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Abstract

Intuitively, it is important for humans to lo-
calize themselves by understanding their sur-
roundings when navigating to a place, espe-
cially when the trajectory is long and complex.
Similarly, we believe that this kind of capa-
bility, which we call situational awareness, is
also crucial for developing better navigation
agents. This work aims to explore the situ-
ational awareness capability of current popu-
lar vision-language model (VLM) based nav-
igation agents in the context of vision-and-
language navigation (VLN). We contribute a
new dataset, the Situational Awareness Dataset
(SAD), comprised of around 100K 360-degree
panoramic images and corresponding instruc-
tions for this task. We then evaluate multiple
prominent VLMs including OpenAl ol, GPT-
40, Gemini 2.0 Flash, and Qwen2.5-VL on this
dataset. Our results show that the situational
awareness capability of these models is far be-
hind human performance, highlighting substan-
tial opportunities for progress and enhancement
in this field. We hope that this work will spark
future research to improve navigation agents
and VLM, particularly in their ability to pro-
cess panoramic image data effectively.

1 Introduction

Situational awareness is a broad concept referring
to the capability of perception, comprehension, and
projection of the elements in an environment (End-
sley, 1995). This capability is crucial for effective
decision-making in a variety of tasks, such as avi-
ation and healthcare. Within the realm of vision-
and-language navigation (VLN), we simplify this
concept to denote an agent’s capability to under-
stand its current position based on the observations
in the navigation. This understanding is typically
the initial step for navigation agents in assessing
their progress and making informed decisions. Al-
though fundamental, achieving situational aware-
ness still necessitates intricate spatial reasoning and

a nuanced understanding of language.

Recent advancements in large-scale vision-
language models (VLMs) have demonstrated great
potential across various vision-and-language tasks.
Applying these models to the task of vision-and-
language navigation in continuous environments
(i.e., VLN-CE task; Krantz et al., 2020) using
zero-shot learning has been a burgeoning area of
research. Despite this interest, the performance
of VLMs in this domain still lags far behind the
methods that employ supervised learning. For in-
stance, the state-of-the-art VLM-based method,
AO-Planner (Chen et al., 2024a), achieves a 22.4%
success rate on the RxR-CE dataset (Ku et al.,
2020), whereas the popular supervised learning
based method ETPNav (An et al., 2024) achieves
a 54.8% success rate. Several factors contribute to
this performance gap, with the situational aware-
ness capability of these models being a fundamen-
tal determinant of their navigation performance.
However, research on this capability within the
vision-and-language navigation field remains lim-
ited. One major obstacle is the scarcity of fine-
grained annotated data that aligns navigation in-
structions with their corresponding observations in
the ground-truth trajectories.

To address this issue, we introduce a new dataset,
the Situational Awareness Dataset (SAD), which
encompasses 100,000 panoramic images paired
with corresponding instructions designed to eval-
uate situational awareness capabilities (see Fig.1).
This dataset is constructed utilizing the RxR-CE
dataset through the Habitat simulator (Savva et al.,
2019; Szot et al., 2021; Puig et al., 2023). The
instructions in the dataset are available in three ty-
pologically diverse languages—English, Hindi, and
Telugu—to facilitate the examination of capabilities
within multilingual contexts. Incorporating 360-
degree panoramic images, the dataset captures an
agent’s observational perspective during navigation
activities. While this method intuitively enhances



Where am |?
What | am seeing corresponds
to which instruction?

5. Turn Slightly left and you can
see a table with a computer on
it, move towards it.

7. Move towards the table and
this is your destination.

/

2. Turn slightly right and you
can see a staircase right in front
of you.

1. You are facing towards a
glass door, turn slightly right and
move forward.

Figure 1: Example context that demonstrates the situational awareness task. The navigation agent takes as input
a 360-degree panoramic image and the whole instruction. The agent is required to understand the surrounding
observations and language instructions, then predict which sentence in the instruction the current observation

corresponds to.

situational representation, it simultaneously intro-
duces unique challenges for models, such as pro-
cessing the extended field of view and managing
significant overlaps within the images. Consid-
ering the limited availability of panoramic image
datasets, SAD also stands to contribute to research
advancements in this domain.

We conducted an evaluation of several prominent
commercial and open-source vision-language mod-
els to assess their situational awareness capabilities
using the SAD dataset. The models tested include
OpenAl ol (OpenAl, 2024b), GPT-40 (OpenAl,
2024a), Gemini 2.0 Flash (DeepMind, 2025), and
Qwen2.5-VL-7B/72B-Instruct (QwenTeam, 2025).
These models are good representatives of the cur-
rent state-of-the-art in both commercial and open-
source VLM fields. Our findings reveal that even
the most advanced model, OpenAl o1, significantly
trails human accuracy, achieving a performance of
only 33% compared to humans’ 87% (see §3.2).
This highlights a substantial opportunity for en-
hancing performance in this area.

To summarize our contributions, we introduce
the new task of situational awareness capability
evaluation in vision-and-language navigation and
contribute a corresponding dataset SAD. We then
do a comprehensive evaluation of several most ad-
vanced VLMs on the proposed dataset. All datasets
and evaluation codes are provided in the supple-
mentary materials and will be made publicly avail-

able in the near future. We anticipate that our work
will contribute to advancing research focused on
improving navigation agents and the development
of vision-language models, particularly in their
ability to process panoramic images and perform
spatial reasoning.

2 Dataset and Evaluation Method

To evaluate an agent’s situational awareness ca-
pabilities, it is essential to have a dataset that
aligns navigation instruction words with observa-
tions from corresponding positions. Regrettably,
such a dataset does currently not exist. To address
this gap, we have developed a dataset named the
Situational Awareness Dataset (SAD) specifically
for this purpose. In order to streamline the eval-
uation process, we concentrate on the alignment
between instructions and observations at the sen-
tence level. This focus means we only assess the
correspondence between the conclusion of each
instruction sentence and its associated observation.

2.1 Dataset Construction

We develop the Situational Awareness Dataset
(SAD) using the Habitat simulator by leverag-
ing the existing RxR-CE dataset. The RxR-CE
dataset is a large-scale multilingual vision-and-
language navigation resource featuring 126,000
navigation instructions and demonstrations within
Matterport3D (Chang et al., 2017) and Habitat en-



Languages | Train Val Test

English | 10,609 1,210 1,904
Hindi 1,642 202 381

Telugu 10,016 1,141 2,175

Table 1: The number of instances for the three languages
in the proposed SAD dataset.

| #samples ACC_INSTR ACC_SENT
Human | 200 65.00 87.14

Table 2: Human’s performance (%) on our constructed
SAD dataset.

vironments. To construct SAD, we utilize both the
standard annotation task data and extended pose
trace data from the RxR-CE dataset. The annota-
tion task data includes essential components for
VLN, such as navigation instructions and refer-
ence paths. It also provides a "timed_instruction"
field, indicating the start and end times of words
or phrases in alignment with the recording. The
extended pose trace data offers snapshots detail-
ing the virtual camera parameters and field-of-view
from the annotators’ perspectives.

We load this dataset into the Habitat simulator
and calculate the camera poses and corresponding
timestamps based on the supplied camera extrinsic
matrix data. By extracting the timestamp of the
concluding word in each instruction sentence from
the "timed_instruction" data, we align these times-
tamps with the camera pose data, thereby obtaining
the corresponding observations within the Habitat.

For each position’s observation, we render a
panoramic RGB image composed of 12 RGB
sub-images captured from 12 different direc-
tions at equally spaced horizontal heading angles:
(0°,30°,...,330°). These sub-images are gener-
ated in three resolutions: 224 x 224, 480 x 480,
and 1024 x 1024. To simplify the task further, we
limit our focus to instructions containing a maxi-
mum of 10 sentences. More detailed information
about the dataset is provided in Table 1.

2.2 Evaluation Method

With the constructed dataset, we evaluate the sit-
uational awareness capability of agents through a
straightforward question-answering task. Given an
instruction and the corresponding panoramic ob-
servations, we pose the following question to the
agent: "Which sentence in the instruction does this

image correspond to the end of?" The agent must
predict a list of sentence indices that align with
each panoramic observation. Figure 1 provides an
example of the task.

We utilize two metrics to assess the agent’s per-
formance on this task: (1) Instruction-Level Accu-
racy (ACC_INSTR): this metric considers a pre-
diction correct if the agent’s predicted list exactly
matches the ground truth list; (2) Sentence-Level
Accuracy (ACC_SENT): this metric evaluates ac-
curacy based on individual sentences in the instruc-
tion. Each correct prediction associated with an
image contributes to the overall accuracy. These
criteria allow us to assess the effectiveness of the
agent’s situational awareness capabilities based on
its ability to align instructions with observations.

2.3 Dataset Quality Evaluation

To ensure the quality of the constructed dataset, we
conduct a human evaluation on the English subset.
We randomly sample 200 instances from the dataset
and have five individuals perform the same task as
described in the previous subsection (§2.2). The
results indicate an average instruction-level accu-
racy (ACC_INSTR) of 65% and a sentence-level
accuracy (ACC_SENT) of 87%. These findings
suggest that the dataset is of high quality and suit-
able for our proposed task, which involves evaluat-
ing the situational awareness capabilities of vision-
language model-based agents.

3 Experiments

3.1 Evaluation Settings

Dataset We utilize our constructed Situational
Awareness Dataset (SAD) for model evaluation.
We test the models across three language splits:
English, Hindi, and Telugu. For each example,
we limit the number of images to a maximum of
10 and randomly shuffle the input images. Each
panorama sub-image is evaluated at a resolution
of 224 x 224. Our preliminary experiments with
GPT-4o0 indicate that higher resolutions do not sig-
nificantly enhance performance while substantially
increasing test time. Further details are provided in
Appendix A.1.

Test Models We evaluate the following models
on the SAD dataset in a zero-shot setting. We run
each model three times and report the average per-
formance in each evaluation setting. All models
employ the technique of structured outputs. Specif-
ically, we force the model’s output to include the



\ English Hindi Telugu

| ACC_INSTR ACC_SENT  ACC_INSTR ACC_SENT  ACC_INSTR ACC_SENT
GPT-40 6.36 26.74 4.29 25.55 8.15 27.76
OpenAl ol 11.61 32.92 17.18 37.62 15.99 37.47
Gemini 2.0 Flash 6.99 32.13 9.51 35.79 771 32.17
Qwen2.5-VL-7B-Instruct 2.84 18.25 429 20.94 3.97 21.53
Qwen2.5-VL-72B-Instruct 3.68 20.49 5.52 24.61 5.34 22.58

Table 3: Evaluation results for all the tested models on the SAD dataset. ACC_INSTR denotes the instruction-level
accuracy, and ACC_SENT denotes the sentence-level accuracy. All the results are averaged over three runs and

reported in percentage.

reasoning steps for each image along with the final
answer, formatted in JSON. Further details about
the prompts we use are provided in Appendix A.2.

(1) GPT-40-2024-08-06 (OpenAl, 2024a), Ope-
nAl’s versatile flagship model that accepts input
any combination of text, audio, image, and video.

(2) OpenAl 01-2024-12-17 (OpenAl, 2024b),
OpenAl’s reasoning model, trained with reinforce-
ment learning and employing chain-of-thought to
excel at complex reasoning tasks.

(3) Gemini 2.0 Flash (DeepMind, 2025), Deep-
Mind’s latest large language model, offering a 1
million token context window and built for the era
of Agents.

(4) Qwen2.5-VL-7B-Instruct and Qwen2.5-VL-
72B-Instruct (QwenTeam, 2025), Qwen’s latest
open-source flagship vision-language models, ca-
pable of functioning as a visual agent and under-
standing long videos.

3.2 Evaluation Results

Table 3 presents the evaluation results of the tested
models on the SAD dataset. The approximate ac-
curacy estimates for random guesses are 0.02%
and 14.29%, respectively.! In terms of exact
match instruction-level accuracy (ACC_INSTR),
all models underperform. Among them, OpenAl
ol emerges as the leader, outperforming others by
approximately S50levels, while the open-sourced
Qwen2.5-VL-7B/72B-Instruct models perform the
poorest. This suggests that the OpenAl ol model
demonstrates a superior comprehensive reasoning
capability in understanding complete trajectories
compared to the other models. For sentence-level
accuracy (ACC_SENT), OpenAl ol once again
achieves the highest performance, though Gem-
ini 2.0 Flash closely follows. The Qwen2.5-VL-
7B/72B-Instruct models still lag significantly be-

'These values are calculated as 1/7! x 100% ~ 0.02%

and 1/7 x 100% = 14.29%, where 7 represents the average
number of images per example.

hind, showing a marked gap with the other models.
Furthermore, the evaluation across different lan-
guage splits reveals no substantial performance dif-
ferences, suggesting consistent model capabilities
across various languages.

4 Related Work

Situational Awareness The concept of situa-
tional awareness is extensively studied in the field
of cognitive science, psychology, human factors,
aviation, healthcare, and more (Munir et al., 2022;
Endsley, 2021; Stanton et al., 2001). Recently,
Berglund et al. (2023) studies the emergence of
situational awareness in large language models
(LLMs). We further specify this concept in the
context of VLN task in this work.

VLN with LLMs and VLMs The VLN task is a
representative research topic in the field of embod-
ied Al, and how to make use of LLMs and VLMs to
solve this task has attracted much attention (Zhou
et al., 2024; Chen et al., 2024b; Long et al., 2024;
Zhang et al., 2024; Lin et al., 2024; Chen et al.,
2023; Cai et al., 2024; Chen et al., 2024a). How-
ever, little work studies the fundamental situational
awareness capability of these models. This work
aims to explore this subject.

5 Conclusion

In this work, we examine the essential capability
of situational awareness in VLM-based navigation
agents within the VLN task. We introduce the SAD
dataset and evaluate five leading VLMs using this
dataset. Our findings indicate that the situational
awareness capability of these models remains lim-
ited, potentially affecting their effectiveness in nav-
igation tasks. We hope that our dataset and evalua-
tion results will encourage future research aimed at
developing improved navigation agents and VLMs.



6 Limitations

Our work has two main limitations. First, the for-
mat of the evaluation is a straightforward question-
answering task, which is not able to be directly
applied to evaluate the agents trained with super-
vised learning. Second, we did not check whether
a VLM-based navigation agent’s performance in
the VLN-CE task can be improved by enhancing
the situational awareness capability. We will add
this experiment in the future.

Use of AI Assistance We used Al assistance
tools (ChatGPT and GitHub Copilot) to aid in
rewriting code and text. All Al-generated content
was thoroughly reviewed and verified by the au-
thors. Al was not used to generate new research
ideas or original findings; rather, it served as a
support tool to improve clarity, efficiency, and or-
ganization. In accordance with ACL guidelines,
our use of Al aligns with permitted assistance cate-
gories, and we have transparently reported all rel-
evant usage in this paper. While Al contributed
to enhancing the quality of the work, no direct re-
search outputs are the result of Al assistance.
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A Experiments

A.1 Effects of Different Image Resolutions

We study the effects of different image resolutions
on the performance of GPT-40 on our proposed
SAD dataset. We evaluate the model on three dif-
ferent image resolutions: 224 x 224, 480 x 480,
and 1024 x 1024. The results are shown in Ta-
ble 4. We find that the higher resolutions do not
bring significant improvement in the performance
while significantly increasing the test time. There-
fore, we use the image resolution of 224 x 224 for
evaluation in the main experiments.

Image Resolution ‘ ACC_Instr ACC_Sent Inf. Time

224 x 224 6.36 26.74 30min
480 x 480 7.36 26.78 52min
1024 x 1024 6.93 26.85 20.5h

Table 4: Effects of image resolutions on the performance
of GPT-40 on our proposed SAD dataset.

A.2  Prompts

We present the prompts we use for GPT-40 in the
following code snippet (see Listing 1). It contains
the system prompt and the user prompt. We also
use the technique of structured outputs to force the
model to output the reasoning steps and answers in
a json format. We use the same prompts for all the
models we evaluate in this work.



class SingleImageStep(pydantic.BaseModel):

|

2 explanation: str

3 answer: int

4

5

6 class SituationalAwarenessOutput (pydantic.BaseModel):
7 number_of_input_images: int

8 reasoning_steps: list[SingleImageStep]

9 answer: list[int]

11 SYSTEM_PROMPT = inspect.cleandoc(

12 """You are an agent navigating through a virtual environment according to
13 the given instruction. But now your task is not to navigate, but to predict
14 the positions of the given observation images in the corresponding

15 instruction. You would be given a set of images and an corresponding

16 instruction. The given images are the RGB {image_type} observation of your
17 current position. Each panoramic image is comprised of 12

18 sub-egocentric-images, where each sub-image corresponds to a different

19 direction. You need to think of where the position is in the instruction.
20 The entire instruction is comprised of multiple sub-instructions. Each

21 sub-instruction starts with '#' followed by a number, which is the index of
22 the sub-instruction. Each position is the end of each sub-instruction. So
23 your task is to predict at the end of which sub-instruction you could see
24 the current given image. Note that the number of input images are strictly
25 equal to the number of sub-instructions. Moreover, There will not be two
26 images corresponding to the same position. Your final answer should be a
27 list of integers, where each integer represents that image's positions in
28 the instruction. For example, "[2, 3, 1, 41" means you would observe the
29 first input image at the end of the second sub-instruction, the second

30 input image corresponds to the end of the third sub-instruction, the third
31 input image corresponds to the end of the first sub-instruction, and the
32 fourth input image corresponds to the end of the fourth sub-instruction.

33 e

3 ).replace("\n", " ")

35

36 USER_PROMPT = inspect.cleandoc(

37 """Given the following {num_input_images} images, please predict their

38 observation positions in the instruction. The instruction is:

39 {instruction_with_index}"""

40 ).replace(”"\n", " ")

41

42

43 response = client.beta.chat.completions.parse(

44 model=test_model,

45 messages=[

46 {

47 "role”: "system”,

48 "content": [

49 {

50 "type": "text",

51 "text"”: SYSTEM_PROMPT.format(image_type=image_type),

52 }

53 1,

54 3,

55 {

56 "role": "user",

57 "content”: [

58 {

59 "type": "text",

60 "text"”: USER_PROMPT. format (

61 num_input_images=len(multiple_images_input),

62 instruction_with_index=instruction_with_index,

63 )7

64 3

65 1

66 + multiple_images_input,

67 }y

68 i

69 response_format=SituationalAwarenessOutput,



70 )
Listing 1: Prompts for GPT-40 and ol models.
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