
OPT2022: 14th Annual Workshop on Optimization for Machine Learning

ADASTAR:
A Method for Adapting to Interpolation

Gary Cheng CHENGGAR@STANFORD.EDU

John Duchi JDUCHI@STANFORD.EDU

Stanford University

Abstract
Stochastic convex optimization methods are much faster at minimizing interpolation problems—
problems where all sample losses share a common minimizer—than non-interpolating problems.
However, standard non-adaptive stochastic gradient methods require step sizes tailored for the in-
terpolation setting, which are sub-optimal for non-interpolating problems, to attain these fast rates.
This is problematic because verifying whether a problem is interpolating, without minimizing it,
is difficult. Moreover, because interpolation is not a stable property—small changes to the data
distribution can transform an interpolation problem into a non-interpolating one—we would like
our methods to get the fast interpolation rate when it can, while being robust to these perturbations.
Stochastic gradient methods with adaptive step sizes are able to achieves these two desiderata in ex-
pectation [14]. In this work, we build on these ideas and present ADASTAR, an adaptive stochastic
gradient method which—with high probability—attains the optimal, fast rate on smooth interpo-
lation problems (up to log factors) and gracefully degrades with the minimal objective value for
non-interpolating problems. This high probability result is crucial for our second result, where
we use ADASTAR as a building block to construct another stochastic gradient method, termed
ADASTAR-G, which adapts to interpolation and growth conditions, getting even faster rates.

1. Introduction

In this work, we study stochastic convex optimization, where we are given n samples s to solve

minimize f(x) = E[F (x;S)] =

∫
Ω
F (x; s)dP (s)

subject to x ∈ X .
(1)

We let Ω denote the sample space, and S be an associated Ω-valued random variable. For each
sample s ∈ Ω, F (·; s) : Rd → R+ is a closed, convex, non-negative function which is differentiable
on the closed, convex domain X with diameter diam(X) ≤ D. Throughout the paper, we let
X ⋆ := argminx∈X f(x), use x⋆ to denote an arbitrary element of X ⋆, and let f⋆ := f(x⋆). In
particular, we will study problem (1) in the interpolation setting, which we formally define as

Definition 1 (Interpolation Problem) For a non-negative F , Problem (1) is an interpolation prob-
lem if F (x⋆; s) = 0 for P -almost every s ∈ Ω. i.e., f⋆ = 0.

Interpolation problems are everywhere in modern machine learning. Noiseless least squares, over-
parameterized least squares, classification problems with margin, and even the training loss of many
deep learning problems are all examples of interpolation problems. We note that our definition of

© G. Cheng & J. Duchi.

ADAPTING TO INTERPOLATION

interpolation differs from other definitions of interpolation defined in Asi and Duchi [2], Asi et al.
[3], Chadha et al. [5], Schmidt and Le Roux [16]. They define an interpolation problem as one
where there exists a common minimizer which minimizes all the sample functions simultaneously
and do not require the sample functions to be non-negative. While our definition may initially seem
more restrictive, it is really only requiring that all sample functions to be normalized such that their
minimum value is 0; i.e., replace all sample functions F (·, s) by the function F (·, s)−minx F (x, s).
This transformation equalizes different sample loss functions and will ensure that the step sizes our
algorithms select—which will depend on F (·, s)—are consistent across samples.

We know that stochastic convex optimization methods are much faster at minimizing interpola-
tion problems than non-interpolating problems [7, 12, 13, 17, 18, 20]. Empirical risk minimization,
for example, has O(1/n +

√
f⋆/n) convergence rate on problem (1) assuming smoothness; i.e. it

has a O(1/n) error on interpolation problems, and the standard O(1/
√
n) rate on non-interpolation

problems [17]. However, as datasets get larger, a natural question is whether mehtods which only
require a single pass over the training data Non-adaptive stochastic gradient methods can attain
the same improvements but require using step sizes tailored for the interpolation setting, which are
sub-optimal for non-interpolating problems [17]. This is problematic because verifying whether a
problem is interpolating, without minimizing it, is difficult. Moreover, because interpolation is not a
stable property—small changes to the data distribution can transform an interpolation problem into
a non-interpolating one—we would like our methods to get the fast interpolation rate when it can
while being robust to these perturbations. Stochastic gradient methods with adaptive step sizes are
able to achieves these two desiderata (e.g., Theorem 4.24 from Orabona [14]) in expectation. In this
work, we build on these ideas and present ADASTAR, an algorithm which achieves these desiderata
with high probability. This high probability result will prove to be crucial for designing algorithms
which also adapt to growth conditions, which we discuss presently.

While the majority of this paper is dedicated to studying interpolation, we also would like to get
even faster rates on realistic problems. To this end, we will also study how interpolation interplays
with problems which have κ-growth defined as follows:

Definition 2 (κ-growth) For λ > 0 and κ ≥ 0, f has (λ, κ)-growth if and only if

f(x)− f⋆ ≥ λ

κ
dist(x,X ⋆)κ.

Problems which satisfy growth conditions are ubiquitous; linear regression for example has quadratic
(κ = 2) growth. The smaller κ is for a population function, the sharper the growth rate around the
minimizer, and the faster an algorithm can minimize the population loss—O(1/n

κ
2(κ−1)) instead of

the standard O(1/
√
n). Growth and interpolation are synergistic, mutually amplifying convergence

rate improvements. For example, we can solve interpolating, quadratic (κ = 2) growth problems
exponentially fast, while we can only provide a polynomial O(1/n) convergence rate guarantee
for problems which exclusively interpolate or exclusively have quadratic growth. However, as we
will see in Section 3, unlike linear regression, κ-growth is not always a straightforward property to
verify. For this reason, in this paper, we present ADASTAR-G: an algorithm which adapts to growth
conditions and interpolation. For problems that do not satisfy any growth conditions i.e., κ → ∞,
ADASTAR-G recovers the same rates as ADASTAR.

1.1. Our contributions

Our technical contributions are as follows.

2

ADAPTING TO INTERPOLATION

1. We present an adaptive stochastic gradient method, termed ADASTAR, which has a conver-
gence rate of Õ(1/n +

√
f⋆/n) in expectation and in high probability, without knowledge

of f⋆. In other words, it attains the minimax optimal fast rate on interpolation problems (up
to log factors) and gracefully degrades with the minimal objective value for non-interpolation
problems.

2. We present a second adaptive stochastic gradient method, termed ADASTAR-G, which adapts
to interpolation and κ-growth conditions for κ > 2. In particular, with only knowledge of a
lower bound on κ, our algorithm, with high probability, has a convergence rate of Õ(1/n

κ
κ−2)

on interpolating κ-growth problems and a rate of Õ(1/n
κ

2(κ−1)), which is optimal up to log
factors, on non-interpolating κ-growth problems.

The algorithm design of ADASTAR-G is inspired by an iterative halving technique from [4]. We
note that information theoretic lower bounds for interpolating κ-growth problems for κ > 2—which
would prove or disprove the optimality (up to log factors) of ADASTAR-G on said problems—are
not known. We leave this open problem for future work.

1.2. Related Work

Vaswani et al. [19] show that constant step size AdaGrad has a similar interpolation-adaptive prop-
erty as ADASTAR for a different definition of interpolation; however, their results are only for ob-
jectives with a finite sum structure, and their convergence rate is dimension dependent.

As mentioned earlier, problems with growth are ubiquitous, and thus, have also been the focus
of a lot of work. Hazan and Kale [10] present a stochastic gradient method which is optimal,
including log factors, for quadratic growth problems. Chatterjee et al. [6], Juditsky and Nesterov
[11], Ramdas and Singh [15] develop methods which attain a faster O(1/n

κ
2(κ−1)) on κ-growth

problems compared to the standard O(1/
√
n) rate. Asi et al. [4] present information theoretic lower

bounds showing these faster rates are optimal.
Interpolation problems with growth have also been extensively studied. Vaswani et al. [18]

showed that SGD has a linear convergence rate (exponentially fast) on interpolation problems with
growth. Asi and Duchi [2], Asi et al. [3] develop new methods that are more stable than SGD,
which also get these fast rates on interpolation problems with growth. Chadha et al. [5] develop
lower bounds showing the optimality of these methods.

Notation Throughout this work, F is β-smooth; i.e., ∥F ′(x; s)− F ′(y; s)∥2 ≤ β ∥x− y∥2. We
will let h′(x) denote the gradient of a differentiable function h at x. We may use gk in place of
F ′(xk, sk) for notational simplicity. We let [n] denote the sequence of integers 1, . . . , n. For a point
u ∈ Rd and a set V ⊂ Rd, we let dist(u, V) := infv∈V ∥u− v∥2.

2. Adapting to Interpolation Problems

In this section, we present our algorithm ADASTAR, which adapts to minimal function value f⋆,
attaining the optimal fast 1/n rate, up to log factors, on interpolation problems. ADASTAR executes
T = log(n) epochs of SGD—each call of SGD is executed for n iterations—which totals to using
O(n log n) samples. We run SGD with a special adaptive step size choice that depends on the
parameter value outputted by the SGD algorithm from the previous epoch. In particular, the step

3

ADAPTING TO INTERPOLATION

size of the ith iteration of the tth call of SGD is chosen proportional to 1/
√∑i

k=1 F (x̂t; sk), where
x̂t is the parameter returned by t− 1 epoch’s call of SGD. Intuitively, as t gets larger, the parameter
returned by tth call of SGD should get closer to x⋆, implying that F (x̂t; sk) should be closer to f⋆.
This in turn means each subsequent call of SGD has a more aggressive step size choice. The fact
that E[F (x̂t; sk)] ≥ f⋆ intuitively lower bounds how large this step size choice can be, preventing
the algorithm from being overly aggressive and diverging. The fact that this lower bound depends
on the optimal function value f⋆ is precisely why this algorithm is adaptive to f⋆. For problems
where f⋆ is smaller, ADASTAR will be able to use more aggressive step sizes. The full description
of ADASTAR can be found in Algorithm 1; the adaptive-step-size SGD algorithm that ADASTAR

calls is described in Algorithm 2.

Algorithm 1: ADASTAR: Adapting to f⋆ algorithm
Data: F : sample function being optimized; T : epochs; n: number of iterations per epoch; X :

parameter domain; x1: initial parameter; β: smoothness parameter
Result: xT : estimate of optimal parameter
for t← 1 to T do

x̂t+1 ← SGD-HELPER(F, n,X , x̂t, β)
end
return x̂T

Algorithm 2: SGD-HELPER

Data: F : sample function being optimized; n: number of iterations; X : parameter domain; x1:
initial parameter; β: smoothness parameter

Result: x̂: estimate of optimal parameter
D ← diam(X)
for i← 1 to n do

αi ← min

(
1
4β ,

D

2
√

2β
∑i

k=1 F (x1;sk)

)
xi+1 ← ΠX (xi − αiF

′(xi, si))
end
return x̂ = 1

n

∑n
i=1 xi

Our convergence results for ADASTAR rely on relating the error guarantees epoch t with the
error guarantee of epoch t− 1; this relation is presented in Lemma 3. The proof of Lemma 3 can be
found in Section A.1.1.

Lemma 3 Let F be β-smooth and non-negative. Let {x̂t}Tt=1 be the iterates generated by running
Algorithm 1 on Problem (1). We have for all t ∈ [T],

E[f(x̂t)]− f⋆ ≤ 4βD2

n
+

3D
√

2βE[f(x̂t−1)]√
n

.

Once we have this relation, we can analyze the recurrence to obtain a non-recursive guarantee
on the final epoch of ADASTAR. This result is presented in Theorem 4. The proof of Theorem 4 can
be found in Appendix A.

4

ADAPTING TO INTERPOLATION

Theorem 4 Let F be β-smooth and non-negative. Let {x̂t}Tt=1 be the iterates generated by running
Algorithm 1 on Problem (1) with T = log4(n) + 1. We have, with c = 18, the error guarantee

E[f(x̂T)]− f⋆ ≤ (4c+ 1/2)βD2

n
+

√
4cD2βf⋆

n
.

We also provide a high probability result for ADASTAR in Corollary 5. The high probability
result will be useful for proving guarantees about ADASTAR-G. The proof of Corollary 5 is very
similar to the proof of Theorem 4, except that it uses a high probability version of Lemma 3 instead
(i.e., Lemma 12). The full proof details can be found in Appendix B.

Corollary 5 Let F be β-smooth, non-negative, and bounded above by B <∞. Let {x̂t}Tt=1 be the
iterates generated by running Algorithm 1 on Problem (1) with T = log4(n) + 1. With probability
at least 1− ε, we have

f(x̂T)− f⋆ ≲
log2

(
logn
ε

)
n

+ log

(
log n

ε

)√
f⋆

n
.

ADASTAR uses a total of O(n log n) samples to get an O(1/n +
√

f⋆/n) error guarantee. In
other words, relative to the optimal, non-adaptive first order algorithm (constant step size SGD)
which leverages knowledge of f⋆, ADASTAR has to use log n times more samples to adapt to f⋆.

3. Adaptating to Growth and Interpolation

Problems in practice often also satisfy some type of local growth condition like κ-growth. As
mentioned in the introduction, these problems enjoy faster convergence guarantees: O(1/n

κ
2(κ−1)),

for κ > 1, compared to the standard O(1/
√
n) rate. Sometimes, growth conditions are dictated by

the loss function and thus are straightforward to verify—e.g., linear regression has quadratic growth.
In other circumstances, κ depends heavily on the sampling distribution, making them difficult or
impossible to verify a priori. Consider a simple one dimensional classification example.

Example 1 (1D seperable classification) Suppose we are interested in classifying inputs a ∈ R
into its correct binary label b ∈ {±1}. Let the sample loss function be F (x; (a, b)) = ϕ(xab),
where ϕ(t) = (1 − t)γ+ for some γ ≥ 1. Let x⋆ > 0 be the smallest real number such that
f(x⋆) = E[ϕ(x⋆ab)] = 0; i.e., it is the perfect classifier of the data with the smallest margin.
Suppose there exists B ∈ R such that x⋆ ≤ B. Let x < x⋆ (a classifier that incurs error). Let
z := ab has a density p, and suppose that x is large enough such that p has some growth locally on
the boundary of the its support: p(z) ≥ (z − 1/x⋆)η for z ∈ [1/x⋆, 1/x]. Then, the error of x can
be lower bounded as

E[ϕ(xz)] =
∫ 1/x

1/x⋆

(1− xz)γp(z)dz ≥
∫ 1/x

1/x⋆

xγ
(
1

x
− z

)γ (
z − 1

x⋆

)η

dz

=

(
xγ

η + 1

)γ ∫ 1/x

1/x⋆

(
z − 1

x⋆

)η+γ

dz

=

(
1

x

)η+1(1

x⋆

)η+γ+1(γ

η + 1

)γ (1

η + γ + 1

)
(x⋆ − x)η+γ+1

≳ |x⋆ − x|η+γ+1.

5

ADAPTING TO INTERPOLATION

The second equality comes from repeatedly reapplying integration by parts. The last equality uses
the bound B. Thus, this problem has κ = η + γ + 1 growth.

The practitioner could get faster rates if they knew κ, but κ is difficult to obtain because η is
a data dependent quantity. We acknowledge the example is unrealistic—the optimal strategy for
the practitioner reduces to examining the sign of a. However, this strategy would not generalize
to higher dimensional settings, or settings where data that has been shifted. The main purpose of
the one-dimensional example is to highlight how these more complex classification settings, may
also have growth conditions which are hard to verify a priori. This hope that we can leverage
unverifiable growth conditions motivates developing methods which are ignorant of and can adapt
to κ and interpolation.

To address this issue, we present ADASTAR-G, which adapts to κ-growth and interpolation, and
only requires knowledge of a lower bound on κ, denoted by

¯
κ. ADASTAR-G executes K = O(log n)

epochs of ADASTAR—recall, ADASTAR in turn runs T = O(log n) epochs of adaptive SGD for n
iterations—which totals to using O(n log2 n) samples. This epoch algorithm leverages the fact
that growth, by definition, gives us a way of converting bounds on the function error into bounds
on parameter error. Ideally we would shrink the domain in proportion to this guarantee (which
depends on κ) with every epoch. The idea being because the diameter of the space is now smaller,
we can choose a more refined step size as well, leading to better convergence guarantees. However,
since κ is unknown, ADASTAR-G instead shrinks the diameter of the set by half with every epoch.
Up to some epoch, which we term k0, this halving will work perfectly and will give us the fast
rates we wanted. After epoch k0, the shrinking will be too aggressive, but because geometric sums
converge very quickly, the extra error that this geometric halving induces will not matter. Thus, this
strategy naturally adapts to the growth parameter κ, so long as the practitioner runs ADASTAR-G for
enough epochs, necessitating the lower bound on κ. Finally, because ADASTAR is the subroutine
used in each epoch of ADASTAR-G, ADASTAR-G also naturally adapts to interpolation as well. The
pseudocode for ADASTAR-G can be found in Algorithm 3, and the convergence guarantee for the
algorithm can be found below in Theorem 6. The proof of Theorem 6 can be found in Appendix C.

Algorithm 3: ADASTAR-G: Adapting to f⋆ and growth algorithm
Data: F : sample function being optimized; K: epochs; T : number of epochs of AdaVal; n:

number of iterations per epoch of AdaVal; X1: parameter domain; x1: initial parameter;
β: smoothness parameter

Result: xK : estimate of optimal parameter
D1 ← diam(X1)
for k ← 1 to K do

xk+1 ← ADASTAR(F, T, n,Xk, xk, β)
Dk+1 ← Dk/2
Xk+1 ← {x ∈ X1 : ∥x− xk+1∥2 ≤ Dk+1}

end
return xK

Theorem 6 Let F be β-smooth and non-negative. Let f have κ-growth with κ ≥
¯
κ > 2. Let c0 be

some absolute constant, and ε ∈ (0, 1). Let {xk}Kk=1 be generated from Algorithm 3 with K such

6

ADAPTING TO INTERPOLATION

that K ≥
⌊
log2

((
nλ

c0
¯
κβ log(K logn/ε)

) 1

¯
κ−2

D0

)⌋
+ 1 and T = log4(n) + 1. With probability at

least 1− ε, treating f⋆ as a constant

f(xK)− f⋆ ≲

(
β log(K log n/ε)

n

) κ
κ−2

+

(√
β log(K log n/ε)

n

√
f⋆

) κ
κ−1

.

To summarize, ADASTAR-G uses n log2 n samples to get an error Õ(1/n
κ

κ−2 + (
√
f⋆/n)

κ
κ−1).

The log factors represent the price ADASTAR-G pays to adapt to growth and interpolation.

7

ADAPTING TO INTERPOLATION

References

[1] Alekh Agarwal and John C. Duchi. Distributed delayed stochastic optimization. In Advances
in Neural Information Processing Systems 24, 2011.

[2] Hilal Asi and John C. Duchi. Stochastic (approximate) proximal point methods: Convergence,
optimality, and adaptivity. SIAM Journal on Optimization, 29(3):2257–2290, 2019. URL
https://arXiv.org/abs/1810.05633.

[3] Hilal Asi, Karan Chadha, Gary Cheng, and John C. Duchi. Minibatch stochastic approximate
proximal point methods. In Advances in Neural Information Processing Systems 33, 2020.

[4] Hilal Asi, Daniel Lévy, and John C. Duchi. Adapting to function difficulty and growth condi-
tions in private optimization. In NeurIPS, 2021.

[5] Karan N. Chadha, Gary Cheng, and John C. Duchi. Accelerated, optimal, and parallel: Some
results on model-based stochastic optimization. In ICML, 2022.

[6] Sabyasachi Chatterjee, John Duchi, John Lafferty, and Yuancheng Zhu. Local minimax com-
plexity of stochastic convex optimization. In Advances in Neural Information Processing
Systems 29, 2016.

[7] Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch algo-
rithms via accelerated gradient methods. In Advances in Neural Information Processing Sys-
tems 24, 2011.

[8] John C. Duchi. Introductory lectures on stochastic convex optimization. In The Mathematics
of Data, IAS/Park City Mathematics Series. American Mathematical Society, 2018.

[9] John C. Duchi. Information theory and statistics. Lecture Notes for Statistics 311/EE 377,
Stanford University, 2019. URL http://web.stanford.edu/class/stats311/
lecture-notes.pdf. Accessed May 2019.

[10] Elad Hazan and Satyen Kale. An optimal algorithm for stochastic strongly convex optimiza-
tion. In Proceedings of the Twenty Fourth Annual Conference on Computational Learning
Theory, 2011. URL http://arxiv.org/abs/1006.2425.

[11] Anatoli Juditsky and Yuri Nesterov. Deterministic and stochastic primal-dual subgradient
algorithms for uniformly convex minimization. Stochastic Systems, 4(1):44—-80, 2014.

[12] Chaoyue Liu and Mikhail Belkin. Accelerating sgd with momentum for over-parameterized
learning. In International Conference on Learning Representations, 2020.

[13] Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding
the effectiveness of SGD in modern over-parametrized learning. In Proceedings of the 35th
International Conference on Machine Learning, 2018.

[14] Francesco Orabona. A modern introduction to online learning. ArXiv, abs/1912.13213, 2019.

8

https://arXiv.org/abs/1810.05633
http://web.stanford.edu/class/stats311/lecture-notes.pdf
http://web.stanford.edu/class/stats311/lecture-notes.pdf
http://arxiv.org/abs/1006.2425

ADAPTING TO INTERPOLATION

[15] Aaditya Ramdas and Aarti Singh. Optimal rates for stochastic convex optimization under
tsybakov noise condition. In Proceedings of the 30th International Conference on Machine
Learning, pages 365–373, 2013.

[16] Mark Schmidt and Nicolas Le Roux. Fast convergence of stochastic gradient descent under a
strong growth condition. arXiv:1308.6370 [math.OC], 2013.

[17] Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. Smoothness, low noise and fast rates.
In nips2010, pages 2199–2207, 2010.

[18] Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of SGD for
over-parameterized models and an accelerated perceptron. In Proceedings of the 22nd Inter-
national Conference on Artificial Intelligence and Statistics, 2019.

[19] Sharan Vaswani, Frederik Kunstner, Issam H. Laradji, Si Yi Meng, Mark W. Schmidt, and
Simon Lacoste-Julien. Adaptive gradient methods converge faster with over-parameterization
(and you can do a line-search). ArXiv, abs/2006.06835, 2020.

[20] Blake E. Woodworth and Nathan Srebro. An even more optimal stochastic optimization algo-
rithm: Minibatching and interpolation learning. In Advances in Neural Information Processing
Systems 34, 2021.

9

ADAPTING TO INTERPOLATION

Appendix A. Proof of Theorem 4

A.1. Supporting Lemmas

Lemma 7 For a β-smooth and non-negative function h : X → R, we have ∥h′(x)∥2 ≤
√
4βh(x)

for all x ∈ X .

Proof See the proof of Lemma 3.1 in [17]. □

Lemma 8 One step of SGM with step size αi on a function F (·; s) has the following guarantee for
any y ∈ X

F (xi; s) ≤ F (y; s) +
1

2αi
(∥xi − y∥22 − ∥xi+1 − y∥22) +

αi

2
∥gi∥22 .

Proof Using convexity, we have that

F (xi; s)− F (y; s) ≤ ⟨gi, xi − y⟩ = ⟨gi, xi − xi+1⟩+ ⟨gi, xi+1 − y⟩.

Since xi+1 solves a convex optimization problem xi+1 = argminx∈X ⟨gi, x−xi⟩+ 1
2αi
∥x− xi∥22,

for all y ∈ X , we have the following optimality condition holds

⟨gi +
1

αi
(xi+1 − xi), y − xi+1⟩ ≥ 0,

which means that

F (xi; s)− F (y; s) ≤ ⟨gi, xi − xi+1⟩+
1

αi
⟨xi+1 − xi, y − xi+1⟩

= ⟨gi, xi − xi+1⟩+
1

2αi

(
∥xi − x⋆∥22 − ∥xi+1 − x⋆∥22 − ∥xi+1 − xi∥22

)
,

where the equality is the result of some algebra. By Fenchel-Young, we have that

⟨gi, xi − xi+1⟩ ≤
1

2αi
∥xi − xi+1∥22 +

αi

2
∥gi∥22 .

Combining the two inequalities, gives us the desired result.
□

Lemma 9 Let {xi}ni=1 be the iterates generated by running projected stochastic subgradient de-
scent with a non-increasing sequence of step sizes {αi}ni=1 on Problem (1). We have that

1

n

n∑
i=1

f(xi)− f⋆ ≤ D2

2αnn
+

1

2n

n∑
i=1

αi ∥gi∥22 +
1

n

n∑
i=1

⟨f ′(xi)− gi, xi − x⋆⟩

Proof See Equation (3.4.8) from Theorem 3.4.7 from [8]. □

10

ADAPTING TO INTERPOLATION

A.1.1. PROOF OF SUPPORTING LEMMA 3

Let Ft := σ({Sj,i}j∈[t],i∈[n]) be the σ-field generated by the first t epochs of Algorithm 1, so
x̂t ∈ Ft−1. For this proof, let xt,i (or xi) denote the output of the ith iteration of the subalgorithm
Algorithm 2 in epoch t of Algorithm 1. st,i denotes the sample drawn in the ith iteration of the
subalgorithm Algorithm 2 in the t epoch of Algorithm 1.

Lemma 8 gives us

F (xt,i; st,i) ≤ F (x̂t−1; s) +
1

2αi
(∥xt,i − x̂t−1∥22 − ∥xt,i+1 − x̂t−1∥22) +

αi

2
∥gt,i∥22 .

Combining Lemma 8 and Lemma 7 gives

1

4β

n∑
i=1

αi ∥gt,i∥22 ≤
n∑

i=1

αiF (xt,i; st,i)

≤
n∑

i=1

αiF (x̂t−1; st,i) +
1

2
(∥xt,1 − x̂t−1∥22 − ∥xt,n+1 − x̂t−1∥22) +

1

2

n∑
i=1

α2
i ∥gt,i∥

2
2 .

Using the fact that αi ≤ 1
4β and rearranging, we get

n∑
i=1

αi ∥gt,i∥22 ≤ 4βD2 + 8β
n∑

i=1

αiF (x̂t−1; st,i)

Combining this result with Lemma 9 and using the fact that for all i ∈ [n], E[⟨f ′(xt,i)− gt,i, xt,i −
x⋆⟩ | Ft−1] = 0,

1

n

n∑
i=1

E[f(xt,i)|Ft−1]− f⋆ ≤ E

[
D2

2αnn
+

1

2n

n∑
i=1

αi ∥gt,i∥22

∣∣∣∣∣Ft−1

]

≤ E

[
2βD2

n
+

D2

2αnn
+

4β

n

n∑
i=1

αiF (x̂t−1, st,i)

∣∣∣∣∣Ft−1

]
.

We now plug in the step size αi = min

(
1
4β ,

D

2
√

2β
∑i

k=1 F (x̂t−1;st,k)

)
. We proceed by cases. If

αn = D

2
√

2β
∑n

k=1 F (x̂t−1;st,k)
, we have that

1

n

n∑
i=1

E[f(xi)|Ft−1]− f⋆ ≤ E

2βD2

n
+

D
√
2β

n

√√√√ n∑
i=1

F (x̂t−1; st,i) +
D
√
2β

n

n∑
i=1

F (x̂t−1; st,i)√∑i
k=1 F (x̂t−1; st,k)

∣∣∣∣∣∣Ft−1


≤ 2βD2

n
+ E

3D√2β
n

√√√√ n∑
k=1

F (x̂t−1; st,i)

∣∣∣∣∣∣Ft−1


≤ 2βD2

n
+

3D
√

2βf(x̂t−1)√
n

.

(2)

11

ADAPTING TO INTERPOLATION

The second inequality comes from the fact that for any non-negative sequence a1, . . . , an,
∑n

i=1
ai√∑i
k=1 ak

≤

2
√∑n

i=1 ai. The third inequality comes from Jensen’s inequality. In the other case where αn = 1
4β ,

we have that

1

n

n∑
i=1

E[f(xi)|Ft−1]− f⋆ ≤ 4βD2

n
+

D
√
2βf(x̂t−1)√

n
. (3)

Taking the max of these two bounds, taking expectations, using online-to-batch conversion (i.e.,
Jensen’s inequality), and concavity of square root (Jensen’s inequality again), we get the desired
result.

A.2. Proof of result

Let Q :=
√

cD2β
n . Further let ut = E[f(x̂t)]− f⋆. From Lemma 3 , we have that

ut+1 ≤ h(ut) := Q
√
ut + f⋆ +Q2.

Let r(u) = u be the identity function. We note that our analysis centers around analyzing the
convergence of repeatedly h. h is a squareroot function, such that r(0) = 0 ≤ Q

√
f⋆+Q2 = h(0).

Since linear functions grow faster than square root functions, we there must exist a point u⋆ such
that r(u⋆) = h(u⋆) and r(u) > h(u) for u ≥ u⋆. With some algebra, we can show that

u⋆ =
3Q2 +Q

√
5Q2 + 4f⋆

2
≤ 3Q2 +

√
5Q2 + 2Q

√
f⋆

2
≤ ũ := 4

cβD2

n
+

√
cD2βf⋆

n
.

Suppose our initial choice of x̂1 is such that u1 ≤ u⋆. In this case, we have u2 = h(u1) >
r(u1) = u1; further, since h and r are monotonically increasing we have u2 = h(u1) < h(u⋆) = u⋆.
By induction, we have that in this setting, ut ≤ u⋆ ≤ ũ for all t ≥ 1. Thus, the bound of our theorem
covers this setting.

Thus, it suffices to consider the alternative setting where x̂1 is selected such that u1 > u⋆. In this
setting we know our error is monotonically decreasing because ut = h(ut−1) ≤ r(ut−1) = ut−1.
In order to get a convergence rate, we need to do more analysis. h is difficult to directly analyze
because of the square root, but since u⋆ is the fixed point of h, it suffices to analyze a linear upper
bound of h which shares (nearly) the same fixed point as h. In particular, by concavity, we will
upper bound h by the linear approximation around ũ to get a recurrence relation. For reference, we
have that h′(u) = Q

2
√
u+f⋆ where h′(ũ) = 1

2
√

4+
√
f⋆/Q+f⋆/Q2

≤ 1/4

We proceed by cases. If ut ≤ ũ, we are done. Otherwise, we use the fact that ut > ũ and
h(ũ) ≤ ũ because ũ ≥ u⋆ to obtain:

ut+1 = h(ut) ≤ (1− h′(ũ))h(ũ) + h′(ũ)ut ≤
3

4
ũ+

1

4
ut ≤

3ũ

4

t−2∑
j=0

1

4j
+

u1
4t−1

= ũ(1− 1/4t−1) + u1(1/4
t−1) ≤ 4

cβD2

n
+

√
cD2βf⋆

n
+ u1(1/4

t−1).

We choose T = log4(n) + 1. This gives the error guarantee

E[f(x̂T)]− f⋆ ≤ 4cβD2

n
+

√
cD2βf⋆

n
+

u1
n
.

12

ADAPTING TO INTERPOLATION

We conclude by using the following fact

u1 = Ef(x̂1)− f⋆ ≤ ⟨∇f(x⋆), x̂1 − x⋆⟩+ β

2
D2 ≤ D

√
4βf⋆ +

β

2
D2

to give the desired error rate.

Appendix B. Proof of Corollary 5

B.1. Supporting Lemmas

Lemma 10 Let X1, . . . , Xn be a martingale difference sequence adapted to the filtration Ft with
|Xt| ≤ b. Define V :=

∑n
t=1 E[X2

t |Ft−1]. For any δ < 1/e and n ≥ 3

P

[
n∑

t=1

Xt ≥ max{2
√
V , 3b

√
log 1/δ}

√
log 1/δ

]
≤ 4δ log n

Proof See Lemma 7 in [1]. □

Lemma 11 Let X1, . . . , Xn be independent, mean 0, random variables such that |Xt| ≤ b and
σ2
t := E[X2

t]. For all any 0 < δ < 1, we have

P

 n∑
t=1

Xt ≥ max


√√√√12

5

n∑
t=1

σ2
t , 4b

√
log 1/δ

√log 1/δ

 ≤ δ

Proof We know that Xt is (
6σ2

t
5 , 2b) sub-exponential. Using Corollary 3.17 from [9], we have

that

P

[
n∑

t=1

Xt ≥ t

]
≤ exp

(
−1

2
min

{
5t2

6
∑n

t=1 σ
2
t

,
t

2b

})
Setting the right hand side to δ and rearranging gives the desired result. □

Lemma 12 Let F be β-smooth, non-negative, and bounded above by B <∞. Let {x̂t}Tt=1 be the
iterates generated by running Algorithm 1 on Problem (1). For all t ∈ [T], with probability at least
1− ε, we have

f (x̂t)− f⋆ ≲ log

(
log n

ε

)[
1

n
+

√
f(x̂t−1)

n

]
Proof For this proof, let xt,i (or xi) denote the output of the ith iteration of the subalgorithm
Algorithm 2 in epoch t of Algorithm 1. We begin with the result from Lemma 9 and plug in the step
size schedule used by Algorithm 2. After applying the same arguments from (2) and (3), we obtain
the following bound

1

n

n∑
i=1

f(xi)− f⋆ ≤ 4βD2

n
+

3D
√
2β

n

√√√√ n∑
k=1

F (x̂t−1; st,i) +
1

n

n∑
i=1

⟨f ′(xi)− gi, xi − x⋆⟩.

13

ADAPTING TO INTERPOLATION

Bounding the second term We bound the
√∑n

k=1 F (x̂t−1; st,i) term first. Let Xi := F (x̂t−1; st,i)−
f(x̂t−1). We have that |Xi| ≤ B and σ2 = E[X2

i] ≤ 2Bf(x̂t−1). Using Lemma 11, we have that
with probability at least 1− ε/2

n∑
i=1

Xi ≤
√

24

5
Bnf(x̂t−1) log(2/ε) + 4B log(2/ε).

In particular, we have that

3D
√
2β

n

√√√√ n∑
k=1

F (x̂t−1; st,i) ≤
3D
√
2β√
n

√
f(x̂t−1) +

3D
√
2β

n

√√√√[n∑
k=1

F (x̂t−1; st,i)− f(x̂t−1)

]
+

≤ 3D
√
2β√
n

√
f(x̂t−1) +

3D
√
2β

n3/4

(
24

5
Bf(x̂t−1) log(2/ε)

)1/4

+
3D
√
2β

n
(4B log(2/ε))1/2

≤ 3D
√
2β

[(
1 +

24B log(2/ε)

5

)√
f(x̂t−1)

n
+

(√
4B log(2/ε) +

24B log(2/ε)

5

)
1

n

]
.

The first inequality comes from the fact that
√
x+ y ≤

√
x +
√
y for non-negative x and y. The

second inequality comes from our bound on
∑n

i=1Xi. The third inequality comes from the fact

that f(x̂t−1)1/4

n3/4 ≤ max(1/n,
√

f(x̂t−1)/n); we prove this fact by analyzing by cases on whether
f(x̂t−1) ≤ 1/n is true.

Bounding the third term Now we bound the last term. Let Yi := ⟨f ′(xi) − gi, xi − x⋆⟩. We
have that |Yi| ≤ B̃. Using Lemma 7 and Cauchy-Schwartz we see that B̃ = 4D

√
βB suffices. Let

F ′
i := σ({St,j}j∈[i]) be the σ-field generated by the first i iterations of Algorithm 2 of the tth epoch

Algorithm 1; in particular, xi ∈ F ′
i−1. We have σ2

i = E[Y 2
i |F ′

i−1] ≤ 16βD2f(xt) using Lemma 7.
Applying Lemma 10, we get that with probability at least 1− ε/2 (where ε < 3 log(n)/e),

n∑
i=1

Yi ≤ 2
√

log(8 log n/ε)

√√√√16βD2

n∑
i=1

f(xi) + 3B̃ log(8 logn/ε).

In particular we have

1

n

n∑
i=1

⟨f ′(xi)− gi, xi − x⋆⟩ ≤
2
√

16βD2 log(8 log n/ε)√
n

√√√√ 1

n

n∑
i=1

f(xi) +
3B̃ log(8 logn/ε)

n

Combining terms Combining everything and using a union bound, we get that with probability
at least 1− ε,

14

ADAPTING TO INTERPOLATION

1

n

n∑
i=1

f(xi)− f⋆ ≤
(
4βD2 + 3B̃ log(8 logn/ε) +

√
18βD2

(√
4B log(2/ε) +

24B log(2/ε)

5

))
1

n

+
√
18βD2

(
1 +

24B log(2/ε)

5

)√
f(x̂t−1)

n

+
2
√

16βD2 log(8 log n/ε)√
n

√√√√ 1

n

n∑
i=1

f(xi)− f⋆ + f⋆

=:
A1

n
+A2

√
f(x̂t−1)

n
+

A3√
n

√√√√ 1

n

n∑
i=1

f(xi)− f⋆ + f⋆

for A1, A2, A3 defined accordingly. We proceed by cases: either the left hand side is less than
A1
n + A2

√
f(x̂t−1)

n . Otherwise, if we let Q := A3/
√
n, C := A1/n + A2

√
f(x̂t−1)/n, and H :=

1
nnf(xi), rearranging, we get that the above inequality implies that H−C ≤ Q

√
H + f⋆. Because

H ≥ C in this case, we can square both sides and use the quadratic formula, to get the following
must hold

1

n

n∑
i=1

f(xi)− f⋆ ≤ C +
Q2

2
+

1

2

√
4CQ2 +Q4 + 4Q2f⋆

≤ (A1 +A2
3 +A3

√
A1 +A3

√
A2)

1

n
+ (A2 +A3 +A3

√
A2)

√
f(x̂t−1)

n

≲
log
(
logn
ε

)
n

+

(
log(1/ε) +

√
log

(
log n

ε

)
log(1/ε)

)√
f(x̂t−1)

n
.

The second inequality comes from an application of the fact
√
a+ b ≤

√
a +
√
b for a, b ≥ 0 and

a reapplication of the fact that f(x̂t−1)1/4

n3/4 ≤ max(1/n,
√
f(x̂t−1)/n). Online-to-batch conversion

(i.e., Jensen’s inequality) gives the desired result. □

B.2. Proof of result

The proof structure mirrors Theorem 4 except we use Lemma 12 with ε/T as ε in place of Lemma
3. The use of ε/T ensures that the probability of failure any epoch is at most ε by union bound. If
we let ut = f(x̂t)− f⋆ and further set T = log4(n) + 1, we have with probability at least 1− ε/T .

f (x̂t)− f⋆ ≲ log

(
log n

ε

)[
1

n
+

√
f(x̂t−1)

n

]
.

Using the previous notation, we have

ut+1 ≲ h(ut) := Q
√

ut + f⋆ +B

15

ADAPTING TO INTERPOLATION

where Q := log
(
logn
ε

)
/
√
n and B := log

(
logn
ε

)
/n. This corresponds to the following value of

u⋆ and ũ

u⋆ =
2B +Q2 +Q

√
Q2 + 4BQ2 + 4f⋆

2
≲ ũ :=

log2
(
logn
ε

)
n

+ log

(
log n

ε

)√
f⋆

n

The remaining steps proceed in the same way to give the desired result.

Appendix C. Proof of Theorem 6

We let ρ =

√
c0β log(K logn/ε)

n . We have by union bound that all K calls of ADASTAR succeed with
probability at least 1 − ε. Throughout this proof, we will do our analysis on this event that all K
calls of ADASTAR succeeds. From Theorem 5, we have that

f(xk)− f⋆ ≤ max
(
D2

kρ
2, Dkρ

√
f⋆
)

Without loss of generality, assume that f has κ-growth for some κ > 2. Due to growth, we have the
following guarantee:

λ

κ
dist(xk,X ⋆)κ ≤ f(xk)− f⋆ ≤ max(D2

kρ
2, Dkρ

√
f⋆)

=⇒ dist(xk,X ⋆) ≤
[κ
λ
max(D2

kρ
2, Dkρ

√
f⋆)
]1/κ

.

Colloquially, let k0 be the last iterate where we can guarantee that there exists x⋆ ∈ X ⋆ such
that x⋆ ∈ Xk0 . Formally, k0 is largest integer such that

Dk0+1 ≥
[κ
λ
max(D2

k0ρ
2, Dk0ρ

√
f⋆)
]1/κ

.

Phrased differently, if κ > 2, then it is the largest integer such that

Dk0 ≥ max

((
2κρ2κ/λ

) 1
κ−2 ,

(
2κρ
√
f⋆κ/λ

) 1
κ−1

)
.

in particular, we have that

k0 =

log2
 D0

max
(
(2κρ2κ/λ)

1
κ−2 ,

(
2κρ
√
f⋆κ/λ

) 1
κ−1

)

+ 1.

Because κ ≥
¯
κ, we have that K ≥ k0. Thus, we have

f(xK)− f⋆ = f(xk0+1)− f⋆ +
K∑

j=k0+2

[f(xj)− f(xj−1)]

The first term we bound as

f(xk0+1)− f⋆ ≤ max
(
D2

k0ρ
2, Dk0ρ

√
f⋆
)

16

ADAPTING TO INTERPOLATION

The second term we can bound as

K∑
j=k0+2

[f(xj)− f(xj−1)] ≤
K∑

j=k0+2

[f(xj)− min
x∈Xj

f(x)] ≤
K∑

j=k0+2

max
(
D2

jρ
2, Djρ

√
f⋆
)

≤
K∑

j=k0+2

max

((
Dk0

2j−k0

)2

ρ2,

(
Dk0

2j−k0

)
ρ
√

f⋆

)

≤ max
(
D2

k0ρ
2, Dk0ρ

√
f⋆
)

where the last inequality comes from the fact that
∑

j=k0+2 r
j ≤ 1/(1 − r) − 1 for r < 1. Thus,

we have that

f(xK)− f⋆ ≤ 2max
(
D2

k0ρ
2, Dk0ρ

√
f⋆
)
.

Note that by the definition of Dk0 , we have that

Dk0

2
= Dk0+1 ≤ max

((
2κρ2κ/λ

) 1
κ−2 ,

(
2κρ
√
f⋆κ/λ

) 1
κ−1

)
.

Evaluating by using the fact that max is upper bounded by addition, and examining dominating
terms (assuming that f⋆ is a constant gives the result.

17

	Introduction
	Our contributions
	Related Work

	Adapting to Interpolation Problems
	Adaptating to Growth and Interpolation
	Proof of thm:adaval
	Supporting Lemmas
	Proof of supporting Lemma 3

	Proof of result

	Proof of Corollary 5
	Supporting Lemmas
	Proof of result

	Proof of Theorem 6

