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Abstract

Training a neural network is a monolithic en-
deavor, akin to carving knowledge into stone:
once the process is completed, editing the knowl-
edge in a network is hard, since all information is
distributed across the network’s weights. We here
explore a simple, compelling alternative by mar-
rying the representational power of deep neural
networks with the flexibility of a database. De-
composing the task of image classification into
image similarity (from a pre-trained embedding)
and search (via fast nearest neighbor retrieval
from a knowledge database), we build on well-
established components to construct a simple and
flexible visual memory that has the following key
capabilities: (1.) The ability to flexibly add data
across scales: from individual samples all the way
to entire classes and billion-scale data; (2.) The
ability to remove data through unlearning and
memory pruning; (3.) An interpretable decision-
mechanism on which we can intervene to control
its behavior. Taken together, these capabilities
comprehensively demonstrate the benefits of an
explicit visual memory. We hope that it might
contribute to a conversation on how knowledge
should be represented in deep vision models—
beyond carving it in “stone” weights.

1. Introduction

In the pretty diagrams on ”Intro to Machine Learning” slides,
an ideal ML workflow looks like this: Data collection, pre-
processing, choosing a model, training, evaluation, deploy-
ment. Happy ending—the model is deployed, the users love
it, and one can finally go on that well-deserved vacation and
catch up on the latest AGI memes.

Until, of course, the enemy of any ideal world sets in: reality.
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The real world constantly keeps changing, and so do data
requirements. New data and datasets become available, and
existing ones become deprecated for a variety of reasons,
including concerns around fairness, biases or unsafe content.
Knowledge changes, and concepts drift (Tsymbal, 2004; Lu
et al., 2018): Phones and cars look different today than they
did a few years ago, and different from how they will look
in the future. When it comes to data, the only constant is
change (Cao & Yang, 2015; Bourtoule et al., 2021; Nguyen
et al., 2022; Zhang et al., 2023). Consequently, from a
modeling perspective, in order to keep up with this change
one would ideally want to constantly re-train or fine-tune
models, which is not feasible. In short, as anyone who has
ever deployed a model has experienced firsthand, one is con-
stantly battling the symptoms of a single underlying cause:
the fact that deep learning models have a static knowledge
representation entangled in millions or billions of model pa-
rameters. We, among many others working on memory e.g.
Weston et al. (2014); Chen et al. (2018); Wu et al. (2021);
Iscen et al. (2022); Nakata et al. (2022); Iscen et al. (2023);
Prabhu et al. (2023); Gui et al. (2024); Shao et al. (2024);
Silva et al. (2024), believe that this is not a great way to
represent visual knowledge for deep learning. Instead, we
argue that we should build models that cleanly separate rep-
resentation (how things are represented, e.g. through feature
embeddings) from visual memory (what is known). In short,
deep learning models need a flexible visual memory: a way
to explicitly utilize and edit knowledge.

In this work, we build a simple visual memory for classi-
fication and show that it has seven desirable capabilities,
including the ability to flexibly add data across scales (from
individual samples to classes and even billion-scale data),
the ability to remove data from our model’s classification
process through machine unlearning and memory pruning,
and a simple, interpretable decision-mechanism on which
we can intervene to control its behavior. Our main goal is
to provide a compelling idea of how beneficial a flexible
visual memory for deep learning can be from a variety of
perspectives and capabilities. From a technical standpoint,
we aim for simplicity: retrieving k nearest neighbors (in an
embedding feature space) along with their labels to classify
a query image. This approach allows us to investigate where
a simple visual memory mechanism helps, where its limi-
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Figure 1: Reliability of retrieved memory samples. This
plot visualizes the ImageNet top-1 validation accuracy of
a single retrieved neighbor depending on the index of the
neighbor (index 0: nearest neighbor). The decrease in ac-
curacy with increasing neighbor index follows smooth tra-
jectories and can be approximated by a two-parameter loga-
rithmic fit (black lines). More detailed plot in Appendix H.

tations may be, and where there might be opportunities for
improvement through a more complex system. We hope that
by demonstrating clear benefits from a simple visual mem-
ory, this article might contribute to a conversation on how
knowledge ought to be represented in deep vision models.
Our contributions are as follows:

1. Our main contribution is to demonstrate that a visual
memory based system enables flexible capabilities,
making progress towards some of deep learning’s
grand challenges: In specific settings, unlearning
with perfect guarantees which is currently consid-
ered a major open problem in deep learning, an im-
proved understanding of how decisions relate to data-
points through an interpretable decision-mechanism
enabling data attribution, and controlling sample in-
fluence through memory pruning. These capabilities
highlight the promise of separating knowledge from
representation through a visual memory.

2. A simple visual memory performs well at scale: On
the methodological side, we aim for simplicity. In-
stead of re-inventing the wheel, we build on estab-
lished building blocks from the literature like SSL
features, kNN classification and fast, scalable similar-
ity search. We contribute technical improvements like
RankVoting and VLM re-ranking, achieving 88.5%
top-1 ImageNet validation accuracy which improves
over both DinoV2 ViT-L14 kNN and linear probing.

We argue that the way current deep learning models repre-
sent knowledge (static knowledge representation, hard to
update, hard to unlearn, hard to understand how a decision is

made) is problematic. As an alternative, we built a working
proof-of-concept: By building on the long history of nearest
neighbor methods, and “marrying” them with a powerful
deep learning representation (such as SSL features from
DinoV?2) and a billion-scale visual memory.

Related work. The concept of a visual memory has a long
history in ML, neuroscience and psychology. In psychol-
ogy, exemplar theory posits that humans recognize objects
by comparing them to existing examples in visual memory
(Medin & Schaffer, 1978; Nosofsky, 1986; Dopkins & Glea-
son, 1997; Jikel et al., 2008; Nosofsky, 2011), like the AL-
COVE model (Kruschke, 2020). In ML, prior to deep learn-
ing, instance-based learning (also known as memory-based
learning) was a popular alternative to model-based learning
(Aha et al., 1991; Quinlan, 1993). For instance, Turk &
Pentland (1991) used nearest neighbor methods to classify
faces, and Sivic & Zisserman (2003) build a visual memory
inspired by text retrieval for object retrieval from videos. In
recent years, hybrid approaches have started to combine the
benefits of both approaches. Deep neural network variants
(model-based since they learn generalized abstractions of
data) of k-nearest neighbor algorithms (instance-based since
they compare new data to existing exemplars in memory)
have been proposed with various motivations, including few-
shot learning (Wang et al., 2019b; Yang et al., 2020; Bari
et al., 2021), improving adversarial robustness (Sitawarin &
Wagner, 2019; Papernot & McDaniel, 2018; Rajani et al.,
2020), medical image classification (Zhuang et al., 2020),
confidence calibration (Papernot & McDaniel, 2018), in-
terpretability (Papernot & McDaniel, 2018; Wallace et al.,
2018; Lee et al., 2020; Rajani et al., 2020), image denoising
(P16tz & Roth, 2018), retrieval-augmented learning (Khan-
delwal et al., 2019; Drozdov et al., 2022), anomaly and
out-of-distribution detection (Bergman et al., 2020; Sun
et al., 2022). Recently, Nakata et al. (2022) tested a KNN-
based visual memory up to ImageNet-scale (1.28M images),
and Khandelwal et al. (2019); Wu et al. (2021) applied kNN-
based approaches to neural language models. In contrast, we
scale visual memory to the billion scale, improve ranking,
and show systematic benefits across different tasks.

2. Building a retrieval-based visual memory
for classification

Given a dataset Diest := {(Z1,¥1)," " , &n, Yn }, We want
to classify each image &; € Diest. Our classification ap-
proach consists of two steps: (i) building a visual memory,
and (ii) using it for fast nearest neighbor based inference.

2.1. Building a visual memory

Our visual memory retrieves (image, label) pairs from an
image dataset when a query is made by directly retrieving
those images that are considered similar to a test image
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Figure 2: Aggregating information across retrieved memory samples. (left) Existing aggregation methods are over-
confident in distant neighbors, resulting in the paradox of decaying ImageNet-1K accuracy with more information. The
same pattern is also seen for other models and datasets in the Appendix (Figures 7 and 8). (right) This is not the case for
RankVoting, a power-function based method which reaches higher and stable performance across models and choices of k.

according to a model. The model is a fixed pre-trained
image encoder, meaning that no training takes place when
adding information to visual memory. No copies of the
dataset are stored in the visual memory. Instead, feature
maps are extracted from the model based on a set of images
related to the downstream classification task at hand, such
as a standard training set. For our experiments, our visual
memory comprises of features extracted from a dataset like
the ImageNet-1K (Russakovsky et al., 2015) training set or
JFT (Zhai et al., 2022) using different encoders like DinoV2
(Oquab et al., 2023) and CLIP (Radford et al., 2021). Thus,
given a pretrained image encoder, ®, and a dataset of (image,
label) Pairs Dtrain = (xlv yl)a (2’132, y2)7 T (CCN, yN)’
we obtain features z; := ®(x;),Vx; € Diain. Subse-
quently, the feature maps and corresponding label pairs
are put in a database thereby creating VisualMemory :=
{(z1,v1), (z2,942), - , (zn,yn)} for classification. For
both DinoV2 and CLIP, we use the last image embedding
layer as a feature space.

2.2. Retrieval-based classification using visual memory

Given a query image ¥ € D, We extract its fea-
ture map, 2 = ®(Z). We then query VisualMemory
to extract k feature vectors, Neighbors(Z) :=
{(Zm,y[l]), (z[2]7y[2]((, ey, (z[k],y[k])}, that are closest
to the query features z using the cosine distance, which is
the default retrieval similarity measure for SSL models like
DinoV2. Neighbors(&), are ordered by distance i.e.

diSt(%,Z[i]) < dist(27Z[j]), Vi < j.
We then assign a weight, w;, to each neighbour (z[z-] , y[i])

and aggregate the scores for each neighbour with the same
label. Finally, we assign that label to the query image with

the highest aggregate score. We implemented retrieval based
classification using one of the following two approaches:

1. Fast inference using matrix multiplication on
GPUs/TPUs: For smaller datasets like ImageNet, we saved
VisualMemory as a matrix of size num_images X num_dims.
During inference, for an encoded query image of size
1 X num_dims, we computed the dot product of this en-
coded image with every entry in VisualMemory getting a
matrix of size num_images x 1. We then computed the %k
nearest neighbors using the arg max operation.

2. Fast and scalable nearest neighbor search: We used
ScaNN (Guo et al., 2020) for accelerating nearest neighbor
search at scale. Specifically, we saved the VisualMemory
as a database and used ScaNN for fast lookup of nearest
neighbors during inference. Storing features requires only
about 1-3% of the space of storing the dataset itself and
search latency is 500600 QPS at perfect recall for 1M
features, thus approximately 2 milliseconds per query due to
parallelization which can be done on CPUs. See Appendix K
for details on latency and storage. This method scales easily
to billion-scale memory (cf. Section 3.3).

We mentioned earlier that we retrieve a set of neighbors,
Neighbors(Z) and aggregate information across them to
make a classification decision. In order to understand how
reliable (i.e., accurate) retrieved memory samples are from
the first to the 100th neighbor, we systematically analyze
neighbor reliability in Figure 1. As expected, reliability
decreases as the neighbor index k increases, but even at
large k the neighbors contain above-chance information
about the ground truth class. This suggests that aggregating
information across different neighbors may be beneficial to
decision-making, leading to the question: What is the best
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aggregation strategy? We empirically study this by testing
different weighting strategies for aggregation:

Plurality voting: Each neighbour in Neighbors(Z) is as-
signed an equal weight of 1.0. This is the classic, most
simple voting method and used e.g. by Nakata et al. (2022).

Distance voting: Each neighbour in Neighbors(&) is as-
signed a weight based on its Cosine distance to the query
image & i.e. w; = exp ( — dist(Z, z[)). This approach has
been used by Khandelwal et al. (2019) for nearest neighbor
language models.

Softmax voting: Each neighbour is assigned a weight based
on the softmax function i.e. w; = softmax(dist(Z, z;)), 7)
where 7 is the temperature. This voting method is con-
sidered state-of-the-art; for example nearest neighbor ac-
curacies of self-supervised models are reported using this
method. A temperature of 7 = 0.07 frequently appears in
literature (Wu et al., 2018; Caron et al., 2021; Oquab et al.,
2023) and is reported as a parameter “which we do not tune”
in the Dino paper (Caron et al., 2021, p. 18). We observe
that performance is sensitive to this parameter; other tem-
peratures perform worse. We therefore follow the literature
in using 7 = 0.07.

Rank voting: We propose using a simple aggregation ap-
proach wherein each neighbour is assigned a power-function
weight based on its rank in the ordered set Neighbors(Z)
i.e. w; = 1/(a + rank;) where rank; is i and « is an offset
to avoid division by zero that is set to 2.0. This is sim-
ilar, though not identical to, Gou et al. (2011) who used
power-law weighting in a different context.

In Figure 2a, we compare the top-1 ImageNet validation
accuracy of different ranking methods as a function of num-
ber of neighbours, with the ImageNet-1K training set as
the visual memory using the DinoV2/ViT-L14 model as the
featurizer. Paradoxically, existing aggregation methods like
plurality voting, distance-based voting, and softmax voting
show decaying performance as the provided information
(number of nearest neighbors) increases. This suggests that
the methods are overconfident in distant neighbors, assign-
ing them too much weight. Our simple, parameter-free rank
based voting method, however, leads to an increase in per-
formance with more neighbors until a certain k after which
the performance plateaus, which is the ideal scenario (Fig-
ure 2b). Furthermore, rank-based voting also outperforms
baselines in absolute terms; quantitative comparisons can be
found in the Appendix (Tables 4 to 8) where we also study
the influence of hyperparameters (Figure 9). This indicates
that a simple, power-function based method can reliably
integrate information across retrieved memory samples.

Gemini re-ranking. Our results above demonstrate that
different aggregation strategies have a large impact on down-
stream performance. How far can we push the upper limit

on aggregating information from different neighbors? We
perform a controlled experiment using the Gemini 1.5 Flash
model (Reid et al., 2024) to test this: We add the 50 nearest
neighbors from DinoV2 ViT-L14 for a query image along
with their labels into Gemini’s context. We then query Gem-
ini to predict the query image’s label. This achieves 88.5%
ImageNet validation accuracy, a substantial improvement
over both DinoV2 ViT-L14 kNN (83.5%) and linear probing
(86.3%) performance. Interestingly, Gemini’s performance
is mainly driven by the neighbor information through in-
context learning since it only achieves 69.6% accuracy with-
out neighbors (when just the query image is provided to the
model). The performance improvement highlights the po-
tential of using vision-language models as a visual memory
re-ranker. Given that our main goal is to explore a simple
visual memory system, we mostly focus on non-Gemini
ranking methods throughout our analysis.

3. Capabilities of a visual memory

Our primary goal is to motivate the concept of a machine
visual memory from a variety of different perspectives. To
this end, we investigate how such a memory can benefit
the following capabilities: 3.1 Flexible lifelong learning:
adding novel OOD classes; 3.2 Flexibly trading off compute
and memory; 3.3 Flexibly adding billion-scale data without
training; 3.4 Flexible removal of data: machine unlearning;
3.5 Flexibly increasing dataset granularity; 3.6 Flexible data
selection: memory pruning; 3.7 Interpretable & attributable
decision-making.

3.1. Flexible lifelong learning: adding novel OOD
classes (data and labels)

Standard classifiers, whether trained end-to-end (supervised
models) or with a linear classifier (self-supervised models),
are not able to handle new information without re-training.
For instance, adding new classes or changing labels in an
existing model usually involves either re-training or fine-
tuning parts of the model. A retrieval-based visual memory,
in contrast, is able to process such information in a natural
and flexible way, aligning with the requirements of lifelong
learning (Parisi et al., 2019). We tested this by adding data
for 64 new classes, along with their new labels, to the visual
memory of a pre-trained DinoV2 ViT-L14 model (in addi-
tion to the ImageNet train set, which is in-distribution for the
model). We took the new classes from the NINCO dataset
(Bitterwolf et al., 2023), a dedicated OOD dataset that is
designed to have no overlap with existing ImageNet labels
and samples. This requires the model to transfer what it has
learned to new, unseen concepts. The new task is therefore
harder, as the model has to retrieve images from both in-
distribution and OOD classes. The resulting visual memory
has 1064 classes (1K from ImageNet and 64 from NINCO).
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Figure 3: Memory scaling: flexibly trading off compute and memory. ImageNet top-1 validation error decreases
systematically as the memory size is increased (i.e., recognition accuracy increases with scale). (left) Million-scale memory
consisting of ImageNet-train labels. (right) Billion-scale memory bank consisting of machine-generated pseudo labels on
the JFT dataset (Zhai et al., 2022). Accuracy continues to decrease even with billion-scale data in memory. The roughly
constant offset between models of different sizes suggests the possibility of a flexible trade-off: The same error rate can be
achieved with a small model and large memory, or a large model and a small memory.

Table 1 shows that with a visual memory it is possible to add
new classes such that the in-distribution accuracy is main-
tained without catastrophic forgetting (the new classes only
change ImageNet validation performance by 0.02-0.04%
depending on the aggregation method), while at the same
time reaching very high accuracy on the new OOD classes
(approx. 87% top-1) without any training. Figure 12 in the
appendix confirms that the samples are indeed OOD for the
model, as demonstrated by larger distances to nearest neigh-
bors. This highlights that a visual memory is capable of
flexibly adding new information—an important capability
since the world is not static. Furthermore, the memory is
highly robust towards label corruption for up to 60% random
labels, as shown in Appendix D.

Table 1: Flexible lifelong learning: adding OOD classes.
A visual memory of DinoV2 ViT-L14 with ImageNet-train
(IN-train) as memory database is able to handle a simple
“insert into memory” operation for 64 out-of-distribution
classes (data and labels) from the NINCO dataset (Bitter-
wolf et al., 2023), leading to high performance on new
classes without harming existing ones.

memory — IN-train  IN-train-and-NINCO
query —  IN-val IN-val NINCO
no aggregation 81.1 81.1 86.4
PluralityVoting  83.2 83.2 86.9
DistanceVoting  83.3 83.3 87.1
SoftmaxVoting  83.6 83.5 87.5
RankVoting  83.6 83.6 87.4

3.2. Flexibly trading off compute and memory

Next, we turn our attention to studying the scaling behaviour
of visual memory with increasing memory model size. We
specifically test whether smaller models larger memory can
match the performance of larger models with smaller mem-
ory. This is because, all else being equal, a bigger model
might require fewer examples in memory to represent dif-
ferent concepts. We empirically study the scaling behaviour
of visual memory based retrieval systems in Figure 3a using
models of different sizes like DinoV2 ViT models of sizes
S/14 (21M params), B/14 (86M params), and L/14 (300M
params), as well as CLIP ViT models of sizes B/16 and
L/14. We plot the top-1 error rate as a function of number
of images in visual memory. The plot demonstrates that
for each model, the error rate consistently decreases as we
increase the visual memory size. Notably, already with a
single exemplar per class in memory, ImageNet validation
performance is well above chance (41% top-1 error for Di-
noV2 ViT-L14). It also suggests the possibility of a flexible
trade-off between model size and memory size: e.g. for the
different DinoV2 models, the S/14, B/14, and L/14 variant
achieve similar performance at 1.28M, ~150K, and ~70K
memory capacity respectively. This indicates that a smaller
model with large memory can match the performance of a
larger model with smaller memory.

3.3. Flexibly adding billion-scale data without training

Billion-scale dataset with pseudo labels. As demonstrated
in Section 3.2, performance systematically improves with
increased memory size across both small and large models.
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We here test how far this trend holds beyond relatively small-
scale, well-curated settings like ImageNet-1K by scaling
visual memory to the billion-scale unlabeled data regime.
Billion-scale search is known to be fast (Johnson et al., 2019;
Guo et al., 2020; Chen et al., 2021; Khan et al., 2024), but it
is an open question how well a billion-scale memory with a
modern featurizer like DinoV2 performs for classification.
In order to test predictive performance at scale, we obtain
a billion-scale dataset from the union of the ImageNet-1K
train set and a subset of the JFT-3B dataset (Zhai et al.,
2022). To this end, we treat JFT as an unlabeled dataset
by ignoring its original labels and instead obtaining pseudo
labels via ViT-22B-224px (Dehghani et al., 2023), a highly
performant classifier. We excluded images whose labels do
not have a correspondence with ImageNet labels.

Scaling. In Figure 3b, we show the downstream ImageNet
validation performance of two DinoV2-ViTs as a function
of memory size. The plot demonstrates that even in the
billion-scale data regime, validation error decreases when
increasing memory size without any training. In log-log
space, a logarithmic function fits the empirical scaling trend
well. In the literature, simple scaling trends such as the one
we observe are powerful predictors of scaling behaviour
for different model and dataset sizes (Hestness et al., 2017;
Kaplan et al., 2020; Hoffmann et al., 2022). This experi-
ment confirms that a memory-based system is performant
across seven orders of magnitude, improving from both
better features and more data.

Out-of-distribution performance. In order to understand
whether the benefits of increased memory size transfer to
out-of-distribution (OOD) data, we compare DinoV2 ViT-
L14 once with ImageNet-train in memory and once with
JFT pseudo-labels in memory. The models are evaluated
on the ImageNet-A (Hendrycks et al., 2021), ImageNet-R
(Hendrycks et al., 2020), ImageNet-Sketch (Wang et al.,
2019a), ImageNet-V2 (Shankar et al., 2020), and ImageNet-
Real. (Beyer et al., 2020) datasets. As an additional well-
performing yet “inflexible” baseline, we report linear prob-
ing accuracies from the DinoV2 paper (Oquab et al., 2023).
Table 2 shows that visual memory scaled with JFT data
improves OOD performance across all datasets compared
to an ImageNet-based visual memory. Gemini re-ranking
again leads to performance gains. Overall, the finding that
memory scale transfers to OOD improvements is important
in the context of continual learning, where a flexible visual
memory can easily incorporate newly available data that the
model was not trained on, improving performance both in-
and out-of-distribution.

3.4. Flexible removal of data: machine unlearning

The world is not static. Thus, in addition to the need to
flexibly add novel data, it is often desirable to remove the

influence of specific training data from a model’s decision-
making process after it has been trained (Cao & Yang, 2015;
Bourtoule et al., 2021; Nguyen et al., 2022; Zhang et al.,
2023). A range of intricate methods are being developed
to remove or reduce the influence of certain training sam-
ples (Gupta et al., 2021; Sekhari et al., 2021; Ullah et al.,
2021; Kurmanji et al., 2024; Sepahvand et al., 2024)—a
challenging endeavour if knowledge is embedded in mil-
lions or billions of model weights. In contrast, for models
with an explicit visual memory and in the context of classifi-
cation, machine unlearning becomes as simple as removing
the dataset sample from the visual memory. For instance,
after adding the NINCO dataset (Bitterwolf et al., 2023)
into visual memory, we can remove any NINCO sample
with outstanding performance on all three key unlearning
metrics reported by Liu (2024): Efficiency: How fast is the
algorithm compared to re-training? (Very fast: less than
20 milliseconds for deleting a feature/sample from disk.)
Model utility: Do we harm performance on the retain data
or orthogonal tasks? (By design not at all.) Forgetting
quality: How much and how well are the ‘forget data’ ac-
tually unlearned? (Completely and entirely by design.) In
comparison, the winner of the NeurIPS 2023 machine un-
learning challenge (Triantafillou et al., 2024) still suffers
from an accuracy gap of 4%, low forgetting quality, and
being relatively inefficient requiring 8 epochs of training.

Can machine unlearning therefore be solved with a visual
memory? If the embedding model is trained on data that
needs to be unlearned, machine unlearning remains chal-
lenging. If, however, the embedding model is trained on
a safe, generalist dataset (e.g., a publicly available image
dataset) and data that may need to be considered for un-
learning later is put into the visual memory, then machine
unlearning for classification indeed becomes as simple as
deleting a datapoint from the visual memory. This can be
particularly helpful for tasks that may require private or
confidential data: a model can be trained on publicly avail-
able datasets to learn general and information features and
the private data can be added to a visual memory on local
devices for downstream tasks to preserve privacy.

3.5. Flexibly increasing dataset granularity on
iNaturalist

In contrast to static classification, where a model is trained
once without updates, a visual memory model should be
able to flexibly refine its visual understanding as more in-
formation becomes available. We test this using DinoV2
ViT-L14 embeddings on the iNaturalist21 dataset (iNatural-
istTeam, 2021), a large-scale imbalanced dataset of animal
and plant images containing 10,000 species spanning seven
taxonomic levels, from coarse (kingdom) to fine-grained
(species). In a leave-one-out fashion, we simulate the dis-
covery of a new species by putting 50 exemplars for each of
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Table 2: OOD evaluation. Out-of-distribution performance improves with larger visual memory size. Across all datasets, a
visual memory with JFT memory outperforms ImageNet memory demonstrating advantages of scaling visual memory for

OOD performance. Probe details: Appendix J.

Model Method IN-A IN-R IN-Sketch IN-V2 IN-Real
DinoV2 ViT-L14 linear probe 71.3 744 59.3 78.0 89.5
DinoV2 ViT-L14 ImageNet memory 58.8  62.8 61.5 75.6 87.1
+ Gemini re-ranking  68.4  72.3 72.5 81.7 89.9
DinoV2 ViT-L14 JFT memory 61.1  73.7 68.0 77.6 88.2
+ Gemini re-ranking  69.6  81.4 75.0 82.3 90.5
the 9,999 species into memory and then iteratively adding 1007
more data for the remaining “newly discovered” species—
starting from zero exemplars all the way to 50 exemplars. 80 1
Classification is performed using k = 1 nearest neighbors g # samples in memory
(no aggregation). > 60 -0
g -1
In Figure 4 we observe the following: (1.) Already before a 3 2
single example of the new species is added, it can already o 40 5
be placed in the right part of the taxonomic tree well beyond & ;8
chance (35.2% accuracy at the genus level compared to 20 4 30
~0% chance). (2.) Accuracy at the species level improves —e- 40 e
substantially by adding just a handful of images of the tar- oL +. 50 . . ........... . :
get species (e.g., 5-10 images); a regime where training a 0 R & N & &
classifier would typically fail due to data scarcity. (3.) In- & N © ° @ & &

terestingly, adding more samples of the discovered species
not only improves species-level accuracy, but also leads to
a “rising tide lift” of improvements across all levels of the
taxonomic hierarchy. This indicates that a visual memory is
well-suited for hierarchical classification tasks and settings
where data for new concepts is initially scarce but becomes
more abundant over time—which is often the case in ap-
plications like fraud detection, personalized recommender
systems, and scientific discovery.

3.6. Flexible data selection: memory pruning

The ability to flexibly remove the influence of certain data-
points is not just desirable in the unlearning sense, but also
advantageous in the context of dataset pruning, an emerg-
ing field that analyzes the quality of individual data points.
The goal of dataset pruning is to retain only useful sam-
ples, while removing those that have a neutral or harmful
effect on model quality. The key challenge is that in stan-
dard black-box models, it is entirely unclear whether any
given sample is helpful or harmful. The gold standard is
leave-one-out-training (for ImageNet, this would consist
of training 1.28 million models); current methods seek to
approximate this extremely costly approach with various
heuristics (Feldman & Zhang, 2020; Chitta et al., 2021;
Paul et al., 2021; Sorscher et al., 2022; Abbas et al., 2023a).
By contrast, the contribution of a data sample to decision-

Figure 4: Impact of memory bank size on top-1, k=1
accuracy across taxonomic levels on iNaturalist. Top-1
accuracy for a target species across different taxonomic lev-
els as the number of exemplars in the memory bank for that
species increases from O to 50. Each line represents the
average accuracy over all 10,000 species in the iNaturalist
2021 dataset, while the number of examples in visual mem-
ory is fixed at 50 exemplars for all other species. The black
dotted line indicates baseline accuracy from predicting the
majority class.

making in a visual memory based system is straightforward.
For any given query image &, the neighbor set Neighbors(Z)
fully describes which samples contributed to the decision.
Furthermore, this information also highlights whether the
samples were helpful (correct label) or harmful (wrong la-
bel) for the decision. We, therefore, transfer the concept
of dataset pruning to memory, and propose visual mem-
ory pruning. To this end, we estimate sample quality by
querying the ImageNet training set against a visual memory
consisting of the exact same dataset (IN-train, discarding the
first neighbor which is identical to the query). This approach
requires no more compute than a single forward pass over
the training set. We then record the number of times any
given neighbor contributed to a wrong decision, resulting
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soup bowl wooden spoon ladle corn

soup bowl

soup bowl

[ Rank-based weight: 0.35 0.23 047 014 on

Prediction: wooden spoon: 0.35, soup bowl: 0.25, ... -> prediction wooden spoon (wrong)

Reliability-adjusted weight: 0.29 (1) 0.22(1) 017 (-) 047(1) 015 (1)
Prediction w/ soft pruning: soup bowl: 0.32, wooden spoon: 0.29, ... -> prediction soup bowl (correct)

Figure 5: Visualization of memory-based decision-
making with and without memory pruning. Given a
query image, nearest neighbors are retrieved from mem-
ory via Cosine similarity in the embedding space of a model
(here: five closest neighbors from the ImageNet train set,
embedded via DinoV2 ViT-L14). The model’s prediction
is based on the weighted aggregation of the neighbor class
labels. The rank-based weight decreases with the rank of
the neighbor. For soft memory pruning, those weights are
adjusted by the reliability of their neighbors. In the specific
example here, all five neighbors appear sensible, but they
have four different labels. Since the first two neighbors
contributed to wrong decisions on the training set, they are
downweighted via soft memory pruning, and the prediction
changes to the correct class.

in a sample quality estimate. This enables us to exclude
low-quality neighbors from the decision-making process
by either removing them from the visual memory entirely
(“hard memory pruning”) or by reducing their weight com-
pared to higher-quality neighbors (“soft memory pruning”).
Method details can be found in Appendix I. In Table 3, we
show that both memory pruning variants improve ImageNet
validation accuracy, with soft pruning leading to larger gains
than hard pruning. Figure 5 visualizes the decision-making
process for a randomly selected sample where estimating
sample reliability improves decision quality. Given that
observing the outcome of an intervention is many orders
of magnitude faster than traditional leave-out-training, we
are optimistic that the visual memory pruning gains we ob-
served with two simple strategies can be improved further
in the future.

3.7. Interpretable & attributable decision-making

Unlike a black-box deep learning model, a visual memory
offers a natural way to understand a model’s specific pre-
dictions by attributing them to training data samples (e.g.
Papernot & McDaniel, 2018). In Figure 6, we visualize
misclassified validation set examples from the ImageNet-
A dataset (Hendrycks et al., 2021) using a memory of the
ImageNet- 1K training set. These randomly selected samples
illustrate that many seemingly strange errors (e.g., predict-
ing a type of fence instead of a teddy bear, or a unicycle
instead of a bow tie) are in fact sensible given the data,
raising questions about label quality of ImageNet-A—in a
similar vein as label issues identified for ImageNet (Beyer

query neighbor 1 neighbor 2 neighbor 3 neighbor 4 neighbor 5
o ~< A‘j WL N "! =

teddy thatch seashore worm fece
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/%/"\
| r J
-
- I ¢ E
chain soap disp. washbasin

T

matchstick

L=

coffee mug
—

»
A N
unicycle

unicycle

unicycle

unicycle

bow tie bicycle-built-

for-two

Figure 6: Interpretable decision-making. A visual mem-
ory enables a clear visual understanding of why a model
makes a certain prediction. Here, we show four ran-
domly selected misclassified query images from ImageNet-
A (Hendrycks et al., 2021) with five nearest neighbors from
DinoV2 ViT-L14 using the ImageNet-1K training set as
memory. Labels are from the respective datasets (query:
ImageNet-A; neighbors: ImageNet-train). Visually, all
neighbors appear reasonable, but not all labels do.

et al., 2020; Shankar et al., 2020; Yun et al., 2021)—rather
than about model quality. This issue is quantified through a
human experiment in Appendix N, showing that 2 out of 5
model “errors” on this dataset are instead label errors.

In a separate human experiment (described in Appendix L),
we tested whether access to five nearest neighbors helps
humans predict model decisions. In this experiment, for
each image we provided four label choices including the
ground truth label and the model predicted label (if differ-
ent). The remaining labels were plausible alternatives based
on top CLIP predictions for the ImageNet-A test image. For
a black-box classifier (no access to neighbors), human accu-
racy was 56%; this accuracy improved to 83% when given
access to four nearest neighbours from our visual memory
with a DinoV2 ViT-L14 featurizer, providing strong and
falsifiable evidence for the improved interpretability of a
visual memory system.

4. Discussion

Summary. Typical neural networks are trained end-to-end:
perfect for static settings, yet cumbersome to update when-
ever knowledge changes. This is limiting their real-world
potential since our world is constantly evolving. Incor-
porating a visual memory, in contrast, enables a range of
flexible capabilities that embrace change: lifelong learning
through incorporating novel knowledge, being able to forget,
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Table 3: Flexible data selection: memory pruning. ImageNet validation accuracy improves when removing low-quality
samples (hard pruning) or downweighting them (soft pruning). In contrast to standard black-box models, memory models
(here: using DinoV?2 ViT-L14) offer a strikingly simple way to estimate sample quality since their decisions are based on a

few retrieved memory samples.

Pruning PluralityVoting DistanceVoting  SoftmaxVoting RankVoting
no pruning (standard) 83.2 83.3 83.6 83.6

hard pruning (ours) 83.3 834 83.6 83.7

soft pruning (ours) 83.6 (+0.4%) 83.6 (+0.3%) 83.9 (+0.3%) 84.1 (+0.5%)

remove and unlearn obsolete knowledge, flexible data selec-
tion through memory pruning, and an interpretable decision-
making paradigm on which one can intervene to control its
behavior. We systematically explored a simple visual mem-
ory that decomposes the task of image classification into
two primitives, image similarity (from a pre-trained embed-
ding representation) and search (via fast, scalable nearest
neighbor search from a vector database). Our results demon-
strate that technical improvements like RankVoting improve
kNN accuracies for both DinoV2 and CLIP over the widely
used SoftmaxVoting method that is sensitive to two hyper-
parameters (temperature 7 and neighbors k). Our approach
also narrows the accuracy gap between a nearest neighbor
memory (best flexibility, perfect unlearning, improved in-
terpretability) and a fixed linear probe (highest accuracy
on static image classification). Importantly, we show that
visual memory enables flexible perceptual capabilities.

Limitations and future work. First, we only considered
the task of image classification across a broad range of
datasets. It will be interesting to extend the approach to other
visual tasks, such as object detection, image segmentation,
instance recognition and to image generation where a visual
memory would be desirable, too (since it is prohibitively
expensive to re-train large generative models every time
data needs to be removed or added). Secondly, our approach
relies on a fixed, pre-trained model; strong distribution shifts
may require updating the embedding. Self-supervised mod-
els are a particularly flexible choice, but it is an open ques-
tion whether one could train smaller models that excel at
their task with the help of a larger memory database. Con-
ceptually, if a model needs to save less information in its
weights, it might be possible to reduce the computational
footprint of such a model. Additionally, for scalable vector
search, adding/removing samples can require adapting the
search index, though the amortized cost is low. Furthermore,
we sometimes observe a trade-off between flexibility and
accuracy. The use of memory pruning weights as a data se-
lection criterion in the context of dataset pruning (Sorscher
et al., 2022) might be an interesting avenue for future work.

Outlook. Deep learning is increasingly becoming a vic-
tim of its own success: the more widely it is deployed, the

stronger its limitations are felt. While the static nature of
end-to-end trained networks can easily be forgotten when
focusing on fixed academic benchmarks, the real world is
anything but static. Data is constantly evolving, leading to
the dreaded “model drift” where once-optimal models grad-
ually become less effective (Bayram et al., 2022). Incorpo-
rating an explicit visual memory appears to be a promising
way forward for real-world tasks where flexibility is key.
While the specific approach we employ here might well
be improved through more complex systems, we hope that
the flexible capabilities we demonstrated might inspire and
contribute to a conversation on how knowledge ought to be
represented in vision models.

Impact Statement

The use of a flexible visual memory as proposed in this arti-
cle has several positive societal implications: (1.) through
improved machine unlearning with strong guarantees (by
design), it becomes possible for certain classifiers to easily
remove data that is no longer considered safe (e.g., comply-
ing with user requests or in order to fix data safety issues
that are discovered after a model is deployed); (2.) increased
transparency and trust through a decision-making mecha-
nism that can be inspected visually and intervened on as
opposed to an opaque black-box machine learning system;
(3.) potentially increased privacy by storing sensitive data in
memory (e.g. on-device) as opposed to training models on
the data; (4.) resource efficiency: since fast similarity search
can be done on CPUs with a low energy footprint, this sug-
gests possibilities for reducing a system’s carbon footprint
(e.g., combining a small model with a larger database).

Given that the system we explore is used for classification,
standard classifier-related risks apply, such as for instance
the potential for a system to discriminate, amplify biases,
or displace human jobs. In addition, the general dual-use
problematic of ML models applies: the same system can
often be used for beneficial as well as harmful purposes.

We expect that the societal benefits outweigh the harms
since the potential harms are shared with all ML classifiers,
while the benefits are specific to our approach.
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Code availability. Code to replicate experiments from
this paper is available at https://github.com/
google—-deepmind/visual-memory.
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Appendix

We here provide the following supplemental information:

Appendix A Aggregation method comparison on ImageNet-1K
Appendix B Aggregation method comparison on iNaturalist

Appendix C Hyperparameter sensitivity analysis

Appendix D Robustness towards label corruption

Appendix E Hit rate analysis as an upper bound on aggregation accuracy
Appendix F Scaling law details

Appendix G OOD analysis for NINCO dataset

Appendix H Reliability of retreived neighbors

Appendix I Memory pruning details

Appendix J Linear probe details

Appendix K Latency and storage

Appendix L Human experiment to predict model behavior with memory system
Appendix M Calibration analysis

Appendix N ImageNet-A error analysis

Appendix O Compositionality analysis

Appendix P Connection to bias removal and shortcut learning
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A. Aggregation method comparison (ImageNet-1K)

Table 4: Benchmarking different aggregation variants at different & thresholds, DinoV2 ViT-L14.

Aggregation @10 @20 @30 @40 @50 @60 @70 @80 @90 @100

PluralityVoting  83.2 829 82.6 824 82.1 820 81.8 81.6 815 81.4
DistanceVoting 83.3 83.0 827 824 822 821 819 81.7 81.6 81.5
SoftmaxVoting 83.5 835 834 833 832 831 831 830 829 82.9
RankVoting 835 836 836 835 835 834 833 833 833 83.3

Table 5: Benchmarking different aggregation variants at different k thresholds, DinoV2 ViT-B14.

Aggregation @]0 @20 @30 @40 @50 @60 @70 @80 @90 @100

PluralityVoting 81.8 81.4 81.1 809 80.7 804 80.2 80.0 79.8 79.6
DistanceVoting 81.9 81.5 81.2 81.0 80.8 80.5 803 80.0 799 79.7
SoftmaxVoting 82.0 82.0 &81.9 &1.8 81.7 81.7 81.6 8l5 813 81.3
RankVoting 821 822 821 8.0 820 820 819 819 819 81.9

Table 6: Benchmarking different aggregation variants at different & thresholds, DinoV2 ViT-S14.

Aggregation @10 @20 @30 @40 @50 @60 @70 @80 @90 @100

PluralityVoting 78.6 782 778 774 77.1 76.8 765 763 76.1 75.9
DistanceVoting 78.8 784 779 775 772 769 766 764 762 76.0
SoftmaxVoting 789 789 787 786 785 783 781 780 779 1.7
RankVoting 789 791 79.0 789 789 789 789 788 788 78.8

Table 7: Benchmarking different aggregation variants at different %k thresholds, CLIP ViT-L14.

Aggregation @10 @20 @30 @40 @50 @60 @70 @80 @90 @100

PluralityVoting 79.0 78.7 783 78.0 778 77.6 774 774 712 77.0
DistanceVoting 79.2 789 785 782 780 778 776 715 773 77.1
SoftmaxVoting 793 793 79.1 789 788 787 785 7185 784 78.2
RankVoting 793 796 797 797 79.7 7977 7977 797 79.7 79.7

Table 8: Benchmarking different aggregation variants at different &k thresholds, CLIP ViT-B16.

Aggregation @10 @20 @30 @40 @50 @60 @/0 @80 @90 @100

PluralityVoting  72.8 72.6 723 720 717 714 712 709 70.8 70.5
DistanceVoting 73.1 729 726 723 719 716 714 71.1 709 70.6
SoftmaxVoting 733 733 73.1 729 727 725 723 721 719 71.7
RankVoting 730 737 738 738 738 738 73.7 737 73.7 73.7
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Figure 7: Aggregation method comparison on the ImageNet-1K validation set (same as Figure 2a but for other models).
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Table 9: Benchmarking different aggregation variants on ImageNet-1K.

Model Aggegation IN-val acc (%)
CLIP ViT-L14 CLIP paper (zero-shot) 75.3
CLIP ViT-L14 no aggregation 76.0
CLIP ViT-L14 Plurality Voting 79.2
CLIP ViT-L14 DistanceVoting 79.4
CLIP ViT-L14 SoftmaxVoting 79.6
CLIP ViT-L14 RankVoting 79.9
DinoV2 ViT-L14  DinoV?2 paper (kNN Softmax) 83.5
DinoV2 ViT-L14 no aggregation 81.1
DinoV2 ViT-L14  Plurality Voting 83.2
DinoV2 ViT-L14  DistanceVoting 83.3
DinoV2 ViT-L14  SoftmaxVoting 83.6
DinoV2 ViT-L14 RankVoting 83.6

B. Aggregation method comparison (iNaturalist)
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Figure 8: Aggregating information across retrieved memory samples on iNaturalist. Same as Figure 2 but for iNatu-
ralist instead of ImageNet. (left) Existing aggregation methods (Plurality Voting, DistanceVoting and SoftmaxVoting) are
overconfident in distant neighbors, resulting in the paradox of decaying iNaturalist accuracy with more information. (right)
This is not the case for RankVoting which shows strong and stable performance across models and choices of k.
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C. Hyperparameter sensitivity analysis
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Figure 9: Sensitivity to hyperparameters for different aggregation methods. Apart from Plurality Voting, all aggregation
methods described in Section 2.2 have a hyperparameter (o for RankVoting, 7 for SoftmaxVoting). For each model and
method, we here plot the maximum performance when aggregating using a certain method, sweeping over the number
of neighbors from 1 to 100, as a function of the hyperparameter. This analysis is performed to understand how sensitive
the respective method is to the choice of the hyperparameter. Note that the x range is different since for instance the
temperature parameter in SoftmaxVoting ranges from [0, 1] while RankVoting for a = 0 is undefined (division by zero).
We therefore evaluate a broad range for each method and find that all methods have a regime in which they are relatively
stable irrespective of the hyperparameter choice. Since DistanceVoting as implemented by Khandelwal et al. (2019)
does not have a hyperparameter, we added a temperature-style parameter ¢ for the purpose of this comparison by setting

w; = exp (— dist(Z, z[i]))g.

D. Robustness towards label corruption
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Figure 10: Robustness towards label corruption. How robust is a visual memory towards corrupted labels in the memory
bank? This plot shows top-1 RankVoting accuracy on the ImageNet validation set as a function of how many labels in the
memory (containing ImageNet-1K training set features via DinoV2 ViT-L/14) are corrupted, i.e., assigned to a random class.
Intriguingly, performance stays almost unchanged all the way to about 60% (!) corrupted (random) labels in the database.
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E. Hit rate analysis
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Figure 11: Hit rate. This plot shows the probability of the true label being contained in list of labels of the first k retrieved
neighbors on ImageNet-1K, for five different models and & € [1, 100]. With 100 neighbors, the hit rate approaches 98% for
the best model. Conceptually, this is a very high upper bound on the performance that can be achieved by a given featurizer
via nearest neighbor retrieval.

F. Scaling law

As we mentioned in Section 3.3, we found that a logarithmic form fits the data well between log;,(memory size) and
log,y(error rate). Specifically, we found the following functional forms for DinoV2 ViT S14 and DinoV2 ViT L14
respectively vianp.polyfit (x, y, dim=1):

DinoV2 ViT L14: y = —0.9434 - log,(x) + 2.0704
DinoV2 ViT S14: y = —1.0942 - log; () + 2.3187

where z = log; ,(memory-size) and y = log; o (error-rate), where memory-size € [103, 10%] and error-rate in [0, 100].
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G. OOD analysis for NINCO dataset
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Figure 12: Distance comparison: the NINCO OOD samples are indeed out-of-distribution for the model. In Sec-
tion 3.1, we described that we can simply plug new out-of-distribution classes into memory and still perform well on both
existing data as well as the new classes. This boxplot confirms that the added samples from the NINCO dataset (Bitterwolf
et al., 2023) are indeed out-of-distribution for DinoV2 ViT-L14: The mean (left) and median (right) distances from query to
the first 100 neighbors are substantially lower for ImageNet validation images than for OOD samples from NINCO.

Figure 12 confirms that there is a distribution difference between in-distribution data (ImageNet-1K) and OOD data (NINCO).
That said, while a distribution shift exists, it is possible that individual NINCO samples were part of the training set for
DinoV2. Test-set contamination is generally a concern when working with models trained on large-scale datasets, since test
samples may occur as exact, semantic or near-duplicates in large training datasets (e.g. Abbas et al., 2023b). For instance,
NINCO contains samples from Food-101 (Bossard et al., 2014) which are also part of LVD-142M dataset used to train
DinoV2. That said, the NINCO samples belong to classes which are definitely not part of the ImageNet-train set which
serves as a memory bank for our experiments, as ensured by the NINCO dataset collection process (Bitterwolf et al., 2023).

H. Reliability of retrieved memory samples
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Figure 13: Reliability of retrieved memory samples. This plot visualizes the ImageNet (left) and iNaturalist (right) top-1
validation accuracy of a single retrieved neighbor depending on the index of the neighbor (index 0: nearest neighbor). In
both datasets and across models, the decrease in accuracy with increasing neighbor index follows smooth trajectories and
can be approximated by a two-parameter logarithmic fit (black lines). Figure 13a is the same as Figure 1.
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I. Memory pruning

For memory pruning from Section 3.6, we implemented two pruning methods: removing unreliable neighbors from memory
entirely (“hard memory pruning”), and reducing their weight (“soft memory pruning”). We report results on the ImageNet
validation set with a (potentially pruned) ImageNet-train set in memory. For hard pruning, we excluded images from memory
that contributed to a wrong decision at least 128 times (this meant excluding 26,257 images for DinoV2 ViT-L14), based on
querying the ImageNet-train set against a memory consisting of the ImageNet-train set and querying 100 neighbors for
each sample. In order to obtain a fair comparison, instead of reporting accuracies for an arbitrary choice of k (the number
of neighbors) we instead evaluate accuracy for each & in [1, 100] and report the maximum accuracy obtained in Table 3.
This ensures that differences in observed accuracy can indeed be attributed to memory pruning, as opposed to a choice of
k. For soft pruning, instead of excluding unreliable neighbors entirely as in hard pruning, the neighbor weights (1.0 for
Plurality Voting, or a rank-based weight in case of RankVoting) are instead multiplied by a reliability factor v with v = C_%U
where v is the number of times the image contributed to a wrong decision on the ImageNet-train set, ¢ = 1 to avoid division
by zero, and d = 1.75. This results, for instance, in y = 0.88 for images that only contribute to a single wrong decision;
in v = 0.16 for images that contribute to ten wrong decisions, and in v = 0.02 for images that contribute to 100 wrong
decisions on the training set. Images that never contributed to any wrong decision are assigned v = 1.0, i.e. their default

weight remains unchanged.

J. Linear probe details

For the linear probe results reported in the paper, we directly used the results that were reported in the DinoV2 and CLIP
papers. For DinoV2, the authors froze the model backbone and trained the linear layers for 12500 iterations using SGD.
Instead of training a single time, they performed a full grid search sweep over three settings (output layers in 1, 4; pooling
token concatenation in yes, no, and 13 different learning rates), resulting in 52 linear probes. Then, the authors evaluated the
ImageNet validation accuracy for all of those 52 probes and only reported the highest one, as described in Appendix B.3 of
the DinoV?2 paper. Some may call this test set tuning or double dipping; the DinoV?2 paper describes it as “common practice”
(Oquab et al., 2023, p. 31). CLIP linear probe results are based on a logistic regression classifier learned using scikit-learn’s
L-BFGS implementation, and hyperparameter sweeps are performed on a held-out set not used for evaluation, according to
Radford et al. (2021).

K. Latency and storage

Latency. Nearest neighbor retrieval, fortunately, does not need to reinvent the wheel but can, instead, build on top of
highly optimized workloads and libraries such as the ScaNN library (Guo et al., 2020). The ScaNN github README shows
a latency comparison; with the requirement of perfect recall a million-size memory can handle roughly 500-600 queries per
second. It may be worth mentioning that searching a large database can be done on CPUs and can be heavily parallelized.

Model IN-train features (GB) IN-val features (MB)
DinoV2 ViT-L/14 4.9 197
DinoV2 ViT-B/14 3.7 148
DinoV2 ViT-S/14 1.9 75
CLIP ViT-L/14 3.7 148
CLIP ViT-B/16 2.5 100

Table 10: Storage requirements for ImageNet features. Storing features in a memory database requires only about 1-3%
of the space that is needed to store the dataset (154.6 GB for ImageNet-train, 6.0 GB for ImageNet-validation).

Storage. In addition to latency, storage is another very practical consideration: How much does it take to store features
for a large database? To put things into perspective, the ImageNet training dataset requires 154.6 GB of storage, and the
ImageNet validation dataset requires 6.0 GB of storage. In comparison, as shown in Appendix K, storing DinoV2 or CLIP
features for the entire ImageNet training dataset only requires between 1.9 and 4.9 GB of storage space. Thus compared
to storing the training dataset, the model features account for only 1-3% of this size. This means that after constructing
the memory, one may decide to keep the dataset which adds 1-3% of storage, or one may decide to delete the dataset only
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keeping the features which saves 97-99% of storage (compared to the dataset storage requirement). The ratio of features
requiring 1-3% of the dataset size doesn’t change with dataset scale since it only depends on the embedding model, thus
this ratio would hold for very small datasets just as it would for a billion-scale dataset.

L. Human experiment to predict model behavior with memory system

We conducted a small human experiment to quantify how much, if at all, a memory-based system improves interpretability
as operationalized by helping humans predict model behavior (as opposed to a standard black-box model). Figure 14 outlines
the experimental setup.

Condition A: model without neighbors

“Predict how an Al bow tie ]{ suit ]
model classifies the

image on the left.” [ unicycle ][ bicycle ]

“Predict how an Al bow tie ][ suit ]
model classifies the

image on the left.” [ unicycle ][ bicycle ]

The model finds these images similar to the image on the left.

Falsifiable prediction:

Human accuracy in condition B is statistically significantly higher than human accuracy in condition A.
If that’s not the case, we cannot claim that a visual memory system is “more interpretable” than a standard black-box model.

Figure 14: Human experiment setup. Conditions A and B were presented on a computer screen in separate trials.

Given 4 label choices (guessing accuracy 25%), human accuracy is 56% in the case of black-box predictions (no neighbor
information). With access to four nearest neighbor images from our memory-based system (just the neighbor images but not
their labels), human accuracy is at 83%. This represents an absolute improvement of +27% and a relative improvement of
+67% in human prediction accuracy, providing strong, falsifiable evidence in favor of the statement that a memory-based
model is more interpretable.

Experimental details:

The accuracy difference is statistically significant (p ; 0.001).

Featurizer = DinoV2 ViT-L14 (i.e. the best performing model).

Dataset: randomly selected ImageNet-A test images

Nearest neighbors for condition B: from ImageNet-train.

4 label choices per trial including ground truth label, model-predicted label (if different), and the remaining 2-3 labels
were plausible alternatives based on top CLIP predictions for the test image. Label order randomized.
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M. Calibration analysis
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Figure 15: How well are predictions calibrated? Left column: Accuracy vs. confidence from Softmax of linear classifier

for three DinoV?2 variants. Right column: Accuracy vs. count of plurality class among first 100 neighbors for the same three
DinoV?2 variants. A DinoV2-based kNN classifier is well calibrated, as is the DinoV?2 softmax.
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N. ImageNet-A error analysis

As shown in Figure 6, many “errors” on ImageNet-A appear to be perfectly reasonable predictions that are caused by dataset
label issues as opposed to model mistakes. More randomly selected ImageNet-A samples, along with nearest neighbors, are
shown in Figure 16. To quantify the issue, we performed a human experiment on a randomly selected subset of ImageNet-A
images (N=100) where the dataset label and the prediction from DinoV2 ViT-L14 with JFT memory disagree. We presented
the image alongside the original ImageNet-A label and our model-predicted label to three human observers, asking them to
identify which of the labels best describes the image (of course, without telling them which of the labels is the dataset label).
The result was that in 39.3% (!) of cases (std: +1.25%), the DinoV2 label was assessed as being better/more suitable than
the original dataset label—i.e., roughly 2 out of 5 model “errors” are in fact dataset label errors, quantifying the ImageNet-A
label quality issue we alluded to in Figure 6. This percentage can be used to estimate how correcting problematic labels
influences performance. Instead of the original model’s 61.1% accuracy on ImageNet-A, due to label errors the ‘corrected’
accuracy is instead 76.4% (a delta of +15.3% in absolute terms or +25.0% in relative terms).

neighbor 2 neighbor 3 neighbor 4 neighbor 5

Neighbor classes:  paddle boathouse speedboat canoe
query (sandal) neighbor 1 neighbor 2 neighbor 3 neighbor 5
‘ w
Neighbor classes:  samoyed samoyed samoyed samoyed samoyed

query (rhinoceros beetle) neighbor 1 neighbor 2 neighbor 3 neighbor 4 neighbor 5

Neighbor classes:  ant ant ant ant samoyed

query (banana) neighbor 1 neighbor 2 neighbor 4 neighbor 5

Neighbor classes:  tripod tripod tripod tripod tripod

Figure 16: Interpretable decision-making. A retrieval-based visual memory enables a clear visual understanding of why a
model makes a certain prediction. Here, we show four randomly selected misclassified query images from ImageNet-A
(Hendrycks et al., 2021) along with five nearest neighbors from DinoV?2 ViT-L14 using the ImageNet-1K training set as
visual memory. All labels are from the respective datasets (ImageNet-A for query and ImageNet-train for neighbors). While
all neighbors visually look reasonable, not all labels do.

24



Towards flexible perception with visual memory

O. Compositionality analysis

A flexible visual memory also provides a path to analyze representations of various models, particularly, how different
models represent multiple concepts in an image. We study this for an ImageNet-train visual memory of DinoV2 ViT-L14 and
CLIP ViT-L14. We use manually selected query images from outside the ImageNet dataset that have multiple objects from
the ImageNet labels. We query the visual memory for nearest neighbors of the query image. Subsequently, we obtain the
residual image by subtracting the features of the nearest neighbor from the features of the query image. We, then, obtain the
nearest neighbors for the residual image from the visual memory. We plot the results in Figure 17 which shows that DinoV2
ViT-L14 and CLIP ViT-L14 represent concepts in their features in a different manner. The nearest neighbors for DinoV2 are
mostly images with a single concept (or object) from the query image. The residual image, subsequently, leads to nearest
neighbors dominated by another single object in the query image. In contrast, CLIP often results in nearest neighbors that
are generally a blend of concepts from the query image. These qualitative explorations are simple demonstrations of the
advantages of an interpretable decision-making process provided by a flexible visual memory.

neighbor 1 neighbor 2 neighbor 3 residual 1 residual 2 residual 3

Dino-ViT/L14

CLIP-ViT/L14

Figure 17: Compositionality of representations. The first column indicates a query image; the next three columns are the
three nearest neighbors from the training set. The last three columns are the residual images, obtained by subtracting the
features of the nearest neighbor (2nd column from the left) from the features of the query image (1st column from the left).
The nearest neighbors for DinoV2 are mostly images with a single concept (or object) from the query image. The residual
image, subsequently, leads to nearest neighbors dominated by another single object in the query image. In contrast, CLIP
often finds neighbors that are a blend of concepts from the query image.

P. Connection to bias removal and shortcut learning

This section contains a brief discussion on a connection between our method and bias removal—since the additional
flexibility that our memory approach brings (compared to a standard, inflexible classifier), it is an open question whether
this could enable better bias removal.

If the image encoder exploited a shortcut during training, this will influence image similarity and thus nearest neighbor
selection. There are cases where bias removal is possible, and cases where it is impossible:

e Removal impossible: If the encoder is biased towards textures, a test image of “cat shape + elephant texture” (cf.
Geirhos et al., 2019, Figure 1) would pull up elephant nearest neighbors, and removing all elephants from memory
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would come at an unreasonably high cost (not being able to identify elephants anymore). Here, encoder-level debiasing
is necessary.

Removal possible: If only a part of the memory is biased, memory-level debiasing is feasible. If “fingers” are shortcut
predictors for “fish” (due to a dataset bias from proud fishermen holding their catch into the camera, cf. Brendel &
Bethge, 2019, Figure 3), then this bias could indeed be rectified by removing the biased “fish+finger” subset from
memory. Afterwards, images with “fingers” would no longer lead to “fish” nearest neighbors, demonstrating successful
bias removal.
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