

WHEN SHOULD I SEARCH MORE: ADAPTIVE COMPLEX QUERY OPTIMIZATION WITH REINFORCEMENT LEARNING

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Query optimization is a crucial component for the efficacy of Retrieval-Augmented Generation (RAG) systems. While reinforcement learning (RL)-based agentic and reasoning methods have recently emerged as a promising direction on query optimization, most existing approaches focus on the expansion and abstraction of a single query. However, complex user queries are prevalent in real-world scenarios, often requiring multiple parallel and sequential search strategies to handle disambiguation and decomposition. Directly applying RL to these complex cases introduces significant hurdles. Determining the optimal number of sub-queries and effectively re-ranking and merging retrieved documents vastly expands the search space and complicates reward design, frequently leading to training instability. To address these challenges, we propose a novel RL framework called Adaptive Complex Query Optimization (ACQO). Our framework is designed to adaptively determine when and how to expand the search process. It features two core components: an Adaptive Query Reformulation (AQR) module that dynamically decides when to decompose a query into multiple sub-queries, and a Rank-Score Fusion (RSF) module that ensures robust result aggregation and provides stable reward signals for the learning agent. To mitigate training instabilities, we adopt a Curriculum Reinforcement Learning (CRL) approach, which stabilizes the training process by progressively introducing more challenging queries through a two-stage strategy. Our comprehensive experiments demonstrate that ACQO achieves state-of-the-art performance on three complex query benchmarks, significantly outperforming established baselines. The framework also showcases improved computational efficiency and broad compatibility with different retrieval architectures, establishing it as a powerful and generalizable solution for next-generation RAG systems.

1 INTRODUCTION

039 Retrieval-Augmented Generation (RAG) has become a core paradigm in the LLM era because
 040 it grounds generation in external evidence, thereby improving factuality, recency, and attribution
 041 (Huang & Huang, 2024; Lewis et al., 2020). Achieving these benefits in RAG hinges on obtaining
 042 high-quality retrieved evidence, which in turn depends on transforming a user’s natural-language
 043 question into a self-contained, retrieval-friendly query. This step is known as **Query Optimization**
 044 (**QO**) (Yu et al., 2020; Vakulenko et al., 2021; Zhang et al., 2024).

045 Existing QO techniques primarily optimize a single query through expansion or abstraction (Yu
 046 et al., 2020; Vakulenko et al., 2021; Zhang et al., 2024) in different approaches. Prompt-based
 047 approaches (Azad & Deepak, 2019) leverage meticulously crafted instructions to guide the LLM in
 048 generating more effective search queries. For instance, a simple prompt might instruct the LLM to
 049 “rephrase the user’s question to be more suitable for a search engine.”. Interactive-learning based
 050 methods (Xu et al., 2024; Zhu et al., 2025; Feng et al., 2023) go a step further by engaging in a
 051 feedback loop with the user or a simulated environment, allowing the model to refine its queries
 052 iteratively based on the quality of retrieved results. Pseudo-document generation techniques (Wang
 053 et al., 2023; Gao et al., 2023) transform the original query into a hypothetical, longer document
 that contains richer context, which can then be used to retrieve more relevant information from

054 the knowledge base. More recently, agentic and reasoning-augmented reinforcement learning (RL)
 055 methods—valued for their reduced dependence on labeled supervision—have shown strong empirical
 056 gains (Singh et al., 2025; Zhu et al., 2025). However, most of these solutions implicitly assume
 057 a one-to-one correspondence between a user query and an optimized query, which limits their cov-
 058 erage of complex information needs.

059 In real-world RAG applications, complex queries are common and often require multiple parallel or
 060 sequential sub-queries, notably for disambiguation and decomposition (Song & Zheng, 2024).

- 062 • **Disambiguation queries**, such as a user asking, “*When did Arsenal last win the FA Cup? [SEP]*
 063 *2005 [SEP] What about them compared to Chelsea in league titles?*”, require the system to
 064 interpret multi-turn contexts and clarify entity references (e.g., linking “them” back to Arsenal
 065 while introducing Chelsea for comparison). This may necessitate generating multiple parallel or
 066 sequential sub-queries to retrieve and contrast evidence.
- 067 • **Decomposition queries**, such as a user asking, “*What were the global shipments of iPhones*
 068 *in 2022 and 2023, respectively?*”, require breaking down a multi-objective problem into inde-
 069 pendent sub-queries (e.g., “*global iPhone shipments in 2022*” and “*global iPhone shipments in*
 070 *2023*”), retrieving results for each, and then synthesizing a final answer.

071 While some prior work has explored these problems (Ammann et al., 2025; Perez et al., 2020;
 072 Liu et al., 2024), applying reinforcement learning to such complex scenarios still presents a se-
 073 ries of challenges: (1) deciding query number and depth (when to stop, whether to branch, how
 074 to merge); (2) performing multi-path retrieval and document aggregation across heterogeneous re-
 075 trievals (sparse, dense, hybrid) with consistent, robust signals; and (3) coping with expanded search
 076 spaces and sparse/delayed rewards, which destabilize training. We argue that an effective QO system
 077 for complex queries should satisfy two goals:

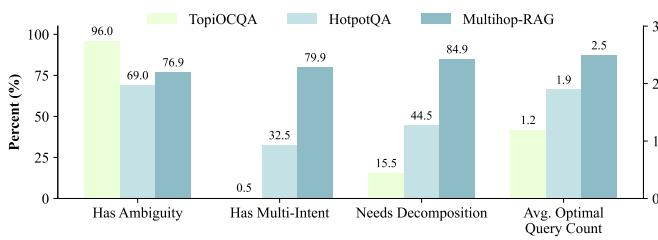
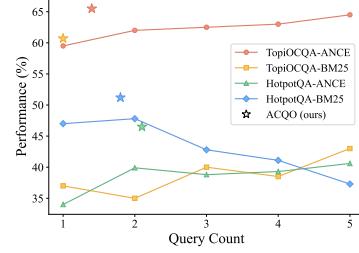
- 078 • **Adaptive query handling**: it should adaptively decide the number and depth of sub-queries and
 079 switch among disambiguation, decomposition and single-query expansion and abstraction.
- 080 • **Stability and integrability**: it should support an end-to-end pipeline (query reformulation →
 081 multi-retrieval → document re-ranking → answer generation), seamlessly integrate with sparse
 082 and dense retrieval backends, and incorporate stabilizing training mechanisms tailored to RL.

083 To meet these goals, in this paper we propose Adaptive Complex Query Optimization (ACQO),
 084 an RL framework that learns when and how to expand the search process and how to accumulate
 085 evidence robustly. First, we let LLM decide whether to trigger decomposition or disambiguation,
 086 producing a set of parallel or staged sub-queries based on query complexity and intent diversity.
 087 Then, we perform model-agnostic re-ranking and fusion by jointly exploiting rank positions and
 088 retrieval scores, enabling smooth integration with heterogeneous retrievers and providing stable
 089 intermediate signals for the RL agent. Finally, we introduce a Curriculum Reinforcement Learning
 090 (CRL) strategy with two stages: an initial phase for broad exploration over all samples to estab-
 091 lish general policies, followed by a focused phase that emphasizes challenging cases. This cur-
 092 riculum mitigates reward sparsity and improves convergence stability across the spectrum of query
 093 complexities. In experiments, ACQO achieves state-of-the-art performance on widely used RAG
 094 benchmarks, including conversational query reformulation (TopiOCQA) (Adlakha et al., 2022) and
 095 multi-hop reasoning (HotpotQA) (Yang et al., 2018), with additional out-of-domain evaluation on
 096 MultiHop-RAG (Tang & Yang, 2024) demonstrating strong generalization capabilities. Notably,
 097 our lightweight components achieve performance comparable to approaches requiring specialized
 098 retrieval modifications or complex re-ranking architectures, while maintaining significantly lower
 099 computational overhead. Experimental results demonstrate substantial improvements over baseline
 100 methods in both quantitative metrics and qualitative analysis. The contributions of this work are as
 follows:

- 101 • We propose ACQO, which unifies adaptive multi-query decision-making with robust evidence
 102 fusion in an end-to-end RL framework for complex queries.
- 103 • We introduce a universal re-ranking mechanism to combine rank positions and retrieval scores in
 104 a model-agnostic manner, improving stability and transferability across heterogeneous retrievers.
- 105 • Through extensive experiments on benchmark datasets, we demonstrate that ACQO significantly
 106 outperforms existing methods while maintaining computational efficiency, establishing its su-
 107 periority for complex query processing in RAG systems.

108 Table 1: Performance comparison on easy vs. hard query subsets across datasets and retrievers (%).
109

Method	TopiOCQA (Recall@10)				HotpotQA (MAP@10)			
	ANCE		BM25		ANCE		BM25	
	Easy	Hard	Easy	Hard	Easy	Hard	Easy	Hard
Prompt-based	59.4	52.6	34.3	45.1	36.8	31.2	50.1	40.5
SFT	56.2	54.8	33.1	38.7	44.7	33.5	45.2	43.7
Vanilla RL	63.9	54.8	58.5	61.2	42.3	38.2	50.4	46.0
ACQO (ours)	66.2	58.0	60.3	64.5	50.4	41.5	53.1	48.3

116 2 WHAT MAKES QUERIES COMPLEX IN REAL-WORLD RAG SCENARIOS?
117119 In this section, we conduct a systematic analysis of query complexity patterns in real-world RAG
120 benchmark. By examining the inherent characteristics of queries across different datasets, we iden-
121 tify the key challenges that motivate our ACQO framework design.132 Figure 1: Query Complexity Distribution.
133132 Figure 2: Performance metrics
133 for different query counts.
134135 2.1 QUERY COMPLEXITY ANALYSIS FRAMEWORK
136137 We analyze three representative RAG benchmarks: TOPIOCQA for multi-turn conversational QA,
138 HOTPOTQA for multi-hop factual reasoning, and MULTIHOP-RAG for real-world multi-hop re-
139 trieval. For each query, we conduct a structured analysis using the following criteria:

- **Ambiguity Detection:** Flag ambiguous entities or references that need disambiguation.
- **Multi-Intent Analysis:** Identify distinct intents embedded in the query.
- **Decomposition Assessment:** Judge whether decomposition improves answerability.
- **Optimal Granularity:** Identify the minimum number of sub-queries from the generated set that yields optimal retrieval metrics.

147 We analyze 200 representative queries from each dataset, focusing on understanding the distribution
148 and characteristics of complex queries in real-world scenarios.
149150 2.2 DATASET ANALYSIS: PREVALENCE OF COMPLEX QUERIES
151152 Our structured analysis reveals significant complexity patterns across the three toy datasets, with
153 Figure 1 illustrating the distribution of query characteristics. Specifically, a substantial proportion of
154 queries are complex: on average, 48.3% require decomposition, and 37.6% exhibit multiple intents.
155 Moreover, the optimal number of sub-queries varies across domains (1.2–2.5 on average), indicating
156 that decomposition strategies must be context-sensitive rather than one-size-fits-all.157 2.3 WHY CURRENT METHODS STRUGGLE WITH COMPLEX QUERIES
158159 We evaluate representative query optimization approaches across different paradigms: prompt-based
160 optimization using *DeepSeek-V3.1* (DeepSeek-AI, 2024) with decomposition prompts, supervised
161 fine-tuning (SFT) via *Qwen2.5-3B* (Qwen, 2024) query rewriter, and vanilla reinforcement learning
(REINFORCE with sparse rewards) also based on *Qwen2.5-3B*.

162 The performance analysis in Table 1 reveals critical limitations of existing approaches when
 163 handling complex queries. Current methods exhibit substantial performance variations between
 164 easy and hard queries, with SFT approaches showing dramatic drops of up to 11.2% on Hot-
 165 potQA (44.7% to 33.5% with ANCE). Moreover, optimal approaches vary significantly across re-
 166 trieval systems—vanilla RL excels with BM25 (61.2%) but degrades with ANCE (54.8%) on hard
 167 queries. Figure 2 further demonstrates that fixed decomposition strategies suffer from dual limitations
 168 in both efficiency and effectiveness. These inconsistent patterns highlight the absence of principled
 169 approaches for systematic query optimization, revealing three critical gaps: adaptive complexity
 170 recognition, retriever-aware optimization, and effective integration for decomposed queries.

172 3 ADAPTIVE COMPLEX QUERY OPTIMIZATION

174 3.1 TASK FORMULATION

176 In traditional Query Optimization (QO) pipeline, the task is defined as refining the query to retrieve
 177 the golden document(s) relevant to the user’s current query and conversational context (if any) from
 178 a large collection of documents. Formally, given the current query $q^{(t)}$ ($t \geq 1$) and its historical
 179 context $C^{(t-1)} = \{(q_i, a_i)\}_{i=1}^{(t-1)}$ (if $t \geq 2$), where t denotes the current turn number, a query
 180 optimization model Θ generates a de-contextualized query $\hat{q}^{(t)}$. $\hat{q}^{(t)}$ is omitted for simplicity
 181 is subsequently input into a retrieval system, which returns a ranked list of the top- k documents
 182 from the collection \mathcal{P} . We denote this ranked set as $\mathcal{R}_k(\hat{q}) = \{p_1, p_2, \dots, p_k\}$, $\mathcal{R}_k(\hat{q}) \subseteq \mathcal{P}$,
 183 where p_i represents the document ranked at position i . Let $\mathcal{P}^* \subseteq \mathcal{P}$ denote the set of golden
 184 documents corresponding to \hat{q} . The objective of QO is (1) to maximize the probability that at least
 185 one golden document in \mathcal{P}^* appears in $\mathcal{R}_k(\hat{q})$; and (2) to minimize the ranking positions of the
 186 golden documents within $\mathcal{R}_k(\hat{q})$.

187 In our work, we extend this formulation by considering the disambiguation and decomposition sce-
 188 narios, where an optimized query set $\hat{\mathcal{Q}}_q$ will be generated. Each sub-query $\hat{q}_q \in \hat{\mathcal{Q}}_q$ retrieves its
 189 own top- k documents $\mathcal{R}_k(\hat{q}_q)$, and these candidates are subsequently combined and re-ranked to
 190 produce the final top- k documents, denoted as $\mathcal{R}_k(\hat{\mathcal{Q}}_q)$. This design enhances both the coverage
 191 and ranking quality of golden documents.

193 3.2 OVERALL FRAMEWORK

195 As illustrated in Figure 3, ACQO proceeds in two curriculum reinforcement learning (CRL) stages:
 196 (1) *Explore CRL*, which promotes broad exploration and early stabilization; and (2) *Converge CRL*,
 197 which emphasizes precision and convergence on harder cases.

198 The core idea is to integrate query optimization with CRL in a fully self-directed manner. Without
 199 external supervision or intervention, the model learns to adaptively converge to suitable query num-
 200 bers and optimization strategies across heterogeneous retrieval systems. In the following, we first
 201 introduce our re-ranker design, which consolidates multiple retrieval lists produced from the query
 202 set, and then detail the two-stage CRL procedure.

204 3.3 RE-RANKER DESIGN

206 **Method.** Inspired by Reciprocal Rank Fusion (RRF), we propose a new method named **Rank-
 207 Score Fusion (RSF)** to address two key limitations of RRF: it only considers rank positions while
 208 ignoring absolute retrieval scores, and it cannot properly handle cases where documents obtain iden-
 209 tical ranks across multiple lists.

210 In RSF, each sub-query returns a ranked list of candidate documents, where each document is asso-
 211 ciated with a retrieval(e.g., ANCE) score and a rank position. For a given document p , we collect its
 212 appearances across all M sub-queries into a set $\{(s_j, r_j)\}_{j=1}^M$, where (s_j, r_j) denotes the score and
 213 rank of document p in the j -th sub-query. We then compute two aggregated quantities for p :

$$215 P(p) = \frac{1}{\sum_{j=1}^M \frac{1}{r_j}}, \quad S(p) = \max_{j=1, \dots, M} s_j. \quad (1)$$

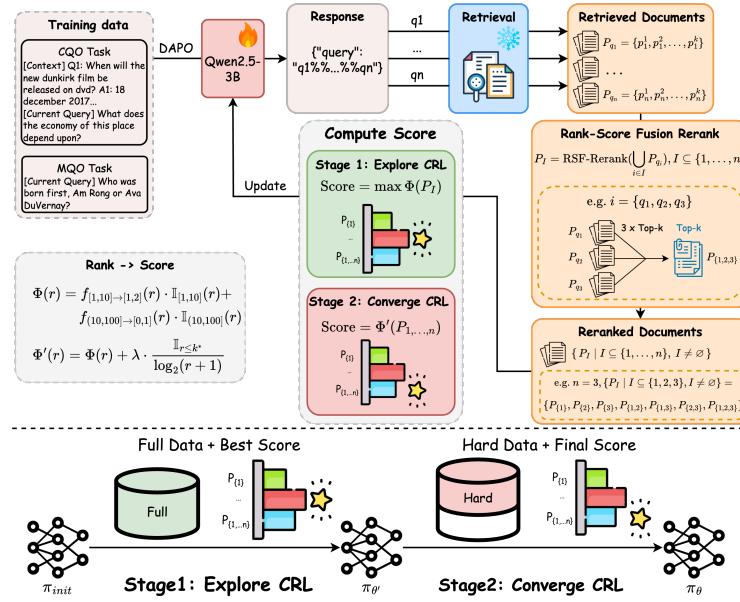


Figure 3: Overview of ACQO. ACQO employs two-stage curriculum reinforcement learning to adaptively optimize complex queries and integrate multi-retrieval results via Rank-Score Fusion.

Here, $P(p)$ reflects the combined influence of rank positions (relative values), while $S(p)$ captures the strongest absolute score observed for document p . We therefore perform lexicographical sorting with $P(p)$ as the primary key (ascending order: lower rank indicates better consensus) and $S(p)$ as the secondary key (descending order: higher score indicates stronger evidence). Formally, candidate documents are re-ranked according to:

$$\mathcal{R}_k = \text{Top-}k(\text{sort}\{(p, P(p), S(p)) \mid p \in \mathcal{R}_k(q_1) \cup \dots \cup \mathcal{R}_k(q_M)\}), \quad (2)$$

where the sorting key is $(P(p), -S(p))$ in ascending order. This encodes a hierarchical preference: "Trust rank consensus first; use scores only to break ties among similarly-ranked documents."

Advantages. Our RSF method inherits RRF's simplicity and efficiency while extending its capability through score integration. RSF offers three key advantages: (1) **Zero latency overhead**: introduces no inference delay and seamlessly integrates with neural re-rankers. (2) **Universal compatibility**: directly applicable to both sparse (e.g., BM25) and dense (e.g., ANCE) retrievers across different index structures. (3) **Enhanced robustness**: leverages both rank positions and absolute scores for more balanced re-ranking while resolving rank ambiguities.

3.4 CURRICULUM REINFORCEMENT LEARNING (CRL)

3.4.1 BASE REWARD FUNCTION

We build upon the Rank-Incentive Reward Shaping (RIRS) framework proposed in ConvSearch-R1 (Zhu et al., 2025), which provides dense rank-based reward signals and alleviates the sparsity of traditional metrics such as NDCG and MRR. Here, the rank r is defined as the position assigned to a document in the re-ranked list \mathcal{R}_k from our RSF module. The base rank-to-score mapping employs a continuous piecewise linear transformation:

$$\Phi(r) = f_{[1,10]→[1,2]}(r) · I_{[1,10]}(r) + f_{(10,100]→[0,1]}(r) · I_{(10,100]}(r), \quad (3)$$

where $f_{A→B}$ represents a linear mapping function from interval A to interval B , $\mathbb{I}_A(r)$ is the indicator function that equals 1 when $r \in A$ and 0 otherwise, and r is the rank variable.

To accommodate multiple relevant documents, we employ a weighted aggregation score emphasizes the most promising retrieval results. Suppose the rank of n retrieved relevant documents in ranked set \mathcal{R} are r_1, r_2, \dots, r_n respectively, the r_i score is defined as:

$$s(r_i) = \eta^i \cdot \Phi(r_i), \quad (4)$$

270 where η is the decay coefficient. This generalization retains the dense reward structure of RIRS
 271 while providing additional flexibility to adapt the weighting scheme for different retrieval scenarios.
 272

273 Taking the format correctness into the consideration, the complete reward score is defined as:

$$274 \quad 275 \quad S(\mathcal{R}) = \sum_{i=1}^n s(r_i) \cdot \mathbb{I}_{format} + \delta \cdot (1 - \mathbb{I}_{format}) \quad (5)$$

277 where \mathbb{I}_{format} serves as the format compliance gate, and $\delta < 0$ represents the non-compliance
 278 penalty coefficient.

279 3.4.2 STAGE I: EXPLORE-ORIENTED CRL

281 **Data Curriculum.** In the exploration stage, we employ the full training dataset without filtering.
 282 This ensures that the model is exposed to both easy and hard cases, providing sufficient diversity
 283 to stabilize early training and improve robustness. By leveraging the entire dataset, the model can
 284 better explore the space of optimization without being biased toward specific difficulty levels.

286 **Reward Design.** Building upon the base reward function, Stage I encourages exploration by re-
 287 inforcing the *combination of the best-performed sub-queries*. Suppose $\hat{\mathcal{Q}}$ is the set of optimized
 288 sub-queries, and for any non-empty subset $\hat{\mathcal{Q}}'$ in the power set of $\hat{\mathcal{Q}}$, denoted as $\mathcal{P}(\hat{\mathcal{Q}})$, we compute
 289 its the stage-specific reward as:

$$290 \quad 291 \quad G^{(I)}(\hat{\mathcal{Q}}) = \max_{\hat{\mathcal{Q}}' \in \mathcal{P}(\hat{\mathcal{Q}}) \setminus \emptyset} S(\mathcal{R}_k(\hat{\mathcal{Q}}')). \quad (6)$$

292 This design allows the model to explore diverse decomposition strategies and ensures that promising
 293 sub-queries are strongly reinforced, even in the early stage when the model is not yet stable.

295 3.4.3 STAGE II: CONVERGE-ORIENTED CRL

297 **Data Curriculum.** In the convergence stage, we refine the training distribution by focusing on the
 298 tougher cases. Rather than arbitrary filtering, we identify the optimal learning frontier by analyzing
 299 the performance distribution of Stage I models.

300 Formally, let \mathcal{Q}_{train} denote the full training query set. We define the *learning complexity score* for
 301 each input query q as:

$$302 \quad 303 \quad \tau(q) = \frac{1}{K} \sum_{k=1}^K G^{(I)}(\hat{\mathcal{Q}}_q^{(k)}), \quad (7)$$

304 where K denotes the number of rollouts. The convergence curriculum \mathcal{Q}_{conv} is constructed by
 305 retaining samples within *optimal challenge zone*:

$$306 \quad 307 \quad \mathcal{Q}_{conv} = \{q \in \mathcal{Q}_{train} : \tau(x_i) \leq \tau_{thres}\} \quad (8)$$

308 where τ_{thres} is the theoretical boundary indicating when retrieval performance is sufficiently com-
 309 plex to continue learning without destabilizing optimization.

310 This principled approach ensures that the model focuses on samples that are neither trivially easy (al-
 311 ready mastered) nor prohibitively difficult (leading to sparse learning signals), thereby maximizing
 312 learning efficiency in the convergence phase.

314 **Reward Design.** Stage II transitions from exploratory reward maximization to precision-focused
 315 optimization via a reward architecture that emphasizes ranking quality over quantity exploration.
 316 The Stage II reward function directly evaluates the complete sub-query ensemble:

$$317 \quad 318 \quad G^{(II)}(\hat{\mathcal{Q}}) = S(\mathcal{R}_k(\hat{\mathcal{Q}})). \quad (9)$$

319 To address the inherent challenge of sparse positive signals in top-ranked positions, we introduce
 320 a *logarithmic precision weighting* mechanism, inspired by NDCG's theoretical foundation, which
 321 reflects the information-theoretic principle that higher-ranked results contribute exponentially more
 322 to user satisfaction, which is defined as:

$$323 \quad \Phi'(r) = \Phi(r) + \lambda \cdot \frac{\mathbb{I}_{r \leq k^*}}{\log_2(r+1)}, \quad (10)$$

324 where $\lambda > 0$ is a precision amplification parameter, and k^* represents the critical ranking threshold,
 325 $\mathbb{I}_{r \leq k^*}$ is the indicator function ensuring bonuses apply only to top-tier results.
 326

327 This bonus-based design provides stronger incentives for exact top placements while still leveraging
 328 the smooth decay of $\Phi(r)$ for other positions. As a result, the model gradually shifts from broad
 329 exploration in Stage I to precise convergence in Stage II.

330 4 EXPERIMENTS

331 4.1 EXPERIMENTS SETUP

335 **Datasets.** We train and evaluate our model on three representative benchmarks that cover both
 336 **multi-turn** conversational query optimization, which primarily focus on query **disambiguation**,
 337 and **multi-hop** query optimization task focusing on query **decomposition**. For disambiguation task,
 338 we use TopiOCQA (Adlakha et al., 2022), a challenging open-domain conversational QA dataset
 339 with topic shifts. For decomposition task, we adopt HotpotQA (Yang et al., 2018) and evaluate gen-
 340 eralization on MultiHop-RAG (Tang & Yang, 2024), a RAG-focused multi-hop retrieval benchmark.

341 **Baselines.** We compare against three categories of prior work. For single query optimization re-
 342 formulation and abstraction, we include *IterCQR* (Jang et al., 2024), *ADACQR* (Lai et al., 2025),
 343 and *ConvSearch-R1* (Zhu et al., 2025). For query optimization with expansion, we evaluatedd
 344 *LLM4CS-RAR* (Mao et al., 2023), *CHIQ-Fusion* (Mo et al., 2024), *RETPO* (Yoon et al., 2025), and
 345 *AdaQR* (Zhang et al., 2024). For the complex query optimization setting, as there are no dedicated
 346 methods, we construct few-shot prompting baselines by adapting the above methods. We report post
 347 optimization retrieval performance after applying each baseline’s optimization procedure.
 348

349 The details regarding retriever, implementation and evaluation metrics are provided in Appendix A.
 350

351 4.2 MAIN RESULTS

353 Table 2 and 3 show the retrieval performance of our method on TopiOCQA and HotpotQA using
 354 BM25 and ANCE retrievers, along with comparisons to baselines.

355 The results on TopiOCQA demonstrate that ACQO significantly outperforms most methods across
 356 different retrieval settings. Notably, our method achieves competitive performance (34.9% MRR@3,
 357 37.7% NDCG@3) using self-supervised via retrieval feedback, while *ConvSearch-R1* achieves a
 358 strong 37.8% MRR@3 in sparse retrieval, this performance stems primarily from its extended rea-
 359 soning process and aggressive rewrite expansion mechanisms, which are also present in other meth-
 360 ods. As shown in Table 8, its strong performance comes at the cost of over 10 \times more tokens than
 361 our method, making it too slow and resource-heavy for practical end-to-end RAG use, which gains
 362 driven by scale, not scalable design. However, ACQO demonstrates superior generalization capa-
 363 bilities, achieving the best R@10 (62.6%) and R@100 (83.2%) performance on sparse retrieval.
 364 In dense retrieval settings, ACQO shows remarkable effectiveness, attaining competitive MRR@3
 365 (36.6%), NDCG@3 (39.4%) and R@10 (65.6%), demonstrating its ability to work across different
 366 retrieval architectures.

367 On HotpotQA, using only a 3B parameter model, ACQO achieves the best results across all met-
 368 rics under both sparse and dense retrieval settings. Notably, ACQO outperforms ConvSearch-R1
 369 on this more challenging multi-hop dataset (49.6% vs. 44.4% MAP@10), demonstrating su-
 370 perior decomposition capability. Query decomposition generally helps models outperform their non-
 371 decomposition counterparts; yet even the strongest decomposition baselines (e.g., DeepSeek V3.1)
 372 fall short of the raw query baseline in sparse retrieval. This indicates that straightforward decom-
 373 position or instruction-based rewriting can harm retrieval effectiveness on this multi-hop dataset.
 374 In contrast, ACQO avoids such degradation and significantly outperforms the raw query: in sparse
 375 retrieval, it achieves 86.9% R@4 (+3.6%) and 91.6% R@10 (+2.7%); in dense retrieval, it reaches
 376 82.2% R@4 (+13.9%) and 85.8% R@10 (+11.0%), outperforming the best baseline by +4.8% and
 377 +3.3% respectively. These results demonstrate that ACQO successfully bridges the gap between
 378 query decomposition and retrieval alignment, delivering superior and robust performance without
 379 relying on larger models or sacrificing efficiency.

378 Table 2: Retrieval performance comparison on TopiOCQA (%). **NS** denotes training without rewrite
 379 supervised data, and **NCoT** denotes training without chain-of-thought reasoning.
 380

381 Method	382 NS	383 NCoT	384 Sparse(BM25)				385 Dense(ANCE)			
			386 MRR@3	387 NDCG@3	388 R@10	389 R@100	390 MRR@3	391 NDCG@3	392 R@10	393 R@100
394 DeepSeek-V3.1	395 -	396 -	397 15.5	398 17	399 36.7	400 65.3	401 28.4	402 30.8	403 56.3	404 77.8
405 vanilla RL (<i>Qwen2.5-3B</i>)	406 -	407 -	408 31.2	409 36.1	410 60.8	411 82.5	412 34.5	413 38.3	414 62.1	415 81.1
416 IterCQR (<i>T5-base</i>)	417 x	418 ✓	419 16.5	420 14.9	421 29.3	422 54.1	423 26.3	424 25.1	425 42.6	426 62.0
427 ADACQR (<i>T5-base+LLaMA7B</i>)	428 x	429 ✓	430 28.3	431 26.5	432 48.9	433 71.2	434 38.5	435 37.6	436 58.4	437 75.0
438 LLM4CS-RAR (<i>ChatGPT</i>)	439 ✓	440 x	441 27.9	442 26.4	443 48.4	444 71.1	445 35.4	446 34.4	447 55.2	448 72.2
449 CHIQ-Fusion (<i>T5-base+LLaMA2-7B</i>)	450 x	451 ✓	452 25.6	453 23.5	454 44.7	455 -	456 38.0	457 37.0	458 61.6	459 -
460 RETPO (<i>LLaMA2-7B</i>)	461 x	462 ✓	463 28.3	464 26.5	465 48.3	466 73.1	467 32.2	468 31.1	469 51.6	470 69.5
471 AdaQR (<i>T5-base</i>)	472 x	473 ✓	474 20.3	475 18.0	476 37.1	477 66.2	478 38.1	479 36.6	480 61.3	481 79.9
482 ConvSearch-R1 (<i>Qwen2.5-3B</i>)	483 x	484 x	485 37.8	486 36.2	487 59.6	488 80.1	489 50.5	490 50.1	491 72.0	492 86.3
493 ACQO (ours, Qwen2.5-3B)	494 ✓	495 ✓	496 34.9	497 37.7	498 62.6	499 83.2	500 36.6	501 39.4	502 65.6	503 85.1

390 Table 3: Retrieval performance comparison on HotpotQA (%). (qd: query decomposition)
 391

392 Type	393 Method	394 R@4	395 R@10	396 R@100	397 MAP@10	398 MRR@10	399 NDCG@10
400 Sparse (BM25)	401 Raw	402 83.3	403 88.9	404 96.7	405 49.5	406 75.4	407 70.5
	408 Qwen2.5-3B-inst (wo/qd)	409 72.0	410 79.3	411 89.7	412 41.2	413 64.2	414 60.5
	415 Qwen2.5-3B-inst (w/qd)	416 75.3	417 81.2	418 89.5	419 42.7	420 65.9	421 62.4
	422 DeepSeek-V3.1 (w/qd)	423 81.1	424 86.6	425 93.3	426 49.1	427 70.6	428 66.2
	429 vanilla RL (<i>Qwen2.5-3B</i>)	430 82.3	431 89.9	432 95.6	433 48.8	434 77.5	435 73.2
	436 ConvSearch-R1 (<i>Qwen2.5-3B</i>)	437 83.0	438 90.2	439 96.0	440 51.1	441 77.0	442 72.3
443 Dense (ANCE)	444 ACQO (ours, Qwen2.5-3B)	445 86.9	446 91.6	447 97.5	448 51.2	449 77.7	450 74.2
	451 Raw	452 68.3	453 74.8	454 86.1	455 34.8	456 60.4	457 59.5
	458 Qwen2.5-3B-inst (wo/qd)	459 64.6	460 70.7	461 81.8	462 32.8	463 56.6	464 56.0
	465 Qwen2.5-3B-inst (w/qd)	466 67.0	467 73.0	468 81.8	469 34.9	470 57.5	471 57.3
	472 DeepSeek-V3.1 (w/qd)	473 77.4	474 82.5	475 88.9	476 46.1	477 66.8	478 65.7
	479 vanilla RL (<i>Qwen2.5-3B</i>)	480 79.2	481 83.9	482 89.1	483 41.1	484 75.5	485 74.4
486 ACQO (ours, Qwen2.5-3B)	487 75.0	488 79.4	489 87.5	490 44.4	491 72.8	492 72.2	493
	494 82.2	495 85.8	496 91.2	497 49.6	498 73.4	499 73.6	500

403 **4.3 EVALUATION ON OUT-OF-DISTRIBUTION (OOD) DATA**

404 A critical strength of our ACQO framework lies in its strong generalization to entirely unseen
 405 datasets. As shown in Table 4, when evaluated on MultiHop-RAG, ACQO consistently outperforms
 406 raw queries and all baselines across different retrievers. It achieves 49.7% R@4 compared to 45.7%
 407 for raw, with clear gains of 4% using *llm-embedder* and 3% using *bge-large-en-v1.5*, confirming its
 408 compatibility with varying retrieval architectures. ACQO maintains strong performance on unseen
 409 domains and query types, indicating it learns domain-invariant reformulation principles. All gains
 410 are achieved zero-shot without fine-tuning, which confirming it generalizes beyond dataset-specific
 411 patterns, making it highly adaptable to real-world retrieval systems with shifting data.

413 **4.4 ABLATION STUDY**

415 In this work, we have presented ACQO with three core components: Query Decomposition (QD)
 416 for adaptive query optimization, Rank-Score Fusion (RSF) for robust result aggregation, and a two-
 417 stage Curriculum Reinforcement Learning approach for stable training. We conduct comprehensive
 418 ablation studies on these components across both TopiOCQA and HotpotQA datasets to understand
 419 their individual contributions. As shown in Table 5, all three components are essential for optimal
 420 performance, with removing any single component leading to noticeable performance drops across
 421 both dense and sparse retrievers.

422 **Rank-Score Fusion (RSF)** emerges as the most critical component, with its removal causing the
 423 most significant performance degradation on TopiOCQA (37.7% → 35.0% NDCG@3 for sparse,
 424 39.4% → 38.8% for dense), demonstrating that effective aggregation of multiple query results is fun-
 425 damental to our approach. **Curriculum Reinforcement Learning** shows dramatic impact on train-
 426 ing stability, with substantial performance drops without it (37.7% → 24.9% NDCG@3 for sparse
 427 on TopiOCQA), indicating that the convergence phase is essential for stable learning. We argue that
 428 Stage I (exploration) discovers diverse query reformulation strategies, while Stage II (convergence)
 429 refines these strategies for optimal performance. **Query Decomposition (QD)** shows moderate but
 430 consistent improvements (37.7% → 36.5% NDCG@3 for sparse on TopiOCQA), which aligns with
 431 expectations since TopiOCQA primarily involves disambiguation rather than complex query decom-
 432 position, yet QD still provides benefits for handling multi-faceted information needs.

432
433
Table 4: Retrieval performance comparison on MultiHop-RAG (%).
434
435

Method	bge-large-en-v1.5				llm-embedder			
	MRR@10	MAP@10	R@10	R@4	MRR@10	MAP@10	R@10	R@4
Raw	45.5	21.5	81.3	62.5	32.9	14.4	65.7	45.7
Qwen2.5-3B(w/qd)	44.8	21.2	80.5	61.7	33.2	14.7	65.7	45.9
ACQO (<i>ours</i>)	47.7	23.6	84.0	65.5	35.6	17.3	72.6	49.7

439
440
Table 5: Ablation study on retrieval performance (%).
441

Dataset	TopiOCQA						HotpotQA					
	Sparse			Dense			Sparse			Dense		
Retriever	NDCG@3	R@3	R@10	NDCG@3	R@3	R@10	MAP@10	R@3	R@10	MAP@10	R@3	R@10
Method	NDCG@3	R@3	R@10	NDCG@3	R@3	R@10	MAP@10	R@3	R@10	MAP@10	R@3	R@10
- wo/ RSF	35.0	42.1	58.8	38.8	46.6	63.4	51.2	83.5	91.1	49.0	80.1	85.6
- wo/ Stage II	24.9	30.6	49.1	36.3	44.2	64.9	52.0	84.6	91.8	40.6	69.4	75.1
- wo/ QD	36.5	44.1	61.1	38.7	46.1	63.2	49.9	83.1	90.5	42.3	79.6	84.7
ACQO	37.7	45.8	62.6	39.4	47.8	65.6	51.2	84.8	91.6	49.4	80.5	85.6

448
449
450
The synergistic effects of all components create a robust framework where each component compensates for the limitations of others, establishing that ACQO requires all three components working in concert to achieve state-of-the-art performance.
451

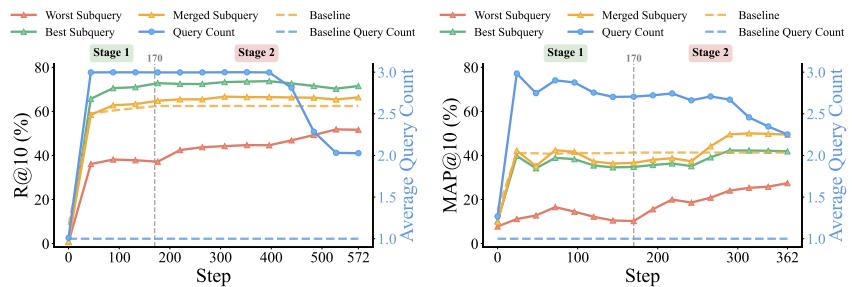
452 4.5 TRAINING DYNAMICS ANALYSIS

453
454 Figure 4 illustrates the training progression of our two-stage curriculum learning approach on Topi-
455 OCQA and HotpotQA datasets. The results demonstrate the expected behavior of our adaptive query
456 optimization framework.

457
458 As shown in both datasets, the average query count follows a characteristic *explore-then-converge*
459 pattern: initially increasing during Stage I (exploration) as the model learns to decompose complex
460 queries, then stabilizing or slightly decreasing during Stage II (convergence) as the model refines
461 its decomposition strategies. This behavior aligns with our curriculum learning design, where the
462 model first explores diverse query reformulation patterns before converging to optimal strategies.

463
464 The retrieval performance (R@10 for TopiOCQA, MAP@10 for HotpotQA) shows consistent im-
465 provement throughout training, with merged subqueries significantly outperforming baselines and
466 approaching the performance of best subqueries. Notably, different retrievers result in different op-
467 timal query counts after training, which corroborates our finding that effective query optimization
468 requires retriever-specific adaptation.

469
470 The training dynamics validate that our two-stage approach successfully balances exploration and
471 exploitation, achieving both improved retrieval effectiveness and computational efficiency through
472 adaptive query count optimization. We demonstrate the effectiveness of ACQO through state-of-
473 the-art performance on TopiOCQA and HotpotQA datasets. In addition, the experimental results in-
474 dicate that ACQO learns retriever-specific optimization strategies, with different retrievers yielding
475 different optimal query patterns. Furthermore, ACQO exhibits superior performance in challenging
476 settings such as generalization on unseen datasets and computational efficiency with smaller models.
477

484
485 Figure 4: Query Adaptation and Performance Improvement on TopiOCQA(L) and HotpotQA(R).
486

486
487
488 Table 6: Efficiency Analysis: Inference Latency and Training Cost
489
490
491
492
493

(a) Avg Inference Latency (ms,TopiOCQA-ANCE)

Method	#Q	Gen	Retri	Rerank	Tot	Speed
SFT (Qwen2.5-3B)	2514	297	27	0	324	1.09x
ACQO	2514	320	30	5	355	1.0x
ConvSearch-R1	2514	3230	25	0	3255	0.11x

9.16× faster than ConvSearch-R1; +31ms for +8.2% MRR@3 vs. SFT

(b) Training Cost (HotpotQA-ANCE)

Method	GPU-H	Conv	MAP@10
Vanilla RL	8.4	No	41.1
SFT + RL	15.4	yes	45.3
ACQO (Stage I)	4.2	yes	42.3
ACQO (Full)	12.1	yes	49.6

494
495
496 4.6 LATENCY AND COST ANALYSIS
497

498
499 **Inference Latency Analysis.** Table 6a presents a detailed breakdown of inference latency across
500 different pipeline stages. Our measurements on TopiOCQA-ANCE with a single H20 GPU show
501 that ACQO adds only 31ms overhead compared to the SFT baseline (355ms vs. 324ms). More
502 importantly, ACQO is 9.16× faster than ConvSearch-R1 (355ms vs. 3255ms) while maintaining
503 comparable accuracy (as shown in Tables 2 and 3). This substantial speedup makes ACQO
504 a Pareto-optimal choice for production deployment, offering the best balance between accuracy and
505 efficiency.

506 The latency breakdown reveals that the additional overhead primarily comes from query generation
507 (+23ms) and retrieval (+3ms), with our lightweight Rank-Score Fusion module contributing only
508 5ms. This validates our design philosophy of achieving strong performance through algorithmic
509 innovations rather than computationally expensive components.

510
511 **Training Cost Analysis.** Table 6b compares training costs on HotpotQA-ANCE using 8 H20
512 GPUs. Full ACQO training requires 12.1 GPU-hours, comparable to the SFT+RL baseline (15.4
513 GPU-hours) but without requiring any supervised query rewriting data. Notably, ACQO-Stage I
514 converges in only 4.2 GPU-hours while achieving 42.3% MAP@10, demonstrating efficient initial
515 exploration.

516 While vanilla RL appears faster (8.4 GPU-hours), it fails to converge properly, getting stuck at a low
517 performance ceiling (41.1% MAP@10) due to training instability. The root cause is insufficient valid
518 samples—the DAPO algorithm fails to collect enough qualified samples within its sampling budget
519 (`max_num_gen_batches=20`), causing premature termination with suboptimal performance. This
520 validates the necessity of our curriculum learning strategy for stable convergence.

521 These results demonstrate that ACQO achieves superior performance with practical computational
522 costs: (1) Inference efficiency: 9.16× faster than ConvSearch-R1 with minimal overhead over SFT;
523 (2) Training efficiency: comparable cost to SFT+RL but without supervised data requirements; (3)
524 Training stability: successful convergence where vanilla RL fails. This favorable efficiency-accuracy
525 trade-off establishes ACQO as a practical solution for production RAG systems.

526
527 5 CONCLUSION
528

529
530 In this work, we propose ACQO, a two-stage reinforcement learning framework that addresses com-
531 plex query optimization in RAG systems through self-supervised retrieval feedback, which leverages
532 retrieval signals via adaptive query decomposition and rank-score fusion to provide retriever-specific
533 guidance for query optimization. Experimental results demonstrate state-of-the-art performance on
534 TopiOCQA and HotpotQA, while achieving 9.1× faster inference than strong baselines. Our
535 analysis further reveals that ACQO learns retriever-specific optimization strategies, with each retriever
536 yielding distinct optimal query patterns. Furthermore, our framework demonstrates superior per-
537 formance in challenging scenarios, including strong generalization to unseen datasets and efficient
538 operation with smaller models, establishing a powerful, efficient, and generalizable solution for
539 next-generation RAG systems.

540 ETHICS STATEMENT
541

542 Our work complies with the ICLR Code of Ethics. The datasets used in this study are publicly
543 available benchmark datasets and do not contain any personally identifiable or sensitive information.
544 No human subjects, private user data, or personally identifiable information were involved in data
545 collection or model training. All experiments were conducted using open-source frameworks and
546 standard computational resources. We acknowledge that large-scale machine learning models may
547 potentially amplify biases present in the training data. To mitigate this risk, we carefully followed the
548 dataset usage guidelines and report all evaluation details transparently to encourage reproducibility
549 and further scrutiny by the community.

550
551 REPRODUCIBILITY STATEMENT
552

553 We have made every effort to ensure the reproducibility of our results. All datasets used in this work
554 are publicly available benchmark datasets. To facilitate replication, we provide detailed specifica-
555 tions of the retriever implementations, training parameters, prompts employed, evaluation metrics,
556 and all related parameter settings in the main paper and the appendix. In the supplementary material,
557 we also provide the core code used in this paper, including scripts for launching the retrieval service,
558 training, and evaluation, all with comprehensive comments for clarity.

559
560 REFERENCES
561

562 Vaibhav Adlakha, Shehzaad Dhuliawala, Kaheer Suleman, Harm de Vries, and Siva Reddy. Topi-
563 oqua: Open-domain conversational question answering with topic switching. *Transactions of the*
564 *Association for Computational Linguistics*, 10:468–483, 2022.

565 Paul JL Ammann, Jonas Golde, and Alan Akbik. Question decomposition for retrieval-augmented
566 generation. *arXiv preprint arXiv:2507.00355*, 2025.

567 Hiteshwar Kumar Azad and Akshay Deepak. Query expansion techniques for information retrieval:
568 a survey. *Information Processing & Management*, 56(5):1698–1735, 2019.

569 Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
570 jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al. Ms marco: A human generated
571 machine reading comprehension dataset. *arXiv preprint arXiv:1611.09268*, 2016.

572 DeepSeek-AI. Deepseek-v3 technical report, 2024. URL <https://arxiv.org/abs/2412.19437>.

573 Jiazhan Feng, Chongyang Tao, Xiubo Geng, Tao Shen, Can Xu, Guodong Long, Dongyan Zhao,
574 and Dixin Jiang. Synergistic interplay between search and large language models for information
575 retrieval. *arXiv preprint arXiv:2305.07402*, 2023.

576 Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. Precise zero-shot dense retrieval without
577 relevance labels. In *Proceedings of the 61st Annual Meeting of the Association for Computational*
578 *Linguistics (Volume 1: Long Papers)*, pp. 1762–1777, 2023.

579 Yizheng Huang and Jimmy Huang. A survey on retrieval-augmented text generation for large lan-
580 guage models. *arXiv preprint arXiv:2404.10981*, 2024.

581 Yunah Jang, Kang-il Lee, Hyunkyoung Bae, Hwanhee Lee, and Kyomin Jung. Itercqr: Iterative con-
582 versational query reformulation with retrieval guidance. In *Proceedings of the 2024 Conference of*
583 *the North American Chapter of the Association for Computational Linguistics: Human Language*
584 *Technologies (Volume 1: Long Papers)*, pp. 8114–8131, 2024.

585 Pengcheng Jiang, Jiacheng Lin, Lang Cao, Runchu Tian, SeongKu Kang, Zifeng Wang, Jimeng Sun,
586 and Jiawei Han. Deepretrieval: Hacking real search engines and retrievers with large language
587 models via reinforcement learning. *arXiv preprint arXiv:2503.00223*, 2025.

588 Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. *IEEE*
589 *Transactions on Big Data*, 7(3):535–547, 2019.

594 Yilong Lai, Jialong Wu, Congzhi Zhang, Haowen Sun, and Deyu Zhou. Adacqr: Enhancing query
 595 reformulation for conversational search via sparse and dense retrieval alignment. In *Proceedings*
 596 *of the 31st International Conference on Computational Linguistics*, pp. 7698–7720, 2025.

597

598 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 599 Heinrich Kütller, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
 600 ation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
 601 9459–9474, 2020.

602 Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep, and Rodrigo
 603 Nogueira. Pyserini: An easy-to-use python toolkit to support replicable ir research with sparse
 604 and dense representations. *arXiv preprint arXiv:2102.10073*, 2021.

605 Jerry Liu. LlamaIndex, 11 2022. URL https://github.com/jerryjliu/llama_index.

606

607 Yanming Liu, Xinyue Peng, Xuhong Zhang, Weihao Liu, Jianwei Yin, Jiannan Cao, and Tianyu Du.
 608 Ra-isf: Learning to answer and understand from retrieval augmentation via iterative self-feedback.
 609 *arXiv preprint arXiv:2403.06840*, 2024.

610 Kelong Mao, Zhicheng Dou, Fengran Mo, Jiewen Hou, Haonan Chen, and Hongjin Qian. Large
 611 language models know your contextual search intent: A prompting framework for conversational
 612 search. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 1211–
 613 1225, 2023.

614

615 Fengran Mo, Abbas Ghaddar, Kelong Mao, Mehdi Rezagholizadeh, Boxing Chen, Qun Liu, and
 616 Jian-Yun Nie. Chiq: Contextual history enhancement for improving query rewriting in conversa-
 617 tional search. In *EMNLP*, 2024.

618 Ethan Perez, Patrick Lewis, Wen-tau Yih, Kyunghyun Cho, and Douwe Kiela. Unsupervised ques-
 619 tion decomposition for question answering. *arXiv preprint arXiv:2002.09758*, 2020.

620

621 Team Qwen. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

622

623 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 624 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *Proceedings*
 625 *of the Twentieth European Conference on Computer Systems*, pp. 1279–1297, 2025a.

626

627 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 628 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *Proceedings*
 629 *of the Twentieth European Conference on Computer Systems*, pp. 1279–1297, 2025b.

630 Aditi Singh, Abul Ehtesham, Saket Kumar, and Tala Talaei Khoei. Agentic retrieval-augmented
 631 generation: A survey on agentic rag. *arXiv preprint arXiv:2501.09136*, 2025.

632

633 Mingyang Song and Mao Zheng. A survey of query optimization in large language models, 2024.
 634 URL <https://arxiv.org/abs/2412.17558>.

635

636 Yixuan Tang and Yi Yang. Multihop-rag: Benchmarking retrieval-augmented generation for multi-
 637 hop queries. *arXiv preprint arXiv:2401.15391*, 2024.

638

639 Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. Beir: A
 640 heterogeneous benchmark for zero-shot evaluation of information retrieval models.

641

642 Svitlana Vakulenko, Nikos Voskarides, Zhucheng Tu, and Shayne Longpre. A comparison of ques-
 643 tion rewriting methods for conversational passage retrieval. In *European Conference on Informa-
 644 tion Retrieval*, pp. 418–424. Springer, 2021.

645

646 Liang Wang, Nan Yang, and Furu Wei. Query2doc: Query expansion with large language models.
 647 *arXiv preprint arXiv:2303.07678*, 2023.

648

649 Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack:
 650 Packed resources for general chinese embeddings. In *Proceedings of the 47th international ACM
 651 SIGIR conference on research and development in information retrieval*, pp. 641–649, 2024.

648 Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed,
 649 and Arnold Overwijk. Approximate nearest neighbor negative contrastive learning for dense text
 650 retrieval. *arXiv preprint arXiv:2007.00808*, 2020.

651 Shicheng Xu, Liang Pang, Huawei Shen, Xueqi Cheng, and Tat-Seng Chua. Search-in-the-chain:
 652 Interactively enhancing large language models with search for knowledge-intensive tasks. In
 653 *Proceedings of the ACM Web Conference 2024*, pp. 1362–1373, 2024.

654 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
 655 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 656 answering. *arXiv preprint arXiv:1809.09600*, 2018.

657 Chanwoong Yoon, Gangwoo Kim, Byeongguk Jeon, Sungdong Kim, Yohan Jo, and Jaewoo Kang.
 658 Ask optimal questions: Aligning large language models with retriever’s preference in conversa-
 659 tion. In *Findings of the Association for Computational Linguistics: NAACL 2025*, pp. 5899–5921,
 660 2025.

661 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 662 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
 663 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

664 Shi Yu, Jiahua Liu, Jingqin Yang, Chenyan Xiong, Paul Bennett, Jianfeng Gao, and Zhiyuan Liu.
 665 Few-shot generative conversational query rewriting. In *Proceedings of the 43rd International
 666 ACM SIGIR conference on research and development in Information Retrieval*, pp. 1933–1936,
 667 2020.

668 Peitian Zhang, Shitao Xiao, Zheng Liu, Zhicheng Dou, and Jian-Yun Nie. Retrieve anything to
 669 augment large language models. *arXiv preprint arXiv:2310.07554*, 2023.

670 Tianhua Zhang, Kun Li, Hongyin Luo, Xixin Wu, James R Glass, and Helen Meng. Adaptive query
 671 rewriting: Aligning rewriters through marginal probability of conversational answers. In *EMNLP*,
 672 2024.

673 Changtai Zhu, Siyin Wang, Ruijun Feng, Kai Song, and Xipeng Qiu. Convsearch-r1: Enhancing
 674 query reformulation for conversational search with reasoning via reinforcement learning. *arXiv
 675 preprint arXiv:2505.15776*, 2025.

676 THE USE OF LARGE LANGUAGE MODELS (LLMs)

677 In this work, large language models were used solely as auxiliary tools to support writing and editing,
 678 such as grammar checking and formatting suggestions. No part of the core scientific contribution,
 679 including the design of methods, experiments, or analyses, relied on outputs generated by LLMs.
 680 All technical content, results, and conclusions were conceived and verified entirely by the authors.
 681 The authors bear full responsibility for any content generated with the assistance of LLMs.

682 A EXPERIMENTAL DETAILS

683 A.1 RETRIEVAL

684 In TopiOCQA and HotpotQA, we use the BM25 retriever implemented by Pyserini (Lin et al.,
 685 2021), and the ANCE retriever implemented by Faiss (Johnson et al., 2019). The hyperparameters
 686 of BM25 are set to $k_1 = 0.9, b = 0.4$ for TopiOCQA, and $k_1 = 1.2, b = 0.75$ for HotpotQA during
 687 all training and evaluation. For ANCE, to improve training efficiency, we first generate embeddings
 688 for documents and then build an HNSW index using Faiss’s `IndexHNSWF1at`, with parameters
 689 $M = 64$ and $ef_construction = 2000$. The index construction for HotpotQA partially follows (Jiang
 690 et al., 2025). During evaluation, we use `IndexF1atIP` to construct a flat index to ensure accuracy.
 691 In MultiHop-RAG, we follow its original setup with the `LlamaIndex` (Liu, 2022) framework and
 692 adopt BGE-large-en-v1.5 and LLM-Embedder as retrievers. Both retrievers use a chunking strategy
 693 with `chunk_size=256` and `chunk_overlap=20`, splitting the 609 original documents into 7786
 694 chunks. For BGE-large-en-v1.5, we follow the official recommendation and add the instruction
 695 “Represent this sentence for searching relevant documents:” when converting text into embeddings.

702 A.2 TRAINING AND EVALUATION
703704 **Evaluation Metrics.** For TopiOCQA, we employ Mean Reciprocal Rank@K (MRR@K), Nor-
705 malized Discounted Cumulative Gain@K (NDCG@K), and Recall@K (R@K) as evaluation met-
706 rics. For HotpotQA and MultiHop-RAG, we additionally use Mean Average Precision@10
707 (MAP@10) for assessment. For MultiHop-RAG, we follow the evaluation code and metric pro-
708 vided in the benchmark.709 **Retrieval Systems.** We evaluated the performance of model under both sparse and dense retriev-
710 ers. For TopiOCQA and HotpotQA, we select **BM25** as the sparse retriever and **ANCE** as the
711 dense retriever, where **ANCE** (Xiong et al., 2020) is trained on MS-MARCO (Bajaj et al., 2016)
712 document retrieval tasks. For MultiHop-RAG, we use **bge-large-en-v1.5** (Xiao et al., 2024) and
713 **llm-embedder** (Zhang et al., 2023) as the retrievers.
714715 **Implementation.** We deploy Qwen2.5-3B as the backbone and train the model individually on
716 TopiOCQA and HotpotQA, following the two-stage CRL described in §3. We use **verl** (Sheng
717 et al., 2025b) as our RL training framework, and adopt **DAPO** (Yu et al., 2025) as the optimization
718 algorithm, training the models under BM25 and ANCE retrievers independently.
719720 **Training Hyperparameters.** We adopt the default hyperparameters established by ConvSearch-
721 R1 (Zhu et al., 2025) and the **verl** framework (Sheng et al., 2025a), rather than performing dataset-
722 specific tuning. The only modification we make is setting the maximum response length to 256
723 tokens (vs. 1024 in ConvSearch-R1), since ACQO generates concise sub-queries rather than chain-
724 of-thought reasoning, reducing the required output length.725 Specifically, for both TopiOCQA and HotpotQA, the models are trained under BM25 and ANCE
726 retrievers with essentially the same hyperparameter configuration across both stages. We adopt
727 DAPO optimization with mini-batch size 64 and micro-batch size 8 per GPU (8 GPUs in total).
728 The actor learning rate is 1×10^{-6} with gradient clipping at 1.0. Entropy regularization is disabled
729 (`entropy_coeff = 0`). KL control is not used in reward shaping (`use_kl_in_reward=False`). The
730 clipping ratios are set as $[0.2, 0.28]$ with an additional coefficient `clip_ratio_c = 10.0`, following the
731 default configuration of DAPO. We sample $K = 8$ rollouts per query. Generation uses temperature
732 0.8, $\text{top-}p = 0.8$, and $\text{top-}k = -1$ during training; for validation we set temperature = 0.7, $\text{top-}p =$
733 0.8, and $\text{top-}k = 20$. Dynamic batch sizing is enabled for efficiency, with maximum batched tokens
734 set to 11408 and GPU memory utilization capped at 0.8. We set the training batch size to 256 and the
735 generation batch size to 512. For HotpotQA, the maximum prompt length is 512 tokens, while for
736 TopiOCQA it is 1536 tokens. In both datasets, the maximum response length is fixed to 256 tokens.
737 We set the decay coefficient $\eta = 0.6$ for HotpotQA, while $\eta = 1.0$ is used for TopiOCQA. For
738 stage II reward design, we set $k^* = 3$ for TopiOCQA and $k^* = 0$ for HotpotQA. For the training
739 epochs, Stage I CRL is trained for 2 epochs on TopiOCQA and 3 epochs on HotpotQA. Stage II
740 CRL is trained for 10 epochs on TopiOCQA with ANCE retriever and 8 epochs on TopiOCQA with
741 BM25 retriever. For HotpotQA, Stage II is trained for 4 epochs with ANCE and 6 epochs with
742 BM25.

743 A.3 DATASETS

744 We use three datasets in our experiments: TopiOCQA, HotpotQA, and MultiHop-RAG. All exper-
745 iments are conducted on standard training/test splits and document collections, as summarized in
746 Table 7. For HotpotQA, we follow the corpus provided by the BEIR benchmark (Thakur et al.),
747 which standardizes the document collection for retrieval-based evaluation.
748749 **Data Collection** Our method does not require any supervised data; instead, it employ RL with
750 different levels of difficulty across the two RL stages(Section 3.4). In Stage I CRL, we use the full
751 official training set for TopiOCQA. For HotpotQA, however, given the large training set size and
752 relatively high initial performance, we first filter out the higher-performing samples and retain only
753 50% of the data for Stage I training. In Stage II CRL, we apply dynamic filtering with the Stage I
754 model (Section 3.4.3), again retaining roughly 50% of the samples. Basically, we set $\tau_{thres} = \frac{5}{3}$ and
755 rollouts $n = 8$. This guides the model to focus on moderately difficult instances, thereby improving
learning efficiency and convergence in Stage II.

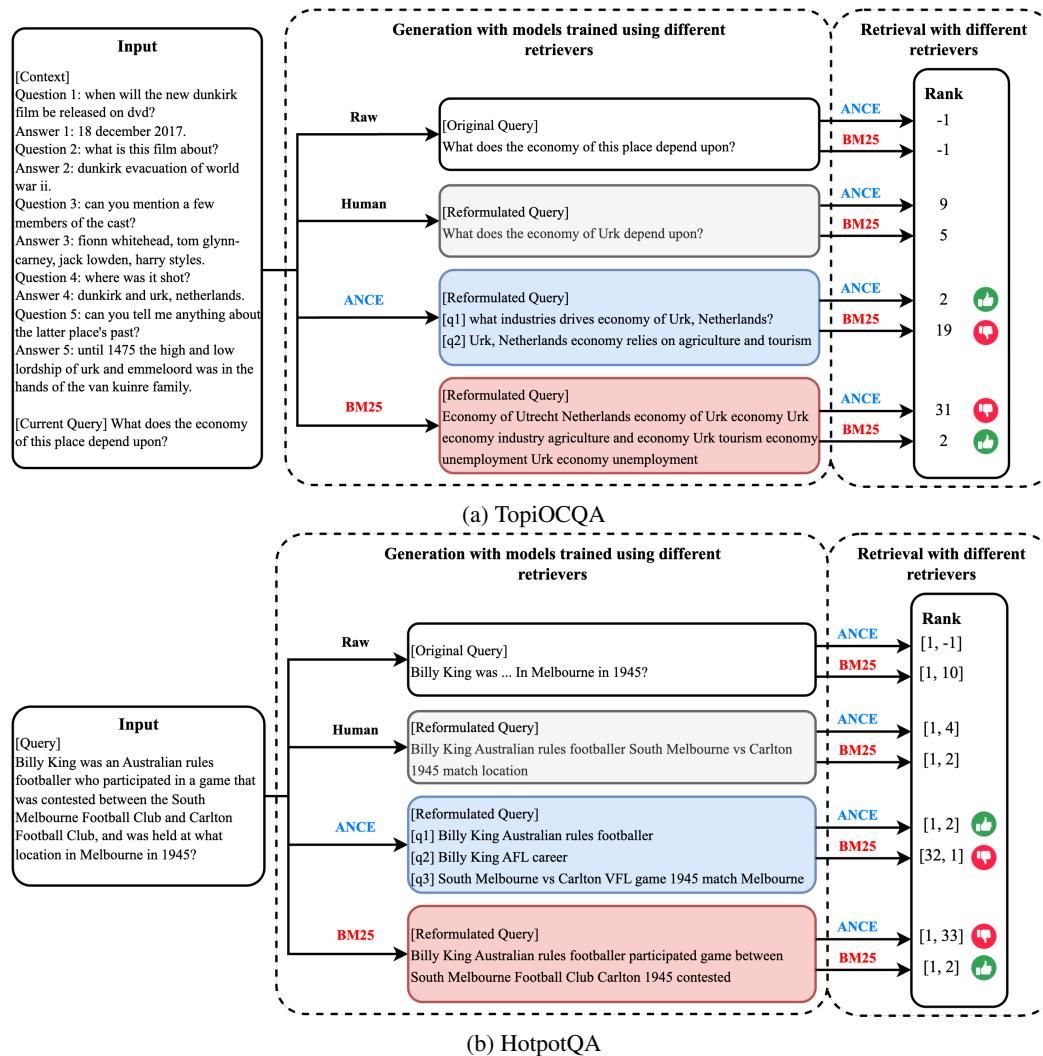
756
757 Table 7: Statistics of datasets used in our experiments. “#Golden / query” denotes the number of
758 golden documents associated with each query.

759 Dataset	760 Split	761 #Queries	762 #documents	763 #Golden / query
764 TopiOCQA	765 train	766 45450	767 25700592	768 1
	769 test	770 2514		
771 HotpotQA	772 train	773 85000	774 5233329	775 2
	776 test	777 7405		
778 MultiHop-RAG	779 test	780 2556	781 7786	782 multiple

783 B FURTHER EXPERIMENTS

784 B.1 CASE STUDY

785 In this section, we begin with a representative case to further discuss how our method improves
786 retrieval performance.



842 Figure 5: Comparison of queries generated by models trained with different retrievers and their
843 retrieval performance across different retrievers.

810 In Figure 5, we compare the performance across different training–retrieval combinations on dif-
 811 ferent datasets, i.e., the effectiveness of reformulated queries generated by models trained with a
 812 specific retriever when evaluated on other types of retrievers.

813 From the perspective of retrieval performance, we observe that retrieval effectiveness drops signif-
 814 icantly when switching retrievers; moreover, model-generated reformulations outperform human-
 815 written ones (i.e., reformulations that are intuitively considered correct). This suggests that the
 816 evaluation of query quality should be retriever-dependent and may not necessarily align with human
 817 intuition.

818 From the perspective of query generation behavior, queries generated with different retrievers vary
 819 in both quantity and style, indicating that the reformulation style learned by the model is closely tied
 820 to the retriever used during training.

822 **What behavior does the model learn when trained with a specific retriever?** Models trained
 823 with the ANCE retriever tend to generate multiple queries resembling natural language questions or
 824 statements, capturing complete semantic relations and emphasizing keywords or core entities with
 825 fewer stopwords. In contrast, models trained with the BM25 retriever are inclined to generate a
 826 single query that explicitly enumerates all relevant keywords.

828 **Are these behaviors aligned with retriever preferences?** Indeed, the observed behaviors are
 829 consistent with the characteristics favored by different retrievers. For dense retrievers such as ANCE,
 830 queries expressed in a natural language style, often decomposed into multiple sub-queries, better
 831 capture semantic relations and leverage embedding-based similarity. In contrast, sparse retrievers
 832 like BM25 prefer a single query containing exhaustive keyword coverage, where term frequency
 833 and exact lexical overlap dominate ranking. This alignment indicates that our model effectively
 834 adapts its reformulation strategy to the underlying retriever, learning to generate query styles that
 835 are inherently compatible with the retriever’s scoring mechanism.

836 **Why does our method also yield improvements on TopiOCQA?** TopiOCQA consists of single-
 837 intent questions, each associated with only one golden document, which suggests that the optimal
 838 query should ideally be a single reformulation. Traditional approaches mainly rely on **expansion**,
 839 where the model generates a lengthy reformulation that conveys complete semantic information
 840 while leveraging its parametric knowledge to give an answer of the question, thereby increasing
 841 semantic similarity with candidate passages (see Table 8). In practice, however, we observe that the
 842 model often employs **rephrasing**—for example, expressing the same intent as either a question or a
 843 declarative statement—to broaden the search space and consequently achieve better retrieval results.
 844 Its advantages lie in stronger readability and higher efficiency, while also mitigating the negative im-
 845 pact of erroneous expansions when the model encounters unfamiliar or ambiguous queries, thereby
 846 improving robustness.

847 Table 8: Comparison of generation lengths across methods.

849 Method	850 Retrieval	851 Reasoning	852 Response	853 Total
854 ConvSearch-R1	855 -	856 106	857 248	858 354
859 <i>ACQO (ours)</i>	860 ANCE	861 -	862 28	863 28
	864 BM25	865 -	866 36	867 36

855 **Why is human-preferred query reformulation worse than model-generated?** Here we collec-
 856 tively refer to strong instruction models (e.g., DeepSeek-V3) and human-written rewrites as *human-
 857 preferred query reformulation*, since such models can generate queries that are generally regarded as
 858 high-quality under instruction or few-shot settings. In contrast, we denote reformulations produced
 859 by our trained models as *model-generated query reformulation*. However, experimental results show
 860 that human-preferred reformulations still underperform compared to our method or other advanced
 861 baselines. Based on the above analysis, we summarize two main reasons:

862 **(1) Human-preferred methods do not know what constitutes a retrieval-effective query.** They
 863 tend to follow human instructions by completing the current query with context or decomposing

864 multi-intent queries into several sub-queries. Yet, when no clear sub-intent is present, they fail to
 865 decide how to **decompose**, and typically do not perform **rephrasing** or **expansion**.
 866

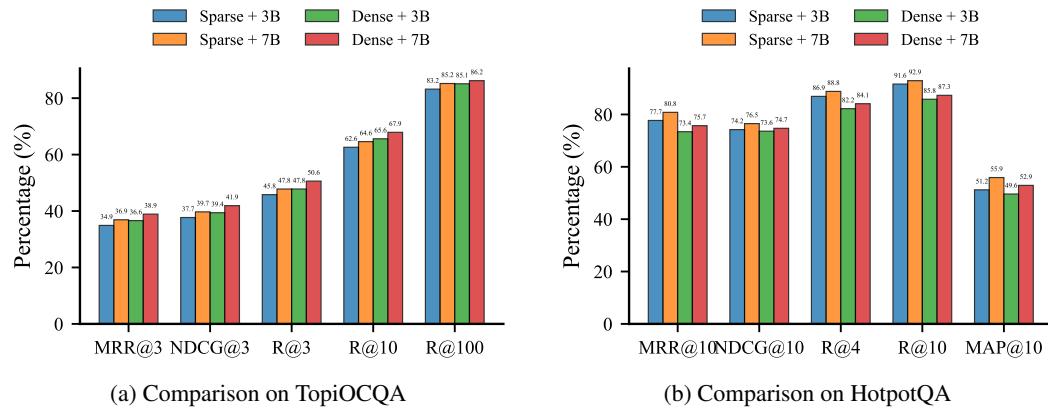
867 **(2) Human-preferred methods are not capable of generating retrieval-specific reformulations.**
 868 For example, their relative performance gap to state-of-the-art baselines is larger on BM25 than on
 869 ANCE, since—as we have observed earlier—some queries with “poorer readability” may actually
 870 perform better under BM25.

871 This finding suggests that analyzing retriever-specific data generated through ACQO can provide
 872 insights into retriever preferences, which in turn can be used to optimize prompts for large language
 873 models and improve their performance on query optimization tasks.

874 Taken together, our method enables the model, without any supervised data and solely using retrieval
 875 performance as the reward, to autonomously adapt to the retriever type. In doing so, the model is
 876 able to capture reformulation patterns that are more compatible with the retriever, ultimately leading
 877 to optimal reformulations.

879 B.2 SCALING CAPABILITIES

880 Figure 6 presents the experimental results of our method with Qwen2.5-3B and Qwen2.5-7B. Across
 881 both datasets and retrievers, the larger model consistently achieves better performance, demon-
 882 strating that our approach exhibits strong scaling capability.
 883



898 Figure 6: Scaling Capabilities.
 899

901 B.3 SFT VS. RL COMPARISON.

903 Table 9 presents a systematic comparison of training strategies on the TopiOCQA dataset with the
 904 ANCE retriever. For SFT baselines, the training data are constructed by rolling out the Stage I CRL
 905 model under our framework and filtering out queries with poor rankings. These results collectively
 906 demonstrate that ACQO’s two-stage curriculum reinforcement learning effectively addresses the
 907 fundamental challenges of complex query optimization, consistently outperforming both supervised
 908 baselines and vanilla RL approaches while maintaining training stability and data efficiency.

909 B.4 END-TO-END QUESTION ANSWERING EVALUATION

911 While the retrieval metrics presented above demonstrate ACQO’s effectiveness in query optimiza-
 912 tion, a critical question remains: do these retrieval improvements translate to better final answers
 913 in real-world RAG applications? To address this concern, we conduct comprehensive end-to-end
 914 question answering experiments that evaluate the complete RAG pipeline from query optimiza-
 915 tion to answer generation.

917 **Experimental Setup.** We use Qwen2.5-7B-Instruct (Qwen, 2024) as the reader model and
 918 DeepSeek-R1 (DeepSeek-AI, 2024) as the evaluation judge to assess answer quality on HotpotQA

918
919
920
921 Table 9: Comparison between SFT and RL methods on the TopiOCQA dataset with the ANCE
922 retriever.
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Method	MRR@3	NDCG@3	R@3	R@10	R@100
SFT	28.4	30.7	37.3	53.4	71.5
Vanilla RL	34.5	38.3	34.6	62.1	81.1
SFT + RL	33.4	37.8	45.7	61.6	82.2
Stage I only	33.6	36.6	44.2	64.9	85.8
Stage I + SFT	28.5	30.8	37.7	53.3	70.2
ACQO (<i>ours</i>)	36.6	39.4	47.8	65.6	85.1

with the ANCE retriever. For each method (Raw Query, ConvSearch-R1, ACQO), we retrieve the top-10 documents using the optimized queries and provide them as context to the reader model, then evaluate the generated answers based on accuracy.

Results and Analysis. Table 10 presents the end-to-end evaluation results, comparing retrieval performance (MAP@10) with answer accuracy (ACC_L). The results reveal a strong correlation between retrieval quality and final answer accuracy across all methods. Starting from the raw query baseline (34.8% MAP@10, 16.4% ACC_L), ConvSearch-R1 achieves substantial improvements (44.4% MAP@10, 27.7% ACC_L), while ACQO further advances the state-of-the-art to 49.6% MAP@10 and 31.6% ACC_L .

Table 10: End-to-end question answering evaluation on HotpotQA-ANCE. MAP@10 measures retrieval quality, while ACC_L evaluates final answer accuracy judged by DeepSeek-R1.

Method	MAP@10	ACC_L	ΔACC_L
Raw Query	34.8%	16.4%	-
ConvSearch-R1	44.4%	27.7%	+11.3%
ACQO (<i>ours</i>)	49.6%	31.6%	+15.2%

Notably, ACQO achieves a +3.9% improvement in ACC_L over ConvSearch-R1, confirming that our curriculum reinforcement learning design effectively addresses the convergence challenges in mixed-complexity query optimization. This validates that the adaptive query decomposition and robust rank-score fusion mechanism not only improve retrieval metrics but also enhance the quality of final generated answers. Moreover, ACQO reaches 9.1 \times lower latency, representing a favorable efficiency-accuracy trade-off for production deployment.

C PROMPTS

Figure 7a shows the prompt used in ACQO, which remains the same across retrievers and datasets. If no context is available, it is set to empty. The same prompt is also employed in other experiments (e.g., ablation studies and supervised fine-tuning) with query decomposition. We also provide in Figure 7b the prompt version without query decomposition, which is used in experiments without query decomposition.

972
973
974
975
976
977
978

Prompt

979
980
981
982 You are an expert in generating queries for retrieval. Your task is to understand the intention of the user current
983 question based on the historical conversation Q&A content (if any), and rewrite the question in a complete form.
984 - You need to retain the original query while expanding it with additional semantically relevant information. If no
985 useful expansion is needed, return the original query as is.
986 - Your target is to output a rewrite to help search engines retrieve relevant documents effectively.
987 - You can generate multiple queries (no more than 3) if you think it's helpful for retrieval.
988 - You need to put your answer in JSON format, and name the key "query", for example: {"query": "xxx"}
989 - If you generate multiple queries, split them by %%, such as {"query": "xxx%%xxx%%xxx"}
990
991
992 ## Historical Conversation Q&A Content
993 {*Context*}
994
995 ## User Current Question
996
997 {*Question*}

(a) Prompt for standard ACQO

1000
1001

Prompt without query decomposition

1002 You are an expert in generating queries for retrieval. Your task is to understand the intention of the user current
1003 question based on the historical conversation Q&A content (if any), and rewrite the question in a complete form.
1004 - You need to retain the original query while expanding it with additional semantically relevant information. If no
1005 useful expansion is needed, return the original query as is.
1006 - Your target is to output a rewrite to help search engines retrieve relevant documents effectively.
1007 - You need to put your answer in JSON format, and name the key "query", for example: {"query": "xxx"}
1008
1009
1010 ## Historical Conversation Q&A Content
1011 {*Context*}
1012
1013 ## User Current Question
1014
1015 {*Question*}

(b) Prompt without query decomposition

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Figure 7: Prompts used in our experiments.