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ABSTRACT

Probabilistic, hierarchically coherent forecasting is a key problem in many practical
forecasting applications – the goal is to obtain coherent probabilistic predictions
for a large number of time series arranged in a pre-specified tree hierarchy. In this
paper, we present a probabilistic top-down approach to hierarchical forecasting that
uses a novel attention-based RNN model to learn the distribution of the proportions
according to which each parent prediction is split among its children nodes at any
point in time. These probabilistic proportions are then coupled with an independent
univariate probabilistic forecasting model for the root time series. The resulting
forecasts are naturally coherent, and provide probabilistic predictions over all time
series in the hierarchy. We experiment on several public datasets and demonstrate
significant improvements up to 27% on most datasets compared to state-of-the-art
probabilistic hierarchical models. Finally, we also provide theoretical justification
for the superiority of our top-down approach compared to traditional bottom-up
modeling.

1 INTRODUCTION

A central problem in multivariate forecasting is the need to forecast a large group of time series
arranged in a natural hierarchical structure, such that time series at higher levels of the hierarchy
are aggregates of time series at lower levels. For example, hierarchical time series are common in
retail forecasting applications (Fildes et al., 2019), where the time series may capture retail sales of
a company at different granularities such as item-level sales, category-level sales, and department-
level sales. In electricity demand forecasting (Van Erven and Cugliari, 2015), the time series may
correspond to electricity consumption at different granularities, starting with individual households,
which could be progressively grouped into city-level, and then state-level consumption time-series.
The hierarchical structure among the time series is usually represented as a tree, with leaf-level
nodes corresponding to time series at the finest granularity, while higher-level nodes represent
coarser-granularities and are obtained by aggregating the values from its children nodes.

Since businesses usually require forecasts at various different granularities, the goal is to obtain
accurate forecasts for time series at every level of the hierarchy. Furthermore, to ensure decision-
making at different hierarchical levels are aligned, it is essential to generate predictions that are
coherent (Hyndman et al., 2011) with respect to the hierarchy, that is, the forecasts of a parent
time-series should be equal to the sum of forecasts of its children time-series 1. Finally, to facilitate
better decision making, there is an increasing shift towards probabilistic forecasting (Berrocal et al.,
2010; Gneiting and Katzfuss, 2014); that is, the forecasting model should quantify the uncertainty in
the output and produce probabilistic predictions.

In this paper, we address the problem of obtaining coherent probabilistic forecasts for large-scale
hierarchical time series. While there has been a plethora of work on multivariate forecasting, there is
significantly limited research on multivariate forecasting for hierarchical time series that satisfy the
requirements of both hierarchical coherence and probabilistic predictions.

For example, there are numerous recent works on deep neural network-based multivariate forecasting
(Salinas et al., 2020; Oreshkin et al., 2019; Rangapuram et al., 2018; Benidis et al., 2020; Sen et al.,

1Note that this is a non-trivial constraint. For example, generating independent predictions for each time
series in the hierarchy using a standard multivariate forecasting model does not guarantee coherent predictions.
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2019), including probabilistic multivariate forecasting (Salinas et al., 2019; Rasul et al., 2021) and
even graph neural network(GNN)-based models for forecasting on time series with graph-structure
correlations (Bai et al., 2020; Cao et al., 2020; Yu et al., 2017; Li et al., 2017). However, none of
these works ensure coherent predictions for hierarchical time series.

On the other hand, several papers specifically address hierarchically-coherent forecasting (Hyndman
et al., 2016; Taieb et al., 2017; Van Erven and Cugliari, 2015; Hyndman et al., 2016; Ben Taieb and
Koo, 2019; Wickramasuriya et al., 2015; 2020; Mancuso et al., 2021; Abolghasemi et al., 2019).
Most of them are based on the idea of reconciliation. This involves a two-stage process where the
first stage generates independent (possibly incoherent) univariate base forecasts, and is followed by
a second “reconciliation” stage that adjusts these forecasts using the hierarchy structure, to finally
obtain coherent predictions. These approaches are usually disadvantaged in terms of using the
hierarchical constraints only as a post-processing step, and not during generation of the base forecasts.
Furthermore, none of these approaches can directly handle probabilistic forecasts.

To the best of our knowledge, the only prior work on hierarchically coherent probabilistic forecasting
are the proposals in Rangapuram et al. (2021) and Taieb et al. (2017). While Taieb et al. (2017) is a
two-stage reconciliation-based model for coherent probabilistic hierarchical forecasting, Rangapuram
et al. (2021) directly incorporates a differentiable reconciliation step as part of a deep neural network-
based training process (by projecting into a linear subspace that satisfies the hierarchical constraints).

In this paper, we present an alternate approach to deep probabilistic forecasting for hierarchical
time series, motivated by a classical method that has not received much recent attention: top-down
forecasting. The basic idea is to first model the top-level forecast in the hierarchy tree, and then
model the ratios or proportions according to how the top level forecasts should be distributed among
the children time-series in the hierarchy. The resulting predictions are naturally coherent. Early
top-down approaches were non-probabilistic, and were rather simplistic in terms of modeling the
proportions; for example, by obtaining the proportions from historical averages (Gross and Sohl,
1990), or deriving them from independently generated (incoherent) forecasts of each time-series
from another model (Athanasopoulos et al., 2009). In this paper, we showcase how modeling these
proportions more effectively as part of a deep, probabilistic, top-down approach can outperform
state-of-the-art probabilistic, hierarchically-coherent models.

Crucially, our proposed model (and indeed all top-down approaches for forecasting) relies on the
intuition that the top level time series in a hierarchy is usually much less noisy and less sparse, and
hence much easier to predict. Furthermore, it might be easier to predict proportions (that are akin to
scale-free normalized time-series) at the lower level nodes than the actual time series themselves.

Our approach to top-down probabilistic forecasting involves modeling the proportions with a single
end-to-end deep learning model that jointly forecasts the proportions along which each parent
time series is disaggregated among its children. We use a Dirichlet distribution (Olkin and Rubin,
1964) to model the distribution of proportions for each parent-children family in the hierarchy.
The parameters of the Dirichlet distribution for each family is obtained from a Recurrent Neural
Network (RNN) (Hochreiter and Schmidhuber, 1997) with multi-head self-attention (Vaswani et al.,
2017), that is jointly learnt from all the time-series in the hierarchy.

Our model can be coupled with any univariate probabilistic forecast for the root time series, to
immediately obtain coherent probabilistic forecasts for the entire hierarchy tree. The (univariate) root
time series can be modeled independently - this flexibility is an added benefit of our method as any
advancement in probabilistic, univariate time-series forecasting can be incorporated seamlessly in our
framework. In particular, our experimental results use Prophet (Taylor and Letham, 2018), a simple,
off-the-shelf (non-deep-learning) univariate package.

We validate our model against state-of-the art probabilistic hierarchical forecasting baselines on six
public datasets, and demonstrate significant gains using our approach, outperforming all baselines on
most datasets. In particular, we observe a relative improvement of as much as 27% over all baselines
in terms of CRPS scores on one of the largest publicly available hierarchical forecasting datasets.

Additionally, we theoretically analyze the advantage of the top-down approach (over a bottom-
up approach) in a simplified regression setting for hierarchical prediction, and thereby provide
theoretical justification for our top-down model. Specifically, we prove that for a 2-level hierarchy of
d-dimensional linear regression with a single root node and K children nodes, the excess risk of the
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bottom-up approach is min(K, d) time bigger than the one of the top-down approach in the worst
case. This validates our intuition that it is easier to predict proportions than the actual values.

2 BACKGROUND AND RELATED WORK

Hierarchical forecasting is a multivariate forecasting problem, where we are given a set ofN univariate
time-series (each having T time points) that satisfy linear aggregation constraints specified by a
predefined hierarchy. More specifically, the data can be represented by a matrix Y ∈ RT×N , where
y(i) denotes the T values of the i-th time series, yt denotes the values of allN time series at time t, and
yt,i the value of the i-th time series at time t. We will assume that yi,t ≥ 0, which is usually the case
in all retail demand forecasting datasets (and is indeed the case in all public hierarchical forecasting
benchmarks (Wickramasuriya et al., 2015)). We compactly denote the H-step history of Y by Y H =

[yt−H , · · · ,yt−1]> ∈ RH×N and the H-step history of y(i) by y(i)
H = [y

(i)
t−H , · · · ,y

(i)
t−1] ∈ RH .

Similarly we can define the F -step future as Y F = [yt, · · · ,yt+F−1]> ∈ RF×N . We use the ·̂
notation to denote predicted values, and the ·> notation to denote the transpose. We denote the matrix
of external covariates like holidays etc byX ∈ RT×D, where the t-th row denotes theD-dimensional
feature vector at the t-th time step. For simplicity, we assume that the features are shared across all
time series2. We defineXH andXF as above.

Hierarchy: The N time series are arranged in a tree hierarchy, with m leaf time-series, and
k = N −m non-leaf (or aggregated) time-series that can be expressed as the sum of its children
time-series, or alternatively, the sum of the leaf time series in its sub-tree. Let bt ∈ Rm be the values
of the m leaf time series at time t, and rt ∈ Rk be the values of the k aggregated time series at time t.
The hierarchy is encoded as an aggregation matrixR ∈ {0, 1}k×m , where an entry Rij is equal to 1
if the i-th aggregated time series is an ancestor of the j-th leaf time series in the hierarchy tree, and 0
otherwise. We therefore have the aggregation constraints rt = Rbt or yt = [r>t b>t ]> = Sbt where
ST = [R>|Im]. Here, Im is the m×m identity matrix. Such a hierarchical structure is ubiquitous
in multivariate time series from many domains such as retail, traffic, etc, as discussed earlier. We
provide an example tree with its S matrix in Figure 1 (right).

Coherency: Clearly, an important property of hierarchical forecasting is that the forecasts also
satisfy the hierarchical constraints ŷt = Sb̂t. This is known as the coherence property. Imposing the
coherence property makes sense since the ground truth data Y is coherent by construction. Coherence
is also critical for consistent decision making at different granularities of the hierarchy.

Our objective is to accurately predict the distribution of the future f̂(Y F ) such that any sample from
the predicted distribution Ŷ F ∼ f̂(Y F ) satisfies the coherence property. Note that we will use f̂ to
denote the density of the predictive distribution.

Related Work on Hierarchical Forecasting: As mentioned earlier, many existing coherent hi-
erarchical forecasting methods rely on a two-stage reconciliation approach. More specifically,
given non-coherent base forecasts ŷt, reconciliation approaches aim to design a projection matrix
P ∈ Rm×n that can project the base forecasts linearly into new leaf forecasts, which are then ag-
gregated using S to obtain (coherent) revised forecasts ỹt = SP ŷt. Different hierarchical methods
specify different ways to optimize for the P matrix. The naive Bottom-Up approach (Hyndman
and Athanasopoulos, 2018) simply aggregates up from the base leaf predictions to obtain revised
coherent forecasts. The MinT method (Wickramasuriya et al., 2019) computes P that obtains the
minimum variance unbiased revised forecasts, assuming unbiased base forecasts. The ERM method
from Ben Taieb and Koo (2019) optimizes P by directly performing empirical risk minimization
over the mean squared forecasting errors. Several other criteria (Hyndman et al., 2011; Van Erven
and Cugliari, 2015; Panagiotelis et al., 2020) for optimizing for P have also been proposed. The
PERMBU method in Taieb et al. (2017) is the only reconciliation based hierarchical approach for
probabilistic forecasts. It starts with independent marginal probabilistic forecasts for all nodes, then
uses samples from marginals at the leaf nodes, applies an empirical copula, and performs a mean
reconciliation step to obtain revised (coherent) samples for the higher level nodes.

2Note that our modeling can handle both shared and time-series specific covariates in practice.
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The recent work of Rangapuram et al. (2021) is a single-stage end-to-end method that uses deep
neural networks to obtain coherent probabilistic hierarchical forecasts. Their approach is to use
a neural-network based multivariate probabilistic forecasting model to jointly model all the time
series and explictly incorporate a differentiable reconciliation step as part of model training, by using
sampling and projection operations.

Some approximately-coherent hierarchical models have also been recently proposed, that mainly use
the hierarchy information for improving prediction quality, but do not guarantee strict coherence and
do not usually generate probabilistic predictions. Many of them (Mishchenko et al., 2019; Gleason,
2020; Han et al., 2021a;b; Paria et al., 2021) use regularization-based approaches to incorporate the
hierarchy tree into the model via `2 regularization.

3 PROBABILISTIC TOP-DOWN MODEL

In many forecasting datasets (e.g. retail and traffic) it is often the case that the time-series closer to
the top level have more well defined seasonal pattern and trends, and therefore are more predictable.
However, as we go down the tree the time-series become sparser and more difficult to predict. This
has been observed in prior works (Gross and Sohl, 1990; Athanasopoulos et al., 2009) and provides
motivation for top-down modeling.

Our main contribution is a single shared top-down proportions model for predicting the future
proportions of the children for any parent node in the tree 3. Our model can easily outperform
historical proportions and provide probabilistic forecasts, when combined with any probabilistic
forecasting model for the root node.

Top-down proportions model: We propose a global top-down proportions model that predicts the
future fractions/proportions according to which the future of any parent time-series disaggregates
into its children time-series in the tree. This is based on the intuition that the proportions are more
predictable given the history, as compared to the children time-series. Consider a family which is
defined as a parent node p along with its children L(p). For any child c ∈ L(p), define

as,c =
ys,c∑

j∈L(p) ys,j
, for all s ∈ [T ].

The matrixA(p) ∈ RT×C denotes the proportions of the children over time, where C := |L(p)|. We
will drop the p in braces when it is clear from context that we are dealing with a particular family
(p,L(p)). As in Section 2, we useAH andAF to denote the history and future proportions.

The task for our model is to predict the distribution of AF given historical proportions AH, the
parent’s history y(p)

H and covariatesX . Note that for any s ∈ [T ], as ∈ ∆C−1, where ∆d−1 denotes
the (d− 1)-dimensional simplex. Therefore, our predicted distribution should also be a distribution
over the simplex for each row. Hence, we use the Dirichlet (Olkin and Rubin, 1964) family to model
the output distribution for each row of the predicted proportions, as we will detail later.

Architecture. The two main architectural components that we use are (i) a LSTM based sequence
to sequence (seq-2-seq) (Hochreiter and Schmidhuber, 1997) model to capture temporal structure
and (ii) a multi-head self attention model (Vaswani et al., 2017) to capture the dependence across the
children proportions. We first pass our inputs through the seq-2-seq model and obtain the decoder
side output as follows,

DF ← seq2seq
(
AH,y

(p)
H ,X,E(L(p))

)
where E(L(p)) are embeddings for the children nodes that are jointly trained. The decoder output
DF has shape F ×C × r, where r denotes the output dimension of the decoder. Note that each child
proportion time-series is fed independently to the seq-2-seq model i.e C is the batch dimension of the
encoder-decoder, as shown in Figure 1. We then pass the decoder outputs through several layers of
multi-headed self attention given by,

MF ← MultiHeadAttg,l(DF ),

3Note that Hyndman et al. (2011) state that top-down forecasting cannot be unbiased under the assumption
that base forecasts for all levels are independent. We do not generate base forecasts first and then reconcile and
this independence assumptions does not apply to our setting.
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Figure 1: On the left, we provide a complete description of the training and inference architecture is
shown in the figure. MHA denotes multi-head self attention layers and seq2seq denotes any sequence
to sequence model such as LSTM based encoder-decoder models. The indices {1, · · · , C} are used
to denote the indices of the children of parent node p. During inference the children fractions are
sampled from the Dirichlet distribution and multiplied with the parent samples to yield the children
samples. On the right, we show an example two level tree and the corresponding S matrix.

where g denotes the number of attention heads and l denotes the number of attention layers. Each
attention layer is followed by a fully connected layer with ReLU activation and also equipped with a
residual connection. Note that the attention is only applied across the third dimension i.e across the
children. MF is of dimension F × C × o, where o is the output dimension of the attention layers.
We finally pass this through a linear layer of output size one, with exponential link function to get an
outputBF ∈ RF×C+ that is the same dimension as that ofAF . We provide a full illustration of our
model in Figure 1. Intuitively the self-attention models the dependencies between the proportions of
the children of the same family.

Loss Function. Recall that the predicted proportions distributions f̂(AF ) have to be over the simplex
∆C−1 for each of row. Therefore we model it by the Dirichlet family. In fact our final model output
for a family BF represents the parameters of predictive Dirichlet distributions. Specifically, we
minimize the loss

`(BF ,AF ) = − 1

F

t+F−1∑
s=t

DirLL(as + ε;bs). (1)

DirLL(a;α) denotes the log-likelihood of Dirichlet distribution for target a and parameters α.

DirLL(a;α) :=
∑
i

(αi − 1) log(ai)− logB(α), (2)

whereB(α) is the normalization constant. In Eq. (1), we add a small ε to avoid undefined values when
the target proportion for some children are zero. In practice, we use Tensorflow Probability (Dillon
et al., 2017) to optimize the above loss function.

Training. We train our top-down model with mini-batch gradient descent where each batch corre-
sponds to different history and future time-intervals of the same family. For example, if the time
batch-size is b and we are given a family (p,L(p)) the input proportions that are fed into the model
are of shape b × H × C and the output distribution parameters are of shape b × F × C, where
C = |L(p)|. Note that we only need to load all the time-series of a given family into a batch.

Root probabilistic model: Given the trained top-down proportions we can generate the distribution
of proportions for any internal family of the hierarchy. Thus, if we obtain probabilistic forecasts for
the root time-series we can achieve our original objective in Section 2. The advantage of our method
is that any uni-variate/multi-variate probabilistic forecasting model (and advances there in) can be
used for the root node. In this paper, we use Prophet (Taylor and Letham, 2018) for the root time
series. The implementation details of the root probabilistic model can be found in Appendix C.

Inference: At inference we have to output a representation of the predicted cumulative distribution
F̂ (Y F ) such that the samples are reconciled as in Section 2. We can achieve this by sampling from
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the predictive distribution of the two trained models. For ease of illustration, we will demonstrate the
procedure for one time point s ∈ {t, · · · , t+ F − 1}.

We first sample ŷ(r)s from the predictive distribution of the root node model. Then for every parent
node (non leaf), p in the tree we generate a sample â(L(p))

s that represents a sample of the predicted
children proportions for that family. The proportion samples and the root sample can be combined to
form a reconciled forecast sample ŷs. We can generate many such samples and then take empirical
statistics to form the predictive distribution f̂(Y s), which is by definition reconciled.

4 THEORETICAL JUSTIFICATION FOR THE TOP-DOWN APPROACH

In this section, we theoretically analyze the advantage of the top-down approach over the bottom-up
approach for hierarchical prediction in a simplified setting. Again, the intuition is that the root
level time series is much less noisy and hence much easier to predict, and it is easier to predict
proportions at the children nodes than the actual values themselves. As a result, combining the
root level prediction with the proportions prediction actually yields a much better prediction for the
children nodes. Consider a 2-level hierarchy of linear regression problem consisting of a single root
node (indexed by 0) with K children. For each time step t ∈ [n], a global covariate xt ∈ Rd is
independently drawn from a Gaussian distribution xt ∼ N (0,Σ), and the value for each node is
defined as follows:

• The value of the root node at time t is yt,0 = θ>0 xt + ηt, where ηt ∈ R is independent of xi, and
satisfies E[ηt] = 0,Var[ηt] = σ2.

• A random K-dimensional vector at ∈ RK is independently drawn from distribution P such that
E[at,i] = pi and Var[at,i] = si, where at,i is the i-th coordinate of at. For the i-th child node, the
value of the node is defined as at,i · yt,0.

Notice that for the i-th child node, E[yt,i|xt] = piθ
>
0 xt, and therefore the i-th child node follows

from a linear model with coefficients θi := piθ0.

Now we describe the bottom-up approach and top-down approach and analyze the expected excess
risk of them respectively. In the bottom-up approach, we learn a separate linear predictor for each
child node seprately. For the i-th child node, the ordinary least square (OLS) estimator is

θ̂bi =

(
n∑
t=1

xtx
>
t

)−1 n∑
t=1

xtyt,i,

and the prediction of the root node is simply the summation of all the children nodes.

In the top-down approach, a single OLS linear predictor is first learnt for the root node:

θ̂t0 =

(
n∑
i=t

xtx
>
t

)−1 n∑
i=t

xtyt,0

Then the proportion coefficient p̂i, i ∈ [K] is learnt for each node separately as p̂i = 1
n

∑n
t=1 yt,i/yt,0

and the final linear predictor for the ith child is θ̂bi = p̂iθ̂. Let us define the excess risk of an estimator
θ̂i as r(θ̂i) = (θ̂i − θi)>Σ(θ̂i − θi). The expected excess risk of both approaches are summarized in
the following theorem, proved in Appendix A.1.
Theorem 4.1 (Expected excess risk comparison between top-down and bottom-up approaches). The
total expected excess risk of the bottom-up approach for all the children nodes satisfies

K∑
i=1

E[r(θ̂bi )] ≥
K∑
i=1

(si + p2i )
d

n− d− 1
σ2,

and the total expected excess risk of the top-down approach satisfies

K∑
i=1

E[r(θ̂ti )] =

∑K
i=1 si
n

θ>0 Σθ0 +

(∑K
i=1 si
n

+

K∑
i=1

p2i

)
d

n− d− 1
σ2,
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Applying the theorem to the case where the proportion distribution at is drawn from a uniform
Dirichlet distribution, we show the excess risk of the traditional bottom-up approach is min(K, d)
times bigger than our proposed top-down approach in the following corollary. A proof of the corollary
can be found in Appendix A.2
Corollary 4.2. Assuming that for each time-step t ∈ [n], the proportion coefficient at is drawn from
a K-dimensional Dirichlet distribution Dir(α) with αi = 1

K for all i ∈ [K] and θ>0 Σθ0 = σ2, then

E[
∑K
i=1 r(θ̂

b
i )]

E[
∑K
i=1 r(θ̂

t
i )]

= Ω(min(K, d)).

5 EXPERIMENTS

We implement our probabilistic top-down model in Tensorflow (Abadi et al., 2016) and compare
against multiple baselines on six popular hierarchical time-series datasets.

Datasets. We experiment with two retail forecasting datasets, M5 (M5, 2020) and Favorita (Favorita,
2017), and all the datasets used in (Rangapuram et al., 2021): Tourism-L (Tourism, 2019; Wickrama-
suriya et al., 2019) which is a dataset consisting of tourist count data. Labour (of Statistics, 2020),
consisting of monthly employment data, Traffic (Cuturi, 2011) (consisting of daily occupancy rates of
cars on freeways), and Wiki (Wiki, 2017) (consisting of daily views on Wikipedia articles). For M5
and Favorita we use the product hierarchy. For Tourism-L we benchmark on both the (Geo)graphic
and (Trav)el history based hierarchy. More details about the dataset and the features used for each
dataset can be found in Appendix B and Table 3. Note that for the sake of reproducibility, except for
the additional M5 and Favorita datasets, the datasets and experimental setup is identical to that in
(Rangapuram et al., 2021). Favorita and M5 are among the largest among the popularly used public
hierarchical forecasting datasets and therefore are ideal for benchmarking methods that are both
scalable and accurate.

Model details. For our proportions model, we set the validation split to be of the same size as the
test set, and immediately preceding it in time, which is standard (Rangapuram et al., 2018). We
tune several hyper-parameters using the validation set loss, the details of which are provided in
Appendix E. Then we use the best hyper-parameter model to predict the Dirichlet parameters for
proportions in the test set. We separately tune and train a Prophet model (Taylor and Letham, 2018)
on the training set for the root node time-series model. (please refer to Appendix C for more details,
including our results with other root models). We then combine the predicted samples from the
proportions model and root models in order to generate the predictive distribution quantiles for all
time-series in the hierarchy, as detailed in Section 3. We refer to our overall model as TDProb.

Baselines. We compare our model to the following coherent hierarchical forecasting baselines: (i)
Hier-E2E (Rangapuram et al., 2021) is an end-to-end deep-learning approach for coherent proba-
bilistic forecasts. (ii) PERMBU-MINT (Taieb et al., 2017) is a copula based reconciliation approach
for producing probabilistic hierarchical forecasts. (iii) DeepAR-BU uses a recent deep, probabilistic
model DeepAR (Salinas et al., 2020) at the leaf nodes, samples from the leaf node distributions and
performs bottom-up aggregation on the samples to obtain coherent probabilistic predictions at all
nodes. Similarly, DeepSSM-BU is the bottom-up model that uses the deep-state space model Ranga-
puram et al. (2018) as the leaf nodes forecaster. (iv) Prophet-Historical is a top-down model
based on using Prophet at the root node, and relying on historical fractions to generate predic-
tions at lower-level nodes. (v) ETS-BU, ARIMA-BU are bottom up approaches, where base forecasts
produced using ETS and ARIMA models are aggregated to produce aggregate level predictions.
(vi) ETS-MINT-OLS, ETS-MINT-SHR, ARIMA-MINT-OLS, ARIMA-MINT-SHR (Wickramasuriya et al.,
2019) are MinT based reconciliation approaches on base forecasts produced using ETS and ARIMA.
SHR corresponds to the covariance matrix with a shrinkage operator, and OLS denotes a diagonal
covariance matrix. (vii) ETS-ERM, ARIMA-ERM (Ben Taieb and Koo, 2019) are ERM based methods
applied to the base forecasts from ETS and ARIMA models. Another method SHARQ (Han et al.,
2021a), consisting of independent deep models for each node, trained sequentially one node at a
time, does not scale to the datasets considered in this paper. Their approach did not complete training
within 2 weeks.

We use the public implementation released in Rangapuram et al. (2021), and the public GluonTS
forecasting library Alexandrov et al. (2019) for running all the above baselines. Note that our
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Table 1: Normalized CRPS scores for all the datasets introduced in Sec 5. We average the deep
learning based methods over 10 independent runs. The rest of the methods had very little variance. We
report the corresponding standard error and only bold numbers that are the statistically significantly
better than the rest. The second best numbers in each column are italicized. Note: Some of the
baselines listed in Sec. 5 returned invalid quantiles (NaNs) and were omitted from the table. We
report only mean metrics across all hierarchical levels for Labour, Traffic, Wiki2, and Tourism for
lack of space. The full set of level-wise metrics can be found in Appendix D.

M5 L0 L1 L2 L3 Mean

TDProb 0.0227 ± 0.0001 0.0273 ± 0.0004 0.0304 ± 0.0004 0.1992 ± 0.0006 0.0699 ± 0.0002
Prophet + historical fractions 0.0227 ± 0.0 0.0289 ± 0.0 0.0409 ± 0.0 0.2612 ± 0.0 0.0884 ± 0.0
Hier-E2E 0.1143 ± 0.0039 0.1109 ± 0.0039 0.1175 ± 0.0039 0.2862 ± 0.003 0.1572 ± 0.0035
DeepAR-BU 0.0421 ± 0.0027 0.0442 ± 0.0023 0.0497 ± 0.0020 0.2092 ± 0.0003 0.0863 ± 0.0017
DeepSSM-BU 0.0294 0.0331 0.0420 0.2898 0.0986
PERMBU-MINT 0.0224 0.0281 0.0316 0.2147 0.0742

ETS-BU 0.0386 0.0490 0.0536 0.2905 0.1079
ETS-MINT-OLS 0.0356 0.0457 0.0508 0.2853 0.1043
ETS-MINT-SHR 0.0408 0.0498 0.0539 0.2856 0.1075
ETS-ERM 0.3491 0.3502 0.3676 0.9406 0.5019
ARIMA-BU 0.1116 0.1127 0.1162 0.3006 0.1602
ARIMA-MINT-SHR 0.0671 0.0729 0.0752 0.2896 0.1262
ARIMA-ERM 0.0590 0.0616 0.0731 0.4043 0.1495

Favorita L0 L1 L2 L3 Mean

TDProb 0.031 ± 0.0005 0.0503 ± 0.0005 0.0711 ± 0.0006 0.1478 ± 0.0009 0.0751 ± 0.0005
Prophet + historical fractions 0.031 ± 0.0 0.061 ± 0.0 0.103 ± 0.0 0.224 ± 0.0 0.104 ± 0.0
Hier-E2E 0.0635 ± 0.0027 0.0944 ± 0.0023 0.1427 ± 0.0021 0.274 ± 0.0021 0.1437 ± 0.002
DeepAR-BU 0.0854 ± 0.0068 0.0920 ± 0.0062 0.1018 ± 0.0057 0.1744 ± 0.0054 0.1134 ± 0.0059
DeepSSM-BU 0.0979 0.1046 0.1372 0.3602 0.1750
ETS-BU 0.0987 0.1061 0.1206 0.1502 0.1189
ETS-MINT-OLS 0.106 0.1135 0.1355 0.1669 0.1305
ARIMA-BU 0.0856 0.0962 0.1205 0.2199 0.1306
ARIMA-MINT-OLS 0.1266 0.1444 0.1504 0.2084 0.1574

Mean metrics Labour Traffic Wiki2 Tourism

TDProb 0.0318 ± 0.0005 0.0575 ± 0.0006 0.2662 ± 0.0005 0.1372
Prophet + historical fractions 0.033 ± 0.0 0.1111 ± 0.0 0.2744 ± 0.0 0.1803
Hier-E2E 0.0340 ± 0.0088 0.0506 ± 0.0011 0.2769 ± 0.004 0.1520
DeepAR-BU 0.0401 ± 0.0024 0.0840 ± 0.0023 0.3637 ± 0.0045 0.1438

DeepSSM-BU 0.0531 0.0583 0.3240 0.1602
Best of Rest 0.0393 ± 0.0002 0.1363 0.4418 0.1609

Table 2: We perform an ablation study of our model on the Wiki2 dataset that compares different
root models. We show the results when our proportions model is combined with two other root level
models. We present results with DeepSSM on L0 with out proportions model (TDProbDeepSSM)
and also ARIMA + our proportions models (TDProbAR).

Wiki2 Mean

TDProb 0.2662 ± 0.0005
TDProbDeepSSM 0.2504 ± 0.0020
TDProbAR 0.2674 ± 0.0031
Hier-E2E (Best of Rest) 0.2769 ± 0.004

baselines are a strict superset of baselines used in prior works and we compare with all prior
published coherent probabilistic hierarchical forecasting methods.

Evaluation. We evaluate forecasting accuracy using the continuous ranked probability score (CRPS).
The CRPS (Gneiting and Raftery, 2007) is minimized when the predicted quantiles match the true
data distribution data. This is the standard metric used to benchmark probabilistic forecasting in
numerous papers (Rangapuram et al., 2018; 2021; Taieb et al., 2017).

Denote the F step q-quantile prediction for time series i by Q̂
(i)

F (q) ∈ RF . Then the CRPS loss is:

CRPS(Q̂
(i)

F (q),Y
(i)
F ) =

∑
s

∫ 1

0

2(I[Y (i)
s ≤ Q̂

(i)

s (q)]− q)(Q̂
(i)

s (q)− Ŷ
(i)

s )dq. (3)

We report the CRPS scores of the prediction for each individual level of the hierarchy. Similar to
Rangapuram et al. (2021), we also normalize the CRPS scores at each level, by the absolute sum of
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the true values of all the nodes of that level. We also report the mean of the level-wise scores denoted
by Mean in Table 1.

We present level-wise performance of all methods on M5 and Favorita, as well as average performance
on the other datasets (the full level-wise metrics on all datasets can be seen in Appendix D). In these
tables, we highlight in bold numbers that are statistically significantly better than the rest. The second
best numbers in each column are italicized. The deep learning based methods are averaged over 10
runs while other methods had very little variance. We also present an results with different root level
models when combined with our top-down proportions model.

M5: We see that overall in the mean column, TDProb performs the best (around 6% better than
the best baseline PERMBU-MINT ). In fact, TDProb performs the best for all levels except L0, where
PERMBU-MINT achieves the best CRPS (closely followed by TDProb ). This shows that our propor-
tions model can be coupled with off-the-shelf univariate forecasting models to achieve state-of-the-art
performance. We hypothesize that Hier-E2E does not work well on these larger datasets because the
DeepVAR model needs to be applied to thousands of time-series, which leads to a prohibitive size of
the fully connected input layer and a hard joint optimization problem.

Favorita: In all rows, TDProb outperforms the other models by a large margin, resulting in a 27%
better mean performance than the best baseline. Interestingly, the simple Prophet-Historical
model is the second best in the mean column, outperforming both Hier-E2E and DeepAR-BU. This
suggests that even a naive top-down model coupled with a strong root-level univariate model can
sometimes outperform deep learning-based bottom-up and reconciliation models. Furthermore, using
a sophisticated, probabilistic, proportions model such as TDProb significantly improves top-down
methods.

We also report WAPE/ NRMSE results on p50 predictions in Table 6. We see that our model provides
a 18.7% lower NRMSE over the best baseline in terms of the mean across all levels. We also report
CRPS scores for a longer horizon task (τ = 35) in Table 7 where we see a gain of 35% over the best
baseline in the mean metrics.

Other Datasets: Table 1 presents mean CRPS scores on Labor, Traffic, Tourism and Wiki datasets.
Except for Traffic (where Hier-E2E is better), we can see that TDProb outperforms all the other
baselines in all other datasets. In Labour and Wiki, in addition to TDProb the naive top-down
Prophet-Historical model again performs better than the other bottom-up and reconcilia-
tion methods. In Tourism-L dataset, the DeepAR-BU model performs second-best, followed by
Hier-E2E. We provide more detailed results for all these datasets in Appendix D.

Root Model: In Table 2 we dive deeper into the role of the root-level model using the Wiki2 dataset.
The first row is our actual TDProb model. Then, we present results with DeepSSM on L0 with
our proportions model (TDProbDeepSSM) and also ARIMA + our proportions models (TDProbAR).
TDProbDeepSSM is chosen because on this dataset DeepSSM performs exceedingly well on the
top-level (see Appendix D) and this indeed obtains the best result overall. TDProbAR is chosen as
ARIMA is one of the most commonly used and simplest to implement models. We show that our
proportions model can be combined with various reasonable root models in order to yield significantly
better results than the baselines. More detailed results showing the CRPS at all levels are provided in
Table 4 in the appendix.

6 CONCLUSION

In this paper, we proposed a probabilistic top-down based hierarchical forecasting approach, that
obtains coherent, probabilistic forecasts without the need for a separate reconciliation stage. Our
approach is built around a novel deep-learning model for learning the distribution of proportions
according to which a parent time series is disaggregated into its children time series. Our model is
flexible enough to be coupled with any univariate probabilistic forecasting method of choice for the
root time series. We show in empirical evaluation on several public datasets, that our model obtains
state-of-the-art results compared to previous methods.

For future work, we plan to explore extending our approach to handle more complex hierarchical
structural constraints, beyond trees. It should be noted that our work does not directly apply to
approximately coherent data that can appear in differentially private hierarchical time series datasets.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Robert Fildes, Shaohui Ma, and Stephan Kolassa. Retail forecasting: Research and practice. Interna-
tional Journal of Forecasting, 2019.

Tim Van Erven and Jairo Cugliari. Game-theoretically optimal reconciliation of contemporaneous
hierarchical time series forecasts. In Modeling and stochastic learning for forecasting in high
dimensions, pages 297–317. Springer, 2015.

Rob J Hyndman, Roman A Ahmed, George Athanasopoulos, and Han Lin Shang. Optimal com-
bination forecasts for hierarchical time series. Computational statistics & data analysis, 55(9):
2579–2589, 2011.

Veronica J Berrocal, Adrian E Raftery, Tilmann Gneiting, and Richard C Steed. Probabilistic weather
forecasting for winter road maintenance. Journal of the American Statistical Association, 105
(490):522–537, 2010.

Tilmann Gneiting and Matthias Katzfuss. Probabilistic forecasting. Annual Review of Statistics and
Its Application, 1:125–151, 2014.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic
forecasting with autoregressive recurrent networks. International Journal of Forecasting, 36(3):
1181–1191, 2020.

Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis
expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437,
2019.

Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and
Tim Januschowski. Deep state space models for time series forecasting. Advances in neural
information processing systems, 31:7785–7794, 2018.

Konstantinos Benidis, Syama Sundar Rangapuram, Valentin Flunkert, Bernie Wang, Danielle Maddix,
Caner Turkmen, Jan Gasthaus, Michael Bohlke-Schneider, David Salinas, Lorenzo Stella, et al.
Neural forecasting: Introduction and literature overview. arXiv preprint arXiv:2004.10240, 2020.

Rajat Sen, Hsiang-Fu Yu, and Inderjit Dhillon. Think globally, act locally: A deep neural network
approach to high-dimensional time series forecasting. arXiv preprint arXiv:1905.03806, 2019.

David Salinas, Michael Bohlke-Schneider, Laurent Callot, Roberto Medico, and Jan Gasthaus. High-
dimensional multivariate forecasting with low-rank gaussian copula processes. arXiv preprint
arXiv:1910.03002, 2019.

Kashif Rasul, Abdul-Saboor Sheikh, Ingmar Schuster, Urs M Bergmann, and Roland Vollgraf. Multi-
variate probabilistic time series forecasting via conditioned normalizing flows. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=WiGQBFuVRv.

Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional recurrent
network for traffic forecasting. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 17804–17815.
Curran Associates, Inc., 2020.

Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Congrui Huang, Yunhai Tong, Bixiong
Xu, Jing Bai, Jie Tong, and Qi Zhang. Spectral temporal graph neural network for multivariate
time-series forecasting. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 17766–17778.
Curran Associates, Inc., 2020.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875, 2017.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926, 2017.

10

https://openreview.net/forum?id=WiGQBFuVRv
https://openreview.net/forum?id=WiGQBFuVRv


Under review as a conference paper at ICLR 2023

Rob J Hyndman, Alan J Lee, and Earo Wang. Fast computation of reconciled forecasts for hierarchical
and grouped time series. Computational statistics & data analysis, 97:16–32, 2016.

Souhaib Ben Taieb, James W Taylor, and Rob J Hyndman. Coherent probabilistic forecasts for
hierarchical time series. In International Conference on Machine Learning, pages 3348–3357.
PMLR, 2017.

Souhaib Ben Taieb and Bonsoo Koo. Regularized regression for hierarchical forecasting without
unbiasedness conditions. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 1337–1347, 2019.

Shanika L Wickramasuriya, George Athanasopoulos, Rob J Hyndman, et al. Forecasting hierarchical
and grouped time series through trace minimization. Department of Econometrics and Business
Statistics, Monash University, 105, 2015.

Shanika L Wickramasuriya, Berwin A Turlach, and Rob J Hyndman. Optimal non-negative forecast
reconciliation. Statistics and Computing, 30(5):1167–1182, 2020.

Paolo Mancuso, Veronica Piccialli, and Antonio M Sudoso. A machine learning approach for
forecasting hierarchical time series. Expert Systems with Applications, 182:115102, 2021.

Mahdi Abolghasemi, Rob J Hyndman, Garth Tarr, and Christoph Bergmeir. Machine learning
applications in time series hierarchical forecasting. arXiv preprint arXiv:1912.00370, 2019.

Syama Sundar Rangapuram, Lucien D Werner, Konstantinos Benidis, Pedro Mercado, Jan Gasthaus,
and Tim Januschowski. End-to-end learning of coherent probabilistic forecasts for hierarchical
time series. In International Conference on Machine Learning, pages 8832–8843. PMLR, 2021.

Charles W Gross and Jeffrey E Sohl. Disaggregation methods to expedite product line forecasting.
Journal of forecasting, 9(3):233–254, 1990.

George Athanasopoulos, Roman A Ahmed, and Rob J Hyndman. Hierarchical forecasts for australian
domestic tourism. International Journal of Forecasting, 25(1):146–166, 2009.

Ingram Olkin and Herman Rubin. Multivariate beta distributions and independence properties of the
wishart distribution. The Annals of Mathematical Statistics, pages 261–269, 1964.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

Sean J Taylor and Benjamin Letham. Forecasting at scale. The American Statistician, 72(1):37–45,
2018.

Rob J Hyndman and George Athanasopoulos. Forecasting: principles and practice. OTexts, 2018.

Shanika L Wickramasuriya, George Athanasopoulos, and Rob J Hyndman. Optimal forecast rec-
onciliation for hierarchical and grouped time series through trace minimization. Journal of the
American Statistical Association, 114(526):804–819, 2019.

Anastasios Panagiotelis, Puwasala Gamakumara, George Athanasopoulos, Rob J Hyndman, et al.
Probabilistic forecast reconciliation: Properties, evaluation and score optimisation. Monash
econometrics and business statistics working paper series, 26:20, 2020.

Konstantin Mishchenko, Mallory Montgomery, and Federico Vaggi. A self-supervised approach
to hierarchical forecasting with applications to groupwise synthetic controls. arXiv preprint
arXiv:1906.10586, 2019.

Jeffrey L Gleason. Forecasting hierarchical time series with a regularized embedding space. San
Diego, 7, 2020.

11



Under review as a conference paper at ICLR 2023

Xing Han, Sambarta Dasgupta, and Joydeep Ghosh. Simultaneously reconciled quantile forecasting
of hierarchically related time series. In International Conference on Artificial Intelligence and
Statistics, pages 190–198. PMLR, 2021a.

Xing Han, Jing Hu, and Joydeep Ghosh. Mecats: Mixture-of-experts for quantile forecasts of
aggregated time series. arXiv preprint arXiv:2112.11669, 2021b.

Biswajit Paria, Rajat Sen, Amr Ahmed, and Abhimanyu Das. Hierarchically regularized deep
forecasting. arXiv preprint arXiv:2106.07630, 2021.

Joshua V Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan, Dave Moore,
Brian Patton, Alex Alemi, Matt Hoffman, and Rif A Saurous. Tensorflow distributions. arXiv
preprint arXiv:1711.10604, 2017.

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale
machine learning. In 12th USENIX symposium on operating systems design and implementation
(OSDI 16), pages 265–283, 2016.

M5. M5 forecasting dataset. https://www.kaggle.com/c/
m5-forecasting-accuracy/, 2020.

Favorita. Favorita forecasting dataset. https://www.kaggle.com/c/
favorita-grocery-sales-forecast, 2017.

Tourism. Tourism forecasting dataset. https://robjhyndman.com/publications/
mint/, 2019.

Australian Bureau of Statistics. Labour force, australia, dec 2020. https:
//www.abs.gov.au/statistics/labour/employment-and-unemployment/
labour-force-australia/latest-release., 2020.

M. Cuturi. Fast global alignment kernels. In ICML, 2011.

Wiki. Web traffic time series forecasting dataset. https://www.kaggle.com/c/
web-traffic-time-series-forecasting/data, 2017.

Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan
Gasthaus, Tim Januschowski, Danielle C Maddix, Syama Rangapuram, David Salinas, Jasper
Schulz, et al. Gluonts: Probabilistic time series models in python. JMLR, 2019.

Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American statistical Association, 102(477):359–378, 2007.

Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan
Gasthaus, Tim Januschowski, Danielle C. Maddix, Syama Rangapuram, David Salinas, Jasper
Schulz, Lorenzo Stella, Ali Caner Türkmen, and Yuyang Wang. GluonTS: Probabilistic and Neural
Time Series Modeling in Python. Journal of Machine Learning Research, 21(116):1–6, 2020. URL
http://jmlr.org/papers/v21/19-820.html.

12

https://www.kaggle.com/c/m5-forecasting-accuracy/
https://www.kaggle.com/c/m5-forecasting-accuracy/
https://www.kaggle.com/c/favorita-grocery-sales-forecast
https://www.kaggle.com/c/favorita-grocery-sales-forecast
https://robjhyndman.com/publications/mint/
https://robjhyndman.com/publications/mint/
https: //www.abs.gov.au/statistics/labour/ employment-and-unemployment/ labour-force-australia/latest-release.
https: //www.abs.gov.au/statistics/labour/ employment-and-unemployment/ labour-force-australia/latest-release.
https: //www.abs.gov.au/statistics/labour/ employment-and-unemployment/ labour-force-australia/latest-release.
https://www.kaggle.com/c/ web-traffic-time-series-forecasting/data
https://www.kaggle.com/c/ web-traffic-time-series-forecasting/data
http://jmlr.org/papers/v21/19-820.html


Under review as a conference paper at ICLR 2023

A PROOF

A.1 PROOF OF THEOREM 4.1

We prove the claims about the excess risk of top-down and bottom-up approaches in the following
two sections. Recall that ordinary least square (OLS) estimator θ̂ =

(∑n
i=1 xix

>
i

)−1∑n
i=1 xiyi.

The population squared error of a linear predictor is defined as (θ̂ − θ)>Σ(θ̂ − θ), which is also
known as excess risk.

A.1.1 EXCESS RISK OF THE TOP DOWN APPROACH

For the root node, the OLS predictor is written as

θ̂0 =

(
n∑
i=1

xix
>
i

)−1 n∑
i=1

xiyi,0,

and the expected excess risk is

E[(θ̂0 − θ0)>Σ(θ̂0 − θ0)]

(a)
= E

σ2
n∑
i=1

x>i

(∑
i

xix
>
i

)−1
Σ

(∑
i

xix
>
i

)−1
xi


(b)
= Tr

E
σ2

(∑
i

xix
>
i

)−1
Σ


(c)
= σ2d/(n− d− 1) (4)

where equation (a) holds by expanding yi,0 = x>i θ0 + ηi and the fact that ηi is independent of
xi, equation (b) holds by the property of trace, and equation (c) follows from the mean of the
inverse-Wishart distribution.

For each children node, we learn the proportion coefficient with

p̂i =
1

n

n∑
t=1

yt,i
yt,0

.

Notice that

Var[p̂i] =
1

n
Var
[
y1,i
y1,0

]
=

1

n
Var[ai]

= si/n. (5)
Recall that the optimal linear predictor of the i-th child node is piθ0. Therefore, the expected excess
risk of the top down predictor is

E
[
(p̂iθ̂0 − piθ0)>Σ(p̂iθ̂0 − piθ0)

]
= E

[
(p̂iθ̂0 − piθ̂0 + piθ̂0 − piθ0)>Σ(p̂iθ̂0 − piθ̂0 + piθ̂0 − piθ0)

]
= E

[
(p̂i − pi)2θ̂>0 Σθ̂0 + p2i (θ̂0 − θ0)>Σ(θ̂0 − θ0)

]
(a)
=

1

n
siθ
>
0 Σθ0 +

(
1

n
si + p2i

)
d

n− d− 1
σ2,

where we have applied Equation 5 and Equation 4 in equality (a). Taking summation over all the
children, we get the total excess risk equals∑K

i=1 si
n

θ>0 Σθ0 +

(∑K
i=1 si
n

+

K∑
i=1

p2i

)
d

n− d− 1
σ2
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A.1.2 EXCESS RISK OF THE BOTTOM UP APPROACH

For the i-th child node, the OLS estimator is

θ̂i =

(
n∑
t=1

xtx
>
t

)−1 n∑
t=1

xtyt,i.

Recall that the best linear predictor of the i-th child node is piθ0 The excess risk is

E(θ̂i − piθ0)>Σ(θ̂i − piθ0)

= E
[
((θ̂i − piθ̂0) + (piθ̂0 − piθ0))>Σ((θ̂i − piθ̂0) + (piθ̂0 − piθ0))

]
Notice that the cross term has 0 expectation as

E[(θ̂i − piθ̂0)>Σ(piθ̂0 − piθ0)]

(a)
= E

Ea

 n∑
t=1

(at,iyt,0 − piyt,0)x>t

(
n∑
t=1

xtx
>
t

)−1
Σ(piθ̂0 − piθ0)


(b)
= 0,

where the first equality holds by the definition of node i-th value yt,i. Therefore, it holds that

E
[
((θ̂i − piθ̂0) + (piθ̂0 − piθ0))>Σ((θ̂i − piθ̂0) + (piθ̂0 − piθ0))

]
= E

[
(θ̂i − piθ̂0)>Σ(θ̂i − piθ̂0)

]
+ p2i

d

n− d− 1
σ2

= ETr

 n∑
j=1

(aj,i − pi)2y2t,0xjx>j

(
n∑
t=1

xtx
>
t

)−1
Σ

(
n∑
t=1

xtx
>
t

)−1+ p2i
d

n− d− 1
σ2

= siETr

 n∑
j=1

(
(θ>0 xj)

2 + η2j
)
xjx

>
j

(
n∑
t=1

xtx
>
t

)−1
Σ

(
n∑
t=1

xtx
>
t

)−1+ p2i
d

n− d− 1
σ2

(a)
≥ siσ2ETr

 n∑
j=1

xjx
>
j

(∑xix
>
i

)−1
Σ
(∑

xix
>
i

)−1+ p2i
d

n− d− 1
σ2

(b)
= (si + p2i )σ

2 d

n− d− 1
,

where inequality (a) holds since (θ>0 xj)
2 term is non-negative, equality (b) holds by the property of

inverse-Wishart distribution. Taking summation over all the children, we get the total excess risk is
lower bounded by

K∑
i=1

(si + p2i )
d

n− d− 1
σ2

This concludes the proof.

A.2 PROOF OF COROLLARY 4.2

In this section, we apply Theorem 4.1 to Dirichlet distribution to show that the excess risk of
bottom-up approach is min(d,K) times higher than top-down approach for a natural setting.

Recall that a random vector a drawn from a K-dimensional Dirichlet distribution Dir(α) with
parameters α has mean E[a] = 1∑K

i=1 αi
α, and the variance Var[ai] = αi(1−αi)∑K

i=1 αi+1
. Let αi = 1

K for
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Table 3: Dataset features. The forecast horizon is denoted by F .
Dataset Total time series Leaf time series Levels Observations F

M5 3060 3049 4 1913 7 days
Favorita 4471 4100 4 1687 7 days
Tourism-L (Geo) 111 76 4 228 12 months
Tourism-L (Trav) 445 304 5 228 12 months
Traffic 207 200 4 366 7 days
Labour 57 32 4 514 8 months
Wiki 199 150 5 366 7 days

all i ∈ [K], θ>0 Σθ0 = σ2. The total excess risk of the top-down approach is

E

[
K∑
i=1

r(θ̂ti )

]
=

∑K
i=1 si
n

θ>0 Σθ0 +

(∑K
i=1 si
n

+

K∑
i=1

p2i

)
d

n− d− 1
σ2

=

(
1− 1/K

2n
+

(
1− 1/K

2n
+

1

K

)
d

n− d− 1

)
σ2.

The total excess risk of the bottom-up approach is lower bounded by

E

[
K∑
i=1

r(θ̂bi )

]
= (si + p2i )

d

n− d− 1
σ2

=

(
1− 1/K

2
+

1

K

)
d

n− d− 1
σ2

Now assuming that n ≥ 2d, the top-down approach has expected risk E[
∑K
i=1 r(θ̂

t
i )] = O( 1

n + d
nK ),

and the bottom-up approach has expected risk E[
∑K
i=1 r(θ̂

t
i )] = Ω( dn ). Therefore, it holds that

E[
∑K
i=1 r(θ̂

b
i )]

E[
∑K
i=1 r(θ̂

t
i )]

= Ω(min(d,K))

B DATASETS

We use publicly available benchmark datasets for our experiments.

1. M5 4: It consists of time series data of product sales from 10 Walmart stores in three US states.
The data consists of two different hierarchies: the product hierarchy and store location hierarchy.
For simplicity, in our experiments we use only the product hierarchy consisting of 3k nodes and
1.8k time steps. Time steps 1907 to 1913 constitute a test window of length 7. Time steps 1 to
1906 are used for training and validation.

2. Favorita 5: It is a similar dataset, consisting of time series data from Corporación Favorita, a
South-American grocery store chain. As above, we use the product hierarchy, consisting of 4.5k
nodes and 1.7k time steps. Time steps 1681 to 1687 constitute a test window of length 7. Time
steps 1 to 1686 are used for training and validation.

3. Australian Tourism dataset6: consists of monthly domestic tourist count data in Australia across 7
states which are sub-divided into regions, sub-regions, and visit-type. The data consists of around
500 nodes and 228 time steps. This dataset consists of two hierarchies (Geo and Trav) as also
followed in (Rangapuram et al., 2021). Time steps 1 to 221 are used for training and validation.
The test metrics are computed on steps 222 to 228.

4. Traffic (Cuturi, 2011): Consists of car occupancy data from freeways in the Bay Area, California,
USA. The data is aggregated in the same way as (Ben Taieb and Koo, 2019), to create a hierarchy
consisting of 207 nodes spanning 366 days. Time steps 1 to 359 are used for training and
validation. The remaining 7 time steps are used for testing.

4https://www.kaggle.com/c/m5-forecasting-accuracy/
5https://www.kaggle.com/c/favorita-grocery-sales-forecasting/
6https://robjhyndman.com/publications/mint/
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Table 4: Normalized CRPS scores on Tourism-L, Labour, Traffic, and Wiki2. We average the deep
learning based methods over 10 independent runs. The rest of the methods had very little variance.
We report the corresponding standard error and only bold the numbers that are significantly better
than the rest. The second best numbers in each column are italicized. We also report the mean
performance across all levels in the corresponding column. Rangapuram et al. (2018) have already
distilled the best out of all considered baselines in their Table 4. For ease of comparison, we restate
those numbers. On the wiki dataset, we also report numbers for our probabilistic top-down model
combined with the L0 prediction of the model with the best L0 model (DeepSSM) and also TDProb
with an ARIMA model on the top-level.

Tourism L0 L1 (Geo) L2 (Geo) L3 (Geo) L1 (Trav) L2 (Trav) L3 (Trav) L4 (Trav) Mean

TDProb 0.0299 ± 0.0003 0.0781 ± 0.0013 0.1177 ± 0.0012 0.1642 ± 0.0014 0.0946 ± 0.0035 0.141 ± 0.0027 0.2023 ± 0.0024 0.2698 ± 0.0023 0.1372
Prophet + historical fractions 0.0299 ± 0.0 0.0869 ± 0.0 0.1636 ± 0.0 0.2247 ± 0.0 0.1128 ± 0.0 0.1860 ± 0.0 0.2760 ± 0.0 0.3632 ± 0.0 0.1803

Hier-E2E 0.0810 ± 0.0053 0.1030 ± 0.0030 0.1361 ± 0.0024 0.1752 ± 0.0026 0.1027 ± 0.0062 0.1403 ± 0.0047 0.2050 ± 0.0028 0.2727 ± 0.0017 0.1520

DeepAR-BU 0.0640 ± 0.0034 0.0784 ± 0.0020 0.1155 ± 0.0012 0.1561 ± 0.0007 0.123 ± 0.006 0.146 ± 0.003 0.203 ± 0.002 0.265 ± 0.001 0.1438

DeepSSM-BU 0.0407 0.0835 0.1311 0.1844 0.0884 0.1540 0.2531 0.3469 0.1602

Best of Rest 0.0438 0.0816 0.1433 0.2036 0.0830 0.1479 0.2437 0.3406 0.1609

Labour L0 L1 L2 L3 Mean

TDProb 0.0299 ± 0.0 0.0285 ± 0.0007 0.0283 ± 0.0007 0.0406 ± 0.0008 0.0318 ± 0.0005
Prophet + historical fractions 0.0299 ± 0.0 0.0299 ± 0.0 0.0306 ± 0.0 0.043 ± 0.0 0.033 ± 0.0
Hier-E2E 0.0311 ± 0.0120 0.0336 ± 0.0089 0.0336 ± 0.0082 0.0378 ± 0.0060 0.0340 ± 0.0088
DeepAR-BU 0.0347 ± 0.0027 0.0433 ± 0.0025 0.0424 ± 0.0024 0.0400 ± 0.0022 0.0401 ± 0.0024
DeepSSM-BU 0.0512 0.0569 0.0540 0.0500 0.0531
Best of Rest 0.0406 ± 0.0002 0.0389 ± 0.0002 0.0382 ± 0.0002 0.0397 ± 0.0003 0.0393 ± 0.0002

Traffic (F = 7) L0 L1 L2 L3 Mean

TDProb 0.026 ± 0.0003 0.0282 ± 0.0003 0.034 ± 0.0005 0.1419 ± 0.002 0.0575 ± 0.0006
Prophet + historical fractions 0.0828 ± 0.0013 0.0863 ± 0.0 0.0903 ± 0.0 0.1821 ± 0.0001 0.1111 ± 0.0
Hier-E2E 0.0245 ± 0.0011 0.0268 ± 0.001 0.0307 ± 0.0011 0.1206 ± 0.0019 0.0506 ± 0.0011
DeepAR-BU 0.0659 ± 0.0032 0.0638 ± 0.0029 0.0625 ± 0.0025 0.1439 ± 0.0006 0.0840 ± 0.0023
DeepSSM-BU 0.0208 0.0303 0.0356 0.1465 0.0583
ARIMA-ERM (Best of rest) 0.073 0.0869 0.092 0.2932 0.1363

Wiki2 (F = 7) L0 L1 L2 L3 L4 Mean

TDProb 0.0939 ± 0.0018 0.2205 ± 0.0024 0.2878 ± 0.0024 0.2968 ± 0.0025 0.432 ± 0.0035 0.2662 ± 0.0005
TDProbDeepSSM 0.0552 ± 0.001 0.2063 ± 0.0037 0.2793 ± 0.0026 0.2894 ± 0.0026 0.4235 ± 0.0018 0.2504 ± 0.0020
TDProbAR 0.1026 ± 0.002 0.2196 ± 0.0028 0.2907 ± 0.0046 0.2983 ± 0.0043 0.4257 ± 0.0047 0.2674 ± 0.0031
Prophet + historical fractions 0.0939 ± 0.0 0.1968 ± 0.0 0.3017 ± 0.0 0.3104 ± 0.0 0.4696 ± 0.0 0.2744 ± 0.0
Hier-E2E 0.133 ± 0.0102 0.2094 ± 0.0057 0.2942 ± 0.0032 0.3057 ± 0.0031 0.4421 ± 0.0016 0.2769 ± 0.004
DeepAR-BU 0.3399 ± 0.0070 0.3443 ± 0.0056 0.3625 ± 0.0042 0.3654 ± 0.0039 0.4065 ± 0.0022 0.3637 ± 0.0045
DeepSSM-BU 0.0552 0.2344 0.3771 0.3847 0.5683 0.3240
ETS-ERM (Best of Rest) 0.3719 0.4018 0.438 0.4482 0.5491 0.4418
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Table 5: Normalized CRPS scores on M5 and Favorita datasets. We average the deep learning based
methods over 10 independent runs. The rest of the methods had very little variance. We report the
corresponding standard error and only bold the numbers that are significantly better than the rest.
The second best numbers in each column are italicized. We also report the mean performance across
all levels in the corresponding column. Some of the baselines returned invalid quantiles (NaNs) and
were omitted from the table.

M5 L0 L1 L2 L3 Mean

TDProb 0.0227 ± 0.0001 0.0273 ± 0.0004 0.0304 ± 0.0004 0.1992 ± 0.0006 0.0699 ± 0.0002
Prophet + historical fractions 0.0227 ± 0.0 0.0289 ± 0.0 0.0409 ± 0.0 0.2612 ± 0.0 0.0884 ± 0.0
Hier-E2E 0.1143 ± 0.0039 0.1109 ± 0.0039 0.1175 ± 0.0039 0.2862 ± 0.003 0.1572 ± 0.0035
DeepAR-BU 0.0421 ± 0.0027 0.0442 ± 0.0023 0.0497 ± 0.0020 0.2092 ± 0.0003 0.0863 ± 0.0017
DeepSSM-BU 0.0294 0.0331 0.0420 0.2898 0.0986
PERMBU-MINT 0.0224 0.0281 0.0316 0.2147 0.0742

ETS-BU 0.0386 0.0490 0.0536 0.2905 0.1079
ETS-MINT-OLS 0.0356 0.0457 0.0508 0.2853 0.1043
ETS-MINT-SHR 0.0408 0.0498 0.0539 0.2856 0.1075
ETS-ERM 0.3491 0.3502 0.3676 0.9406 0.5019
ARIMA-BU 0.1116 0.1127 0.1162 0.3006 0.1602
ARIMA-MINT-SHR 0.0671 0.0729 0.0752 0.2896 0.1262
ARIMA-ERM 0.0590 0.0616 0.0731 0.4043 0.1495

Favorita L0 L1 L2 L3 Mean

TDProb 0.031 ± 0.0005 0.0503 ± 0.0005 0.0711 ± 0.0006 0.1478 ± 0.0009 0.0751 ± 0.0005
Prophet + historical fractions 0.031 ± 0.0 0.061 ± 0.0 0.103 ± 0.0 0.224 ± 0.0 0.104 ± 0.0
Hier-E2E 0.0635 ± 0.0027 0.0944 ± 0.0023 0.1427 ± 0.0021 0.274 ± 0.0021 0.1437 ± 0.002
DeepAR-BU 0.0854 ± 0.0068 0.0920 ± 0.0062 0.1018 ± 0.0057 0.1744 ± 0.0054 0.1134 ± 0.0059
DeepSSM-BU 0.0979 0.1046 0.1372 0.3602 0.1750
ETS-BU 0.0987 0.1061 0.1206 0.1502 0.1189
ETS-MINT-OLS 0.106 0.1135 0.1355 0.1669 0.1305
ARIMA-BU 0.0856 0.0962 0.1205 0.2199 0.1306
ARIMA-MINT-OLS 0.1266 0.1444 0.1504 0.2084 0.1574

5. Labour: Australian employement data consisting of 514 time steps sampled monthly, and 57 node
hierarchy.

6. Wiki2: This dataset is derived from a larger dataset consisting of daily views of 145k Wikipedia
articles. We use a smaller version of the dataset introduced by Ben Taieb and Koo (2019) which
consists of a subset of 150 bottom level time series, and 199 total time series.

For both M5 and Favorita we used time features corresponding to each day including day of the
week and month of the year. We also used holiday features, in particular the distance to holidays
passed through a squared exponential kernel. In addition, for M5 we used features related to SNAP
discounts, and features related to oil prices for Favorita. For Tourism, Traffic, Labour, and Wiki2 we
only used date features such as day of the week, month of the year, and holiday features from the
GluonTS package (Alexandrov et al., 2020). All the input features were normalized to -0.5 to 0.5.

C ROOT PROBABILISTIC MODEL

In this section, we provide more details about the implementation of our root probabilistic model
using Prophet Taylor and Letham (2018). In the Prophet models we combined three components
implemented by Prophet: local linear trend with automatic change point detection, linear regression
for holiday effect, and Fourier series for seasonality effect. For M5 and Favorita datasets, we used
weekly, monthly and yearly seasonality. For Tourism and Labor, we used monthly and yearly
seasonality, for Traffic and Wiki we used weekly seasonality. We tuned hyperparameters seasonality
prior scale, holidays prior scale, changepoint prior scale, changepoint range and Fourier orders
using the validation set.

For M5 and Favorita datasets, we combined three models implemented by Prophet: local linear trend
with automatic change point detection, linear regression for holiday effect, and Fourier series for
seasonality effect. The seasonality model include weekly seasonality, monthly seasonality, and yearly

17



Under review as a conference paper at ICLR 2023

Table 6: We report point forecasting metrics on the Favorita dataset. We compare our model w.r.t the
best baseline in terms of WAPE/ NRMSE (normalized RMSE) calculated using the p50 predictions
of both the models.

Favorita L0 L1 L2 L3 Mean

TDProb 0.0411 / 0.0523 0.0754 / 0.1829 0.1080 / 0.2639 0.2017 / 0.5983 0.1066 / 0.2743
Best of rest (DeepAR-BU) 0.0842 / 0.1065 0.0958 / 0.2644 0.1164 / 0.3194 0.21 / 0.6377 0.1266 / 0.332

Table 7: We report results on a longer horizon task on the Favorita dataset i.e where the test and
validation size is τ = 35. We compare our model with the best baseline for this dataset.

Favorita L0 L1 L2 L3 Mean

TDProb 0.0428 ± 0.0004 0.0678 ± 0.0008 0.1085 ± 0.001 0.2503 ± 0.0022 0.1173 ± 0.0009
Best of rest (DeepAR-BU) 0.1551 ± 0.1065 0.1579 ± 0.02635 0.1645 ± 0.0225 0.2519 ± 0.0127 0.1823 ± 0.0224

seasonality. In the Prophet model for Australian Tourism dataset, we combined local linear trend
with automatic change point detection and Fourier series for seasonality effect, where the seasonality
effect is on “month of year”. We tuned hyperparameters seasonality prior scale, holidays prior scale,
changepoint prior scale,changepoint range, and Fourier orders using the validation set.

In order to show case that our model can be coupled with any root level model we also present
results using the other models on L0. In the wiki dataset, we notice that the Deep-SSM (Rangapuram
et al., 2018) works exceedingly well on the top-level. Therefore we also include a version of results
where we combine our fractions model with the top-level forecast of the Deep-SSM model in
Table 4. We can see that this TDProbDeepSSM model performs the best in terms of the mean CRPS
across all levels. We also add results that combines our top-down model with an ARIMA model on
L0. This TDProbAR model also ranks among the top three models (pretty close to the other two
TDProb models) thus showing that we can use many different models on L0 and still achieve SOTA
performance using our top-down proportions model.

D FULL RESULTS ON ALL DATASETS

Tables 4 and 5 show the full set of results for all datasets, baselines, and all hierarchical levels.

E ADDITIONAL EXPERIMENTAL DETAILS

Hyper-parameters and validation. The hyper-parameters used in our proportions models are
learning rate (log scale 1e-5 to 0.1), number of attention layers ([1, 2, 4, 6]), number of attention
heads ([1, 2, 4, 6]), LSTM hidden size ([16, 32, 48, 64]), batch-size ([4, 8, 32, 64]), output hidden
layer after LSTM decoder (ff-dim) ([32, 64, 256]), node embedding dimension ([4, 8, 16]). We tune
these hyperparams on validation loss.

The best hyperparameters for the different datasets are:

Favorita. learning-rate: 0.00085, fixed-lstm-hidden: 48, num-attention-heads: 16, num-attention-
layers: 2, ff-dim: 16, node-emb-dim: 4, batch-size: 32

M5. learning-rate: 0.00079, fixed-lstm-hidden: 48, num-attention-heads: 4, num-attention-layers: 6,
ff-dim: 64, node-emb-dim: 8, batch-size: 4

Tourism. learning-rate: 0.00031, fixed-lstm-hidden: 32, num-attention-heads: 8, num-attention-layers:
4, ff-dim: 32, node-emb-dim: 16, batch-size: 48

Labour. learning-rate: 0.003, fixed-lstm-hidden: 48, num-attention-heads: 16, num-attention-layers:
4, ff-dim: 64, node-emb-dim: 4, batch-size: 4

Traffic. learning-rate: 0.003, fixed-lstm-hidden: 48, num-attention-heads: 16, num-attention-layers:
4, ff-dim: 32, node-emb-dim: 4, batch-size: 4
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Wiki. learning-rate: 0.000295, fixed-lstm-hidden: 48, num-attention-heads: 16, num-attention-layers:
4, ff-dim: 64, node-emb-dim: 4, batch-size: 4

Training details. Our model is implemented in Tensorflow (Abadi et al., 2016) and trained using the
Adam optimizer with default parameters. We set a step-wise learning rate schedule that decays by a
factor of 0.5 a total of 8 times over the schedule. The max. training epoch is set to be 50 while we
early stop with a patience of 10. All our experiments were performed on a single server with a 32
core Intel Xeon CPU and an Tesla V100 GPU.

Baselines. We used the experimental framework released by Rangapuram et al. (2021) for running
the baselines in the former paper. For the rest of baselines (DeepAR-BU and DeepSSM-BU) we used
GluonTS (Alexandrov et al., 2020) implementations of Deep-SSM and DeepAR.
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