
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHEN SHOULD I SEARCH MORE: ADAPTIVE COM-
PLEX QUERY OPTIMIZATION WITH REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Query optimization is a crucial component for the efficacy of Retrieval-
Augmented Generation (RAG) systems. While reinforcement learning (RL)-
based agentic and reasoning methods have recently emerged as a promising di-
rection on query optimization, most existing approaches focus on the expansion
and abstraction of a single query. However, complex user queries are prevalent in
real-world scenarios, often requiring multiple parallel and sequential search strate-
gies to handle disambiguation and decomposition. Directly applying RL to these
complex cases introduces significant hurdles. Determining the optimal number
of sub-queries and effectively re-ranking and merging retrieved documents vastly
expands the search space and complicates reward design, frequently leading to
training instability. To address these challenges, we propose a novel RL frame-
work called Adaptive Complex Query Optimization (ACQO). Our framework is
designed to adaptively determine when and how to expand the search process. It
features two core components: an Adaptive Query Reformulation (AQR) module
that dynamically decides when to decompose a query into multiple sub-queries,
and a Rank-Score Fusion (RSF) module that ensures robust result aggregation
and provides stable reward signals for the learning agent. To mitigate training
instabilities, we adopt a Curriculum Reinforcement Learning (CRL) approach,
which stabilizes the training process by progressively introducing more challeng-
ing queries through a two-stage strategy. Our comprehensive experiments demon-
strate that ACQO achieves state-of-the-art performance on three complex query
benchmarks, significantly outperforming established baselines. The framework
also showcases improved computational efficiency and broad compatibility with
different retrieval architectures, establishing it as a powerful and generalizable
solution for next-generation RAG systems.

1 INTRODUCTION

Retrieval-Augmented Generation (RAG) has become a core paradigm in the LLM era because
it grounds generation in external evidence, thereby improving factuality, recency, and attribu-
tion (Huang & Huang, 2024; Lewis et al., 2020). Achieving these benefits in RAG hinges on obtain-
ing high-quality retrieved evidence, which in turn depends on transforming a user’s natural-language
question into a self-contained, retrieval-friendly query. This step is known as Query Optimization
(QO) (Yu et al., 2020; Vakulenko et al., 2021; Zhang et al., 2024).

Existing QO techniques primarily optimize a single query through expansion or abstraction (Yu
et al., 2020; Vakulenko et al., 2021; Zhang et al., 2024) in different approaches. Prompt-based ap-
proaches (Azad & Deepak, 2019) leverage meticulously crafted instructions to guide the LLM in
generating more effective search queries. For instance, a simple prompt might instruct the LLM to
“rephrase the user’s question to be more suitable for a search engine.”. Interactive-learning based
methods (Xu et al., 2024; Zhu et al., 2025; Feng et al., 2023) go a step further by engaging in a
feedback loop with the user or a simulated environment, allowing the model to refine its queries
iteratively based on the quality of retrieved results. Pseudo-document generation techniques (Wang
et al., 2023; Gao et al., 2023) transform the original query into a hypothetical, longer document
that contains richer context, which can then be used to retrieve more relevant information from

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

the knowledge base. More recently, agentic and reasoning-augmented reinforcement learning (RL)
methods—valued for their reduced dependence on labeled supervision—have shown strong empiri-
cal gains (Singh et al., 2025; Zhu et al., 2025). However, most of these solutions implicitly assume
a one-to-one correspondence between a user query and an optimized query, which limits their cov-
erage of complex information needs.

In real-world RAG applications, complex queries are common and often require multiple parallel or
sequential sub-queries, notably for disambiguation and decomposition (Song & Zheng, 2024).

• Disambiguation queries, such as a user asking, “When did Arsenal last win the FA Cup? [SEP]
2005 [SEP] What about them compared to Chelsea in league titles?”, require the system to
interpret multi-turn contexts and clarify entity references (e.g., linking ”them” back to Arsenal
while introducing Chelsea for comparison). This may necessitate generating multiple parallel or
sequential sub-queries to retrieve and contrast evidence.

• Decomposition queries, such as a user asking, “What were the global shipments of iPhones
in 2022 and 2023, respectively?”, require breaking down a multi-objective problem into inde-
pendent sub-queries (e.g., ”global iPhone shipments in 2022” and ”global iPhone shipments in
2023”), retrieving results for each, and then synthesizing a final answer.

While some prior work has explored these problems (Ammann et al., 2025; Perez et al., 2020;
Liu et al., 2024), applying reinforcement learning to such complex scenarios still presents a se-
ries of challenges: (1) deciding query number and depth (when to stop, whether to branch, how
to merge); (2) performing multi-path retrieval and document aggregation across heterogeneous re-
trievers (sparse, dense, hybrid) with consistent, robust signals; and (3) coping with expanded search
spaces and sparse/delayed rewards, which destabilize training. We argue that an effective QO system
for complex queries should satisfy two goals:

• Adaptive query handling: it should adaptively decide the number and depth of sub-queries and
switch among disambiguation, decomposition and single-query expansion and abstraction.

• Stability and integrability: it should support an end-to-end pipeline (query reformulation →
multi-retrieval → document re-ranking → answer generation), seamlessly integrate with sparse
and dense retrieval backends, and incorporate stabilizing training mechanisms tailored to RL.

To meet these goals, in this paper we propose Adaptive Complex Query Optimization (ACQO),
an RL framework that learns when and how to expand the search process and how to accumulate
evidence robustly. First, we let LLM decide whether to trigger decomposition or disambiguation,
producing a set of parallel or staged sub-queries based on query complexity and intent diversity.
Then, we perform model-agnostic re-ranking and fusion by jointly exploiting rank positions and
retrieval scores, enabling smooth integration with heterogeneous retrievers and providing stable in-
termediate signals for the RL agent. Finally, we introduce a Curriculum Reinforcement Learning
(CRL) strategy with two stages: an initial phase for broad exploration over all samples to estab-
lish general policies, followed by a focused phase that emphasizes challenging cases. This cur-
riculum mitigates reward sparsity and improves convergence stability across the spectrum of query
complexities. In experiments, ACQO achieves state-of-the-art performance on widely used RAG
benchmarks, including conversational query reformulation (TopiOCQA) (Adlakha et al., 2022) and
multi-hop reasoning (HotpotQA) (Yang et al., 2018), with additional out-of-domain evaluation on
MultiHop-RAG (Tang & Yang, 2024) demonstrating strong generalization capabilities. Notably,
our lightweight components achieve performance comparable to approaches requiring specialized
retrieval modifications or complex re-ranking architectures, while maintaining significantly lower
computational overhead. Experimental results demonstrate substantial improvements over baseline
methods in both quantitative metrics and qualitative analysis. The contributions of this work are as
follows:

• We propose ACQO, which unifies adaptive multi-query decision-making with robust evidence
fusion in an end-to-end RL framework for complex queries.

• We introduce a universal re-ranking mechanism to combine rank positions and retrieval scores in
a model-agnostic manner, improving stability and transferability across heterogeneous retrievers.

• Through extensive experiments on benchmark datasets, we demonstrate that ACQO significantly
outperforms existing methods while maintaining computational efficiency, establishing its supe-
riority for complex query processing in RAG systems.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison on easy vs. hard query subsets across datasets and retrievers (%).

Method
TopiOCQA (Recall@10) HotpotQA (MAP@10)
ANCE BM25 ANCE BM25

Easy Hard Easy Hard Easy Hard Easy Hard

Prompt-based 59.4 52.6 34.3 45.1 36.8 31.2 50.1 40.5
SFT 56.2 54.8 33.1 38.7 44.7 33.5 45.2 43.7
Vanilla RL 63.9 54.8 58.5 61.2 42.3 38.2 50.4 46.0

ACQO (ours) 66.2 58.0 60.3 64.5 50.4 41.5 53.1 48.3

2 WHAT MAKES QUERIES COMPLEX IN REAL-WORLD RAG SCENARIOS?

In this section, we conduct a systematic analysis of query complexity patterns in real-world RAG
benchmark. By examining the inherent characteristics of queries across different datasets, we iden-
tify the key challenges that motivate our ACQO framework design.

Has Ambiguity Has Multi-Intent Needs Decomposition Avg. Optimal
Query Count

0

25

50

75

100

Pe
rc

en
t (

%
)

96.0

0.5

15.5

69.0

32.5
44.5

76.9 79.9
84.9

TopiOCQA HotpotQA Multihop-RAG

0

1

2

3

C
ou

nt

1.2

1.9

2.5

Figure 1: Query Complexity Distribution.

1 2 3 4 5
Query Count

35

40

45

50

55

60

65

Pe
rf

or
m

an
ce

 (%
) TopiOCQA-ANCE

TopiOCQA-BM25
HotpotQA-ANCE
HotpotQA-BM25
ACQO (ours)

Figure 2: Performance metrics
for different query counts.

2.1 QUERY COMPLEXITY ANALYSIS FRAMEWORK

We analyze three representative RAG benchmarks: TOPIOCQA for multi-turn conversational QA,
HOTPOTQA for multi-hop factual reasoning, and MULTIHOP-RAG for real-world multi-hop re-
trieval. For each query, we conduct a structured analysis using the following criteria:

• Ambiguity Detection: Flag ambiguous entities or references that need disambiguation.

• Multi-Intent Analysis: Identify distinct intents embedded in the query.

• Decomposition Assessment: Judge whether decomposition improves answerability.

• Optimal Granularity: Identify the minimum number of sub-queries from the generated set
that yields optimal retrieval metrics.

We analyze 200 representative queries from each dataset, focusing on understanding the distribution
and characteristics of complex queries in real-world scenarios.

2.2 DATASET ANALYSIS: PREVALENCE OF COMPLEX QUERIES

Our structured analysis reveals significant complexity patterns across the three toy datasets, with
Figure 1 illustrating the distribution of query characteristics. Specifically, a substantial proportion of
queries are complex: on average, 48.3% require decomposition, and 37.6% exhibit multiple intents.
Moreover, the optimal number of sub-queries varies across domains (1.2–2.5 on average), indicating
that decomposition strategies must be context-sensitive rather than one-size-fits-all.

2.3 WHY CURRENT METHODS STRUGGLE WITH COMPLEX QUERIES

We evaluate representative query optimization approaches across different paradigms: prompt-based
optimization using DeepSeek-V3.1 (DeepSeek-AI, 2024) with decomposition prompts, supervised
fine-tuning (SFT) via Qwen2.5-3B (Qwen, 2024) query rewriter, and vanilla reinforcement learning
(REINFORCE with sparse rewards) also based on Qwen2.5-3B.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The performance analysis in Table 1 reveals critical limitations of existing approaches when
handling complex queries. Current methods exhibit substantial performance variations between
easy and hard queries, with SFT approaches showing dramatic drops of up to 11.2% on Hot-
potQA (44.7% to 33.5% with ANCE). Moreover, optimal approaches vary significantly across re-
trieval systems—vanilla RL excels with BM25 (61.2%) but degrades with ANCE (54.8%) on hard
queries.Figure 2 further demonstrates that fixed decomposition strategies suffer from dual limitations
in both efficiency and effectiveness. These inconsistent patterns highlight the absence of principled
approaches for systematic query optimization, revealing three critical gaps: adaptive complexity
recognition, retriever-aware optimization, and effective integration for decomposed queries.

3 ADAPTIVE COMPLEX QUERY OPTIMIZATION

3.1 TASK FORMULATION

In traditional Query Optimization (QO) pipeline, the task is defined as refining the query to retrieve
the golden document(s) relevant to the user’s current query and conversational context (if any) from
a large collection of documents. Formally, given the current query q(t) (t ≥ 1) and its historical
context C(t−1) = {(qi, ai)}(t−1)

i=1 (if t ≥ 2), where t denotes the current turn number, a query
optimization model Θ generates a de-contextualized query q̂(t)c. q̂ ((t) is omitted for simplicity)
is subsequently input into a retrieval system, which returns a ranked list of the top-k documents
from the collection P . We denote this ranked set as Rk(q̂) = {p1, p2, . . . , pk}, Rk(q̂) ⊆ P ,
where pi represents the document ranked at position i. Let P∗ ⊆ P denote the set of golden
documents corresponding to q̂. The objective of QO is (1) to maximize the probability that at least
one golden document in P∗ appears in Rk(q̂); and (2) to minimize the ranking positions of the
golden documents within Rk(q̂).

In our work, we extend this formulation by considering the disambiguation and decomposition sce-
narios, where an optimized query set Q̂q will be generated. Each sub-query q̂q ∈ Q̂q retrieves its
own top-k documents Rk(q̂q), and these candidates are subsequently combined and re-ranked to
produce the final top-k documents, denoted as Rk(Q̂q). This design enhances both the coverage
and ranking quality of golden documents.

3.2 OVERALL FRAMEWORK

As illustrated in Figure 3, ACQO proceeds in two curriculum reinforcement learning (CRL) stages:
(1) Explore CRL, which promotes broad exploration and early stabilization; and (2) Converge CRL,
which emphasizes precision and convergence on harder cases.

The core idea is to integrate query optimization with CRL in a fully self-directed manner. Without
external supervision or intervention, the model learns to adaptively converge to suitable query num-
bers and optimization strategies across heterogeneous retrieval systems. In the following, we first
introduce our re-ranker design, which consolidates multiple retrieval lists produced from the query
set, and then detail the two-stage CRL procedure.

3.3 RE-RANKER DESIGN

Method. Inspired by Reciprocal Rank Fusion (RRF), we propose a new method named Rank-
Score Fusion (RSF) to address two key limitations of RRF: it only considers rank positions while
ignoring absolute retrieval scores, and it cannot properly handle cases where documents obtain iden-
tical ranks across multiple lists.

In RSF, each sub-query returns a ranked list of candidate documents, where each document is asso-
ciated with a retrieval(e.g., ANCE) score and a rank position. For a given document p, we collect its
appearances across all M sub-queries into a set {(sj , rj)}Mj=1 ,where (sj , rj) denotes the score and
rank of document p in the j-th sub-query. We then compute two aggregated quantities for p:

P (p) =
1∑M

j=1
1
rj

, S(p) = max
j=1,...,M

sj . (1)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: Overview of ACQO. ACQO employs two-stage curriculum reinforcement learning to
adaptively optimize complex queries and integrate multi-retrieval results via Rank-Score Fusion.

Here, P (p) reflects the combined influence of rank positions (relative values), while S(p) captures
the strongest absolute score observed for document p. We therefore perform lexicographical sorting
with P (p) as the primary key (ascending order: lower rank indicates better consensus) and S(p) as
the secondary key (descending order: higher score indicates stronger evidence). Formally, candidate
documents are re-ranked according to:

Rk = Top-k
(
sort{(p, P (p), S(p)) | p ∈ Rk(q1) ∪ · · · ∪ Rk(qM )}

)
, (2)

where the sorting key is (P (p),−S(p)) in ascending order. This encodes a hierarchical preference:
”Trust rank consensus first; use scores only to break ties among similarly-ranked documents.”

Advantages. Our RSF method inherits RRF’s simplicity and efficiency while extending its ca-
pability through score integration. RSF offers three key advantages: (1) Zero latency overhead:
introduces no inference delay and seamlessly integrates with neural re-rankers. (2) Universal com-
patibility: directly applicable to both sparse (e.g., BM25) and dense (e.g., ANCE) retrievers across
different index structures. (3) Enhanced robustness: leverages both rank positions and absolute
scores for more balanced re-ranking while resolving rank ambiguities.

3.4 CURRICULUM REINFORCEMENT LEARNING (CRL)

3.4.1 BASE REWARD FUNCTION

We build upon the Rank-Incentive Reward Shaping (RIRS) framework proposed in ConvSearch-
R1 (Zhu et al., 2025), which provides dense rank-based reward signals and alleviates the sparsity of
traditional metrics such as NDCG and MRR. Here, the rank r is defined as the position assigned to a
document in the re-ranked list Rk from our RSF module. The base rank-to-score mapping employs
a continuous piecewise linear transformation:

Φ(r) = f[1,10]→[1,2](r) · I[1,10](r) + f(10,100]→[0,1)(r) · I(10,100](r), (3)

where fA→B represents a linear mapping function from interval A to interval B, IA(r) is the
indicator function that equals 1 when r ∈ A and 0 otherwise, and r is the rank variable.

To accommodate multiple relevant documents, we employ a weighted aggregation score emphasizes
the most promising retrieval results. Suppose the rank of n retrieved relevant documents in ranked
set R are r1, r2, ..., rn respectively, the ri score is defined as:

s(ri) = ηi · Φ(ri), (4)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where η is the decay coefficient. This generalization retains the dense reward structure of RIRS
while providing additional flexibility to adapt the weighting scheme for different retrieval scenarios.

Taking the format correctness into the consideration, the complete reward score is defined as:

S(R) =

n∑
i=1

s(ri) · Iformat + δ · (1− Iformat) (5)

where Iformat serves as the format compliance gate, and δ < 0 represents the non-compliance
penalty coefficient.

3.4.2 STAGE I: EXPLORE-ORIENTED CRL

Data Curriculum. In the exploration stage, we employ the full training dataset without filtering.
This ensures that the model is exposed to both easy and hard cases, providing sufficient diversity
to stabilize early training and improve robustness. By leveraging the entire dataset, the model can
better explore the space of optimization without being biased toward specific difficulty levels.

Reward Design. Building upon the base reward function, Stage I encourages exploration by re-
inforcing the combination of the best-performed sub-queries. Suppose Q̂ is the set of optimized
sub-queries, and for any non-empty subset Q̂′ in the power set of Q̂, denoted as P(Q̂), we compute
its the stage-specific reward as:

G(I)(Q̂) = max
Q̂′∈P(Q̂)\∅

S(Rk(Q̂′)). (6)

This design allows the model to explore diverse decomposition strategies and ensures that promising
sub-queries are strongly reinforced, even in the early stage when the model is not yet stable.

3.4.3 STAGE II: CONVERGE-ORIENTED CRL

Data Curriculum. In the convergence stage, we refine the training distribution by focusing on the
tougher cases. Rather than arbitrary filtering, we identify the optimal learning frontier by analyzing
the performance distribution of Stage I models.

Formally, let Qtrain denote the full training query set. We define the learning complexity score for
each input query q as:

τ(q) =
1

K

K∑
k=1

G(I)(Q̂(k)
q ), (7)

where K denotes the number of rollouts. The convergence curriculum Qconv is constructed by
retaining samples within optimal challenge zone:

Qconv = {q ∈ Qtrain : τ(xi) ≤ τthres} (8)

where τthres is the theoretical boundary indicating when retrieval performance is sufficiently com-
plex to continue learning without destabilizing optimization.

This principled approach ensures that the model focuses on samples that are neither trivially easy (al-
ready mastered) nor prohibitively difficult (leading to sparse learning signals), thereby maximizing
learning efficiency in the convergence phase.

Reward Design. Stage II transitions from exploratory reward maximization to precision-focused
optimization via a reward architecture that emphasizes ranking quality over quantity exploration.
The Stage II reward function directly evaluates the complete sub-query ensemble:

G(II)(Q̂) = S(Rk(Q̂)). (9)

To address the inherent challenge of sparse positive signals in top-ranked positions, we introduce
a logarithmic precision weighting mechanism, inspired by NDCG’s theoretical foundation, which
reflects the information-theoretic principle that higher-ranked results contribute exponentially more
to user satisfaction, which is defined as:

Φ′(r) = Φ(r) + λ · Ir≤k∗

log2(r + 1)
, (10)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where λ > 0 is a precision amplification parameter, and k∗ represents the critical ranking threshold,
Ir≤k∗ is the indicator function ensuring bonuses apply only to top-tier results.

This bonus-based design provides stronger incentives for exact top placements while still leveraging
the smooth decay of Φ(r) for other positions. As a result, the model gradually shifts from broad
exploration in Stage I to precise convergence in Stage II.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Datasets. We train and evaluate our model on three representative benchmarks that cover both
multi-turn conversational query optimization, which primarily focus on query disambiguation,
and multi-hop query optimization task focusing on query decomposition. For disambiguation task,
we use TopiOCQA (Adlakha et al., 2022), a challenging open-domain conversational QA dataset
with topic shifts. For decomposition task, we adopt HotpotQA (Yang et al., 2018) and evaluate gen-
eralization on MultiHop-RAG (Tang & Yang, 2024), a RAG-focused multi-hop retrieval benchmark.

Baselines. We compare against three categories of prior work. For single query optimization re-
formulation and abstarction, we include IterCQR (Jang et al., 2024), ADACQR (Lai et al., 2025),
and ConvSearch-R1 (Zhu et al., 2025). For query optimization with expansion, we evaluatedd
LLM4CS-RAR (Mao et al., 2023), CHIQ-Fusion (Mo et al., 2024), RETPO (Yoon et al., 2025), and
AdaQR (Zhang et al., 2024). For the complex query optimization setting, as there are no dedicated
methods, we construct few-shot prompting baselines by adapting the above methods. We report post
optimization retrieval performance after applying each baseline’s optimization procedure.

The details regarding retriever, implementation and evaluation metrics are provided in Appendix A.

4.2 MAIN RESULTS

Table 2 and 3 show the retrieval performance of our method on TopiOCQA and HotpotQA using
BM25 and ANCE retrievers, along with comparisons to baselines.

The results on TopiOCQA demostrate that ACQO significantly outperforms most methods across
different retrieval settings. Notably, our method achieves competitive performance (34.9% MRR@3,
37.7% NDCG@3) using self-supervised via retrieval feedback, while ConvSearch-R1 achieves a
strong 37.8% MRR@3 in sparse retrieval, this performance stems primarily from its extended rea-
soning process and aggressive rewrite expansion mechanisms, which are also present in other meth-
ods. As shown in Table 8, its strong performance comes at the cost of over 10× more tokens than
our method, making it too slow and resource-heavy for practical end-to-end RAG use, which gains
driven by scale, not scalable design. However, ACQO demonstrates superior generalization capa-
bilities, achieving the best R@10 (62.6%) and R@100 (83.2%) performance on sparse retrieval.
In dense retrieval settings, ACQO shows remarkable effectiveness, attaining competitive MRR@3
(36.6%), NDCG@3 (39.4%) and R@10 (65.6%), demonstrating its ability to work across different
retrieval architectures.

On HotpotQA, using only a 3B parameter model, ACQO achieves the best results across all met-
rics under both sparse and dense retrieval settings. Notably, ACQO outperforms ConvSearch-R1
on this more challenging multi-hop dataset (49.6% vs. 44.4% MAP@10), demonstrating supe-
rior decomposition capability. Query decomposition generally helps models outperform their non-
decomposition counterparts; yet even the strongest decomposition baselines (e.g., DeepSeek V3.1)
fall short of the raw query baseline in sparse retrieval. This indicates that straightforward decom-
position or instruction-based rewriting can harm retrieval effectiveness on this multi-hop dataset.
In contrast, ACQO avoids such degradation and significantly outperforms the raw query: in sparse
retrieval, it achieves 86.9% R@4 (+3.6%) and 91.6% R@10 (+2.7%); in dense retrieval, it reaches
82.2% R@4 (+13.9%) and 85.8% R@10 (+11.0%), outperforming the best baseline by +4.8% and
+3.3% respectively. These results demonstrate that ACQO successfully bridges the gap between
query decomposition and retrieval alignment, delivering superior and robust performance without
relying on larger models or sacrificing efficiency.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Retrieval performance comparison on TopiOCQA (%). NS denotes training without rewrite
supervised data, and NCoT denotes training without chain-of-thought reasoning.

Method NS NCoT Sparse(BM25) Dense(ANCE)
MRR@3 NDCG@3 R@10 R@100 MRR@3 NDCG@3 R@10 R@100

DeepSeek-V3.1 - - 15.5 17 36.7 65.3 28.4 30.8 56.3 77.8
vanilla RL (Qwen2.5-3B) - - 31.2 36.1 60.8 82.5 34.5 38.3 62.1 81.1
IterCQR (T5-base) × ✓ 16.5 14.9 29.3 54.1 26.3 25.1 42.6 62.0
ADACQR (T5-base+LLaMA7B) × ✓ 28.3 26.5 48.9 71.2 38.5 37.6 58.4 75.0
LLM4CS-RAR (ChatGPT) ✓ × 27.9 26.4 48.4 71.1 35.4 34.4 55.2 72.2
CHIQ-Fusion (T5-base+LLaMA2-7B) × ✓ 25.6 23.5 44.7 – 38.0 37.0 61.6 –
RETPO ((LLaMA2-7B) × ✓ 28.3 26.5 48.3 73.1 32.2 31.1 51.6 69.5
AdaQR (T5-base) × ✓ 20.3 18.0 37.1 66.2 38.1 36.6 61.3 79.9
ConvSearch-R1 (Qwen2.5-3B) × × 37.8 36.2 59.6 80.1 50.5 50.1 72.0 86.3

ACQO (ours, Qwen2.5-3B) ✓ ✓ 34.9 37.7 62.6 83.2 36.6 39.4 65.6 85.1

Table 3: Retrieval performance comparison on HotpotQA (%).(qd: query decomposition)

Type Method R@4 R@10 R@100 MAP@10 MRR@10 NDCG@10

Sp
ar

se
(B

M
25

) Raw 83.3 88.9 96.7 49.5 75.4 70.5
Qwen2.5-3B-inst (wo/qd) 72.0 79.3 89.7 41.2 64.2 60.5
Qwen2.5-3B-inst (w/qd) 75.3 81.2 89.5 42.7 65.9 62.4
DeepSeek-V3.1 (w/qd) 81.1 86.6 93.3 49.1 70.6 66.2
vanilla RL (Qwen2.5-3B) 82.3 89.9 95.6 48.8 77.5 73.2
ConvSearch-R1 (Qwen2.5-3B) 83.0 90.2 96.0 51.1 77.0 72.3

ACQO (ours, Qwen2.5-3B) 86.9 91.6 97.5 51.2 77.7 74.2

D
en

se
(A

N
C

E
) Raw 68.3 74.8 86.1 34.8 60.4 59.5

Qwen2.5-3B-inst (wo/qd) 64.6 70.7 81.8 32.8 56.6 56.0
Qwen2.5-3B-inst (w/qd) 67.0 73.0 81.8 34.9 57.5 57.3
DeepSeek-V3.1 (w/qd) 77.4 82.5 88.9 46.1 66.8 65.7
vanilla RL (Qwen2.5-3B) 79.2 83.9 89.1 41.1 75.5 74.4
ConvSearch-R1 (Qwen2.5-3B) 75.0 79.4 87.5 44.4 72.8 72.2

ACQO (ours, Qwen2.5-3B) 82.2 85.8 91.2 49.6 73.4 73.6

4.3 EVALUATION ON OUT-OF-DISTRIBUTION (OOD) DATA

A critical strength of our ACQO framework lies in its strong generalization to entirely unseen
datasets. As shown in Table 4, when evaluated on MultiHop-RAG, ACQO consistently outperforms
raw queries and all baselines across different retrievers. It achieves 49.7% R@4 compared to 45.7%
for raw, with clear gains of 4% using llm-embedder and 3% using bge-large-en-v1.5, confirming its
compatibility with varying retrieval architectures. ACQO maintains strong performance on unseen
domains and query types, indicating it learns domain-invariant reformulation principles. All gains
are achieved zero-shot without fine-tuning, which confirming it generalizes beyond dataset-specific
patterns, making it highly adaptable to real-world retrieval systems with shifting data.

4.4 ABLATION STUDY

In this work, we have presented ACQO with three core components: Query Decomposition (QD)
for adaptive query optimization, Rank-Score Fusion (RSF) for robust result aggregation, and a two-
stage Curriculum Reinforcement Learning approach for stable training. We conduct comprehensive
ablation studies on these components across both TopiOCQA and HotpotQA datasets to understand
their individual contributions. As shown in Table 5, all three components are essential for optimal
performance, with removing any single component leading to noticeable performance drops across
both dense and sparse retrievers.

Rank-Score Fusion (RSF) emerges as the most critical component, with its removal causing the
most significant performance degradation on TopiOCQA (37.7% → 35.0% NDCG@3 for sparse,
39.4% → 38.8% for dense), demonstrating that effective aggregation of multiple query results is fun-
damental to our approach. Curriculum Reinforcement Learning shows dramatic impact on train-
ing stability, with substantial performance drops without it (37.7% → 24.9% NDCG@3 for sparse
on TopiOCQA), indicating that the convergence phase is essential for stable learning. We argue that
Stage I (exploration) discovers diverse query reformulation strategies, while Stage II (convergence)
refines these strategies for optimal performance. Query Decomposition (QD) shows moderate but
consistent improvements (37.7% → 36.5% NDCG@3 for sparse on TopiOCQA), which aligns with
expectations since TopiOCQA primarily involves disambiguation rather than complex query decom-
position, yet QD still provides benefits for handling multi-faceted information needs.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Retrieval performance comparison on MultiHop-RAG (%).

Method bge-large-en-v1.5 llm-embedder
MRR@10 MAP@10 R@10 R@4 MRR@10 MAP@10 R@10 R@4

Raw 45.5 21.5 81.3 62.5 32.9 14.4 65.7 45.7
Qwen2.5-3B(w/qd) 44.8 21.2 80.5 61.7 33.2 14.7 65.7 45.9

ACQO (ours) 47.7 23.6 84.0 65.5 35.6 17.3 72.6 49.7

Table 5: Ablation study on retrieval performance (%).

Dataset TopiOCQA HotpotQA
Retriver Sparse Dense Sparse Dense
Method NDCG@3 R@3 R@10 NDCG@3 R@3 R@10 MAP@10 R@3 R@10 MAP@10 R@3 R@10
- wo/ RSF 35.0 42.1 58.8 38.8 46.6 63.4 51.2 83.5 91.1 49.0 80.1 85.6
- wo/ Stage II 24.9 30.6 49.1 36.3 44.2 64.9 52.0 84.6 91.8 40.6 69.4 75.1
- wo/ QD 36.5 44.1 61.1 38.7 46.1 63.2 49.9 83.1 90.5 42.3 79.6 84.7

ACQO 37.7 45.8 62.6 39.4 47.8 65.6 51.2 84.8 91.6 49.4 80.5 85.6

The synergistic effects of all components create a robust framework where each component com-
pensates for the limitations of others, establishing that ACQO requires all three components working
in concert to achieve state-of-the-art performance.

4.5 TRAINING DYNAMICS ANALYSIS

Figure 4 illustrates the training progression of our two-stage curriculum learning approach on Topi-
OCQA and HotpotQA datasets. The results demonstrate the expected behavior of our adaptive query
optimization framework.

As shown in both datasets, the average query count follows a characteristic explore-then-converge
pattern: initially increasing during Stage I (exploration) as the model learns to decompose complex
queries, then stabilizing or slightly decreasing during Stage II (convergence) as the model refines
its decomposition strategies. This behavior aligns with our curriculum learning design, where the
model first explores diverse query reformulation patterns before converging to optimal strategies.

The retrieval performance (R@10 for TopiOCQA, MAP@10 for HotpotQA) shows consistent im-
provement throughout training, with merged subqueries significantly outperforming baselines and
approaching the performance of best subqueries. Notably, different retrievers result in different op-
timal query counts after training, which corroborates our finding that effective query optimization
requires retriever-specific adaptation.

The training dynamics validate that our two-stage approach successfully balances exploration and
exploitation, achieving both improved retrieval effectiveness and computational efficiency through
adaptive query count optimization. We demonstrate the effectiveness of ACQO through state-of-
the-art performance on TopiOCQA and HotpotQA datasets. In addition, the experimental results in-
dicate that ACQO learns retriever-specific optimization strategies, with different retrievers yielding
different optimal query patterns. Furthermore, ACQO exhibits superior performance in challenging
settings such as generalization on unseen datasets and computational efficiency with smaller models.

0 100 200 300 400 500 572
Step

0

20

40

60

80

R
@

10
 (%

)

170Stage 1 Stage 2

Worst Subquery
Best Subquery

Merged Subquery
Query Count

Baseline
Baseline Query Count

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e 

Q
ue

ry
 C

ou
nt

0 100 200 300 362
Step

0

20

40

60

80

M
A

P@
10

 (%
)

170Stage 1 Stage 2

Worst Subquery
Best Subquery

Merged Subquery
Query Count

Baseline
Baseline Query Count

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e 

Q
ue

ry
 C

ou
nt

Figure 4: Query Adaptation and Performance Improvement on TopiOCQA(L) and HotpotQA(R).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 6: Efficiency Analysis: Inference Latency and Training Cost

(a) Avg Inference Latency (ms,TopiOCQA-ANCE)

Method #Q Gen Retri Rerank Tot Speed

SFT (Qwen2.5-3B) 2514 297 27 0 324 1.09×
ACQO 2514 320 30 5 355 1.0×
ConvSearch-R1 2514 3230 25 0 3255 0.11×

9.16× faster than ConvSearch-R1; +31ms for +8.2% MRR@3 vs. SFT

(b) Training Cost (HotpotQA-ANCE)

Method GPU-H Conv MAP@10

Vanilla RL 8.4 No 41.1
SFT + RL 15.4 yes 45.3
ACQO (Stage I) 4.2 yes 42.3
ACQO (Full) 12.1 yes 49.6

4.6 LATENCY AND COST ANALYSIS

Inference Latency Analysis. Table 6a presents a detailed breakdown of inference latency across
different pipeline stages. Our measurements on TopiOCQA-ANCE with a single H20 GPU show
that ACQO adds only 31ms overhead compared to the SFT baseline (355ms vs. 324ms). More
importantly, ACQO is 9.16× faster than ConvSearch-R1 (355ms vs. 3255ms) while maintain-
ing comparable accuracy (as shown in Tables 2 and 3). This substantial speedup makes ACQO
a Pareto-optimal choice for production deployment, offering the best balance between accuracy and
efficiency.

The latency breakdown reveals that the additional overhead primarily comes from query generation
(+23ms) and retrieval (+3ms), with our lightweight Rank-Score Fusion module contributing only
5ms. This validates our design philosophy of achieving strong performance through algorithmic
innovations rather than computationally expensive components.

Training Cost Analysis. Table 6b compares training costs on HotpotQA-ANCE using 8 H20
GPUs. Full ACQO training requires 12.1 GPU-hours, comparable to the SFT+RL baseline (15.4
GPU-hours) but without requiring any supervised query rewriting data. Notably, ACQO-Stage I
converges in only 4.2 GPU-hours while achieving 42.3% MAP@10, demonstrating efficient initial
exploration.

While vanilla RL appears faster (8.4 GPU-hours), it fails to converge properly, getting stuck at a low
performance ceiling (41.1% MAP@10) due to training instability. The root cause is insufficient valid
samples—the DAPO algorithm fails to collect enough qualified samples within its sampling budget
(max num gen batches=20), causing premature termination with suboptimal performance. This
validates the necessity of our curriculum learning strategy for stable convergence.

These results demonstrate that ACQO achieves superior performance with practical computational
costs: (1) Inference efficiency: 9.16× faster than ConvSearch-R1 with minimal overhead over SFT;
(2) Training efficiency: comparable cost to SFT+RL but without supervised data requirements; (3)
Training stability: successful convergence where vanilla RL fails. This favorable efficiency-accuracy
trade-off establishes ACQO as a practical solution for production RAG systems.

5 CONCLUSION

In this work, we propose ACQO, a two-stage reinforcement learning framework that addresses com-
plex query optimization in RAG systems through self-supervised retrieval feedback, which leverages
retrieval signals via adaptive query decomposition and rank-score fusion to provide retriever-specific
guidance for query optimization. Experimental results demonstrate state-of-the-art performance on
TopiOCQA and HotpotQA, while achieving 9.1× faster inference than strong baselines. Our anal-
ysis further reveals that ACQO learns retriever-specific optimization strategies, with each retriever
yielding distinct optimal query patterns. Furthermore, our framework demonstrates superior per-
formance in challenging scenarios, including strong generalization to unseen datasets and efficient
operation with smaller models, establishing a powerful, efficient, and generalizable solution for
next-generation RAG systems.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work complies with the ICLR Code of Ethics. The datasets used in this study are publicly
available benchmark datasets and do not contain any personally identifiable or sensitive information.
No human subjects, private user data, or personally identifiable information were involved in data
collection or model training. All experiments were conducted using open-source frameworks and
standard computational resources. We acknowledge that large-scale machine learning models may
potentially amplify biases present in the training data. To mitigate this risk, we carefully followed the
dataset usage guidelines and report all evaluation details transparently to encourage reproducibility
and further scrutiny by the community.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. All datasets used in this work
are publicly available benchmark datasets. To facilitate replication, we provide detailed specifica-
tions of the retriever implementations, training parameters, prompts employed, evaluation metrics,
and all related parameter settings in the main paper and the appendix. In the supplementary material,
we also provide the core code used in this paper, including scripts for launching the retrieval service,
training, and evaluation, all with comprehensive comments for clarity.

REFERENCES

Vaibhav Adlakha, Shehzaad Dhuliawala, Kaheer Suleman, Harm de Vries, and Siva Reddy. Topi-
ocqa: Open-domain conversational question answering with topic switching. Transactions of the
Association for Computational Linguistics, 10:468–483, 2022.

Paul JL Ammann, Jonas Golde, and Alan Akbik. Question decomposition for retrieval-augmented
generation. arXiv preprint arXiv:2507.00355, 2025.

Hiteshwar Kumar Azad and Akshay Deepak. Query expansion techniques for information retrieval:
a survey. Information Processing & Management, 56(5):1698–1735, 2019.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al. Ms marco: A human generated
machine reading comprehension dataset. arXiv preprint arXiv:1611.09268, 2016.

DeepSeek-AI. Deepseek-v3 technical report, 2024. URL https://arxiv.org/abs/2412.
19437.

Jiazhan Feng, Chongyang Tao, Xiubo Geng, Tao Shen, Can Xu, Guodong Long, Dongyan Zhao,
and Daxin Jiang. Synergistic interplay between search and large language models for information
retrieval. arXiv preprint arXiv:2305.07402, 2023.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. Precise zero-shot dense retrieval without
relevance labels. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1762–1777, 2023.

Yizheng Huang and Jimmy Huang. A survey on retrieval-augmented text generation for large lan-
guage models. arXiv preprint arXiv:2404.10981, 2024.

Yunah Jang, Kang-il Lee, Hyunkyung Bae, Hwanhee Lee, and Kyomin Jung. Itercqr: Iterative con-
versational query reformulation with retrieval guidance. In Proceedings of the 2024 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pp. 8114–8131, 2024.

Pengcheng Jiang, Jiacheng Lin, Lang Cao, Runchu Tian, SeongKu Kang, Zifeng Wang, Jimeng Sun,
and Jiawei Han. Deepretrieval: Hacking real search engines and retrievers with large language
models via reinforcement learning. arXiv preprint arXiv:2503.00223, 2025.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547, 2019.

11

https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yilong Lai, Jialong Wu, Congzhi Zhang, Haowen Sun, and Deyu Zhou. Adacqr: Enhancing query
reformulation for conversational search via sparse and dense retrieval alignment. In Proceedings
of the 31st International Conference on Computational Linguistics, pp. 7698–7720, 2025.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep, and Rodrigo
Nogueira. Pyserini: An easy-to-use python toolkit to support replicable ir research with sparse
and dense representations. arXiv preprint arXiv:2102.10073, 2021.

Jerry Liu. LlamaIndex, 11 2022. URL https://github.com/jerryjliu/llama_index.

Yanming Liu, Xinyue Peng, Xuhong Zhang, Weihao Liu, Jianwei Yin, Jiannan Cao, and Tianyu Du.
Ra-isf: Learning to answer and understand from retrieval augmentation via iterative self-feedback.
arXiv preprint arXiv:2403.06840, 2024.

Kelong Mao, Zhicheng Dou, Fengran Mo, Jiewen Hou, Haonan Chen, and Hongjin Qian. Large
language models know your contextual search intent: A prompting framework for conversational
search. In Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 1211–
1225, 2023.

Fengran Mo, Abbas Ghaddar, Kelong Mao, Mehdi Rezagholizadeh, Boxing Chen, Qun Liu, and
Jian-Yun Nie. Chiq: Contextual history enhancement for improving query rewriting in conversa-
tional search. In EMNLP, 2024.

Ethan Perez, Patrick Lewis, Wen-tau Yih, Kyunghyun Cho, and Douwe Kiela. Unsupervised ques-
tion decomposition for question answering. arXiv preprint arXiv:2002.09758, 2020.

Team Qwen. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025a.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025b.

Aditi Singh, Abul Ehtesham, Saket Kumar, and Tala Talaei Khoei. Agentic retrieval-augmented
generation: A survey on agentic rag. arXiv preprint arXiv:2501.09136, 2025.

Mingyang Song and Mao Zheng. A survey of query optimization in large language models, 2024.
URL https://arxiv.org/abs/2412.17558.

Yixuan Tang and Yi Yang. Multihop-rag: Benchmarking retrieval-augmented generation for multi-
hop queries. arXiv preprint arXiv:2401.15391, 2024.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. Beir: A
heterogeneous benchmark for zero-shot evaluation of information retrieval models.

Svitlana Vakulenko, Nikos Voskarides, Zhucheng Tu, and Shayne Longpre. A comparison of ques-
tion rewriting methods for conversational passage retrieval. In European Conference on Informa-
tion Retrieval, pp. 418–424. Springer, 2021.

Liang Wang, Nan Yang, and Furu Wei. Query2doc: Query expansion with large language models.
arXiv preprint arXiv:2303.07678, 2023.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack:
Packed resources for general chinese embeddings. In Proceedings of the 47th international ACM
SIGIR conference on research and development in information retrieval, pp. 641–649, 2024.

12

https://github.com/jerryjliu/llama_index
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2412.17558


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed,
and Arnold Overwijk. Approximate nearest neighbor negative contrastive learning for dense text
retrieval. arXiv preprint arXiv:2007.00808, 2020.

Shicheng Xu, Liang Pang, Huawei Shen, Xueqi Cheng, and Tat-Seng Chua. Search-in-the-chain:
Interactively enhancing large language models with search for knowledge-intensive tasks. In
Proceedings of the ACM Web Conference 2024, pp. 1362–1373, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Chanwoong Yoon, Gangwoo Kim, Byeongguk Jeon, Sungdong Kim, Yohan Jo, and Jaewoo Kang.
Ask optimal questions: Aligning large language models with retriever’s preference in conversa-
tion. In Findings of the Association for Computational Linguistics: NAACL 2025, pp. 5899–5921,
2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Shi Yu, Jiahua Liu, Jingqin Yang, Chenyan Xiong, Paul Bennett, Jianfeng Gao, and Zhiyuan Liu.
Few-shot generative conversational query rewriting. In Proceedings of the 43rd International
ACM SIGIR conference on research and development in Information Retrieval, pp. 1933–1936,
2020.

Peitian Zhang, Shitao Xiao, Zheng Liu, Zhicheng Dou, and Jian-Yun Nie. Retrieve anything to
augment large language models. arXiv preprint arXiv:2310.07554, 2023.

Tianhua Zhang, Kun Li, Hongyin Luo, Xixin Wu, James R Glass, and Helen Meng. Adaptive query
rewriting: Aligning rewriters through marginal probability of conversational answers. In EMNLP,
2024.

Changtai Zhu, Siyin Wang, Ruijun Feng, Kai Song, and Xipeng Qiu. Convsearch-r1: Enhancing
query reformulation for conversational search with reasoning via reinforcement learning. arXiv
preprint arXiv:2505.15776, 2025.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, large language models were used solely as auxiliary tools to support writing and editing,
such as grammar checking and formatting suggestions. No part of the core scientific contribution,
including the design of methods, experiments, or analyses, relied on outputs generated by LLMs.
All technical content, results, and conclusions were conceived and verified entirely by the authors.
The authors bear full responsibility for any content generated with the assistance of LLMs.

A EXPERIMENTAL DETAILS

A.1 RETRIEVAL

In TopiOCQA and HotpotQA, we use the BM25 retriever implemented by Pyserini (Lin et al.,
2021), and the ANCE retriever implemented by Faiss (Johnson et al., 2019). The hyperparameters
of BM25 are set to k1 = 0.9, b = 0.4 for TopiOCQA, and k1 = 1.2, b = 0.75 for HotpotQA during
all training and evaluation. For ANCE, to improve training efficiency, we first generate embeddings
for documents and then build an HNSW index using Faiss’s IndexHNSWFlat, with parameters
M = 64 and ef construction = 2000. The index construction for HotpotQA partially follows (Jiang
et al., 2025). During evaluation, we use IndexFlatIP to construct a flat index to ensure accuracy.
In MultiHop-RAG, we follow its original setup with the LlamaIndex (Liu, 2022) framework and
adopt BGE-large-en-v1.5 and LLM-Embedder as retrievers. Both retrievers use a chunking strategy
with chunk size=256 and chunk overlap=20, splitting the 609 original documents into 7786
chunks. For BGE-large-en-v1.5, we follow the official recommendation and add the instruction
”Represent this sentence for searching relevant documents:” when converting text into embeddings.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 TRAINING AND EVALUATION

Evaluation Metrics. For TopiOCQA, we employ Mean Reciprocal Rank@K (MRR@K), Nor-
malized Discounted Cumulative Gain@K (NDCG@K), and Recall@K (R@K) as evaluation met-
rics. For HotpotQA and MultiHop-RAG, we additionally use Mean Average Precision@10
(MAP@10) for assessment. For MultiHop-RAG, we follow the evaluation code and metric pro-
vided in the benchmark.

Retrieval Systems. We evaluated the performance of model under both sparse and dense retriev-
ers. For TopiOCQA and HotpotQA, we select BM25 as the sparse retriever and ANCE as the
dense retriever, where ANCE (Xiong et al., 2020) is trained on MS-MARCO (Bajaj et al., 2016)
document retrieval tasks. For MultiHop-RAG, we use bge-large-en-v1.5 (Xiao et al., 2024) and
llm-embedder (Zhang et al., 2023) as the retrievers.

Implementation. We deploy Qwen2.5-3B as the backbone and train the model individually on
TopiOCQA and HotpotQA, following the two-stage CRL described in §3. We use verl (Sheng
et al., 2025b) as our RL training framework, and adopt DAPO (Yu et al., 2025) as the optimization
algorithm, training the models under BM25 and ANCE retrievers independently.

Training Hyperparameters. We adopt the default hyperparameters established by ConvSearch-
R1 (Zhu et al., 2025) and the verl framework (Sheng et al., 2025a), rather than performing dataset-
specific tuning. The only modification we make is setting the maximum response length to 256
tokens (vs. 1024 in ConvSearch-R1), since ACQO generates concise sub-queries rather than chain-
of-thought reasoning, reducing the required output length.

Specifically, for both TopiOCQA and HotpotQA, the models are trained under BM25 and ANCE
retrievers with essentially the same hyperparameter configuration across both stages. We adopt
DAPO optimization with mini-batch size 64 and micro-batch size 8 per GPU (8 GPUs in total).
The actor learning rate is 1× 10−6 with gradient clipping at 1.0. Entropy regularization is disabled
(entropy coeff = 0). KL control is not used in reward shaping (use kl in reward=False). The
clipping ratios are set as [0.2, 0.28] with an additional coefficient clip ratio c = 10.0, following the
default configuration of DAPO. We sample K = 8 rollouts per query. Generation uses temperature
0.8, top-p = 0.8, and top-k = −1 during training; for validation we set temperature = 0.7, top-p =
0.8, and top-k = 20. Dynamic batch sizing is enabled for efficiency, with maximum batched tokens
set to 11408 and GPU memory utilization capped at 0.8. We set the training batch size to 256 and the
generation batch size to 512. For HotpotQA, the maximum prompt length is 512 tokens, while for
TopiOCQA it is 1536 tokens. In both datasets, the maximum response length is fixed to 256 tokens.
We set the decay coefficient η = 0.6 for HotpotQA, while η = 1.0 is used for TopiOCQA. For
stage II reward design, we set k∗ = 3 for TopiOCQA and k∗ = 0 for HotpotQA. For the training
epochs, Stage I CRL is trained for 2 epochs on TopiOCQA and 3 epochs on HotpotQA. Stage II
CRL is trained for 10 epochs on TopiOCQA with ANCE retriever and 8 epochs on TopiOCQA with
BM25 retriever. For HotpotQA, Stage II is trained for 4 epochs with ANCE and 6 epochs with
BM25.

A.3 DATASETS

We use three datasets in our experiments: TopiOCQA, HotpotQA, and MultiHop-RAG. All exper-
iments are conducted on standard training/test splits and document collections, as summarized in
Table 7. For HotpotQA, we follow the corpus provided by the BEIR benchmark (Thakur et al.),
which standardizes the document collection for retrieval-based evaluation.

Data Collection Our method does not require any supervised data; instead, it employ RL with
different levels of difficulty across the two RL stages(Section 3.4). In Stage I CRL, we use the full
official training set for TopiOCQA. For HotpotQA, however, given the large training set size and
relatively high initial performance, we first filter out the higher-performing samples and retain only
50% of the data for Stage I training. In Stage II CRL, we apply dynamic filtering with the Stage I
model (Section 3.4.3), again retaining roughly 50% of the samples. Basically, we set τthres = 5

3 and
rollouts n = 8. This guides the model to focus on moderately difficult instances, thereby improving
learning efficiency and convergence in Stage II.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: Statistics of datasets used in our experiments. “#Golden / query” denotes the number of
golden documents associated with each query.

Dataset Split #Queries #documents #Golden / query

TopiOCQA train 45450 25700592 1test 2514

HotpotQA train 85000 5233329 2test 7405

MultiHop-RAG test 2556 7786 multiple

B FURTHER EXPERIMENTS

B.1 CASE STUDY

In this section, we begin with a representative case to further discuss how our method improves
retrieval performance.

(a) TopiOCQA

(b) HotpotQA

Figure 5: Comparison of queries generated by models trained with different retrievers and their
retrieval performance across different retrievers.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

In Figure 5, we compare the performance across different training–retrieval combinations on dif-
ferent datasets, i.e., the effectiveness of reformulated queries generated by models trained with a
specific retriever when evaluated on other types of retrievers.

From the perspective of retrieval performance, we observe that retrieval effectiveness drops signif-
icantly when switching retrievers; moreover, model-generated reformulations outperform human-
written ones (i.e., reformulations that are intuitively considered correct). This suggests that the
evaluation of query quality should be retriever-dependent and may not necessarily align with human
intuition.

From the perspective of query generation behavior, queries generated with different retrievers vary
in both quantity and style, indicating that the reformulation style learned by the model is closely tied
to the retriever used during training.

What behavior does the model learn when trained with a specific retriever? Models trained
with the ANCE retriever tend to generate multiple queries resembling natural language questions or
statements, capturing complete semantic relations and emphasizing keywords or core entities with
fewer stopwords. In contrast, models trained with the BM25 retriever are inclined to generate a
single query that explicitly enumerates all relevant keywords.

Are these behaviors aligned with retriever preferences? Indeed, the observed behaviors are
consistent with the characteristics favored by different retrievers. For dense retrievers such as ANCE,
queries expressed in a natural language style, often decomposed into multiple sub-queries, better
capture semantic relations and leverage embedding-based similarity. In contrast, sparse retrievers
like BM25 prefer a single query containing exhaustive keyword coverage, where term frequency
and exact lexical overlap dominate ranking. This alignment indicates that our model effectively
adapts its reformulation strategy to the underlying retriever, learning to generate query styles that
are inherently compatible with the retriever’s scoring mechanism.

Why does our method also yield improvements on TopiOCQA? TopiOCQA consists of single-
intent questions, each associated with only one golden document, which suggests that the optimal
query should ideally be a single reformulation. Traditional approaches mainly rely on expansion,
where the model generates a lengthy reformulation that conveys complete semantic information
while leveraging its parametric knowledge to give an answer of the question, thereby increasing
semantic similarity with candidate passages (see Table 8). In practice, however, we observe that the
model often employs rephrasing—for example, expressing the same intent as either a question or a
declarative statement—to broaden the search space and consequently achieve better retrieval results.
Its advantages lie in stronger readability and higher efficiency, while also mitigating the negative im-
pact of erroneous expansions when the model encounters unfamiliar or ambiguous queries, thereby
improving robustness.

Table 8: Comparison of generation lengths across methods.

Method Retrieval Reasoning Response Total
ConvSearch-R1 - 106 248 354

ACQO (ours) ANCE - 28 28
BM25 - 36 36

Why is human-preferred query reformulation worse than model-generated? Here we collec-
tively refer to strong instruction models (e.g., DeepSeek-V3) and human-written rewrites as human-
preferred query reformulation, since such models can generate queries that are generally regarded as
high-quality under instruction or few-shot settings. In contrast, we denote reformulations produced
by our trained models as model-generated query reformulation. However, experimental results show
that human-preferred reformulations still underperform compared to our method or other advanced
baselines. Based on the above analysis, we summarize two main reasons:

(1) Human-preferred methods do not know what constitutes a retrieval-effective query. They
tend to follow human instructions by completing the current query with context or decomposing

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

multi-intent queries into several sub-queries. Yet, when no clear sub-intent is present, they fail to
decide how to decompose, and typically do not perform rephrasing or expansion.

(2) Human-preferred methods are not capable of generating retrieval-specific reformulations.
For example, their relative performance gap to state-of-the-art baselines is larger on BM25 than on
ANCE, since—as we have observed earlier—some queries with “poorer readability” may actually
perform better under BM25.

This finding suggests that analyzing retriever-specific data generated through ACQO can provide
insights into retriever preferences, which in turn can be used to optimize prompts for large language
models and improve their performance on query optimization tasks.

Taken together, our method enables the model, without any supervised data and solely using retrieval
performance as the reward, to autonomously adapt to the retriever type. In doing so, the model is
able to capture reformulation patterns that are more compatible with the retriever, ultimately leading
to optimal reformulations.

B.2 SCALING CAPABILITIES

Figure 6 presents the experimental results of our method with Qwen2.5-3B and Qwen2.5-7B. Across
both datasets and retrievers, the larger model consistently achieves better performance, demonstrat-
ing that our approach exhibits strong scaling capability.

MRR@3 NDCG@3 R@3 R@10 R@100
0

20

40

60

80

Pe
rc

en
ta

ge
 (%

)

34.9
37.7

45.8

62.6

83.2

36.9
39.7

47.8

64.6

85.2

36.6
39.4

47.8

65.6

85.1

38.9
41.9

50.6

67.9

86.2

Sparse + 3B
Sparse + 7B

Dense + 3B
Dense + 7B

(a) Comparison on TopiOCQA

MRR@10NDCG@10 R@4 R@10 MAP@10
0

20

40

60

80

Pe
rc

en
ta

ge
 (%

)

77.7
74.2

86.9

91.6

51.2

80.8
76.5

88.8
92.9

55.9

73.4 73.6

82.2
85.8

49.6

75.7 74.7

84.1
87.3

52.9

Sparse + 3B
Sparse + 7B

Dense + 3B
Dense + 7B

(b) Comparison on HotpotQA

Figure 6: Scaling Capabilities.

B.3 SFT VS. RL COMPARISON.

Table 9 presents a systematic comparison of training strategies on the TopiOCQA dataset with the
ANCE retriever. For SFT baselines, the training data are constructed by rolling out the Stage I CRL
model under our framework and filtering out queries with poor rankings. These results collectively
demonstrate that ACQO’s two-stage curriculum reinforcement learning effectively addresses the
fundamental challenges of complex query optimization, consistently outperforming both supervised
baselines and vanilla RL approaches while maintaining training stability and data efficiency.

B.4 END-TO-END QUESTION ANSWERING EVALUATION

While the retrieval metrics presented above demonstrate ACQO’s effectiveness in query optimiza-
tion, a critical question remains: do these retrieval improvements translate to better final answers
in real-world RAG applications? To address this concern, we conduct comprehensive end-to-end
question answering experiments that evaluate the complete RAG pipeline from query optimization
to answer generation.

Experimental Setup. We use Qwen2.5-7B-Instruct (Qwen, 2024) as the reader model and
DeepSeek-R1 (DeepSeek-AI, 2024) as the evaluation judge to assess answer quality on HotpotQA

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 9: Comparison between SFT and RL methods on the TopiOCQA dataset with the ANCE
retriever.

Method MRR@3 NDCG@3 R@3 R@10 R@100
SFT 28.4 30.7 37.3 53.4 71.5
Vanilla RL 34.5 38.3 34.6 62.1 81.1
SFT + RL 33.4 37.8 45.7 61.6 82.2
Stage I only 33.6 36.6 44.2 64.9 85.8
Stage I + SFT 28.5 30.8 37.7 53.3 70.2

ACQO (ours) 36.6 39.4 47.8 65.6 85.1

with the ANCE retriever. For each method (Raw Query, ConvSearch-R1, ACQO), we retrieve the
top-10 documents using the optimized queries and provide them as context to the reader model, then
evaluate the generated answers based on accuracy.

Results and Analysis. Table 10 presents the end-to-end evaluation results, comparing retrieval
performance (MAP@10) with answer accuracy (ACCL). The results reveal a strong correlation
between retrieval quality and final answer accuracy across all methods. Starting from the raw query
baseline (34.8% MAP@10, 16.4% ACCL), ConvSearch-R1 achieves substantial improvements
(44.4% MAP@10, 27.7% ACCL), while ACQO further advances the state-of-the-art to 49.6%
MAP@10 and 31.6% ACCL.

Table 10: End-to-end question answering evaluation on HotpotQA-ANCE. MAP@10 measures re-
trieval quality, while ACCL evaluates final answer accuracy judged by DeepSeek-R1.

Method MAP@10 ACCL ∆ACCL

Raw Query 34.8% 16.4% -
ConvSearch-R1 44.4% 27.7% +11.3%

ACQO (ours) 49.6% 31.6% +15.2%

Notably, ACQO achieves a +3.9% improvement in ACCL over ConvSearch-R1, confirming that
our curriculum reinforcement learning design effectively addresses the convergence challenges in
mixed-complexity query optimization. This validates that the adaptive query decomposition and
robust rank-score fusion mechanism not only improve retrieval metrics but also enhance the quality
of final generated answers. Moreover, ACQO reaches 9.1× lower latency, representing a favorable
efficiency-accuracy trade-off for production deployment.

C PROMPTS

Figure 7a shows the prompt used in ACQO, which remains the same across retrievers and datasets.
If no context is available, it is set to empty. The same prompt is also employed in other experiments
(e.g., ablation studies and supervised fine-tuning) with query decomposition. We also provide in
Figure 7b the prompt version without query decomposition, which is used in experiments without
query decomposition.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) Prompt for standard ACQO

(b) Prompt without query decomposition

Figure 7: Prompts used in our experiments.

19


	Introduction
	What makes queries complex in real-world RAG scenarios?
	Query Complexity Analysis Framework
	Dataset Analysis: Prevalence of Complex Queries
	Why Current Methods Struggle with Complex Queries

	Adaptive Complex Query Optimization
	Task Formulation
	Overall Framework
	Re-ranker Design
	Curriculum Reinforcement Learning (CRL)
	Base Reward Function
	Stage I: Explore-Oriented CRL
	Stage II: Converge-Oriented CRL


	Experiments
	Experiments Setup
	Main Results
	Evaluation on Out-of-Distribution (OOD) Data
	Ablation Study
	Training Dynamics Analysis
	Latency and Cost Analysis

	Conclusion
	Experimental Details
	Retrieval
	Training and evaluation
	Datasets

	Further Experiments
	Case Study
	Scaling Capabilities
	SFT vs. RL Comparison.
	End-to-End Question Answering Evaluation

	Prompts

