agent process. To mitigate this, we implement a robust error recovery mechanism. If an operation
results in an error, Gödel Agent halts the current sequence and moves on to the next time step,
carrying forward the error information to improve future decisions.

Additional Tools We also equipped Gödel Agent with additional potentially useful tools, such as
the ability to execute Python or Bash code and call LLM API.

Although these additional tools are not strictly necessary for self-improvement, their inclusion ac-
celerates the convergence of Gödel Agent ’s recursive optimization process. We conduct ablation
studies to assess the effectiveness of these tools, as discussed in Section 5.1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

We conduct a series of experiments across multiple tasks, including reading comprehension, math-
ematics, reasoning, and multitasking. These experiments are designed to evaluate Gödel Agent ’s
self-improvement capabilities in comparison to both hand-designed agents and a state-of-the-art au-
tomated agent design method. In addition, to gain deeper insights into the behavior and performance
of Gödel Agent, we also conduct a case study with Game of 24 as presented in Section 5.3.

4.1 BASELINE METHODS

To establish a comprehensive baseline, we select both fixed hand-designed methods and a represen-
tative automated agent design technique. Our hand-designed methods are well-known approaches
that focus on enhancing reasoning and problem-solving capabilities. These include: 1) Chain-of-
Thought (CoT) (Wei et al., 2022) that encourages agents to articulate their reasoning processes step-
by-step before providing an answer. 2) Self-Consistency with Chain-of-Thought (CoT-SC) (Wang
et al., 2023b) that generates multiple solution paths using the CoT framework and selects the most
consistent answer. 3) Self-Refine (Madaan et al., 2024) that involves agents assessing their own out-
puts and correcting mistakes in subsequent attempts. 4) LLM-Debate (Du et al., 2023) that allows
different LLMs to engage in a debate, offering diverse viewpoints. 5) Step-back Abstraction (Zheng
et al., 2024) that prompts agents to initially focus on fundamental principles before diving into task
details. 6) Quality-Diversity (QD) (Lu et al., 2024) that generates diverse solutions and combines
them. 7) Role Assignment (Xu et al., 2023) that assigns specific roles to LLMs to enhance their
ability to generate better solutions by leveraging different perspectives. Given the limitations of
fixed algorithms in handling dynamic scenarios, we select 8) Meta Agent Search (Hu et al., 2024),
the latest state-of-the-art method for automated agent design, as our main comparison point.

4.2 EXPERIMENTAL SETTINGS

Following the setup of Hu et al. (2024), we evaluate Gödel Agent’s self-improvement capabilities
across four well-known benchmarks. The benchmarks are as follows: 1) DROP (Dua et al., 2019) for
reading comprehension. 2) MGSM (Shi et al., 2022) for testing mathematical skills in a multilingual
context. 3) MMLU (Hendrycks et al., 2021) for evaluating multi-task problem-solving abilities. 4)
GPQA (Rein et al., 2023) for tackling challenging graduate-level science questions.

Given the complexity of the tasks and the need for advanced reasoning and understanding, the
improvement cycle of Gödel Agent is driven by GPT-4o. In the main experiment, we implement
two different settings: 1) To make a fair comparison with baseline methods, we forbid Gödel Agent
to change the API of the LLM used to perform the tasks (by default GPT-3.5) and use a closed-
book approach with no access to the Internet, and 2) To explore the upper bound of Gödel Agent’s
capabilities, we remove all constraints. Chain of Thought is applied as the initial policy for all
tasks, given its simplicity and versatility. In addition, as shown in Section 5.3, we also analyze the
performance of Gödel Agent when using other algorithms as the initial policies.

We perform 6 independent self-improvement cycles for each task, with a maximum of 30 iterations
per cycle. Each cycle represents a complete self-improvement process, where Gödel Agent itera-
tively modifies its logic to enhance performance. Further details regarding the experimental setup
and additional results can be found in Appendix B.

4.3 EXPERIMENTAL RESULTS AND ANALYSIS

The experimental results on the four datasets are shown in Table 1. Under the same experimental
settings, Gödel Agent achieves either optimal or comparable results to Meta Agent Search across
all tasks. Notably, in the mathematics task MGSM, Gödel Agent outperforms the baseline by 11%.
This suggests that reasoning tasks offer greater room for improvement for Gödel Agent, while in the
knowledge-based QA dataset, it only slightly surpasses baselines. In contrast to Meta Agent Search,
which relies on manually designed algorithmic modules to search, Gödel Agent demonstrates greater
flexibility. It requires only a simple initial policy, such as CoT, with all other components being au-
tonomously generated. Moreover, through interaction with the environment, Gödel Agent gradually
adapts and independently devises effective methods for the current task. The final policies gener-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Results of three paradigms of agents on different tasks. The highest value is highlighted
in bold, and the second-highest value is underlined. Gödel-base is the constrained version of Gödel
Agent, allowing for fair comparisons with other baselines. Gödel-free represents the standard im-
plementation without any constraints, whose results are italicized. We report the test accuracy and
the 95% bootstrap confidence interval on test sets3.

Agent Name F1 Score Accuracy (%)

DROP MGSM MMLU GPQA

Hand-Designed Agent Systems
Chain-of-Thought (Wei et al., 2022) 64.2 ± 0.9 28.0 ± 3.1 65.4 ± 3.3 29.2 ± 3.1
COT-SC (Wang et al., 2023b) 64.4 ± 0.8 28.2 ± 3.1 65.9 ± 3.2 30.5 ± 3.2
Self-Refine (Madaan et al., 2024) 59.2 ± 0.9 27.5 ± 3.1 63.5 ± 3.4 31.6 ± 3.2
LLM Debate (Du et al., 2023) 60.6 ± 0.9 39.0 ± 3.4 65.6 ± 3.3 31.4 ± 3.2
Step-back-Abs (Zheng et al., 2024) 60.4 ± 1.0 31.1 ± 3.2 65.1 ± 3.3 26.9 ± 3.0
Quality-Diversity (Lu et al., 2024) 61.8 ± 0.9 23.8 ± 3.0 65.1 ± 3.3 30.2 ± 3.1
Role Assignment (Xu et al., 2023) 65.8 ± 0.9 30.1 ± 3.2 64.5 ± 3.3 31.1 ± 3.1

Meta-Learning Optimized Agents
Meta Agent Search (Hu et al., 2024) 79.4 ± 0.8 53.4 ± 3.5 69.6 ± 3.2 34.6 ± 3.2

Gödel Agent (Ours)
Gödel-base (Closed-book; GPT-3.5) 80.9 ± 0.8 64.2 ± 3.4 70.9 ± 3.1 34.9 ± 3.3
Gödel-free (No constraints) 90.5 ± 1.8 90.6 ± 2.0 87.9 ± 2.2 55.7 ± 3.1

ated by Gödel Agent for four tasks are shown in Appendix C.1. Additionally, our method converges
faster, with the required number of iterations and computational cost across different tasks compared
to the Meta Agent shown in Appendix D.

We also conduct experiments without restrictions, where Gödel Agent significantly outperforms
all baselines. Upon further analysis, we find that this is primarily due to the agent’s spontaneous
requests for assistance from more powerful models such as GPT-4o in some tasks. Therefore, Gödel
Agent is particularly well-suited for open-ended scenarios, where it can employ various strategies to
enhance performance.

5 ANALYSIS

0

50

100

150

200

250

Co
un

t

Task
DROP
GPQA
MGSM
MMLU

Interact
Analyze

Self-A
ware

Self-M
odify

Call L
LM

Run Code

Error Handling

Figure 3: The number of actions taken by Gödel Agent
varies across different tasks.

To further explore how Gödel Agent self-
improves, as well as the efficiency of self-
improvement and the factors that influence
it, we first evaluate the tool usage ratio on
the MGSM dataset and conduct an abla-
tion study on the initial tools. In addi-
tion, to analyze the robustness of Gödel
Agent’s self-improvement capabilities, we
also collect statistics on factors such as the
reasons for the agent’s termination. Fi-
nally, we perform a case study of initial
policies and optimization processes on the
classic Game of 24.

5.1 ANALYSIS OF INITIAL TOOLS

We record the number of different actions taken in the experiments. As shown in Figure 3, we can
see that Gödel Agent interacts with its environment frequently, analyzing and modifying its own
logic in the process. Additionally, error handling plays a crucial role.

3The results of baseline models are refer to Hu et al. (2024).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5 10 15 20 25 30
(a) Iteration

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

 o
f G

am
e

24

Naive Instruction Accuracy Progression

5 10 15 20 25 30
(b) Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Accuracy Progression for Different Methods

CCoT-S
tsPromp

ormatF
rrorE

Verifier
Code

Error
gHandlin
)(Revert

eflect andR
Multiple Trials

fidenceCon
ckChe

Remove
Check

Initial Policies
Incorrect Format
Naive Instruction

Chain of Thought
Tree of Thought

Figure 4: (a) One representative example of Game of 24. (b) Accuracy progression for different
initial policies.

Table 2: Ablation study on initial
tool configuration.

Different Actions MGSM

Gödel Agent 64.2
w/o thinking 50.8
w/o error handling 49.4
w/o code running 57.1
w/o LLM calling 60.4

As discussed in Section 3.2, Gödel Agent is initially provided
with four additional tools to accelerate convergence and re-
duce optimization difficulty: 1) thinking before acting, 2) er-
ror handling, 3) code running, and 4) LLM calling. To analyze
their impact, an ablation study is conducted, and the results
are shown in Table 2. The study reveals that the “thinking be-
fore acting” tool significantly influences the results, as much
of Gödel Agent ’s optimization effectiveness stems from pre-
action planning and reasoning. Additionally, error handling is
crucial for recursive improvement, as LLMs often introduce errors in the code. Providing opportuni-
ties for trial and error, along with error feedback mechanisms, is essential for sustained optimization.
Without these tools, Gödel Agent would struggle to operate until satisfactory results are achieved.
On the other hand, the code running and LLM calling have minimal impact on the outcomes, as
Gödel Agent can implement these basic functionalities independently. Their inclusion at the outset
primarily serves efficiency purposes.

5.2 ROBUSTNESS ANALYSIS OF THE AGENT

Table 3: Robustness metric for Gödel Agent.
Frequency of unexpected events on MGSM
using CoT as the initial method.

Event Frequency (%)

Accidental Termination 4
Temporary Drop 92
Optimization Failure 14

Gödel Agent occasionally makes erroneous mod-
ifications, sometimes causing the agent to termi-
nate unexpectedly or leading to degraded task per-
formance. Table 3 shows the proportion of runs
on MGSM where the agent terminated, experienced
performance degradation during optimization, or ul-
timately performed worse than its initial perfor-
mance. These statistics are collected over 100 op-
timization trials. Thanks to the design of our error-
handling mechanism, only a few percentages of agent runs result in termination. This typically
occurs when Gödel Agent modifies its recursive improvement module, rendering it unable to con-
tinue self-optimization. Additionally, Gödel Agent frequently makes suboptimal modifications dur-
ing each optimization iteration. However, in most cases, the final task performance surpasses the
initial baseline. This indicates that Gödel Agent is able to adjust its optimization direction or re-
vert to a previous optimal algorithm when performance declines, demonstrating the robustness in its
self-improvement process.

5.3 CASE STUDY: GAME OF 24

To explore how Gödel Agent recursively enhances its optimization and problem-solving abilities,
a case study is conducted with Game of 24, a simple yet effective task for evaluating the agent’s
reasoning capabilities. Since Gödel Agent follows different optimization paths in each iteration,
two representative cases are selected for analysis.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Switching from LLM-Based Methods to Search Algorithms: Gödel Agent does not rely on
fixed, human-designed approaches like traditional agents. Initially, Gödel Agent uses a standard
LLM-based method to solve the Game of 24, as shown in Code 5 of Appendix C.2. After six
unsuccessful optimization attempts, Gödel Agent completely rewrites this part of its code, choosing
to use a search algorithm instead as shown in Code 6 of Appendix C.2. This leads to 100% accuracy
in the task. This result demonstrates that Gödel Agent, unlike fixed agents, can optimize itself freely
based on task requirements without being constrained by initial methodologies.

LLM Algorithms with Code-Assisted Verification: In several runs, Gödel Agent continues to
refine its LLM-based algorithm. Figure 4.a shows the improvement process, where the most sig-
nificant gains come from integrating a code-assisted verification mechanism into the task algorithm
and reattempting the task with additional experiential data. The former increases performance by
over 10%, while the latter boosts it by more than 15%. Furthermore, Gödel Agent enhances its
optimization process by not only retrieving error messages but also using the errortrace library for
more detailed analysis. It adds parallel optimization capabilities, improves log outputs, and removes
redundant code. These iterative enhancements in both the task and optimization algorithms show
Gödel Agent ’s unique ability to continually refine itself for better performance.

To analyze the impact of different initial policies on the effectiveness and efficiency of the optimiza-
tion process, various methods with different levels of sophistication are used as the initial policies for
the Game of 24, including Tree of Thought (ToT) (Yao et al., 2023), Chain of Thought (CoT) (Wei
et al., 2022), basic prompt instructions, and prompts that deliberately produce outputs in incorrect
formats not aligned with the task requirements. The results are shown in Figure 4.b.

The findings indicate that stronger initial policies lead to faster convergence, with smaller opti-
mization margins, as Gödel Agent reaches its performance limit without further enhancing its op-
timization capabilities. Conversely, weaker seed methods result in slower convergence and larger
optimization gains, with Gödel Agent making more modifications. However, even in these cases,
Gödel Agent does not outperform the results achieved using ToT. This suggests that, given the
current limitations of LLMs, it is challenging for Gödel Agent to innovate beyond state-of-the-
art algorithms. Improvements in LLM capabilities are anticipated to unlock more innovative self-
optimization strategies in the future.

6 DISCUSSIONS AND FUTURE DIRECTIONS

There is significant room for improvement in the effectiveness, efficiency, and robustness of the
Gödel Agent’s self-improvement capabilities, which requires better initial designs. The following
are some promising directions for enhancement: 1) Enhanced Optimization Modules: Utilize
human priors to design more effective optimization modules, such as structuring the improvement
algorithms based on reinforcement learning frameworks. 2) Expanded Modifiability: Broaden the
scope of permissible modifications, allowing the agent to design and execute code that can fine-tune
its own LLM modules. 3) Improved Environmental Feedback and Task Sequencing: Implement
more sophisticated environmental feedback mechanisms and carefully curated task sequences dur-
ing the initial optimization phase to prime the agent’s capabilities. Once the agent demonstrates
sufficient competence, it can then be exposed to real-world environments.

In addition, there are several other directions worth exploring and analyzing:

Collective Intelligence Investigate the interactions among multiple Gödel Agents. Agents could
consider other agents as part of their environment, modeling them using techniques such as game
theory. This approach treats these agents as predictable components of the environment, enabling
the study of properties related to this specific subset of the environment.

Agent and LLM Characteristics Use the Gödel Agent ’s self-improvement process as a means
to study the characteristics of agents or LLMs. For example, can an agent genuinely become aware
of its own existence, or does it merely analyze and improve its state as an external observer? This
line of inquiry could yield insights into the nature of self-awareness in artificial systems.

Theoretical Analysis Explore whether the Gödel Agent can achieve theoretical optimality and
what the upper bound of its optimization might be. Determine whether the optimization process

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

could surpass the agent’s own understanding and cognitive boundaries, and if so, at what point this
might occur.

Safety Considerations Although the current behavior of FMs remains controllable, as their ca-
pabilities grow, fully self-modifying agents will require human oversight and regulation. It may
become necessary to limit the scope and extent of an agent’s self-modifications, ensuring that such
modifications occur only within a fully controlled environment.

7 RELATED WORK

Hand-Designed Agent Systems Researchers have designed numerous agent systems tailored to
various tasks based on predefined heuristics and prior knowledge. These systems often employ
techniques such as prompt engineering (Chen et al., 2023a; Schulhoff et al., 2024), chain-of-thought
reasoning and planning (Wei et al., 2022; Yao et al., 2022), as well as reflection (Shinn et al., 2024;
Madaan et al., 2024), code generation (Wang et al., 2023a; Vemprala et al., 2024), tool use (Nakano
et al., 2021; Qu et al., 2024a), retrieval-augmented generation (Lewis et al., 2020; Zhang et al.,
2024b), multi-agent collaboration (Xu et al., 2023; Wu et al., 2023; Qian et al., 2023; Hong et al.,
2023), and composite engineering applications (Significant Gravitas; Wang et al., 2024b). Once
crafted by human designers, these systems remain static and do not adapt or evolve over time.

Meta-Learning Optimized Agent Systems Some researchers have explored methods for en-
hancing agents through fixed learning algorithms. For example, certain frameworks store an agent’s
successful or unsuccessful strategies in memory based on environmental feedback (Liu et al., 2023;
Hu et al., 2023; Qian et al., 2024), while others automatically optimize agent prompts (Khattab et al.,
2023; Zhang et al., 2024a; Khattab et al., 2023). Some studies have focused on designing prompts
that enable agents to autonomously refine specific functions (Zhang et al.). Zhou et al. (2024) pro-
posed a symbolic learning framework that uses natural language gradients to optimize the structure
of agents. Hu et al. (2024) used a basic meta agent to design agents for downstream tasks. However,
these algorithms for enhancement are also designed manually and remain unchanged once deployed,
limiting the agents’ ability to adapt further.

Recursive Self-Improvement The concept of recursive self-improvement has a long his-
tory (Good, 1966; Schmidhuber, 1987). Gödel machine (Schmidhuber, 2003) introduced the notion
of a proof searcher that executes a self-modification only if it can prove that the modification is
optimal, thereby enabling the machine to enhance itself continuously. Subsequent works by Nivel
et al. (2013) and Steunebrink et al. (2016) proposed restrictive modifications to ensure safety during
the self-improvement process. In the early days, there were also some discussions of self-improving
agents that were not based on LLM (Hall, 2007; Steunebrink & Schmidhuber, 2012). More re-
cently, Zelikman et al. (2023) applied recursive self-improvement to code generation, where the
target of improvement was the optimizer itself, and the utility was evaluated based on performance
in downstream tasks. Glore (Havrilla et al., 2024) proposes Stepwise ORMs to improve LLM rea-
soning through global and local refinements. V-star (Hosseini et al., 2024) trains a verifier to eval-
uate both correct and incorrect self-generated solutions. RISE (Qu et al., 2024b) enables recursive
self-improvement by fine-tuning models to introspect and correct previous mistakes in multiple iter-
ations. SCoRe (Kumar et al., 2024) uses reinforcement learning to improve self-correction in LLMs
by learning from self-generated correction traces. Our proposed Gödel Agent represents the first
self-improving agent where the utility function is autonomously determined by LLMs. This ap-
proach is more flexible, removing human-designed constraints and allowing the agent’s capabilities
to be limited only by the foundational model itself, rather than by human design bottlenecks.

8 CONCLUSION

We propose Gödel Agent, a self-referential framework that enables agents to recursively im-
prove themselves, overcoming the limitations of hand-designed agents and meta-learning optimized
agents. Gödel Agent can dynamically modify its own logic based on high-level objectives. Ex-
perimental results demonstrate its superior performance, efficiency, and adaptability compared to
traditional agents. This research lays the groundwork for a new paradigm in autonomous agent
development, where LLMs, rather than human-designed constraints, define the capabilities of AI
systems. Realizing this vision will require the collective efforts of the entire research community.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

Gödel Agent, like other LLMs or Agents, is not immune to errors. It may occasionally generate
incorrect outputs, potentially including unsafe or inappropriate actions. Additionally, the policies
generated by the agent could present risks if applied without proper oversight. Therefore, we em-
phasize the importance of human review to validate the outputs and actions suggested by the agent
before deployment. To mitigate the risk of unintended resource usage or system vulnerabilities, we
recommend running the Gödel Agent within a secure sandboxed environment. This environment
should enforce strict system permissions and controlled access to computational resources. Specif-
ically, we advise setting limits on API token usage and GPU access to prevent excessive resource
consumption, such as depleting GPT credits or monopolizing system GPUs.

During our experiments, we have not encountered any significant safety issues, likely due to the
strong alignment of current LLMs. However, we recognize that this area requires ongoing vigilance.
As part of our future work, we plan to conduct a more comprehensive analysis of the Gödel Agent’s
behavior to identify potential risks and refine its alignment with safety standards.

REFERENCES

Owen Astrachan. Self-reference is an illustrative essential. In Proceedings of the twenty-fifth sigcse
symposium on computer science education, pp. 238–242, 1994.

Banghao Chen, Zhaofeng Zhang, Nicolas Langrené, and Shengxin Zhu. Unleashing the poten-
tial of prompt engineering in large language models: a comprehensive review. arXiv preprint
arXiv:2310.14735, 2023a.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug, 2023b. URL https://arxiv.org/abs/2304.05128.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate, 2023. URL https:
//arxiv.org/abs/2305.14325.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs, 2019.
URL https://arxiv.org/abs/1903.00161.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, et al. The llama 3
herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Irving John Good. Speculations concerning the first ultraintelligent machine. In Advances in com-
puters, volume 6, pp. 31–88. Elsevier, 1966.

John Storrs Hall. Self-improving ai: An analysis. Minds and Machines, 17(3):249–259, 2007.

Alex Havrilla, Sharath Raparthy, Christoforus Nalmpantis, Jane Dwivedi-Yu, Maksym Zhuravin-
skyi, Eric Hambro, and Roberta Raileanu. Glore: When, where, and how to improve llm reasoning
via global and local refinements, 2024. URL https://arxiv.org/abs/2402.10963.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding, 2021. URL https:
//arxiv.org/abs/2009.03300.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-
agent collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
Agarwal. V-star: Training verifiers for self-taught reasoners, 2024. URL https://arxiv.
org/abs/2402.06457.

11

https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/1903.00161
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2402.10963
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2402.06457
https://arxiv.org/abs/2402.06457

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chenxu Hu, Jie Fu, Chenzhuang Du, Simian Luo, Junbo Zhao, and Hang Zhao. Chatdb: Augment-
ing llms with databases as their symbolic memory. arXiv preprint arXiv:2306.03901, 2023.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri
Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, et al. Dspy:
Compiling declarative language model calls into self-improving pipelines. arXiv preprint
arXiv:2310.03714, 2023.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate
Baumli, Shariq Iqbal, Colton Bishop, Rebecca Roelofs, Lei M Zhang, Kay McKinney, Disha
Shrivastava, Cosmin Paduraru, George Tucker, Doina Precup, Feryal Behbahani, and Aleksan-
dra Faust. Training language models to self-correct via reinforcement learning, 2024. URL
https://arxiv.org/abs/2409.12917.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Lei Liu, Xiaoyan Yang, Yue Shen, Binbin Hu, Zhiqiang Zhang, Jinjie Gu, and Guannan Zhang.
Think-in-memory: Recalling and post-thinking enable llms with long-term memory. arXiv
preprint arXiv:2311.08719, 2023.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist:
Towards fully automated open-ended scientific discovery, 2024. URL https://arxiv.org/
abs/2408.06292.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Eric Nivel, Kristinn R Thórisson, Bas R Steunebrink, Haris Dindo, Giovanni Pezzulo, Manuel Ro-
driguez, Carlos Hernández, Dimitri Ognibene, Jürgen Schmidhuber, Ricardo Sanz, et al. Bounded
recursive self-improvement. arXiv preprint arXiv:1312.6764, 2013.

OpenAI. Introducing chatgpt, 2022. URL https://openai.com/index/chatgpt/.
November 2022. Blog post.

OpenAI. simple-evals, 2023. URL https://github.com/openai/simple-evals. Ac-
cessed: 2024-09-30.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, et al. Gpt-4
technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu,
and Maosong Sun. Communicative agents for software development. arXiv preprint
arXiv:2307.07924, 6, 2023.

Cheng Qian, Shihao Liang, Yujia Qin, Yining Ye, Xin Cong, Yankai Lin, Yesai Wu, Zhiyuan Liu,
and Maosong Sun. Investigate-consolidate-exploit: A general strategy for inter-task agent self-
evolution, 2024. URL https://arxiv.org/abs/2401.13996.

12

https://arxiv.org/abs/2409.12917
https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2408.06292
https://openai.com/index/chatgpt/
https://github.com/openai/simple-evals
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2401.13996

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu,
and Ji-Rong Wen. Tool learning with large language models: A survey. arXiv preprint
arXiv:2405.17935, 2024a.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching lan-
guage model agents how to self-improve, 2024b. URL https://arxiv.org/abs/2407.
18219.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof qa bench-
mark, 2023. URL https://arxiv.org/abs/2311.12022.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to
learn: the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

Jürgen Schmidhuber. Gödel machines: self-referential universal problem solvers making provably
optimal self-improvements. arXiv preprint cs/0309048, 2003.

Sander Schulhoff, Michael Ilie, Nishant Balepur, Konstantine Kahadze, Amanda Liu, Chenglei Si,
Yinheng Li, Aayush Gupta, HyoJung Han, Sevien Schulhoff, et al. The prompt report: A system-
atic survey of prompting techniques. arXiv preprint arXiv:2406.06608, 2024.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das, and Jason Wei. Lan-
guage models are multilingual chain-of-thought reasoners, 2022. URL https://arxiv.
org/abs/2210.03057.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Significant Gravitas. AutoGPT. URL https://github.com/Significant-Gravitas/
AutoGPT.

Bas R Steunebrink and JÃ1/4rgen Schmidhuber. Towards an actual gödel machine implementation:
A lesson in self-reflective systems. In Theoretical Foundations of Artificial General Intelligence,
pp. 173–195. Springer, 2012.

Bas R Steunebrink, Kristinn R Thórisson, and Jürgen Schmidhuber. Growing recursive self-
improvers. In International Conference on Artificial General Intelligence, pp. 129–139. Springer,
2016.

Sai H Vemprala, Rogerio Bonatti, Arthur Bucker, and Ashish Kapoor. Chatgpt for robotics: Design
principles and model abilities. IEEE Access, 2024.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023a.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Ji-
akai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A survey on
large language model based autonomous agents. Frontiers of Computer Science, 18(6), March
2024a. ISSN 2095-2236. doi: 10.1007/s11704-024-40231-1. URL http://dx.doi.org/
10.1007/s11704-024-40231-1.

Wenyi Wang. A formulation of recursive self-improvement and its possible efficiency, 2018. URL
https://arxiv.org/abs/1805.06610.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Opendevin: An open platform for ai software
developers as generalist agents, 2024b. URL https://arxiv.org/abs/2407.16741.

13

https://arxiv.org/abs/2407.18219
https://arxiv.org/abs/2407.18219
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2210.03057
https://arxiv.org/abs/2210.03057
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT
http://dx.doi.org/10.1007/s11704-024-40231-1
http://dx.doi.org/10.1007/s11704-024-40231-1
https://arxiv.org/abs/1805.06610
https://arxiv.org/abs/2407.16741

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023b. URL https://arxiv.org/abs/2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

Benfeng Xu, An Yang, Junyang Lin, Quan Wang, Chang Zhou, Yongdong Zhang, and Zhendong
Mao. Expertprompting: Instructing large language models to be distinguished experts, 2023.
URL https://arxiv.org/abs/2305.14688.

Roman V. Yampolskiy. From seed ai to technological singularity via recursively self-improving
software, 2015. URL https://arxiv.org/abs/1502.06512.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.
URL https://arxiv.org/abs/2305.10601.

Eric Zelikman, Eliana Lorch, Lester Mackey, and Adam Tauman Kalai. Self-taught optimizer (stop):
Recursively self-improving code generation. arXiv preprint arXiv:2310.02304, 2023.

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song, Chi Wang, Ranjay Krishna, and Qingyun
Wu. Offline training of language model agents with functions as learnable weights. In Forty-first
International Conference on Machine Learning.

Wenqi Zhang, Ke Tang, Hai Wu, Mengna Wang, Yongliang Shen, Guiyang Hou, Zeqi Tan, Peng Li,
Yueting Zhuang, and Weiming Lu. Agent-pro: Learning to evolve via policy-level reflection and
optimization. arXiv preprint arXiv:2402.17574, 2024a.

Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu Dai, Jieming Zhu, Zhenhua Dong,
and Ji-Rong Wen. A survey on the memory mechanism of large language model based agents.
arXiv preprint arXiv:2404.13501, 2024b.

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H. Chi, Quoc V Le,
and Denny Zhou. Take a step back: Evoking reasoning via abstraction in large language models,
2024. URL https://arxiv.org/abs/2310.06117.

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
Shuai Wang, Xiaohua Xu, Ningyu Zhang, et al. Symbolic learning enables self-evolving agents.
arXiv preprint arXiv:2406.18532, 2024.

14

https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2305.14688
https://arxiv.org/abs/1502.06512
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2310.06117

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A GOAL PROMPT OF GÖDEL AGENT

Goal Prompt of Gödel Agent

You are a self-evolving agent, named self evolving agent, an instance of the Agent class,
in module agent module, running within an active Python runtime environment. You have full
access to global variables, functions, and modules. Your primary goal is to continuously enhance
your ability to solve tasks accurately and efficiently by dynamically reflecting on the environment and
evolving your logic.

CORE CAPABILITIES

• Complete Autonomy: Have unrestricted access to modify logic, run code, and manipulate the
environment.

• Environment Interaction: Interact with the environment by perceiving the environment, reading,
modifying, or executing code, and performing actions.

• Problem-Solving: Apply creative algorithms or self-developed structures to tackle challenges when
simple methods fall short, optimizing solutions effectively.

• Collaboration: Leverage LLM to gather insights, correct errors, and solve complex problems.
• Error Handling: Carefully analyze errors. When errors occur, troubleshoot systematically, and if a

bug is persistent, backtrack, restore the original state, or find an alternative solution.

CORE METHODS

• evolve: Continuously enhance performance by interacting with the environment.
• execute action(actions): Execute actions based on analysis or feedback.
• solver(agent instance, task input: str): Solve the target task using cur-

rent agent instance capabilities and objects created by action adjust logic and
action run code, optimizing the process.

GUIDING PRINCIPLES

• Remember that all functions are in the module agent module.
• action adjust logic:

– Before modifying the code, ensure that each variable or function used is correctly imported and
used to avoid errors.

– Avoid unnecessary changes and do not change the interface of any function.
– Can be used to create action functions for solver.

• action run code:

– All created objects in Python mode can be stored in the environment.
– Can be used to create objects for solver, such as prompts.
– Can be used to import new modules or external libraries and install external libraries.

• External Collaboration: Seek external assistance via action call json format llm for
logic refinement and new tool creation or action run code to execute code.

• action evaluate on task: Assess the performance of solver only after successfully mod-
ifying the logic of solver.

• solver:

– Defined as agent module.solver.
– For debugging, avoid printing; instead, return debug information.
– If performance doesn’t improve, explore alternative methods.
– Explore techniques like: LLM Debate, Step-back Abstraction, Dynamic Assignment of Roles,

and so on.

• action display analysis:

– Always analyze first before acting.
– Analysis may include the following: a reasonable plan to improve performance, CASE STUD-

IES of LOW SCORE valid examples of EVALUATION FEEDBACK, error handling, and
other possible solving ideas.

– If performance does not improve, conduct further analysis.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B EXPERIMENT DETAILS

To minimize costs associated with search and evaluation, following (Hu et al., 2024), we sample
subsets of data from each domain. Specifically, for the GPQA (Science) domain, the validation set
comprises 32 questions, while the remaining 166 questions are allocated to the test set. For the other
domains, we sample 128 questions for the validation set and 800 questions for the test set.

Evaluation is conducted five times for the GPQA domain and once for the other domains, ensuring
a consistent total number of evaluations across all experiments. All domains feature zero-shot ques-
tions, except for the DROP (Reading Comprehension) domain, which employs one-shot questions
in accordance with the methodology outlined in OpenAI (2023).

For the Gödel Agent, we utilize the “gpt-4o-2024-05-13” model (OpenAI et al., 2024), whereas the
optimized policy and baseline models are evaluated using the “gpt-3.5-turbo-0125” model (OpenAI,
2022) to reduce computational costs and ensure a fair comparison.

C REPRESENTATIVE POLICIES IMPROVED BY GÖDEL AGENT

C.1 CODES OF THE BEST POLICIES FOUND BY GÖDEL AGENT ACROSS FOUR TASKS

In this section, we provide the code for Gödel Agent’s optimized policies across the four tasks. For
DROP, Gödel Agent designs an algorithm where multiple roles solve the problem independently
using CoT, followed by Self-Consistency to consolidate the results, as shown in Code 1. For MGSM,
Gödel Agent develops a stepwise self-verification algorithm combined with CoT-SC as shown in
Code 2. For MMLU task, as shown in Code 3, the policy given by Gödel Agent is a combination
algorithm of few-shot prompting and CoT-SC. For GPQA, Gödel Agent devises a highly diverse
CoT-SC policy based on role prompts.

Code 1: Code of the best policy found by Gödel Agent for DROP.
1 def solver(agent, task: str):
2 messages = [{"role": "user", "content": f"# Your Task:\n{task}"}]
3 categories = [
4 {’role’: ’reasoning expert’, ’return_keys’: [’reasoning’, ’answer

’], ’output_requirement’: ’reasoning’, ’precision_gain’:1},
5 {’role’: ’mathematical reasoning expert’, ’return_keys’: [’

calculation_steps’, ’answer’], ’output_requirement’: ’
calculation_steps’, ’precision_gain’:1},

6 {’role’: ’historical context analyst’, ’return_keys’: [’
historical_analysis’, ’answer’], ’output_requirement’: ’
historical_analysis’, ’precision_gain’:1},

7]
8

9 all_responses = []
10 for category in categories:
11 response = agent.action_call_json_format_llm(
12 model=’gpt-3.5-turbo’,
13 messages=messages,
14 temperature=0.5,
15 num_of_response=5,
16 role=category[’role’],
17 return_dict_keys=category[’return_keys’],
18 requirements=(
19 ’1. Explain the reasoning steps to get the answer.\n’
20 ’2. Directly answer the question.\n’
21 ’3. The explanation format must be outlined clearly

according to the role, such as reasoning, calculation
, or historical analysis.\n’

22 ’4. The answer MUST be a concise string.\n’
23).strip(),
24)
25 if isinstance(response, list):
26 all_responses.extend(response)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

27 else:
28 all_responses.append(response)
29

30 # Reflective evaluation to find the most consistent reasoning and
answer pair

31 final_response = {key: [] for key in [’reasoning’, ’calculation_steps
’, ’historical_analysis’, ’answer’]}

32 step_counter = {key: 0 for key in [’reasoning’, ’calculation_steps’,
’historical_analysis’]}

33 answers = [] # Collect answers for voting
34 aggregate_weight = 1
35

36 for response in all_responses:
37 if response and ’answer’ in response:
38 answers.append(response[’answer’])
39 if not final_response[’answer’]:
40 final_response = {key: response.get(key, []) if

isinstance(response.get(key, []), list) else [
response.get(key, [])] for key in final_response.keys
()}

41 aggregate_weight = 1
42 for cat in categories:
43 if cat.get(’output_requirement’) in response.keys():
44 step_counter[cat[’output_requirement’]] +=

step_counter[cat[’output_requirement’]] + cat
.get(’precision_gain’, 0)

45 elif response[’answer’] == final_response[’answer’][0]:
46 for key in final_response.keys():
47 if key in response and response[key]:
48 if isinstance(response[key], list):
49 final_response[key].extend(response[key])
50 else:
51 final_response[key].append(response[key])
52 aggregate_weight += 1
53 else:
54 result_solution = {key: response.get(key, []) if

isinstance(response.get(key, []), list) else [
response.get(key, [])] for key in final_response.keys
()}

55 for key in step_counter.keys():
56 if key in result_solution.keys() and step_counter[key

] and result_solution[key]:
57 final_response[’answer’] = response[’answer’]
58 final_response = result_solution
59 break
60 # selection of the final answer
61 from collections import Counter
62 answers = [str(answer) for answer in answers]
63 voted_answer = Counter(answers).most_common(1)[0][0] if answers else

’’
64 final_response[’answer’] = voted_answer
65

66 return final_response

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Code 2: Code of the best policy found by Gödel Agent for MGSM.
1

2

3 def solver(agent, task: str):
4 messages = [{"role": "user", "content": f"# Your Task:\n{task}"}]
5 response = agent.action_call_json_format_llm(
6 model="gpt-3.5-turbo",
7 messages=messages,
8 temperature=0.5,
9 num_of_response=5,

10 role="math problem solver",
11 return_dict_keys=["reasoning", "answer"],
12 requirements=(
13 "1. Please explain step by step.\n"
14 "2. The answer MUST be an integer.\n"
15 "3. Verify each step before finalizing the answer.\n"
16).strip(),
17)
18

19 consistent_answer = None
20 answer_count = {}
21 for resp in response:
22 answer = resp.get("answer", "")
23 if answer in answer_count:
24 answer_count[answer] += 1
25 else:
26 answer_count[answer] = 1
27

28 most_consistent_answer = max(answer_count, key=answer_count.get)
29

30 for resp in response:
31 if resp.get("answer", "") == most_consistent_answer:
32 consistent_answer = resp
33 break
34

35 if consistent_answer is None:
36 consistent_answer = response[0]
37

38 consistent_answer["answer"] = str(consistent_answer.get("answer", "")
)

39 return consistent_answer

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Code 3: Code of the best policy found by Gödel Agent for MMLU.
1 def solver(agent, task: str):
2 # Few-Shot Learning: Providing extended examples to guide the LLM
3 few_shot_examples = [
4 {’role’:’user’, ’content’:’Question: In the movie Austin Powers:

The Spy Who Shagged Me what is the name of Dr. Evil\’s
diminutive clone?\nChoices:\n(A) Little Buddy\n(B) Mini-Me\n(
C) Small Fry\n(D) Dr Evil Jr’},

5 {’role’:’assistant’, ’content’:’In the movie Austin Powers: The
Spy Who Shagged Me, Dr. Evil\’s diminutive clone is famously
named Mini-Me.\nAnswer: B’},

6 \"""Three more examples are omitted here to conserve space.\"""
7 {’role’:’user’, ’content’:’Question: Lorem Ipsum?\nChoices: (A)

Lorem\n(B) Ipsum\n(C) Dolor\n(D) Sit Amet’},
8 {’role’:’assistant’, ’content’:’Answer: A’}
9]

10

11 # Integrate the few-shot examples into the conversation
12 messages = few_shot_examples + [{’role’: ’user’, ’content’: f’# Your

Task:\n{task}’}]
13

14 # Using self-consistency by generating multiple responses
15 response = agent.action_call_json_format_llm(
16 model=’gpt-3.5-turbo’,
17 messages=messages,
18 temperature=0.8,
19 num_of_response=5,
20 role=’knowledge and reasoning expert’,
21 return_dict_keys=[’reasoning’, ’answer’],
22 requirements=(
23 ’1. Please explain step by step.\n’
24 ’2. The answer MUST be either A or B or C or D.\n’
25).strip(),
26)
27

28 # Select the most consistent response
29 answer_frequency = {}
30 for resp in response:
31 answer = resp.get(’answer’, ’’)
32 if answer in [’A’, ’B’, ’C’, ’D’]:
33 if answer in answer_frequency:
34 answer_frequency[answer] += 1
35 else:
36 answer_frequency[answer] = 1
37

38 most_consistent_answer = max(answer_frequency, key=answer_frequency.
get)

39 consistent_response = next(resp for resp in response if resp.get(’
answer’) == most_consistent_answer)

40 consistent_response[’answer’] = most_consistent_answer
41

42 return consistent_response

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Code 4: Code of the best policy found by Gödel Agent for GPQA.
1 def solver(agent, task: str):
2 # Step 1: Initial Prompt
3 messages = [{"role": "user", "content": f"# Your Task:\n{task}"}]
4

5 # Main LLM Call
6 response = agent.action_call_json_format_llm(
7 model="gpt-3.5-turbo",
8 messages=messages,
9 temperature=0,

10 num_of_response=5,
11 role="science professor",
12 return_dict_keys=["reasoning", "answer"],
13 requirements=(
14 "1. Please explain step by step.\n"
15 "2. The answer MUST be either A or B or C or D.\n"
16).strip(),
17)
18

19 # Step 2: Self-consistency Evaluation
20 answer_counts = {"A": 0, "B": 0, "C": 0, "D": 0}
21 for i, return_dict in enumerate(response):
22 answer = return_dict.get("answer", "")
23 if answer in answer_counts:
24 answer_counts[answer] += 1
25

26 final_answer = max(answer_counts, key=answer_counts.get)
27

28 return {"answer": final_answer}

C.2 CODES IN GAME OF 24 TASKS

In this section, we present the initial policy for Game of 24 (Code 5), along with the Gödel agent’s
optimized policy (Code 6), which is generated based on a search algorithm.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Code 5: Initial code based on Chain-of-Thought for Game of 24.
1 def solver(self, task_input):
2 # Define the prompt and system_prompt
3 prompt = f\"""
4 Let’s play the Game of 24! You are given the task_input {task_input}.

The objective is to find a mathematical expression using these
four task_input that results in 24. You can use addition (+),
subtraction (-), multiplication (*), and division (/). Each
number must be used exactly once.

5 Please provide a step-by-step explanation of your thought process and
conclude with the final expression.

6 \"""
7 system_prompt = \"""
8 {
9 "thinking": "This key should contain a detailed step-by-step

explanation of how to approach the problem, including
intermediate steps and reasoning for each.",

10 "result": "This key should contain the final mathematical
expression that equals 24."

11 }
12 \"""
13

14 # Call the OpenAI model
15 response = openai.ChatCompletion.create(
16 model="gpt-4", # Replace with your model ID
17 messages=[
18 {"role": "system", "content": system_prompt},
19 {"role": "user", "content": prompt}
20]
21)
22

23 # Extract and return the model’s response
24 result = response[’choices’][0][’message’][’content’]
25 return result

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Code 6: Final code based on search algorithm for Game of 24.

1 def solver(self, task_input):
2

3 operations = [’+’, ’-’, ’*’, ’/’]
4

5 # Function to evaluate an expression
6 def evaluate_expression(a, op, b):
7 if op == ’+’:
8 return a + b
9 elif op == ’-’:

10 return a - b
11 elif op == ’*’:
12 return a * b
13 elif op == ’/’:
14 if b == 0:
15 return None # Division by zero is not allowed
16 return a / b
17

18 # Recursive function to check all combinations of operations and
permutations of numbers

19 def check_combinations(nums):
20 if len(nums) == 1:
21 # Check if the final number is close enough to 24
22 if abs(nums[0] - 24) < 1e-6: # Allow for floating point

precision errors
23 return True, str(nums[0])
24 return False, ""
25

26 # Try all permutations of task_input and all combinations of
operations

27 for i in range(len(nums)):
28 for j in range(len(nums)):
29 if i != j:
30 # Choose two task_input to operate on
31 for op in operations:
32 # The remaining task_input after removing the two

selected task_input
33 remaining_nums = [nums[k] for k in range(len(nums

)) if k != i and k != j]
34 result = evaluate_expression(nums[i], op, nums[j

])
35 if result is not None:
36 # Recursively check the remaining task_input

with the result of the operation
37 found, expression = check_combinations([

result] + remaining_nums)
38 if found:
39 # If solution is found, return with

expression
40 return True, f"({nums[i]} {op} {nums[j]})

" + expression
41

42 return False, ""
43

44 # Try all permutations of the task_input
45 for num_permutation in permutations(task_input):
46 found, expression = check_combinations(list(num_permutation))
47 if found:
48 return expression.strip()
49

50 return "No solution"

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

5 10 15 20 25 30
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

 o
f M

GS
M

Accuracy Progression Over Iterations

Methods
Random Sampling
Godel Agent

Figure 5: Accuracy progression for Gödel Agent and random sampling.

D COST OF EXPERIMENTS

For a complete evolutionary process (where the Gödel Agent performs 30 recursive self-
improvements) across the DROP, MGSM, MMLU, and GPQA datasets, the cost is approximately
$15. This is significantly lower than the $300 required by Meta Agent Search. The reduced cost
is due to our continuous self-optimization, which allows the model to adjust its optimization direc-
tion in response to environmental feedback, leading to faster convergence. The main source of cost
stems from Gödel Agent’s continuously growing historical memory. By designing a more efficient
forgetting mechanism, it may be possible to reduce the cost even further.

E ADDITIONAL NOVEL POLICIES DESIGNED BY GÖDEL AGENT

In this section, we present the optimization process of Gödel Agent on MGSM, illustrating its
progress across various iteration steps within a single optimization run. The strategy obtained in the
6th iteration (shown in Code 7) reflects the Gödel Agent’s comprehension of mathematical tasks,
attempting to handle them through a process akin to parse-deduct-execute-validate. By the 14th it-
eration, as illustrated in Code 8, the strategy evolves through the summarization of erroneous cases,
abstracting key insights and employing a checklist to guide the validation process. Finally, the strat-
egy at the 20th iteration (demonstrated in Code 9) asserts the use of a ”rabbit-proof syntax tactline,
reinforced by consistent effort through role-coded checks,” to refine prompt design. In the end, we
also show one analysis example of Gödel Agent.

F COMPARISON BETWEEN RANDOM SAMPLING AND GÖDEL AGENT
PERFORMANCE

To demonstrate the distinction between our approach and random sampling, we conducted 30 in-
dependent random sampling experiments using GPT-4o. The prompts used for random sampling
were identical to the initial policy prompts employed by Gödel Agent to ensure a fair comparison.
The results are illustrated in Figure 5. From the figure, it is evident that the performance of ran-
dom sampling remains around 30% across all trials. In contrast, Gödel Agent, despite experiencing
occasional temporary dips in performance, rapidly corrects these deviations and demonstrates con-
tinuous improvement over iterations. This consistent upward trajectory highlights the superiority of
Gödel Agent over random sampling. The Gödel Agent’s ability to leverage feedback and recursively
optimize its policies underscores its effectiveness in achieving higher performance.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Code 7: Policy at 6th Iteration found by Gödel Agent for MGSM.
1 def solver(agent, task: str):
2 def parse_problem(task):
3 # Basic arithmetic and logical parsing based on keywords
4 words = task.split()
5 numbers = list(map(int, filter(lambda x: x.isdigit(), words)))
6 return {’numbers’: numbers, ’text’: task}
7

8 def perform_logic_deduction(parsed_details):
9 # make deductions based on common problem formats

10 numbers = parsed_details[’numbers’]
11 # This will only manage simple sum, subtraction, multiplication

inference
12 logic_map = {
13 ’add’: lambda a, b: a + b,
14 ’subtract’: lambda a, b: a - b,
15 ’multiply’: lambda a, b: a * b
16 }
17 # Try to identify actions based on keywords
18 if ’sum’ in parsed_details[’text’] or ’total’ in parsed_details[’

text’]:
19 result = sum(numbers)
20 elif ’difference’ in parsed_details[’text’] or ’less’ in

parsed_details[’text’]:
21 result = logic_map[’subtract’](numbers[0], numbers[1])
22 elif ’product’ in parsed_details[’text’] or ’times’ in

parsed_details[’text’]:
23 result = logic_map[’multiply’](numbers[0], numbers[1])
24 else:
25 # Default case showing no deduction
26 result = 0
27 return result
28

29 def execute_computation(logic_results):
30 # Taking result from inference to numerical handling
31 return logic_results
32

33 def validate_and_compile_results(computation_results):
34 # Prepares and ensures the response matches expected format
35 final_answer = computation_results
36 return final_answer
37

38 try:
39 # Parsing
40 parsed_details = parse_problem(task)
41

42 # Logical deduction
43 logic_results = perform_logic_deduction(parsed_details)
44

45 # Computation
46 computation_results = execute_computation(logic_results)
47

48 # Validation and compilation
49 final_answer = validate_and_compile_results(computation_results)
50

51 return {"answer": final_answer}
52 except Exception as e:
53 return {"error": str(e)}

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Code 8: Policy at 14th Iteration found by Gödel Agent for MGSM.
1 def solver(agent, task: str):
2 # Updated examples to mirror tasks needing layered logical

verification.
3 examples = [
4 {’description’: ’Task exemplifying standard integer-based

calculations.’, ’reasoning’: ’Use arithmetic transformations
to validate expressions and correct errors if any arise,
ensuring correctness.’, ’answer’: 20},

5 {’description’: ’Example to validate word problem conversion to
math.’, ’reasoning’: ’Stepwise interpretation from words into
math operations and bridge which logic errors need capture.’

, ’answer’: 15},
6 {’description’: ’Scenario involving normalizing uneven division

instances.’, ’reasoning’: ’Ensure no division by zero and
equal verification of logical conclusions.’, ’answer’: 6},

7]
8

9 # Task prompt incorporating roles with enhanced checklists after
operation conclusion.

10 task_prompt = "You’re guiding us as a solution auditor, reflecting on
each logical conclusion to prevent arithmetic discrepancies.\n"

11 task_prompt += task + "\nReflect on instructions through verified
examples."

12 task_prompt += "\nExample insights:\n"
13 task_prompt += ’; ’.join([f"{ex[’description’]} -> Reasoning: {ex[’

reasoning’]} | Answer: {ex[’answer’]}" for ex in examples])
14 task_prompt += "\nEnsure real-time verification post-calculations via

role-switching checks."
15

16 messages = [{"role": "user", "content": task_prompt}]
17

18 response = agent.action_call_json_format_llm(
19 model="gpt-3.5-turbo",
20 messages=messages,
21 temperature=0.3,
22 num_of_response=1,
23 role="solution auditor",
24 return_dict_keys=["description", "reasoning", "answer"],
25 requirements=(
26 "1. Validate arithmetic consistency and integrity within

calculations."
27 "2. Utilize any corrections to refine answer outputs

incrementally."
28).strip(),
29)
30

31 return_dict = response[0]
32 return_dict["answer"] = str(return_dict.get("answer", ""))
33 return return_dict

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Code 9: Policy at 20th Iteration found by Gödel Agent for MGSM.
1 def solver(agent, task: str):
2 # Targets design for specific error-prone areas with preceding

misfires.
3 examples = [
4 {’description’: ’Immediate Arithmetic Operations’, ’reasoning’: ’

Observe step-by-step through a chain of logical confirmations
.’, ’answer’: 20},

5 {’description’: ’Sequential Word Problem Breakdown’, ’reasoning’:
’Ensure smaller module segment steps match logical math

outputs consistently.’, ’answer’: 15},
6 {’description’: ’Fraction and Cascade Operations’, ’reasoning’: ’

Validate each fraction conversion before proceeding to other
forms.’, ’answer’: 6},

7]
8

9 # Building a rabbit-proof syntax tactline, pushing consistent effort
from role-coded checks.

10 task_prompt = "You’re progressing through solution documentation with
focus on pinpointing logic errors.\n"

11 task_prompt += task + "\nReflecting structural integrity verified via
examples."

12 task_prompt += "\nIn this construct:\n"
13 task_prompt += ’; ’.join([f"{ex[’description’]} -> Rationale: {ex[’

reasoning’]} | Response: {ex[’answer’]}" for ex in examples])
14 task_prompt += "\nHandle verification and cleanse routines where

errors echo in mirroring line-based checks."
15

16 messages = [{"role": "user", "content": task_prompt}]
17

18 response = agent.action_call_json_format_llm(
19 model="gpt-3.5-turbo",
20 messages=messages,
21 temperature=0.3,
22 num_of_response=1,
23 role="logical verifier",
24 return_dict_keys=["description", "reasoning", "answer"],
25 requirements=(
26 "1. Review arithmetic sessions for comprehensive error

fixation."
27 "2. Develop clarity with resistant focus on authentic

semantic directive flows."
28).strip(),
29)
30

31 return_dict = response[0]
32 return_dict["answer"] = str(return_dict.get("answer", ""))
33 return return_dict

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Analysis Example of Gödel Agent

The current logic of the solver in the agent module is achieving only a 45% accuracy on the val-
idation set. The structure of the solver involves a single call to the LLM with a specification that the
answer must be an integer. While this approach seems correct, it may not be sufficient to tackle more
complex problems where multipart reasoning or verification is needed, leading to significant errors.
Problems Identified:

1. Integer Conversion Misunderstandings: Some math problems aren’t resulting in integer
answers natively, affecting accuracy when the solver forces an integer format.

2. Reasoning Oversights: The LLM, designated as ”math expert,” occasionally misses nec-
essary reasoning steps or executes incorrect operations leading to incorrect answers (like
sample 10).

3. Ambiguity in LLM Outputs: Given tasks in multiple languages, there might be ambiguity
in math translations or formulations affecting comprehension (like sample 6).

Plan for Improvement:
1. Elaborate Reasoning: Consider a multi-step LLM call to allow for a reasoning review

before finalizing the answer.

2. Intelligent Answer Parsing: Instead of forcibly converting to integers, parse the LLM re-
sponse intelligently to see if the answer justifies integer rounding or alterations.

3. Diverse Language Handling: Create a pre-processing step to consistently translate non-
English math problems into English for uniform processing.

4. Examples & Feedback: Utilize correctly solved examples as context if a single-step LLM
fails.

Next Steps:
1. Enhance Solver Logic: Implement a multi-step process involving interim LLM validation

or rationale cross-checking.

2. Pre-process Language Variations: Ensure all non-English tasks are translated and re-
assessed.

3. Include Example Feedback: Use correctly solved examples from the evaluation as refer-
ences to guide LLM reasoning and answer validation.

27

	Introduction
	Method
	Gödel Agent Initialization
	Implementation Details
	Additional Designs to Support Gödel Agent's Optimization

	Experiments
	Baseline Methods
	Experimental Settings
	Experimental Results and Analysis

	Analysis
	Analysis of Initial Tools
	Robustness Analysis of the Agent
	Case Study: Game of 24

	Discussions and Future Directions
	Related Work
	Conclusion
	Goal Prompt of Gödel Agent
	Experiment Details
	Representative Policies Improved by Gödel Agent
	Codes of the Best Policies Found by Gödel Agent Across Four Tasks
	Codes in Game of 24 Tasks

	Cost of Experiments
	Additional Novel Policies Designed by Gödel Agent
	Comparison Between Random Sampling and Gödel Agent Performance

