
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENERALIZABLE HUMAN RENDERING WITH
LEARNED ITERATIVE FEEDBACK OVER MULTI-
RESOLUTION GAUSSIANS-ON-MESH

Anonymous authors
Paper under double-blind review

ABSTRACT

Generalizable reconstruction of an animatable human avatar from sparse inputs
and corresponding high-quality rendering conditioned on a given pose faces two
main challenges: First, generalizable methods, which are needed for fast recon-
struction, avoid scene-specific optimization but instead rely on data priors and
inductive biases extracted from training on large data. However, at reconstruction
time, information is limited as only a small number of sparse inputs are available.
Note, we operate on a small set of images showing a human in possibly different
but not multi-view consistent poses. Second, rendering is preferably computa-
tionally efficient yet of high resolution. To address both challenges we augment
the recently proposed dual shape representation, which combines the benefits of a
mesh and Gaussian points, in two ways. To improve reconstruction, we propose
an iterative feedback update framework, which successively improves the canon-
ical human shape representation during reconstruction. To achieve computation-
ally efficient yet high-resolution rendering, we study a coupled-multi-resolution
Gaussians-on-Mesh representation. We evaluate the proposed approach on the
challenging THuman2.0 and AIST++ data. Our approach reconstructs an animat-
able representation from sparse inputs in less than 1s, renders views with 95.1FPS
at 1024× 1024, and achieves PSNR/LPIPS*/FID of 24.59/111.26/51.42 on THu-
man2.0, outperforming the state-of-the-art in rendering quality.

1 INTRODUCTION

Generalizable reconstruction of an animatable human avatar from sparse inputs, i.e., images showing
a human in the same clothing and environment but not necessarily the same pose, is an important
problem for augmented and virtual reality applications. Envision generation of an animatable avatar
from a few quickly taken pictures in an unconstrained environment and efficient yet high quality
pose-conditioned rendering in a virtual world.

To address this application, recent methods (Kwon et al., 2024; Zheng et al., 2024; Li et al., 2024; Hu
et al., 2023; Pan et al., 2023) resort to generalizable reconstruction methods. Generalizable methods
avoid scene specific optimization at inference time but instead use ‘just’ a single deep net forward
pass, making reconstruction efficient. During an offline training phase the deep net extracts data
priors and inductive biases from a reasonably large dataset, i.e., the deep net learns to address the
reconstruction task via a single forward pass.

For rendering, recent methods (Wen et al., 2024; Paudel et al., 2024; Guédon & Lepetit, 2024)
introduce a dual shape representation, combining the advantages of a mesh, i.e., regularization via
the manifold neighborhood connectivity induced by the triangle mesh, with those of Gaussian splats,
i.e., fast and flexible rendering.

However, use of ‘just’ a single deep net forward pass during reconstruction prevents present-day
methods from refining their prediction. This is a concern because apparent errors that can be de-
tected by comparing available inputs to a corresponding rendering of the reconstruction are not
utilized. Moreover, w.r.t. the dual shape representation for human rendering, GoMAvatar (Wen
et al., 2024) and iHuman (Paudel et al., 2024) employ identical resolutions for the underlying mesh
and Gaussians, i.e., one Gaussian for each triangle face in the mesh. This is a concern because a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Multiview images

Multi-frame images

OR

Inputs: sparse source images
Coupled multi-resolution

Gaussians-on-Mesh
908 ms

Novel view synthesis

Novel pose synthesis

Rendering
95 FPS

Figure 1: Overview. We tackle the problem of generalizable human rendering. Given sparse source
images (multiview images or multi-frame images), we reconstruct the 3D human representation in
canonical T-pose space. The canonical representation can be animated and rendered in novel views.

reasonably low-dimensional mesh representation is desirable for efficient reconstruction, while a
high-dimensional Gaussian splat representation is desirable for high-quality rendering. GaussianA-
vatar (Qian et al., 2024a) uses an adaptive density control based on gradients to densify Gaussians
on the mesh. However, generalizable human rendering reconstructs and renders subjects in a feed-
forward pass, i.e., gradients are unavailable to guide the densification.

To address the first concern of not leveraging apparent errors, in this paper, we propose a novel itera-
tive feedback-based reconstruction network. The iterative update mechanism augments generalized
methods via a feedback mechanism to improve results by fusing information from inputs, the cur-
rent 3D reconstruction, and current rendering from input views. Importantly, the designed iterative
update mechanism is end-to-end trainable, i.e., the feedback is taken into account when training the
generalized reconstruction. Note that the iterative update mechanism makes reconstruction slightly
slower, yet our un-optimized version still performs the task in less than one second. Since recon-
struction is a one-off task, independent from pose-conditioned rendering, we think it makes sense to
spend a bit more effort than a simple deep network.

To address the second concern, we study a coupled-multi-resolution Gaussians-on-Mesh represen-
tation. More specifically, reconstruction is performed with a low-resolution mesh while we increase
the number of Gaussians by attaching multiple ones to a single triangle face. This is achieved via
a sub-division-like procedure. Beneficially, reconstruction remains efficient while rendering can
efficiently achieve high-quality and high-resolution results.

We illustrate our method in Fig. 1 and observe compelling rendering quality and speed. We assess
efficacy of the proposed method on the challenging THuman2.0 and AIST++ data. As mentioned,
reconstruction needs less than one second and rendering runs at 95.1 FPS on one NVIDIA A100
GPU. The rendering quality of the designed method outperforms the state-of-the-art, improving
PSNR/LPIPS*/FID to 24.59/111.26/51.42 from 21.90/133.41/61.67 for GHG (Kwon et al., 2024).

2 RELATED WORK

Rendering of human avatars can be broadly categorized into two main areas: ‘per-scene optimized
human rendering’ and ‘generalizable human rendering’. We review both areas next before dis-
cussing prior work on dual shape representations combining Gaussians and meshes.

Per-scene optimized human rendering. Human rendering from multiview or monocular videos
has achieved great results in recent years, benefitting from progress in neural rendering, e.g., neural
radiance fields (NeRF) (Mildenhall et al., 2020) and Gaussian splatting (Kerbl et al., 2023).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

NeuralBody (Peng et al., 2021) is one of the earlier works that explores NeRFs for human rendering.
It regresses the colors and opacities based on the latent codes associated with the vertices of a
deformable mesh. HumanNeRF (Weng et al., 2022) learns subject-specific representations from a
monocular video and improves over prior works by introducing non-rigid transformations. Followup
NeRF-based works further improve the rendering quality (Yu et al., 2023), training speed (Geng
et al., 2023; Jiang et al., 2023), and rendering speed (Jiang et al., 2023). Later, Gaussian splatting was
adopted by human rendering techniques due to its superior rendering speed (Lei et al., 2024; Wen
et al., 2024; Hu et al., 2024; Kocabas et al., 2024; Li et al., 2023; Paudel et al., 2024). Human101 (Li
et al., 2023) advances the training speed to ∼100s on ZJU-MoCap and MonoCap. iHuman (Paudel
et al., 2024) further improves the training speed to 12s on PeopleSnapshot and can be trained on
as few as 6 frames. Even though the training speed improves significantly when using Gaussian
splatting, real-world applications often prefer sub-second training times. Moreover, without learned
priors from large-scale datasets, per-scene optimization approaches suffer from overfitting when the
training views are sparse.

Differently, in this work, we adopt the dual shape representation introduced by GoMAvatar (Wen
et al., 2024) and adapt it to generalizable human rendering. This permits to reconstruct the 3D
representation in less than one second and further excels even if only sparse inputs are available.

Generalizable human rendering. Generalizable human rendering operates on sparse source views
and benefits from learned priors and inductive biases extracted during a training phase from large-
scale datasets. In addition, it has a greater potential to attain a faster speed when recovering a
3D representation from the source views. ActorsNeRF (Mu et al., 2023) combines per-scene opti-
mization with priors learned from large-scale datasets using a two-stage training. Diffusion-based
approaches and large-reconstruction model-based methods (Weng et al., 2024; Chen et al., 2024;
Xue et al., 2024; Kolotouros et al., 2024; Pan et al., 2024) denoise the multiview images or other
properties. Since it requires multiple steps for each denoising process, diffusion-based approaches
usually take 2-10s to reconstruct the human avatar from images. Another line of works (Remelli
et al., 2022; Hu et al., 2023; Kwon et al., 2021; 2023; Li et al., 2024; Pan et al., 2023; Zheng et al.,
2024) build a single feed-forward approach to recover a 3D representation. They operate on source
views and output a 3D representation for novel view rendering. Without evaluating the network
several times, feed-forward methods are much faster compared to diffusion-based methods.

Our approach falls in the feed-forward category. However, differently, we devise an end-to-end
trainable iterative feedback module to improve performance. As we show quantitatively and quali-
tatively in Section 4, our approach achieves better rendering quality compared to prior feed-forward
methods, while not being significantly slower.

Gaussians-on-Mesh dual shape representation. Though Gaussian splatting alone achieves supe-
rior rendering quality and speed, it suffers from overfitting when a good position initialization is
not available (Wen et al., 2024) and its underlying geometry is less accurate (Paudel et al., 2024;
Qian et al., 2024a). Prior work (Wen et al., 2024; Paudel et al., 2024) regularizes the Gaussians
and enables animation using parametric models such as FLAME (Li et al., 2017) and SMPL (Loper
et al., 2015). We also combine Gaussian splatting with a mesh. Different from the use of one Gaus-
sian per face by Wen et al. (2024) and Paudel et al. (2024), we adopt a coupled-multi-resolution
representation: a low-resolution mesh is deformed and Gaussians are linked to a high-resolution
mesh. Different from Qian et al. (2024a), who split the Gaussians based on gradient signals, we
subdivide the mesh and bind the Gaussians on the subdivided mesh since gradients are unavailable
in our generalized human rendering setting which uses only a feed-forward pass. SuGaR (Guédon &
Lepetit, 2024) works on general static scenes and attaches multiple Gaussians to each triangle based
on predefined barycentric coordinates. However, the Gaussians’ scales are learned in the world co-
ordinates, while we define Gaussian parameters in a triangle’s local coordinates. This modification
is important for modeling dynamic scenes.

Iterative network. Our approach falls into the category of iterative feedback networks (Adler &
Öktem, 2017; Manhardt et al., 2018; Carreira et al., 2016; Li et al., 2018; Ma et al., 2020). The
core idea is to learn to iteratively update the output through a forward process. This method works
particularly well when feedback signals can be incorporated at each step to improve the estimation.
Previous works either unrolled standard optimizers into differentiable feedforward networks (Wang
et al., 2016; Belanger & McCallum, 2016; Schwing & Urtasun, 2015), explicitly optimizing an
energy function, or trained a generic iterative network with supervised learning without an explicit

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

energy formulation (Andrychowicz et al., 2016; Wichrowska et al., 2017; Flynn et al., 2019; Teed &
Deng, 2020). In computer vision, these methods have been used for pose estimation (Li et al., 2018;
Carreira et al., 2016), inverse problems (Ma et al., 2020), dense reconstruction (Flynn et al., 2019),
and optical flow (Teed & Deng, 2020). Our work presents a novel use of this iterative framework
for generalizing human avatars.

3 METHOD

In the following we first provide an overview of the proposed approach in Section 3.1. We then
detail our two contributions: first the coupled-multi-resolution Gaussians-on-Mesh representation in
Section 3.2 and then our reconstruction approach with iterative feedback in Section 3.3. Finally we
provide some information on training of the proposed method in Section 3.4.

3.1 OVERVIEW

Input. The proposed method operates on a set of source images {In}Nn=1, corresponding binary
source masks {Mn}Nn=1 identifying the human, source camera extrinsics {En}Nn=1, source camera
intrinsics {Kn}Nn=1, and human poses {Pn}Nn=1. Here, N is the number of source images. The
human pose Pn = (Rj

n, T
j
n)

J
j=1 is represented by a collection of J rotations Rj

n and translations T j
n.

Output. Given this input, our goal is to render the target image Ipred
tg and its corresponding binary

mask M pred
tg given as additional input the target camera extrinsics Etg, intrinsics Ktg, and the target

human pose Ptg, again specified via a collection of J rotation matrices and translation vectors.

Method overview. We render Ipred
tg and M pred

tg by transforming a learned canonical Gaussian-on-
Mesh representation GoMc specified in a T-pose space. For this, Gaussians and mesh (i.e., GoMc)
are first articulated using the target pose Ptg and subsequently transformed to target image space via
the target camera parameters. We provide details in Section 3.2 and formally write this as

Ipred
tg ,M pred

tg = Renderer(GoMc, Ptg, Etg,Ktg). (1)

The canonical 3D representation GoMc is learned from the N source images. We abstract this via

GoMc = Reconstructor({In}Nn=1, {Mn}Nn=1, {Pn}Nn=1, {En}Nn=1, {Kn}Nn=1), (2)

and provide details in Section 3.3. Notably, our GoMc representation uses different resolutions for
the Gaussians and the mesh, and the Reconstructor benefits from itereative feedback update.

3.2 COUPLED-MULTI-RESOLUTION GAUSSIANS-ON-MESH REPRESENTATION

In this section, we describe the details of the Renderer used in Eq. (1). We first define the coupled-
multi-resolution Gaussians-on-Mesh representation in Section 3.2.1, which refers to our canonical T-
pose shape. Next, we detail articulation and rendering in Section 3.2.2 and Section 3.2.3 respectively.

3.2.1 CANONICAL REPRESENTATION

Subdivide

𝑣!" !#$
% , 𝑓& &#$

'
𝑣!"↓ !#$

%↓
, 𝑓&↓ &#$

'↓

𝑟! , 𝑠! , 𝑐! , 𝑜!
high-res Gaussian params

𝑣"#↓
low-res vertex

Figure 2: Multi-resolution Gaussians-on-Mesh
representation. We use a low-res mesh for faster
animation and simpler geometry and attach Gaus-
sians on a high-res mesh for better rendering.

The classic Gaussians-on-Mesh (GoM) repre-
sentation associates one Gaussian with one tri-
angle face of a mesh, i.e., the number of Gaus-
sians is identical to the number of triangle faces.
Further note, in GoMAvatar (Wen et al., 2024),
the vertices of the mesh and the Gaussians’ pa-
rameters in the triangle’s local coordinates are
optimized per scene. To achieve high-quality
rendering, GoMAvatar subdivides the mesh to
increase the number of Gaussians. However,
in the generalizable human rendering setting,
naively subdividing the mesh significantly in-
creases the reconstruction time from less than

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

1s to ∼13s since the network operates on a larger set of points. We therefore study the coupled-
multi-resolution Gaussians-on-Mesh representation. It reduces the computational cost while simul-
taneously improving the rendering quality. Concretely, we achieve this by deforming the vertices of
a low-resolution mesh and attaching the Gaussians to a coupled high-resolution mesh.

Formally, we define the coupled-multi-resolution Gaussians-on-Mesh representation in the canoni-
cal space as follows:

GoMc ≜
{
{vc↓i }V

↓

i=1, {w
↓
i }

V ↓

i=1, {f
↓
j }

F↓

j=1, {vci }Vi=1, {fj}Fj=1

}
. (3)

Here, {vc↓i }V ↓

i=1 and {f↓
j }F

↓

j=1 define the V ↓ vertices and F ↓ faces of the low-resolution mesh re-
spectively. Note, f↓

j ≜ ({∆↓
j,k}3k=1), where ∆↓

j,k ∈ {1, . . . , V ↓} is the k-th vertex index of the j-th
triangle in the low-resolution mesh. To articulate it to any given human pose, we utilize linear blend
skinning weights w↓

i ∈ RJ corresponding to the i-th vertex v↓i in the low-resolution mesh.

The high-resolution mesh is specified via {vci }Vi=1 and {fj}Fj=1, which subsume the V vertices and F
faces. These are obtained by subdividing the low-resolution mesh. Different from the low-resolution
mesh representation, we attach Gaussians to the high-resolution face fj , i.e.,

fj ≜ (rj , sj , cj , oj , {∆j,k}3k=1), with j ∈ {1, . . . , F}. (4)

Here, rj ∈ so(3) and sj ∈ R3 are the rotation and scale in the faces’s local coordinate system.
Moreover, cj ∈ R3 is the RGB color, oj is the offset defined in the faces’s local coordinate system,
and {∆j,k}3k=1 are the three vertex indices belonging to the j-th triangle, i.e., ∆j,k ∈ {1, . . . , V }.
We illustrate the representation in Fig. 2.

3.2.2 ARTICULATION

It remains to answer 1) how we transform the defined coupled-multi-resolution Gaussians-on-
Mesh representation to the target pose; and 2) how we perform rendering. To answer the
first question, given a target pose Ptg, we articulate the canonical coupled-multi-resolution
Gaussians-on-Mesh representation GoMc to a Gaussians-on-Mesh representation GoMo ≜{
{vo↓i }V ↓

i=1, {f
↓
j }F

↓

j=1, {voi }Vi=1, {fj}Fj=1

}
in the pose space utilizing linear blend skinning. Note

that this representation is still multi-resolution because linear blend skinning is performed in the
low-resolution space for efficiency reasons while high-quality rendering requires high-resolution
Gaussian information. Concretely, we transform the canonical low-resolution 3D vertex coordinates
vc↓i to posed low-resolution 3D vertex coordinates vo↓i via

vo↓i = LBS
(
vc↓i , w↓

i , Ptg

)
=

∑J
j=1 w

j↓
i (Rp

jv
c↓
i + tpj)∑J

k=1 w
k↓
i

. (5)

Here, LBS refers to classic linear blend skinning. Since the high-resolution canonical space mesh{
{vci }Vi=1, {fj}Fj=1,

}
is obtained from the low-resolution canonical space mesh via subdivision, it

is straightforward to transfer the vertex transformations between the posed low-resolution 3D vertex
coordinates vo↓i and its canonical counterpart vc↓i to the high-resolution mesh and obtain {voi }Vi=1.

3.2.3 RENDERING WITH GAUSSIAN SPLATTING

Given the pose space Gaussians-on-Mesh representation GoMo and the target camera parameters
Etg and Ktg, we render the target image Ipred

tg and the mask M pred
tg with Gaussian splatting.

Our Gaussian parameters defined in Eq. (4) are located in the triangle’s local coordinates. To render
the images, we first transform the local Gaussian parameters to the world coordinates. Following Go-
MAvatar (Wen et al., 2024), we denote the local-to-world transformation of the j-th high-resolution
face as Aj . The mean of the Gaussian and its covariance are computed via

µj =
1

3

3∑
k=1

vo∆j,k
+Aj · oj and Σj = Aj(RjSjS

T
j R

T
j)A

T
j , (6)

where Rj and Sj are the matrices encoding rotation rj and scale sj . The color of the Gaussian is cj .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Iterative update at

Iterative
feedback net

Human Poses

Feedback feature
Mesh decoder

GSplat decoder
Input Images

Camera Params

Updated

Rendered Images

Articulate & Render

<latexit sha1_base64="OWORqQNqBE1h1I8by56CZ8lwaRU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF49V7Ae0oWy2m3bpZhN2J0Ip/QdePCji1X/kzX/jps1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7Gt5nffuLaiFg94iThfkSHSoSCUbTSA5b65Ypbdecgq8TLSQVyNPrlr94gZmnEFTJJjel6boL+lGoUTPJZqZcanlA2pkPetVTRiBt/Or90Rs6sMiBhrG0pJHP198SURsZMosB2RhRHZtnLxP+8borhtT8VKkmRK7ZYFKaSYEyyt8lAaM5QTiyhTAt7K2EjqilDG04Wgrf88ippXVS9y2rtvlap3+RxFOEETuEcPLiCOtxBA5rAIIRneIU3Z+y8OO/Ox6K14OQzx/AHzucPF6aNFQ==</latexit>

t
<latexit sha1_base64="Btf+ctVps7xhI5JY0V2ZnwCBP1Y=">AAAB+XicbVBNS8NAEN3Ur1q/oh69BIvgqSRS1GPRg16ECvYD2hg22027dLMbdifFEvpPvHhQxKv/xJv/xm2bg7Y+GHi8N8PMvDDhTIPrfluFldW19Y3iZmlre2d3z94/aGqZKkIbRHKp2iHWlDNBG8CA03aiKI5DTlvh8Hrqt0ZUaSbFA4wT6se4L1jECAYjBbbdBfoEYZTdyLvJIwkgsMtuxZ3BWSZeTsooRz2wv7o9SdKYCiAca93x3AT8DCtghNNJqZtqmmAyxH3aMVTgmGo/m10+cU6M0nMiqUwJcGbq74kMx1qP49B0xhgGetGbiv95nRSiSz9jIkmBCjJfFKXcAelMY3B6TFECfGwIJoqZWx0ywAoTMGGVTAje4svLpHlW8c4r1ftquXaVx1FER+gYnSIPXaAaukV11EAEjdAzekVvVma9WO/Wx7y1YOUzh+gPrM8f1NeTzA==</latexit>

GoMc
t

 𝐹"!,#↓ #%&
'↓

×𝑻

Figure 3: Iterative feedback. We iteratively update in a feed-forward way the vertices of the low-
resolution mesh and the Gaussian parameters attached to the high-resolution mesh. We repeat the
update for T steps. Each step t operates on the source images, camera parameters and human poses,
as well as the last iteration’s results including the canonical representation GoMc

t−1 and the predicted
source images rendered by GoMc

t−1 (the brown arrows).

3.3 RECONSTRUCTION WITH ITERATIVE FEEDBACK

It remains to answer how to reconstruct the canonical space coupled-multi-resolution Gaussians-
on-Mesh representation GoMc. For this, our Reconstructor defined in Eq. (2) uses sparse
source images {In}Nn=1 and masks {Mn}Nn=1. Note that the sparse inputs can be multiview im-
ages or multi-frame images sampled from a monocular video, where human poses are not neces-
sarily identical across frames. We also assume that human poses {Pn}Nn=1 and camera parameters
{En}Nn=1, {Kn}Nn=1 are given which can be human-annotated or predicted from off-the-shelf tools.

To compute GoMc, we perform a T step iterative feedback update. We use GoMc
t to denote the

output representation from the t-th iteration, i.e., t ∈ {0, . . . , T} and let

GoMc
t ≜

{
{vc↓t,i}

V ↓

i=1, {w
↓
i }

V ↓

i=1, {f
↓
j }

F↓

j=1, {vct,i}Vi=1, {ft,j}Fj=1

}
. (7)

Here, the time-dependent face information is given by

ft,j ≜ (rt,j , st,j , ct,j , ot,j , {∆j,k}3k=1), with j ∈ {1, . . . , F}. (8)

Note, GoMc
0, the canonical representation at t = 0, is the initialization and GoMc = GoMc

T .

We emphasize that our iterative feedback updates the low-resolution mesh vertices {vc↓i }V ↓

i=1, and the
Gaussian parameters {rj , sj , cj , oj}Fj=1 associated with the high-resolution faces. The vertices in
the high-resolution mesh {vct,i}Vi=1 follow the low-resolution update, analogously to the articulation
update discussed in Section 3.2.2.

At each iteration t, we update the low-resolution mesh vertices and high-resolution Gaussian param-
eters using the following equations:

vc↓t,i = vc↓t−1,i + MLP(F̃ ↓
t,i), (9)

rt,j , st,j , ct,j , ot,j = MLP(cat(F̃t,j , {Fn,t,j}Nn=1)). (10)

Here, F̃ ↓
t,i, i ∈ {1, . . . , V ↓} is our ‘feedback’ feature for the i-th vertex in the low-resolution mesh.

Further, F̃t,j , j ∈ {1, . . . , F} in Eq. (10) is a ‘feedback’ feature for the j-th face in the high-
resolution mesh. It is acquired by first interpolating F̃ ↓

t,i, i ∈ {1, . . . , V ↓} to get vertex features in
the high-resolution mesh and then concatenating the 3 vertices’ features belonging to the j-th face.
To preserve details, we also concatenate source image features {Fn,t,j}Nn=1 which are obtained by
projecting the mean of the j-th Gaussian at time t to the n-th view.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

To compute the ‘feedback’ feature F̃ ↓
t,i, i ∈ {1, . . . , V ↓}, we first render the source views using the

canonical representation from the last iteration via

Ipred
n,t−1,M

pred
n,t−1 = Renderer(GoMc

t−1, Pn, En,Kn), n ∈ {1, . . . , N}. (11)

Then we extract image features from {Ipred
n,t−1}Nn=1. For each vertex vc↓t,i−1 in the low-resolution

mesh, we extract pixel-aligned source image features and predicted image features. We concatenate
both and feed them into an iterative feedback network. The iterative feedback network consists of a
multi-source fusion block that mixes the information from N sources, and a Point Transformer that
encodes all the vertices. Its output feature is {F̃ ↓

t,i}V
↓

i=1. Please refer to Appendix A for more details.

3.4 TRAINING

Both rendering and reconstruction using our iterative feedback network and coupled representation
are end-to-end differentiable. To learn the network parameters, we use a training loss composed of
L1 and perceptual losses, comparing predicted and ground-truth RGB images, as well as L1 loss for
masks. The loss is averaged over all source and target images, as well as all T iterative feedback
steps. Formally, we minimize:

1

(N + 1)T

∑
n∈{1,...,N,tg}

T∑
t=1

(
L1(In, I

pred
n,t) + λperPerceptual(In, I

pred
n,t) + λML1(Mn,M

pred
n,t)

)
.

(12)
Here, Perceptual(·, ·) is the perceptual loss between predictions and ground-truths, e.g., SSIM or
LPIPS. λper and λM are user-specified hyperparameters.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Representation details. We initilize the low-resolution mesh
{
{vc↓0,i}V

↓

i=1, {f
↓
j }F

↓

j=1

}
in GoMc

0 with
SMPL or SMPL-X, depending on the human pose representation used in the dataset. The high-
resolution mesh is obtained by subdividing the low-resolution mesh.

Architecture details. We use ResNet-18 (He et al., 2016) as the image encoder. The ‘iterative
feedback’ module consists of a multi-source fusion block that mixes information from N sources,
and a Point Transformer (Zhao et al., 2021) that encodes all the vertices. The multi-source fusion
block consists of two Transformer encoder layers. The MLPs in Eq. (9) and Eq. (10) have two linear
layers with a ReLU as the activation function.

Training details. We set λper = 1.0 and λM = 5.0 in Eq. (12). We use the SSIM loss in THu-
man2.0 and the LPIPS loss in AIST++ following the baselines. We use Adam as the optimizer. On
THuman2.0, the learning rates of the image encoder and the rest of the model are 1e−4 and 5e−5
respectively. On AIST++, we set the learning rate of all parameters to 5e−5. We optimize the model
for 200K iterations on THuman2.0 and 100K iterations on AIST++.

4.2 EXPERIMENTAL SETUP

We evaluate our approach in two settings: 1) Multiview source images. Our approach can take
multiview images as input to produce a canonical representation; 2) Multi-frame source images.
Since our approach directly learns a 3D representation in the canonical space instead of a posed
space, our method can also operate on images showing various human poses, e.g., frames sampled
from a monocular video. Our approach can synthesize both novel views and novel poses.

Datasets. We validate our approach on THuman2.0 (Yu et al., 2021) and AIST++ (Li et al., 2021).
THuman2.0: We use THuman2.0 to evaluate our approach in the setting of multiview source im-
ages. THuman2.0 has 526 high-quality 3D human scans, texture maps and corresponding SMPL-X
parameters. We follow the experimental setup of GHG (Kwon et al., 2024) and split the dataset
into 426 subjects for training and 100 subjects for evaluation. We render multiview images from

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Comparison on THuman2.0. The proposed method improves state-of-the-art in PSNR,
LPIPS∗ and FID. We highlight the best result in bold font.

Number of
source views Method PSNR↑ LPIPS*↓ FID↓

3

NHP (Kwon et al., 2021) 23.32 184.69 136.56
NIA (Kwon et al., 2023) 23.20 181.82 127.30
GHG (Kwon et al., 2024) 21.90 133.41 61.67
Ours 24.59 111.26 51.42

5 GPS-Gaussian (Zheng et al., 2024) 20.39 152.34 65.90
Ours 25.21 105.83 38.17

the 3D scans. 3 or 5 images are used as source images and the remaining ones are used for eval-
uation. AIST++: The AIST++ dataset is used to evaluate the setting of multi-frame source im-
ages. The AIST++ dataset consists of multiview dancing videos, camera calibration parameters,
and human motions represented in SMPL poses. We adopt the training and evaluation protocol of
ActorsNeRF (Mu et al., 2023). Specifically, we use subjects 1-15 and 21-30 for training and leave
out subjects 16-20 for evaluation. We choose one motion sequence for each subject. We only use
camera 1 for training. During evaluation, we sample source images from Camera 1 and use Camera
2-7 to evaluate generalizable novel view and pose synthesis.

Baselines. We compare with other generalizable human rendering approaches including
NHP (Kwon et al., 2021), NIA (Kwon et al., 2023), GHG (Kwon et al., 2024) and GPS-
Gaussian (Zheng et al., 2024) on THuman2.0. We use 3 source images when comparing with NHP,
NIA and GHG. For the comparison with GPS-Gaussian, we adopt 5 source images following the
setting of GHG (Kwon et al., 2024), since GPS-Gaussian requires the source views to overlap with
each other and thus does not work well with very sparse views. On AIST++, we compare with Hu-
manNeRF (Weng et al., 2022) and ActorsNeRF (Mu et al., 2023). HumanNeRF needs to be trained
per scene. ActorsNeRF adopts a two-stage training: In the first stage, it learns a categorical prior
from large-scale datasets. In the second stage, it adopts per-scene optimization given the source
images.

Evaluation metrics. We report PSNR, LPIPS∗(= LPIPS× 1000) and FID compared to NHP, NIA,
GHG and GPS-Gaussian on THuman2.0. We report PSNR, SSIM and LPIPS∗ on HumanNeRF.

4.3 QUANTITATIVE RESULTS

THuman2.0. We summarize our results in Table 1 for both the three-view and the five-view setting.

In the three-view setting, our method significantly outperforms NHP, NIA, and GHG in PSNR,
LPIPS∗, and FID. Our approach achieves 24.59/111.26/51.42 in PSNR/LPIPS∗/FID, compared to
GHG’s 21.90/133.41/61.67. Importantly, we use 330K Gaussians for splatting, 7.5× fewer than
GHG’s 2.8M, resulting in faster rendering (10.52ms vs. GHG’s 20.30ms) at 1024× 1024 resolution
on a NVIDIA A100 GPU. Our method takes 907.92ms to reconstruct the coupled-multi-resolution
Gaussians-on-Mesh in canonical space, significantly faster than scene-specific methods but slower
than GHG. That said, reconstruction only needs to be done once per input subject, as the recon-
structed avatar will be cached and reused for articulation and rendering, which runs at 95 FPS.

We compare our approach to GPS-Gaussian using five images. Since GPS-Gaussian relies on depth
prediction between adjacent views, five images are the minimum it requires. Despite that, it still
fails in non-overlapping regions. Our approach surpasses GPS-Gaussian in this setting significantly.

AIST++. Table 2 summarizes quantitative results on AIST++. Our method achieves
25.24/0.9809/22.11 in PSNR/SSIM/LPIPS*, matching ActorsNeRF’s 25.23/0.9809/22.11 and sur-
passing HumanNeRF’s 24.21/0.9760/29.66. Importantly, our method needs only 589 ms for 3D
reconstruction, whereas HumanNeRF and ActorsNeRF require several hours.

4.4 QUALITATIVE RESULTS

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Comparison on AIST++. We achieve comparable quality as ActorsNeRF while requiring
much less time in reconstruction or optimization. We highlight the best result in bold font.

Method PSNR↑ SSIM↑ LPIPS*↓ Reconstruction or
optimization time↓

HumanNeRF (Weng et al., 2022) 24.21 0.9760 29.66 ∼2h
ActorsNeRF (Mu et al., 2023) 25.23 0.9809 22.45 ∼4h
Ours 25.24 0.9809 22.11 589.27ms

(a) Ground truth (b) GHG (c) Ours (a) Ground truth (b) GPS-Gaussian (c) Ours
Figure 4: Comparison to GHG (left) and GPS-Gaussian (right) on THuman2.0. Our method
produces sharper results than both, and offers more complete shapes than GPS-Gaussian.

(a) Ground truth (b) ActorsNeRF (c) Ours
Figure 7: Comparison to ActorsNeRF. Our
method has fewer floaters and is around
30,000 times faster in reconstruction.

Novel view synthesis. We show the novel view syn-
thesis efficacy of our method in Fig. 4 and Fig. 7.
Our approach generates sharper details compared to
GHG. Compared to ActorsNeRF, our approach pro-
duces fewer floaters due to the representation. We
also demo our approach on cross-domain generaliza-
tion in Fig. 5, using the DNA-Rendering data (Cheng
et al., 2023) without finetuning. Please see the sup-
plementary material for more examples.

Novel pose synthesis. Instead of directly reconstructing human avatars in the pose of the source
images, our approach outputs the canonical representation in T-pose via the Reconstructor.
Benefitting from this choice, we can synthesize novel poses without postprocessing such as binding
the skeletons. In Fig. 6, we retarget the avatar to challenging new pose sequences from the BEDLAM
dataset (Black et al., 2023). The avatar is reconstructed using the model which was used to report
results in the 3 source view setting of Table 1.

4.5 ABLATION STUDIES

Analysis of iterative step choice. We study how the number of iterations (T) influences the recon-
struction time and rendering quality. Results are summarized in Table 3 and Fig. 8 (left). Using more
iterations improves the rendering quality at the expense of more reconstruction time (∼290ms per
iteration). The PSNR improves by +0.8 and +0.95 when T = 2 and T = 3 respectively compared
to T = 1. Starting with T = 4, the benefit of more iterations diminishes. We choose T = 3 in our
final model to balance rendering quality and reconstruction time.

(a) Reference
image

(b) Novel view
synthesis

Figure 5: Cross-domain generalization on
DNA-Rendering dataset w/o finetuning.

(a) Reference
image

(b) Novel pose
synthesis

Figure 6: Novel pose synthesis. Poses are
from BEDLAM dataset.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Iterative step choice. More iterations lead to better rendering at the expense of longer
reconstruction. We choose 3 iterations for the best tradeoff between quality and speed.

iterations PSNR↑ LPIPS*↓ FID↓ Reconstruction
time (ms)↓

1 23.64 122.70 63.16 328.79
2 24.44 113.05 52.53 618.67
3 24.59 111.26 51.42 907.92
4 24.64 110.85 50.89 1198.14
5 24.65 110.83 50.88 1563.92

(a) T=1 (b) T=2 (c) T=3 (a) Subdivide
×0

(d) Ground
truth

(b) Subdivide
×1

(c) Subdivide
×2

(d) Ground
truth

Figure 8: Ablation studies. We study the effect of iterative feedback (left). The geometry improves
as the number of iterations increases. We show the importance of linking Gaussians to the high-
resolution mesh (right). The high-resolution mesh is subdivided from the low-resolution counterpart.
A higher resolution yields better texture details.

Table 4: Coupled-multi-resolution Gaussians-on-Mesh. Increasing the number of subdivisions
improves rendering quality at the cost of longer reconstruction and rendering times. We subdivide
twice in our final model to ensure quality while maintaining real-time performance.

subdivision PSNR↑ LPIPS*↓ FID↓ Reconstruction
time (ms)↓

Rendering
time (ms)↓

0 24.72 143.49 90.37 538.02 3.20
1 24.86 118.17 56.54 607.49 3.93
2 24.59 111.26 51.42 907.92 10.52

Coupled-multi-resolution Gaussians-on-Mesh. As mentioned in Section 3.2.1 and Section 3.3,
we update the vertices of the low-resolution mesh, while the Gaussians are associated with the
high-resolution mesh. Both are updated jointly. This choice is necessary for two reasons: 1)
simply updating the vertices of the high-resolution mesh increases the reconstruction time from
907.92ms to 12.45s, making it too slow for both training and inference; 2) learning Gaussians in
the high-resolution mesh guarantees good rendering quality. Note that the high-resolution mesh is
obtained by subdividing the low-resolution mesh. In Table 4, we show that the rendering improves
by 25.32/33.83 and 32.23/38.95 in LPIPS∗/FID when subdividing once and twice respectively com-
pared to no subdivision. The improvement can also be observed in Fig. 8 (right). Note that we do not
observe consistent improvement in PSNR. This is because PSNR sometimes prefers blurry results.
The resolution of the high-resolution mesh affects both the reconstruction speed and the rendering
speed since we render the source images during the reconstruction stage. As the reconstruction time
is still less than 1s, we choose to subdivide twice for better rendering quality.

5 CONCLUSIONS

We tackle the problem of generalizable reconstruction of an animatable human avatar from sparse
inputs. We propose a feed-forward network featuring iterative updates with iterative feedback and
coupled-multi-resolution Gaussians-on-Mesh representation. Our method achieves state-of-the-art
rendering quality. It requires less than 1s for avatar reconstruction and renders at 95 FPS.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jonas Adler and Ozan Öktem. Solving ill-posed inverse problems using iterative deep neural net-
works. Inverse Problems, 2017.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. NeurIPS, 2016.

David Belanger and Andrew McCallum. Structured prediction energy networks. In ICML, 2016.

Michael J. Black, Priyanka Patel, Joachim Tesch, and Jinlong Yang. BEDLAM: A synthetic dataset
of bodies exhibiting detailed lifelike animated motion. In CVPR, 2023.

Joao Carreira, Pulkit Agrawal, Katerina Fragkiadaki, and Jitendra Malik. Human pose estimation
with iterative error feedback. In CVPR, 2016.

Jinnan Chen, Chen Li, Jianfeng Zhang, Hanlin Chen, Buzhen Huang, and Gim Hee Lee. Generaliz-
able human gaussians from single-view image. arXiv, 2024.

Wei Cheng, Ruixiang Chen, Siming Fan, Wanqi Yin, Keyu Chen, Zhongang Cai, Jingbo Wang,
Yang Gao, Zhengming Yu, Zhengyu Lin, et al. Dna-rendering: A diverse neural actor repository
for high-fidelity human-centric rendering. In ICCV, 2023.

John Flynn, Michael Broxton, Paul Debevec, Matthew DuVall, Graham Fyffe, Ryan Overbeck, Noah
Snavely, and Richard Tucker. Deepview: View synthesis with learned gradient descent. In CVPR,
2019.

Chen Geng, Sida Peng, Zhen Xu, Hujun Bao, and Xiaowei Zhou. Learning neural volumetric
representations of dynamic humans in minutes. In CVPR, 2023.

Antoine Guédon and Vincent Lepetit. Sugar: Surface-aligned gaussian splatting for efficient 3d
mesh reconstruction and high-quality mesh rendering. In CVPR, pp. 5354–5363, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Liangxiao Hu, Hongwen Zhang, Yuxiang Zhang, Boyao Zhou, Boning Liu, Shengping Zhang, and
Liqiang Nie. Gaussianavatar: Towards realistic human avatar modeling from a single video via
animatable 3d gaussians. In CVPR, 2024.

Shoukang Hu, Fangzhou Hong, Liang Pan, Haiyi Mei, Lei Yang, and Ziwei Liu. Sherf: Generaliz-
able human nerf from a single image. In ICCV, 2023.

Tianjian Jiang, Xu Chen, Jie Song, and Otmar Hilliges. Instantavatar: Learning avatars from monoc-
ular video in 60 seconds. In CVPR, 2023.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3D Gaussian Splat-
ting for Real-Time Radiance Field Rendering. ACM TOG, 2023.

Muhammed Kocabas, Jen-Hao Rick Chang, James Gabriel, Oncel Tuzel, and Anurag Ranjan. Hugs:
Human gaussian splats. In CVPR, 2024.

Nikos Kolotouros, Thiemo Alldieck, Enric Corona, Eduard Gabriel Bazavan, and Cristian Smin-
chisescu. Instant 3d human avatar generation using image diffusion models. In ECCV, 2024.

Youngjoong Kwon, Dahun Kim, Duygu Ceylan, and Henry Fuchs. Neural human performer: Learn-
ing generalizable radiance fields for human performance rendering. NIPS, 2021.

Youngjoong Kwon, Dahun Kim, Duygu Ceylan, and Henry Fuchs. Neural image-based avatars:
Generalizable radiance fields for human avatar modeling. ICLR, 2023.

Youngjoong Kwon, Baole Fang, Yixing Lu, Haoye Dong, Cheng Zhang, Francisco Vicente Car-
rasco, Albert Mosella-Montoro, Jianjin Xu, Shingo Takagi, Daeil Kim, et al. Generalizable human
gaussians for sparse view synthesis. ECCV, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jiahui Lei, Yufu Wang, Georgios Pavlakos, Lingjie Liu, and Kostas Daniilidis. Gart: Gaussian
articulated template models. In CVPR, 2024.

Chen Li, Jiahao Lin, and Gim Hee Lee. Ghunerf: Generalizable human nerf from a monocular
video. In 3DV, 2024.

Mingwei Li, Jiachen Tao, Zongxin Yang, and Yi Yang. Human101: Training 100+ fps human
gaussians in 100s from 1 view. arXiv, 2023.

Ruilong Li, Shan Yang, David A Ross, and Angjoo Kanazawa. Learn to dance with aist++: Music
conditioned 3d dance generation. In ICCV, 2021.

Tianye Li, Timo Bolkart, Michael. J. Black, Hao Li, and Javier Romero. Learning a model of facial
shape and expression from 4D scans. SIGGRAPH Asia, 2017.

Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox. Deepim: Deep iterative matching for 6d
pose estimation. In Proceedings of the European Conference on Computer Vision (ECCV), pp.
683–698, 2018.

Tingting Liao, Xiaomei Zhang, Yuliang Xiu, Hongwei Yi, Xudong Liu, Guo-Jun Qi, Yong Zhang,
Xuan Wang, Xiangyu Zhu, and Zhen Lei. High-fidelity clothed avatar reconstruction from a
single image. In CVPR, 2023.

Tingting Liao, Hongwei Yi, Yuliang Xiu, Jiaxiang Tang, Yangyi Huang, Justus Thies, and Michael J
Black. Tada! text to animatable digital avatars. In 3DV, 2024.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black.
SMPL: A skinned multi-person linear model. ACM TOG, 2015.

Wei-Chiu Ma, Shenlong Wang, Jiayuan Gu, Sivabalan Manivasagam, Antonio Torralba, and Raquel
Urtasun. Deep feedback inverse problem solver. In ECCV, 2020.

Fabian Manhardt, Wadim Kehl, Nassir Navab, and Federico Tombari. Deep model-based 6d pose
refinement in rgb. In ECCV, 2018.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In ECCV,
2020.

Jiteng Mu, Shen Sang, Nuno Vasconcelos, and Xiaolong Wang. Actorsnerf: Animatable few-shot
human rendering with generalizable nerfs. In ICCV, pp. 18391–18401, 2023.

Panwang Pan, Zhuo Su, Chenguo Lin, Zhen Fan, Yongjie Zhang, Zeming Li, Tingting Shen, Yadong
Mu, and Yebin Liu. Humansplat: Generalizable single-image human gaussian splatting with
structure priors. arXiv, 2024.

Xiao Pan, Zongxin Yang, Jianxin Ma, Chang Zhou, and Yi Yang. Transhuman: A transformer-based
human representation for generalizable neural human rendering. In CVPR, 2023.

Pramish Paudel, Anubhav Khanal, Ajad Chhatkuli, Danda Pani Paudel, and Jyoti Tandukar. ihuman:
Instant animatable digital humans from monocular videos. arXiv, 2024.

Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang, Qing Shuai, Hujun Bao, and Xiaowei
Zhou. Neural body: Implicit neural representations with structured latent codes for novel view
synthesis of dynamic humans. In CVPR, 2021.

Shenhan Qian, Tobias Kirschstein, Liam Schoneveld, Davide Davoli, Simon Giebenhain, and
Matthias Nießner. Gaussianavatars: Photorealistic head avatars with rigged 3d gaussians. CVPR,
2024a.

Zhiyin Qian, Shaofei Wang, Marko Mihajlovic, Andreas Geiger, and Siyu Tang. 3dgs-avatar: Ani-
matable avatars via deformable 3d gaussian splatting. In CVPR, 2024b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Edoardo Remelli, Timur Bagautdinov, Shunsuke Saito, Chenglei Wu, Tomas Simon, Shih-En Wei,
Kaiwen Guo, Zhe Cao, Fabian Prada, Jason Saragih, and Yaser Sheikh. Drivable volumetric
avatars using texel-aligned features. In SIGGRAPH, 2022.

Alexander G Schwing and Raquel Urtasun. Fully connected deep structured networks. arXiv, 2015.

Kaiyue Shen, Chen Guo, Manuel Kaufmann, Juan Zarate, Julien Valentin, Jie Song, and Otmar
Hilliges. X-avatar: Expressive human avatars. In CVPR, 2023.

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In ECCV,
2020.

Shenlong Wang, Sanja Fidler, and Raquel Urtasun. Proximal deep structured models. NeurIPS,
2016.

Jing Wen, Xiaoming Zhao, Zhongzheng Ren, Alex Schwing, and Shenlong Wang. GoMAvatar:
Efficient Animatable Human Modeling from Monocular Video Using Gaussians-on-Mesh. In
CVPR, 2024.

Chung-Yi Weng, Brian Curless, Pratul P. Srinivasan, Jonathan T. Barron, and Ira Kemelmacher-
Shlizerman. HumanNeRF: Free-viewpoint Rendering of Moving People from Monocular Video.
In CVPR, 2022.

Zhenzhen Weng, Jingyuan Liu, Hao Tan, Zhan Xu, Yang Zhou, Serena Yeung-Levy, and Jimei Yang.
Single-view 3d human digitalization with large reconstruction models. arXiv, 2024.

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Colmenarejo,
Misha Denil, Nando Freitas, and Jascha Sohl-Dickstein. Learned optimizers that scale and gen-
eralize. In ICML, 2017.

Yuxuan Xue, Xianghui Xie, Riccardo Marin, and Gerard Pons-Moll. Human 3diffusion: Realistic
avatar creation via explicit 3d consistent diffusion models. arXiv, 2024.

Tao Yu, Zerong Zheng, Kaiwen Guo, Pengpeng Liu, Qionghai Dai, and Yebin Liu. Function4d:
Real-time human volumetric capture from very sparse consumer rgbd sensors. In CVPR, 2021.

Zhengming Yu, Wei Cheng, Xian Liu, Wayne Wu, and Kwan-Yee Lin. Monohuman: Animatable
human neural field from monocular video. In CVPR, 2023.

Xuanmeng Zhang, Jianfeng Zhang, Rohan Chacko, Hongyi Xu, Guoxian Song, Yi Yang, and Jiashi
Feng. Getavatar: Generative textured meshes for animatable human avatars. In CVPR, 2023.

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In
ICCV, 2021.

Shunyuan Zheng, Boyao Zhou, Ruizhi Shao, Boning Liu, Shengping Zhang, Liqiang Nie, and Yebin
Liu. Gps-gaussian: Generalizable pixel-wise 3d gaussian splatting for real-time human novel view
synthesis. In CVPR, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Source images
𝐵×𝑁×3×𝐻×𝑊

Rendered images
𝐵×𝑁×3×𝐻×𝑊

Image
Encoder

Image
Encoder

Image feature
𝐵×𝑁×𝐶×𝐻×𝑊

Multi-source
Fusion

Multi-source
Fusion

Point
Transformer//

𝐵×𝑉↓×𝐶

𝐵×𝑉↓×𝐶

𝐵×𝑉↓×𝐶′

GoM"#$
%

Iterative feedback net

Image feature
𝐵×𝑁×𝐶×𝐻×𝑊

Figure 9: Iterative feedback module. The iterative feedback module takes as input the represen-
tation GoMc

t−1 obtained from the previous iteration, the source images and images rendered with
GoMc

t−1. The module is designed to compare the rendered images and source images, and to sum-
marize the result in a feature vector of dimension C ′ for each vertex in the low-resolution mesh.
Here, B denotes the batch size, N refers to the number of source images, and H and W are the
height and weight of the images respectively. Further, V ↓ is the number of vertices in the low-
resolution mesh, C refers to the dimension of the feature vector from the image encoder, and C ′

denotes the dimension of the output feature from the Point Transformer. The entire module operates
on the low-resolution mesh.

Image feature
𝐵×𝑁×𝐶×𝐻×𝑊

GoM!"#
$

Sample Transformer
Encoder Layer

𝐵×𝑁×𝑉↓×𝐶
Rearrange

(𝐵×𝑉↓)×𝑁×𝐶 Transformer
Encoder Layer

Vertex embedding 𝑒!"#,&↓
&(#
)↓

𝐵×𝑉↓×1×𝐶

𝐵×𝑉↓×𝐶

Figure 10: Multi-source fusion. Multi-source fusion first samples the vertex-aligned image features
from the encoded images. Then we use two Transformer encoder layers to fuse the information from
each of the N source images. In the Transformer encoder layers, the three input arrows from top
to bottom represent the query matrix Q, the key matrix K, and the value matrix V of the attention
layer respectively. We additionally associate a learnable vertex embedding with each vertex. Please
check Appendix A for details.

A DETAILS FOR THE ITERATIVE FEEDBACK MODULE

The detailed architecture of the iterative feedback module is provided in Fig. 9. Given source im-
ages and rendered images, we first extract image features via an image encoder. Then we apply
multi-source fusion which samples aligned image features for each of the low-resolution vertices
{vc↓t−1,i}V

↓

i=1 and mixes the features from N sources. After that, a Point Transformer is adopted to
encode all vertices. Note that the iterative feedback module operates on the low-resolution mesh.

Image encoder. We use ResNet-18 (He et al., 2016) with ImageNet pretrained weights as the image
encoder. The image feature is the concatenation of features from 5 intermediate layers and therefore
has a dimension of 1192, i.e., C = 1192 in Fig. 9. Concatenating multi-level features ensures a
large receptive field and is essential for iterative updates.

Multi-source fusion. Multi-source fusion first samples image features for all vertices in the low-
resolution mesh. Concretely, the i-th vertex vc↓i , i ∈ {1, . . . , V ↓} is first articulated via the available
source human poses {Pn}Nn=1 and then projected onto images via the available camera intrinsics
{Kn}Nn=1 and extrinsics {En}Nn=1. The aligned features are sampled at the projected points from
each of the N source images. Subsequently we mix the sampled features from the N source images
using two Transformer encoder layers. The query matrix Q, key matrix K and value matrix V for
each Transformer encoder are illustrated in Fig. 10. The input, intermediate and output dimensions

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

(a) (b)
Reference input pose Novel pose Reference image Rendered image

(c)

Figure 11: Examples of failure cases.

are C = 1192. We use 6 heads in the attention layers. Note that in the second Transformer en-
coder layer, we use a learnable vertex embedding {e↓t−1,i}

V ↓
i=1 as the query. The learnable vertex

embedding is updated in iterative updates together with the low-resolution vertices.

Point Transformer. The Point Transformer (Zhao et al., 2021) is used to encode the vertices and to
produce high-level features for all low-resolution vertices. The output dimension of each vertex is
32, i.e., C ′ = 32 in Fig. 9.

B ADDITIONAL QUALITATIVE RESULTS

For additional qualitative results we refer the reader to the supplementary file index.html. This
file contains videos for freeview rendering, cross-domain generalization and novel pose synthesis.

C LIMITATIONS

We present three types of failure cases in our method and discuss the possible next steps to resolve
the issues.

Failure in hallucination large regions. Without an explicit hallucination module, our method is
unable to inpaint large invisible regions in source images, as is shown in Fig. 11(a). A possible
solution is to render the invisible parts and update our canonical representation using priors from
image inpainting models.

Wrong assignments of image regions to joints. We sometimes observe artifacts when rendering in
novel poses. The artifacts are due to the wrong assignment of image regions to joints. For example,
in Fig. 11(b), the model deforms the vertices belonging to the arm to depict an image region that
should be part of the torso. The wrong assignments of the image regions will not affect the rendering
in novel views but will create artifacts when rendering in new poses. Human parsing can be used as
auxiliary information to correct the wrong assignments. We leave it to future work.

Wrong underlying topology. Our coupled-multi-resolution Gaussians-on-Mesh representation as-
sociates the Gaussians with the underlying mesh. Analogously to the original Gaussians-on-Mesh
representation, since the underlying mesh is deformed from human parametric models such as SMPL
and SMPL-X, it cannot change vertex connectivities to fit the topology of clothes such as dresses and
coats. Although the wrong topology will not affect the rendering, it is a future direction to correct
the underlying mesh for use in other downstream tasks.

Failures for unseen clothing types. We observe failures for unseen clothing such as dresses, as
shown in Fig. 11(c). As a generalizable method, a more comprehensive training set containing
different clothings and more diverse subjects is needed. We leave it for future work.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 5: Comparison with state-of-the-art scene-specific methods on THuman2.0. The proposed
method improves state-of-the-art in PSNR, LPIPS∗ and FID. We highlight the best result in bold
font.

views Method PSNR↑ LPIPS*↓ FID↓

3
GoMAvatar (Wen et al., 2024) 23.05 133.98 87.51
3DGS-Avatar (Qian et al., 2024b) 21.25 160.48 157.21
Ours 24.59 111.26 51.42

Table 6: Comparison with state-of-the-art scene-specific methods on AIST++. We achieve better
rendering quality with much less reconstruction time. We highlight the best result in bold font.

Method PSNR↑ SSIM↑ LPIPS*↓ Reconstruction or
optimization time↓

GoMAvatar (Wen et al., 2024) 24.34 0.9780 25.34 ∼10h
3DGS-Avatar (Qian et al., 2024b) 25.14 0.9784 27.17 ∼2min
Ours 25.24 0.9809 22.11 589.27ms

Table 7: Comparison of cross-domain generalization on XHuman. To study cross-domain gen-
eralization, we evaluate on XHuman. The proposed method improves state-of-the-art in PSNR,
LPIPS∗ and FID. We highlight the best result in bold font.

Method PSNR↑ LPIPS*↓ FID↓

GHG (Kwon et al., 2024) 23.52 112.91 50.51
Ours 25.32 99.32 42.90

D ADDITIONAL ANALYSIS

D.1 COMPARISON TO SCENE-SPECIFIC METHODS

We compare with the state-of-the-art scene-specific methods including GoMAvatar (Wen et al.,
2024) and 3DGS-Avatar (Qian et al., 2024b). For this, we study two settings, i.e., 3 input views
on THuman2.0 and 5 source views on AIST++. For both settings, our proposed method signifi-
cantly outperforms the scene-specific methods in rendering quality. Meanwhile, our method only
needs 589.27ms to reconstruct the representation while 3DGS-Avatar requires 2min for optimization
and GoMAvatar needs hours. The results are shown in Table 5 and Table 6.

D.2 CROSS-DOMAIN GENERALIZATION

We quantitatively evaluate the cross-domain generalization on XHuman (Shen et al., 2023) and
summarize results in Table 7. The dataset provides 20 subjects with high-quality scans and SMPL-
X parameters. We sample three scans (f00001, f00051, f00101) for each subject and prepare the
dataset following the protocol put forth in THuman2.0.

To validate the ability of cross-domain generalization, we use this data solely for evaluation, i.e.,
no fine-tuning is employed. Specifically, we directly apply GHG and our approach trained on
THuman2.0 for the 3 source views setting to the XHuman dataset without any finetuning. Our
approach achieves PSNR/LPIPS*/FID of 25.32/99.32/42.90, significantly improving upon GHG’s
23.52/112.91/50.51.

D.3 INPUT POSE SENSITIVITY

We quantitatively compare the sensitivity to input pose accuracy for our approach and GHG (Kwon
et al., 2024). In this experiment, we add Gaussian noise of increasing standard deviation
(0.1, 0.3, 0.5) to the poses provided by THuman2.0. The results are summarized in Table 8. Both

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 8: Comparison regarding inaccurate input poses. We add random Gaussian noise of dif-
ferent standard deviations to the poses provided by THuman2.0. Our method outperforms GHG for
all noise levels.

Noise std=0.1 std=0.3 std=0.5

Method PSNR↑ LPIPS*↓ FID↓ PSNR↑ LPIPS*↓ FID↓ PSNR↑ LPIPS*↓ FID↓

GHG 21.25 136.87 62.03 19.66 149.73 64.15 18.53 163.48 68.57
Ours 23.96 113.80 53.15 22.02 123.15 57.22 20.43 134.86 62.84

methods are affected by the accuracy of the input poses. However, our approach improves upon
GHG in all noise levels.

To make our approach less sensitive to the accuracy of input poses, we can explore a pose refinement
network that is jointly trained with the iterative feedback. We leave it for future work.

E ADDTIONAL RELATED WORKS

Mesh representations in human modeling. Meshes as an explicit representation are easy to ani-
mate and can be rendered at a fast speed. Further, meshes can be easily integrated into the classic
graphics pipeline. Therefore, meshes are widely used in human modeling (Liao et al., 2024; Zhang
et al., 2023; Liao et al., 2023). However, as mentioned in GoMAvatar (Wen et al., 2024), it is diffi-
cult to learn to deform the mesh using photometric losses and mesh rasterization. Hence, methods
using meshes as the underlying representation either extract them from other types of representa-
tions such as a signed distance function (SDF) (Zhang et al., 2023; Liao et al., 2023), or apply
explicit supervision on the geometry, e.g., supervising surface normals (Liao et al., 2024; Zhang
et al., 2023; Liao et al., 2023). In contrast, we opt to use the Gaussians-on-Mesh representation
that binds Gaussians on the mesh and uses Gaussian splatting for rendering. This enables us to
overcome the difficulty in optimization. Consequently, our entire model is learned via photometric
losses only. Further, Gaussians-on-Mesh leverages the flexibility of Gaussian Splatting, enabling
more photorealistic rendering than textured meshes.

17

	Introduction
	Related Work
	Method
	Overview
	Coupled-multi-resolution Gaussians-on-Mesh representation
	Canonical representation
	Articulation
	Rendering with Gaussian splatting

	Reconstruction with iterative feedback
	Training

	Experiments
	Implementation details
	Experimental setup
	Quantitative results
	Qualitative results
	Ablation studies

	Conclusions
	Details for the Iterative Feedback Module
	Additional Qualitative Results
	Limitations
	Additional Analysis
	Comparison to scene-specific methods
	Cross-domain generalization
	Input pose sensitivity

	Addtional Related Works

