

000 001 002 003 004 005 RENF: RETHINKING THE DESIGN SPACE OF NEURAL 006 LONG-TERM TIME SERIES FORECASTERS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 Neural Forecasters (NFs) are a cornerstone of Long-term Time Series Forecasting
028 (LTSF). However, progress has been hampered by an overemphasis on architectural
029 complexity at the expense of fundamental forecasting principles. In this work, we
030 return to first principles to redesign the LTSF paradigm. We begin by introducing
031 a Multiple Neural Forecasting **Proposition that provides a theoretical motivation**
032 for our approach. We propose Boosted Direct Output (BDO), a novel forecasting
033 paradigm that synergistically hybridizes the causal nature of Auto-Regressive
034 (AR) models with the stability of Direct Output (DO). In addition, we stabilize
035 the learning process by smoothly tracking the model’s parameters. Extensive
036 experiments show that these principled improvements enable a simple MLP to
037 achieve state-of-the-art performance, outperforming recent, complex models in
038 nearly all cases, without any specific considerations in the area. Finally, we
039 empirically verify our proposition, establishing a dynamic performance bound
040 and identifying promising directions for future research. The code for review is
041 available at: <https://anonymous.4open.science/r/ReNF-A151>.
042
043

044 1 INTRODUCTION

045 The progression of any real-world event is a unique, non-repeatable process, often governed by
046 chaotic dynamics we cannot perfectly measure (Robertson, 1929) or describe. This implies that any
047 observed time series is just one stochastic sample from a complex underlying system. Consequently,
048 a fundamental open question persists: how can we best estimate the long-term future states depending
049 only on a single, observed historical sequence?

050 Deep Neural Networks (DNNs) have recently received increasing attention in Long-Term Time
051 Series Forecasting (LTSF) (Kim et al., 2025). Their ability to model high-dimensional, non-linear
052 dependencies makes the Neural Forecaster (NF) a promising tool for capturing complex temporal
053 dynamics and implicit dependencies (Laiz et al., 2024). However, the literature reveals several critical
054 problems that should be addressed to unlock the full potential of DNNs in this domain.

055 One confusing puzzle is that both advanced architectures, like transformer-based (Nie et al., 2023) and
056 simple linear-based models (Zeng et al., 2023), are reported to achieve state-of-the-art performance
057 interchangeably while their complexity varies significantly. This is partly because some datasets
058 prefer parsimonious (Deng et al., 2024) while the others have sufficient volume for complex models
059 to fit. But perhaps a deeper issue is the insufficient exploration of the networks’ intrinsic capabilities.
060 As indicated by (Lu et al., 2025), many NFs contain redundant components and are used selectively
061 depending on the property of the data, resulting in their full potential remaining untapped without
062 extensive tuning or regularizations.

063 Furthermore, the field’s focus has shifted towards designing specialized modules for properties that
064 are believed to be beneficial for LTSF, such as multi-scale (Wang et al., 2024b) and non-stationary
065 (Liu et al., 2022). However, the progress has become erratic because these architectural additions
066 often yield subtle gains while overlooking fundamental principles. We re-emphasize that progress in
067 this field becomes circuitous when we introduce advanced models merely according to the empirical
068 conclusions from other realms, but overlook the detailed instructions for their full utilization. A
069 primary and more direct path to advancement may lie in fundamentally improving the training
070 stability and generalization capabilities of NFs themselves.

054 Beyond model architecture, we find that the dominant Direct Output (DO) framework does not make
 055 full use of the available supervision. In a standard DO setup, an NF is trained to predict the entire
 056 future horizon in a single forward pass, meaning the label information is leveraged only once per
 057 optimization step (see Sec.2.3 for the detailed explanation). This encourages the model to finally
 058 learn a monolithic representation that maps the entire history to the entire future, without explicitly
 059 modeling the sequential dependencies within the forecast itself. We contend that this approach hinders
 060 the model from developing a more granular, causal understanding of the future, thereby limiting its
 061 full potential.

062 To address these fundamental shortcomings, this paper proposes a new LTSF framework, derived from
 063 first principles, that establishes a reliable and high-performing benchmark model. Our contributions
 064 are summarized as follows:

- 066 • We present a Multiple Neural Forecasting Proposition (MNFP) with empirical evaluations,
 067 which provides a formal motivation for employing multiple Neural Forecasters (NFs) in
 068 Long-Term Time Series Forecasting (LTSF).
- 069 • We redesign the forecasting architecture by introducing a novel, **streamlined forecasting**
 070 **paradigm that synergistically combines the strengths of Direct Output (DO) and Auto**
 071 **Regressive (AR) methods.** Furthermore, we apply the Exponential Moving Average (EMA)
 072 technique to effectively stabilize the convergence of Neural Forecasters.
- 073 • We conduct extensive experiments to demonstrate that a pure MLP-based forecaster, when
 074 trained with our paradigm, can significantly outperform recent state-of-the-art models
 075 on nearly all standard LTSF benchmarks. These results establish a new and efficient
 076 performance baseline for the field.

077 2 METHOD

080 In this section, we lay out the theoretical and methodological foundations of our work. We begin
 081 by introducing a core proposition that provides the theoretical underpinnings for our approach. To
 082 build intuition, we then illustrate our designs using a simple MLP architecture on carefully selected
 083 datasets that highlight the key effects of our methods. The comprehensive experimental setup and
 084 full results on benchmark datasets are detailed in Sec.3 and the Appendix.

086 2.1 PRELIMINARIES

088 **Neural Forecasting Machine (NFM).** In this work, we denote the NFM as a forecaster modeled by
 089 neural nets and satisfying that, given an input time series $X \in \mathbb{R}^{t_x}$, an NFM yields one and only one
 090 series $Y \in \mathbb{R}^{t_y}$ through the operation $Y = \text{NFM}[t_x, t_y, \theta, \gamma](X)$, where t_x and t_y denote the input
 091 and output lengths. The symbol θ denotes the model's parameters, and γ denotes the random state
 092 encompassing all random factors such as the computational environment and exogenous variables.

093 **Forecasting Task.** We characterize a time series forecasting task with four parameters
 094 X_h, X_f, \hat{Y}_f, Y_f , where X_h, X_f denote the history and future portions of an *observed time series*.
 095 Y_f denotes the real unobserved future data, while \hat{Y}_f is an empirical forecast generated by an NFM
 096 with input X_f . Since we treat the observed data X as a noisy sample of the true underlying signal,
 097 the ultimate target is to learn a mapping from the history input X_h to a prediction \hat{Y}_f that best
 098 approximates the Y_f .

099 2.2 THEORETICAL MOTIVATION FOR MULTIPLE FORECASTS

100 The following proposition provides the theoretical motivation for our work. For simplicity, we present
 101 the proof for the univariate case; however, the proposition can be readily extended to the multivariate
 102 setting.

103 **Proposition 1** (Multiple Neural Forecasting Proposition (MNFP)). *In the context of standard machine*
 104 *learning. Given a NFM $\Phi(t_x, t_y, \theta, \gamma)$ and an observed time series $X_h = (x_1, x_2, \dots, x_n)$ where*
 105 *each element x_t is drawn from a true distribution $p_t(\mu_t, \sigma_t^2)$ with mean μ and standard deviation σ_t .*
 106 *One can generate a series by Φ : $\hat{Y}_f = (\hat{y}_1, \hat{y}_2, \dots, \hat{y}_T)$ with \hat{y}_t drawn from the expected forecast*

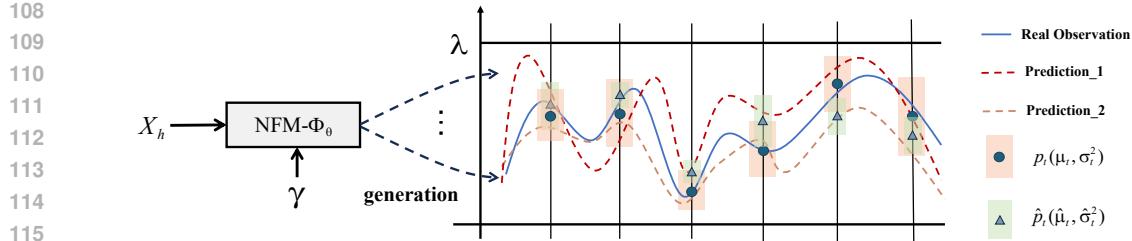


Figure 1: A single trained NFM Φ_θ can generate multiple forecasts from a fixed input X_h under various states γ . These forecasts are expected to follow the empirical process $(\hat{p}_t, t = 1, 2, \dots)$ approximated by the NFM with the observed data. The model-expected process is distinguished from the real data distribution $(p_t, t = 1, 2, \dots)$ by a bias.

distribution $\hat{p}(\hat{\mu}_t, \hat{\sigma}_t^2)$ such that \hat{Y}_f approaches Y_f almost surely, and the error between \hat{Y}_f and X_f is bounded.

Specifically, a trivial but informative upper bound on the l_1 error is given by $T(\lambda + \sqrt{c}(b + \sigma_t))/\sqrt{c}$ with the following parameters/conditions:

- (A1) *The objective time series with finite length is bounded by a positive real constant λ .*
- (A2) *The NFM generates candidate series $\{\hat{Y}_f^{(i)}\}_{i=1}^{c>1}$ under various θ^i or random states γ^i .*
- (A3) *The predictive bias of the NFM is bounded by up to $\sup_t |\hat{\mu}_t - \mu_t| = b$.*

The proof and further analysis can be found in Appendix C. To interpret, the shown bound value provides us with some intuitions: for instance, the forecasting error of the NFM naturally grows with the forecast horizon T and the data range λ , because of the expanded solution space. We emphasize that **condition A3** distinguishes between the observed real series and the expected true series. This frames the observed data not as the absolute ground truth, but as a single, near-optimal sample from the underlying stochastic process. While it is feasible to theoretically approach the expected forecast, the empirical gap between any observation x_t and the true expectation μ_t is practically irreducible.

The most critical insight of the proposition is that an accurate forecast is theoretically approachable even with a rather weak generator, provided a sufficiently large number of candidate outputs is produced. This proposition is rooted in the well-established theory of ensemble methods (Bates & Granger, 1969), which demonstrates that combining multiple diverse estimators can lead to a more accurate and robust final estimate. Furthermore, higher-quality historical data and a more powerful NFM (which reduces the estimation error b) both serve to constrain the solution space, leading to better predictions. Inspired by this, we focus on reducing the total error variance by increasing c , which has been largely overlooked in the recent pursuit of complex, monolithic architectures.

Post combination of multiple forecasts. Given a set of candidate outputs from an NFM, there exist combinatorial methods to synthesize a single, integrated forecast that would be more accurate than any individual candidate. We can represent such a method as an unknown functional g_c that produces the post-combined forecast as:

$$\hat{Y}_{pc} = g_c(\{\hat{Y}_f^{(i)}\}_{i=1}^c) \quad (1)$$

In our experiments, we will empirically show the potential of this combination on real-world datasets. In practice, however, directly creating an optimal combination function without access to future information is a significant challenge (Clemen, 1989). Therefore, designing a framework that can implicitly and effectively leverage these multiple forecasts is one of the key principles guiding our subsequent work.

2.3 NOVEL FORECASTING PARADIGM

The current frameworks in LTSF involve two main strategies: 1-step Auto Regressive (AR(1)) and Direct Output (DO). While AR models perform consistently with recurrent state space models like RNNs (Siami-Namini et al., 2019), they are known

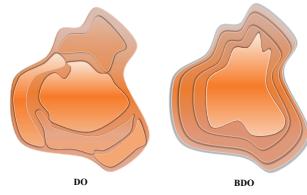
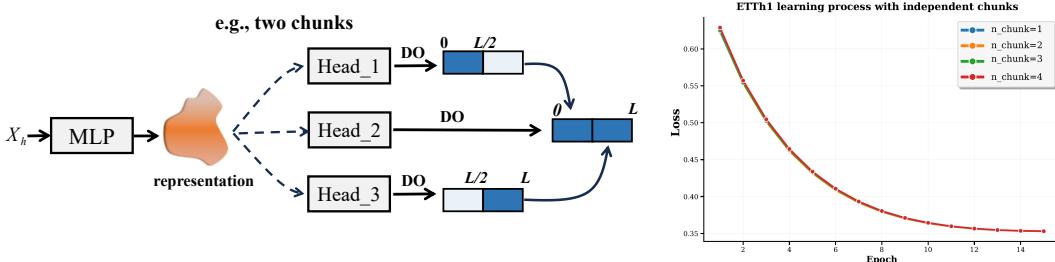


Figure 2: Features of DO and BDO.

162 to suffer from significant error accumulation in long-horizon forecasting and are empirically evidenced
 163 to largely fall behind DO in LTSF (Zhou et al., 2021), making a strong reason for the dominant
 164 position of DO in LTSF. However, the shortcomings of the DO approach itself have been largely
 165 overlooked. We argue that despite its simplicity, the most significant weakness of DO, particularly
 166 when compared to AR, is its lack of inherent causality.

167 To illustrate this, we conduct a simple experiment in Fig.3: we consecutively split a forecast of
 168 length L into m non-overlapped sub-forecasts with length L/m , and each part is predicted by an
 169 independent linear head from a shared representation. The final forecast is a concatenation of these
 170 segments. Empirically, it turns out that the performance of this multi-headed model is nearly identical
 171 to a standard DO model with a single head predicting the full horizon. This result suggests that the
 172 NF is unaware of the temporal relationships within the future sequence and makes the prediction
 173 without considering the distance/interval between the input history and output future. As a result, it
 174 learns to forecast each segment independently, which is fundamentally anti-intuitive.



184 Figure 3: We make the forecast by applying independent heads on several non-overlapped chunks.
 185 The right figure shows the learning process in different settings.

186 According to this observation, we propose a new forecasting paradigm as follows,
 187

188 **Definition 1** (Boost Direct Output (BDO)). *Given a history time series $T_x = \{x_1, x_2, \dots, x_h\}$ (abbr. $T_x\{1 : h\}$) in length h , the NF recursively generates an estimation \hat{T}_y of the future object
 189 $T_y = \{y_1, y_2, \dots, y_L\}$ over N -steps. Let $\hat{T}_y\{1 : h_{n-1}\}$ be the forecast at step $n-1$, then the
 190 forecast at step n is:*

$$192 \hat{T}_y\{1 : h_n\} = NF([T_x, \hat{T}_y\{1 : h_{n-1}\}]), n = 1, 2, \dots, N; \quad (2)$$

194 where $h_0 = 1$ and $h_N = y_L$. $[\cdot, \cdot]$ indicates the concatenation along the temporal dimension, L is
 195 the entire prediction length. In our implementation, we evenly split the forecasting length into n
 196 segments for convenience, i.e., in Eq. 2, $h_N = h * N$, where N is a factor of L .

197 Intuitively, BDO recursively generates forecasts for progressively longer horizons, reusing predictions
 198 from previous stages. This incorporates an AR-like causal structure into the forecasting process,
 199 while retaining the patch-wise output characteristic of DO that mitigates significant error accumu-
 200 lation. A balance between these two properties can be achieved by properly setting the number
 201 of recursive stages, N . Furthermore, since short-term forecasting is generally an easier task than
 202 long-term forecasting, BDO effectively creates a learning curriculum and **tends to build hierarchical
 203 representations as illustrated in Fig.2**. We can reasonably expect this paradigm to outperform both
 204 pure AR and pure DO strategies, especially in the challenging LTSF setting.

206 2.4 MODEL ARCHITECTURE

208 We construct our NFs using only MLP and linear layers for three primary reasons: 1) As foundational
 209 deep learning modules, improvements demonstrated on them are broadly applicable and convincing.
 210 2) Their computational efficiency (low FLOPs) facilitates rapid experimentation and verification. 3)
 211 Recent work has shown that simple MLP-based architectures are often sufficient for a wide range of
 212 forecasting tasks (Ekambaram et al., 2023).

213 In principle, we build two NF variants, ReNF- α and ReNF- β , which differ in their degree of non-
 214 linearity to better handle datasets of varying complexity. The overall architecture is shown in Fig.4.
 215 We stack multiple blocks to adopt the BDO strategy. Each consists of a linear layer for representation
 216 projection, followed by an MLP for nonlinear transformation. Each block is also equipped with

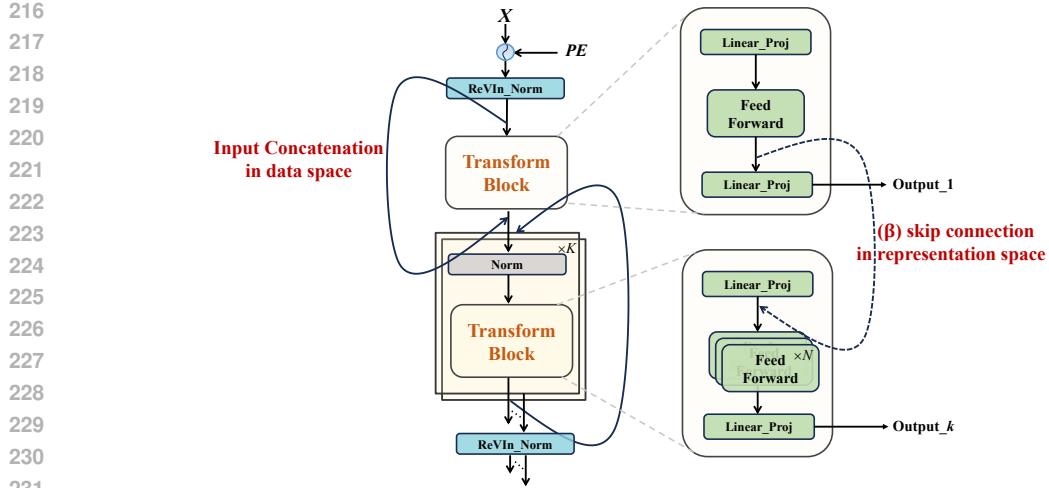


Figure 4: Model Structure of ReNF.

a dedicated linear head that maps the internal representation back to the data space, steering it to function as a sub-forecaster for horizon h_j , $j = 0, 1, \dots, k$. In the recursive BDO process, the output of each sub-forecaster is concatenated with the original input data to form the new input for the next one. To allow for deeper representation flow, the ReNF- β variant also incorporates skip-connections between the representation spaces of consecutive blocks.

We employ ReVIN (Kim et al., 2021) as the pre-normalization for the initial input data to reduce the distribution discrepancy between the training and evaluation phases. For consistency, we also apply pre-normalizations to the input of each sub-forecaster. Additionally, we apply dropout before the initial linear projection to prevent the model from being overly dependent on the history observation and the concatenated information in the data space.

The general equation for the transformation process within each sub-forecaster can be written as follows,

$$\text{ReNF_Block}(T) = \text{Proj}(\text{Transform}(\text{Proj}(\text{Norm}(\text{Drop}(T))))) \quad (3)$$

where T denotes the input series, and all the projections are performed on the temporal dimension.

2.5 LEARNING OBJECTIVE

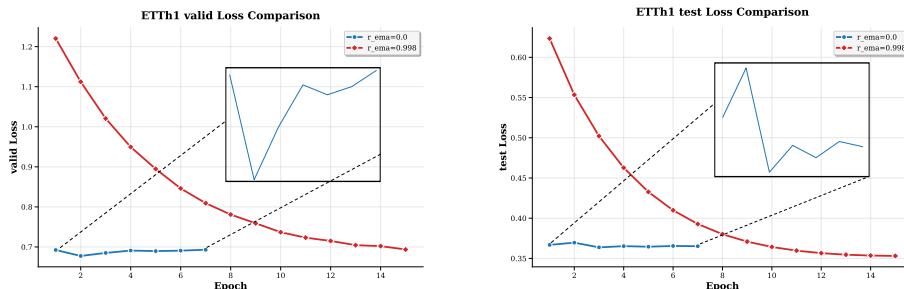
To train a deterministic NF, we adopt the hybrid loss function as used in (Liu et al., 2025a), which is a convex combination of the Mean Absolute Error (MAE) in both the time and frequency domains. The frequency-domain component has been shown to be effective at reducing spurious autocorrelations in the labels (Wang et al., 2024a).

Our BDO framework uniquely generates multiple outputs of varying lengths, enabling us to apply this loss at each forecasting stage. This hierarchical supervision allows us to fully leverage the label information at multiple scales, encouraging the model to build causally structured and homogeneous representations rather than the disconnected ones typical of standard DO forecasts. In the words of our MNFT, this multi-level supervision provides richer feedback and mutual information from the observed labels, thereby constraining the solution space more effectively.

In the BDO paradigm, the quality of early, short-term forecasts is critical, as errors at these stages may still propagate and degrade the performance of subsequent long-term forecasts. To ensure a stable foundation, we therefore place heavier weights on the losses computed at earlier stages (i.e., for shorter forecast horizons). The complete loss function is expressed as follows:

$$\text{loss} = \sum_{n=1}^N (\gamma/n) * (\alpha * \|\hat{Y}_f^{(n)} - X_f^{(n)}\|_1 + (1 - \alpha) * \|\text{Freq}(\hat{Y}_f^{(n)}) - \text{Freq}(X_f^{(n)})\|_1) \quad (4)$$

where $\|\cdot\|_1$ denotes the l_1 norm, γ and α are predefined coefficients. $\text{Freq}(\cdot)$ represents the discrete Fourier transform and $\hat{Y}_f^{(n)}$ denotes the n -th sub-forecast corresponding to the n -th piece of X_f . A more in-depth analysis of this loss function is provided in Appendix D.

270 2.6 SMOOTHING THE LEARNING FOR TIME SERIES
271283 Figure 5: Variation of valid and test loss before and after applying EMA smoothing. The valid loss
284 and test loss are not consistent during the learning process of NFs without smoothing.
285

286 Notably, training on standard benchmark datasets is often unstable, partly due to sparse or redundant
287 information. The non-stationary nature of real-world time series, combined with chronological
288 data splitting, leads to both internal (batch-to-batch) and external (train/validation/test) distribution
289 mismatches. This causes the optimization path to be heterogeneous, rendering the learning process
290 for NFs ineffective. Specifically, internal data redundancy can cause the model to overfit repeated or
291 spurious patterns (Liu et al., 2025a), harming generalization, while external distribution shift creates
292 inconsistencies across the different phases of training. While normalization techniques like RevIN
293 address the train-test shift, a critical problem remains between validation and testing.

294 On many datasets, particularly those with smaller volumes, the validation and test losses exhibit
295 significantly different, and at times conflicting, dynamics during training. This issue invalidates
296 the early stopping criterion: learning steps become ineffective, and suboptimal models are saved,
297 preventing a true assessment of a model’s capabilities. This is especially problematic when comparing
298 models of varying complexities, which naturally have different optimization trajectories.

299 To mitigate these unexpected effects, we propose smoothing the training trajectory by employing a
300 “shadow” model for evaluation. We achieve this efficiently using an Exponential Moving Average
301 (EMA) to track the parameters of the online model, a technique proven effective in self-supervised
302 learning in self-supervised learning (LeCun, 2022) and generative models (Song et al., 2020). Specif-
303 ically, let θ be the parameters of the online model being trained, and θ' be the parameters of the
304 shadow model. Then the shadow model’s parameters are upgraded as follows at each iteration.

$$\theta'_{\text{new}} = \alpha * \theta'_{\text{prev}} + (1 - \alpha) * \theta_{\text{current}} \quad (5)$$

305 where α is the EMA decay rate. This shadow model is then used for all evaluations. As shown
306 in Fig. 5, this technique effectively smooths the learning curves and mitigates the inconsistency
307 between validation and test performance. By providing a more stable and reliable training signal,
308 EMA prolongs the effective learning period and enables the model to converge to better local minima,
309 achieving improved generalization.
310

311 3 EXPERIMENT
312

313 **Baselines and Datasets.** We compare our model with a suite of recent state-of-the-art methods,
314 including TimeBridge (Liu et al., 2025a), DUET (Qiu et al., 2025), TimeDistill (Ni et al., 2025),
315 Timer-XL (Liu et al., 2025b), iTransformer (Liu et al., 2024), TimeMixer (Wang et al., 2024b),
316 PatchTST (Nie et al., 2023), Crossformer (Zhang & Yan, 2023), and Dlinear (Zeng et al., 2023).
317 We use widely used benchmark datasets in this area, including electricity (ETTh1, ETTh2, ETTm1,
318 ETTm2, Electricity), environment (Weather), energy (Solar-Energy), and transportation (Traffic).
319 **Supplementary datasets for the evaluation on short-term forecasting** and the detailed descriptions of
320 these datasets are included in Appendix B.
321

322 **Setups.** All experiments were conducted on a single NVIDIA 4090 GPU with 24GB of memory, using
323 the Adam optimizer (Kingma & Ba, 2014) and a fixed random seed of 2021 for reproducibility. Results
324 for all baseline models were reproduced using their official source code and optimal configurations.

324 For our model, ReNF, we searched for the optimal learning rate in the range from 0.0001 to 0.005,
 325 the EMA decay rates in the range from 0.99 to 0.999, and the number of layers from 2 to 8. We apply
 326 ReNF- α to ETTh1 and ETTh2 datasets, and ReNF- β to others. The look-back window of ReNF is
 327 searched over $\{336, 512, 720\}$ for the best performance. The drop_last bug is corrected following the
 328 TFB benchmark (Qiu et al., 2025).

330 3.1 MAIN RESULT

332 The results, presented in Table 2, demonstrate a powerful conclusion: without resorting to
 333 complex, specialized modules for multi-resolution, periodicity, or cross-variate dependencies,
 334 a simple MLP-based model can achieve exceptional performance. **By focusing instead on**
 335 **fundamentally improving the forecasting paradigm and stabilizing the training process,**
 336 our MLP model-ReNF sets a new state-of-the-art. Overall,
 337 ReNF surpasses all leading 2024 models by a significant
 338 margin and outperforms even the **very** competitive 2025
 339 SOTA methods in almost all cases. This provides strong
 340 evidence for the effectiveness of our proposed techniques.

341 However, we do not claim that existing specialized tech-
 342 niques are redundant. Rather, as discussed in Sec.2.6, many
 343 of these architectural designs were evaluated within unsta-
 344 ble training frameworks, suggesting that their true effects
 345 may need tedious re-evaluation, which may be a promising
 346 future work. For instance, on the complex Traffic dataset,
 347 while ReNF shows significant improvement over many
 348 baselines, it does not surpass the MSE score of the large
 349 Transformer-based model, TimeBridge. We compare the model complexity in FLOPs and params
 350 between the most competitive models in the Table 1, showing that ReNF reduces 20x the complexity
 351 in FLOPs compared to TimeBridge with the Traffic dataset. This suggests that more complex models
 352 might still work better on datasets with high non-linearity.

Model	ReNF	TimeBridge	DUET
Weather	Params (MB) FLOPs (GB)	0.200 0.004	0.887 4.262
ETTm2	Params (MB) FLOPs (GB)	0.393 0.003	0.460 1.604
Traffic	Param (MB) FLOPs (GB)	21.476 22.813	12.431 479.231
			9.910 15.575

Table 1: Efficiency comparison of ReNF, TimeBridge, and DUET. All metrics are averaged across the four prediction lengths.

Models	ReNF ours	TimeBridge (2025a)	DUET (2025)	TimeDistill (2025)	Timer-XL (2025b)	iTransformer (2024)	TimeMixer (2024b)	PatchTST (2023)	Crossformer (2023)	DLinear (2023)
Metric	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE
Weather	0.214 0.247	0.220 0.250	0.219 0.253	0.221 0.269	0.240 0.273	0.232 0.269	0.226 0.264	0.224 0.262	0.232 0.294	0.242 0.293
Electricity	0.145 0.237	0.152 0.247	0.157 0.248	0.157 0.254	0.155 0.246	0.163 0.258	0.185 0.284	0.171 0.271	0.171 0.263	0.167 0.264
Traffic	0.365 0.245	0.357 0.248	0.393 0.256	0.387 0.271	0.374 0.255	0.395 0.279	0.409 0.279	0.397 0.275	0.522 0.282	0.418 0.287
Solar	0.176 0.214	0.183 0.219	0.195 0.214	0.184 0.242	0.198 0.249	0.202 0.262	0.193 0.252	0.200 0.284	0.205 0.233	0.224 0.286
ETTh1	0.331 0.364	0.349 0.380	0.338 0.369	0.348 0.380	0.359 0.382	0.361 0.390	0.356 0.380	0.349 0.381	0.464 0.456	0.356 0.379
ETTh2	0.243 0.301	0.247 0.305	0.248 0.308	0.250 0.312	0.271 0.322	0.269 0.327	0.257 0.318	0.256 0.314	0.501 0.505	0.259 0.325
ETTh1	0.391 0.416	0.401 0.426	0.401 0.420	0.430 0.441	0.409 0.430	0.439 0.448	0.427 0.441	0.419 0.436	0.439 0.461	0.425 0.439
ETTh2	0.327 0.379	0.345 0.386	0.336 0.385	0.345 0.395	0.352 0.402	0.370 0.403	0.349 0.397	0.351 0.395	0.894 0.680	0.470 0.468

Table 2: Results of long-term forecasting of hyperparameter searching. All results are averaged across four different prediction lengths: $\{96, 192, 336, 720\}$. The best and second-best results are highlighted in red and blue, respectively. Full results are listed in Appendix E.

368 3.2 ABLATION STUDY

370 **Effect of EMA.** To analyze the impact of EMA, we recorded the evaluation dynamics of ReNF with
 371 and without our smoothing technique. The results, shown in Fig. 6, clearly demonstrate EMA’s role.
 372 It is notable that we also record the variation of test loss as evidence for the effect of improving the
 373 generalization ability.

374 First, on smaller or less stable datasets like ETTh2, EMA mitigates spurious overfitting and stabilizes
 375 the learning curves. This provides a more reliable signal for early stopping and prolongs the effective
 376 training period. Second, on large, high-quality datasets such as Electricity, the choice of EMA decay
 377 rate can influence performance. By selecting an appropriate rate, the generalization ability of the NF
 can be substantially enhanced. Full numerical results for all datasets are available in the Appendix.

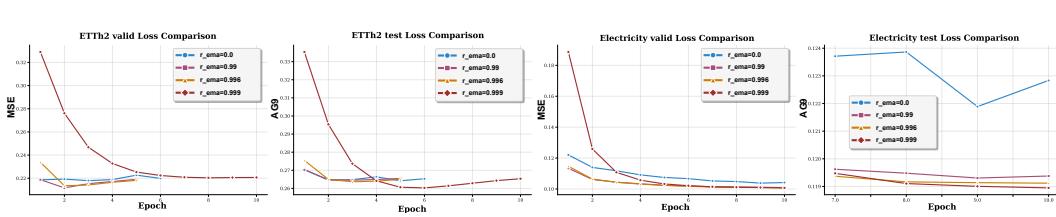


Figure 6: Effect of the EMA smoothing on training and test phase.

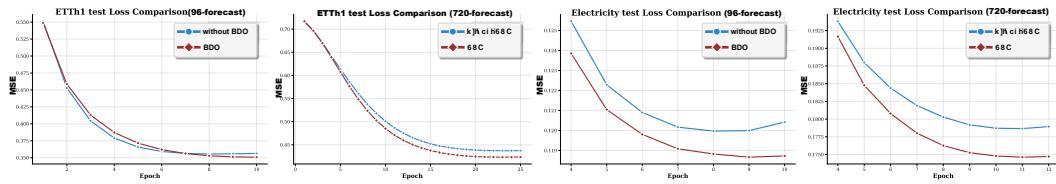


Figure 7: Effect of the BDO forecast.

Effect of BDO. We investigate the effect of the BDO paradigm with the following settings: 1) Keep the depth of ReNF, but disable the recursive input concatenation and apply the loss function only to the final output; 2) Directly change the number of layers/sub-forecasts. By config.1, the BDO reduces to DO with the model structure unchanged. The results, shown in Fig. 7, demonstrate that even on the ETTh1 dataset, which has limited data and is difficult to optimize with deep representations, our BDO strategy can still yield superior performance, especially for very long-term forecasts. This finding empirically supports our claim, derived from proposition 2.2, that leveraging multiple, hierarchically-generated sub-forecasts provides valuable mutual information that enhances the final prediction.

Furthermore, it is shown clearly in Fig. 8(a) that the performance of ReNF with the BDO strategy can consistently improve as K increases. In stark contrast, the performance of the DO model stagnates or degrades with added depth. This difference highlights BDO’s ability to effectively utilize deeper architectures. This meaningful phenomenon suggests that our paradigm may unlock a new, more effective scaling law for LTSF models. Diverse examples are shown in the Table 3 and the Appendix E.

3.3 EMPIRICAL EVALUATION OF THE PROPOSITION

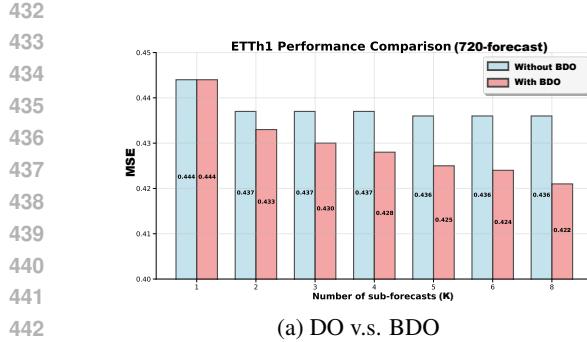
Layer	K=1	K=2	K=3	K=4	K=5	K=6
Weather	MSE 0.311	0.309	0.307	0.307	0.307	0.307
	MAE 0.322	0.320	0.319	0.319	0.319	0.319
ETTh1	MSE 0.411	0.408	0.407	0.406	0.404	0.401
	MAE 0.411	0.409	0.408	0.407	0.407	0.407
Traffic	MSE 0.426	0.415	0.410	0.406	0.403	0.402
	MAE 0.281	0.274	0.272	0.270	0.267	0.267

Table 3: 720-length forecast with varying number of layers (sub-forecasts).

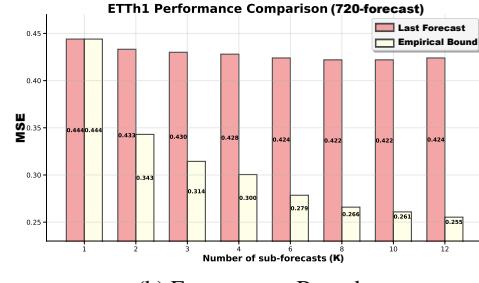
Dataset		ETTh1	ETTh2	Weather	Electricity	Solar	Traffic
ReNF	Last Forecast	0.331	0.243	0.391	0.327	0.214	0.145
	Empirical Bound	0.225	0.201	0.270	0.252	0.165	0.100

Table 4: Comparison between the last single forecast and the optimal post-combined forecast of ReNF. The shown metrics are MSE and are averaged across the four prediction lengths.

To empirically evaluate our Multiple Neural Forecasting Proposition, we implement the post-combination strategy described in Sec. 2.2. This requires defining a combination function, g_c . While finding an optimal solution without future knowledge is difficult, we can establish a theoretical upper bound on performance. Given the ground truth labels, a trivial yet optimal strategy is to select, at each timestep, the forecast value from among all candidates that has the smallest error. By applying this “oracle” combination, we aim to explore two points: 1) to quantify the potential accuracy improvement achievable through post-combination, thereby establishing a dynamic empirical bound for our forecasting model; and 2) to verify that this empirical bound behaves in a manner consistent with the intuitions of the MNFP 2.2.



(a) DO v.s. BDO

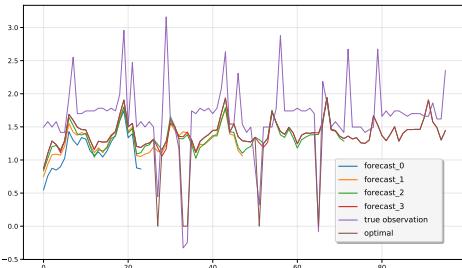


(b) Forecast v.s. Bound

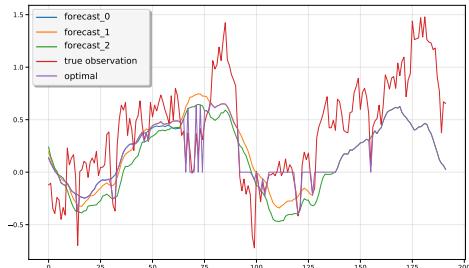
Figure 8: Performance variation with different numbers of sub-forecasts K . (a). Comparison of using DO or BDO. (b).Comparison between the best forecast and the empirical bound of ReNF.

Table 4 presents the performance of this oracle post-combination strategy, revealing a significant gap between the final ReNF forecast and the empirically optimal combination. While this oracle performance is unattainable in practice, the resulting empirical bound is highly informative. On one hand, it indicates that any single forecast is suboptimal and that powerful combinatorial strategies for improving predictions must exist (a promising direction for future work). On the other hand, it shows that we are still far from perfectly leveraging the information contained within the multiple sub-forecasts. This gap is precisely what motivates our BDO paradigm, which is designed to help the neural network implicitly learn a more effective combination function g_c .

Furthermore, Fig. 8(b) shows how this empirical bound varies with the number of sub-forecasts K . The bound consistently decays as K increases, even when the model’s performance saturates. This result aligns perfectly with the core insight from MNFP: the theoretical performance limit improves as the number of candidate forecasts grows.



(a) 96-prediction on the Electricity dataset



(b) 192-prediction on the ETTm2 dataset

Figure 9: Visualization of forecasting results of ReNF. The figure shows multiple outputs of ReNF in different layers, along with the result of applying optimal post-combination.

In a nutshell, our evaluation of the MNFP clarifies two primary roles for Neural Networks in this domain. First, NNs should be leveraged to learn a powerful post-combination function over multiple candidate forecasts. Second, more powerful base forecasters must be developed to better approximate the true data-generating distribution, directly reducing the predictive bias b as identified in our proposition 2.2.

4 CONCLUSION

We propose a fundamental proposition to support the mechanism of multiple forecasts. Based on this proposition, we introduce a novel paradigm that combines the advantages of current forecasting methods, enabling more accurate predictions in a hierarchical representation space. To remedy training instability, we leverage EMA to smooth the learning process of neural forecasters. Our empirical results show that with these techniques, a simple MLP can outperform recent SOTA models with significantly less complexity. The value of our proposition is also evaluated and confirmed by experimental results, clearly identifying the role of the Neural Network in building the Long-Term Time Series forecasters.

486

5 REPRODUCIBILITY STATEMENT

488 We have put a lot of effort into ensuring the reproducibility of this work, including the code in the
 489 anonymous repository <https://anonymous.4open.science/r/ReNF-A151>, a complete
 490 data description in the Appendix B, and clear explanations of the assumptions and proof of the
 491 proposition in the Appendix C.

493

REFERENCES

495 John M Bates and Clive WJ Granger. The combination of forecasts. *Journal of the operational*
 496 *research society*, 20(4):451–468, 1969.

497 Leo Breiman. Bagging predictors. *Machine learning*, 24(2):123–140, 1996.

499 Cristian Challu, Kin G. Olivares, Boris N. Oreshkin, Federico Garza Ramirez, Max Mergenthaler-
 500 Canseco, and Artur Dubrawski. Nhits: neural hierarchical interpolation for time series forecasting.
 501 2023. doi: 10.1609/aaai.v37i6.25854. URL <https://doi.org/10.1609/aaai.v37i6.25854>.

503 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the*
 504 *22nd ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 785–794,
 505 2016.

506 Robert T Clemen. Combining forecasts: A review and annotated bibliography. *International journal*
 507 *of forecasting*, 5(4):559–583, 1989.

509 Adrien Cortés, Rémi Rehm, and Victor Letzelter. Winner-takes-all for multivariate probabilistic time
 510 series forecasting. *arXiv preprint arXiv:2506.05515*, 2025.

511 Jinliang Deng, Feiyang Ye, Du Yin, Xuan Song, Ivor Tsang, and Hui Xiong. Parsimony or capability?
 512 decomposition delivers both in long-term time series forecasting. *Advances in Neural Information*
 513 *Processing Systems*, 37:66687–66712, 2024.

515 Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam.
 516 Tsmixer: Lightweight mlp-mixer model for multivariate time series forecasting. In *Proceedings of*
 517 *the 29th ACM SIGKDD conference on knowledge discovery and data mining*, pp. 459–469, 2023.

518 Jongseon Kim, Hyungjoon Kim, HyunGi Kim, Dongjun Lee, and Sungroh Yoon. A comprehensive
 519 survey of deep learning for time series forecasting: architectural diversity and open challenges.
 520 *Artificial Intelligence Review*, 58(7):1–95, 2025.

521 Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
 522 versible instance normalization for accurate time-series forecasting against distribution shift. In
 523 *International conference on learning representations*, 2021.

525 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 526 *arXiv:1412.6980*, 2014.

527 Dilfira Kudrat, Zongxia Xie, Yanru Sun, Tianyu Jia, and Qinghua Hu. Patch-wise structural loss for
 528 time series forecasting. *arXiv preprint arXiv:2503.00877*, 2025.

530 Rodrigo González Laiz, Tobias Schmidt, and Steffen Schneider. Self-supervised contrastive
 531 learning performs non-linear system identification. *arXiv preprint arXiv:2410.14673*, 2024.

532 Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. *Open*
 533 *Review*, 62(1):1–62, 2022.

534 Peiyuan Liu, Beiliang Wu, Yifan Hu, Naiqi Li, Tao Dai, Jigang Bao, and Shu-tao Xia. Timebridge:
 535 Non-stationarity matters for long-term time series forecasting. *arXiv preprint arXiv:2410.04442*,
 536 2025a.

538 Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
 539 the stationarity in time series forecasting. *Advances in neural information processing systems*, 35:
 9881–9893, 2022.

540 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 541 itransformer: Inverted transformers are effective for time series forecasting. *arXiv preprint*
 542 *arXiv:2310.06625*, 2024.

543

544 Yong Liu, Guo Qin, Xiangdong Huang, Jianmin Wang, and Mingsheng Long. Timer-xl: Long-context
 545 transformers for unified time series forecasting. *arXiv preprint arXiv:2410.04803*, 2025b.

546

547 Yihang Lu, Yangyang Xu, Qitao Qin, and Xianwei Meng. Timecapsule: Solving the jigsaw puzzle of
 548 long-term time series forecasting with compressed predictive representations. In *Proceedings of the*
 549 *31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining* V. 2, pp. 1987–1998,
 2025.

550

551 Dhruv D Modi and Rong Pan. Enhancing transformer-based foundation models for time series
 552 forecasting via bagging, boosting and statistical ensembles. *arXiv preprint arXiv:2508.16641*,
 553 2025.

554

555 Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. *Foundations of machine learning*. MIT
 556 press, 2018.

557

558 Hanh H Nguyen and Christine W Chan. Multiple neural networks for a long term time series forecast.
 559 *Neural Computing & Applications*, 13(1):90–98, 2004.

560

561 Juntong Ni, Zewen Liu, Shiyu Wang, Ming Jin, and Wei Jin. Timedistill: Efficient long-term time
 562 series forecasting with mlp via cross-architecture distillation. *arXiv preprint arXiv:2502.15016*,
 2025.

563

564 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
 565 words: Long-term forecasting with transformers. *arXiv preprint arXiv:2211.14730*, 2023.

566

567 Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis
 568 expansion analysis for interpretable time series forecasting. *arXiv preprint arXiv:1905.10437*,
 2019.

569

570 Xihao Piao, Zheng Chen, Taichi Murayama, Yasuko Matsubara, and Yasushi Sakurai. Fredformer:
 571 Frequency debiased transformer for time series forecasting. In *Proceedings of the 30th ACM*
 572 *SIGKDD conference on knowledge discovery and data mining*, pp. 2400–2410, 2024.

573

574 Xiangfei Qiu, Xingjian Wu, Yan Lin, Chenjuan Guo, Jilin Hu, and Bin Yang. Duet: Dual clustering
 575 enhanced multivariate time series forecasting. In *Proceedings of the 31st ACM SIGKDD Conference*
 576 *on Knowledge Discovery and Data Mining* V. 1, pp. 1185–1196, 2025.

577

578 Howard Percy Robertson. The uncertainty principle. *Physical Review*, 34(1):163, 1929.

579

580 Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. The performance of lstm and bilstm
 581 in forecasting time series. In *2019 IEEE International conference on big data (Big Data)*, pp.
 582 3285–3292. IEEE, 2019.

583

584 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 585 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
 586 *arXiv:2011.13456*, 2020.

587

588 Hao Wang, Licheng Pan, Zhichao Chen, Degui Yang, Sen Zhang, Yifei Yang, Xinggao Liu, Haoxuan
 589 Li, and Dacheng Tao. Fredf: Learning to forecast in the frequency domain. *arXiv preprint*
 590 *arXiv:2402.02399*, 2024a.

591

592 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang, and
 593 Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. *arXiv preprint*
 594 *arXiv:2405.14616*, 2024b.

595

596 Shiyu Wang, Jiawei Li, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Shengtong Ju, Zhixuan
 597 Chu, and Ming Jin. Timemixer++: A general time series pattern machine for universal predictive
 598 analysis. In *ICLR*, 2025.

594 Zhijian Xu, Ailing Zeng, and Qiang Xu. Fits: Modeling time series with $10k$ parameters. *arXiv*
 595 *preprint arXiv:2307.03756*, 2024.
 596

597 Wang Xue, Tian Zhou, Qingsong Wen, Jinyang Gao, Bolin Ding, and Rong Jin. Card: Channel
 598 aligned robust blend transformer for time series forecasting. *arXiv preprint arXiv:2305.12095*,
 599 2023.

600 Wang Xue, Tian Zhou, Qingsong Wen, Jinyang Gao, Bolin Ding, and Rong Jin. Card: Channel
 601 aligned robust blend transformer for time series forecasting. *arXiv preprint arXiv:2305.12095*,
 602 2024.

603 Kun Yi, Jingru Fei, Qi Zhang, Hui He, Shufeng Hao, Defu Lian, and Wei Fan. Filternet: Harnessing
 604 frequency filters for time series forecasting. *Advances in Neural Information Processing Systems*,
 605 37:55115–55140, 2024.

606 Guoqi Yu, Jing Zou, Xiaowei Hu, Angelica I Aviles-Rivero, Jing Qin, and Shujun Wang. Revitalizing
 607 multivariate time series forecasting: learnable decomposition with inter-series dependencies and
 608 intra-series variations modeling. In *Proceedings of the 41st International Conference on Machine
 609 Learning*, pp. 57818–57841, 2024.

610 Wenzhen Yue, Yong Liu, Haoxuan Li, Hao Wang, Xianghua Ying, Ruohao Guo, Bowei Xing, and
 611 Ji Shi. Olinear: A linear model for time series forecasting in orthogonally transformed domain.
 612 *arXiv preprint arXiv:2505.08550*, 2025.

613 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 614 forecasting? In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp.
 615 11121–11128, 2023.

616 G Peter Zhang. Time series forecasting using a hybrid arima and neural network model. *Neurocom-
 617 puting*, 50:159–175, 2003.

618 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
 619 for multivariate time series forecasting. In *The eleventh international conference on learning
 620 representations*, 2023.

621 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
 622 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings
 623 of the AAAI conference on artificial intelligence*, volume 35, pp. 11106–11115, 2021.

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

Supplementary Material

A RELATED WORK

We note that ReNF is not the first work to address LTSF using multiple short-term forecasts. A pioneering and highly relevant study by (Nguyen & Chan, 2004) proposed a machine called MNN, which generates long-term forecasts using multiple neural networks, each responsible for a specific interval of the output. The essential distinction between MNN and our approach is that we generate sub-forecasts recursively, with the explicit goal of injecting causality into the DO strategy. In contrast, each sub-network in MNN functions as a standalone AR(1) model. This difference stems from our distinct motivation: whereas MNN was designed primarily to mitigate the error accumulation of one-step-ahead NN models, our work begins with a foundational forecasting proposition. Based on this proposition, we leverage modern deep learning techniques to effectively utilize multiple sub-forecasts, achieving strong empirical results on a wide range of real-world datasets, which constitutes one of our main contributions.

A recently proposed work using the multiple-choice learning paradigm (Cortés et al., 2025) is also relevant, as it demonstrates an ability to handle the diverse and multi-modal nature of the future from a probabilistic perspective. Furthermore, the characterization of TimeMCL as a conditional stationary quantizer for time series may offer additional theoretical support and interpretations for our framework.

Ensemble. Our work also connects to classic ensemble methods in machine learning (Mohri et al., 2018). For instance, the recursive workflow of ReNF is analogous to gradient-boosted regression models (Chen & Guestrin, 2016), which construct a strong predictor from multiple weak ones. Additionally, the collaborative training can be viewed as a form of bagging (Breiman, 1996), which effectively resamples the data to train diverse forecasters. In this context, an even more recent study (Modi & Pan, 2025) re-certified the benefits of such ensemble methods for enhancing Transformer-based NFs, providing further empirical support for the direction of our research.

Forecast Combinations. Forecast combination is a classic technique for improving forecast accuracy and robustness by leveraging the diverse strengths of multiple models (Clemen, 1989). In this work, we extend this concept (Bates & Granger, 1969) to the domain of deep learning for long-term time series forecasting. Rather than combining distinct, parallel forecasters into a hybrid model (Zhang, 2003), our framework achieves this goal efficiently within a single, structured approach for generating and implicitly combining forecasts within a single neural network. By recursively stacking sub-forecasts, similar in spirit to N-BEATS (Oreshkin et al., 2019) and NHits (Challu et al., 2023) which ensure the frequency diversity of the forecasts in different stages, we learn and compose multiple forecasts in different lengths while the representation is both deep and diverse, allowing the LTSF task to benefit from the full power of modern machine learning.

B DETAILS OF DATASETS

The ETTh1, ETTh2, ETTm1, and ETTm2 datasets record the temperature of electricity transformers every hour and every 15 minutes. The Weather dataset contains 21 weather information, measured every 10 minutes in Germany. The Electricity dataset records the amount of electricity used by 321 customers every hour. The Solar dataset records how much electricity is produced by solar power stations every 10 minutes, from 137 solar power stations, in 2006. The Traffic dataset records how busy the roads are in San Francisco, every hour, from 862 sensors on the freeway.

In addition, we also evaluate the short-term time series forecasting on six datasets that are used in the study (Yue et al., 2025). The METR-LA database was populated with traffic network data in Los Angeles during the springtime period of 2012, specifically from March to June. This data was collected at an interval of five minutes. The NASDAQ includes the daily NASDAQ index and key economic indicators from 2010 to 2024. The SP500 records daily SP500 index data (e.g., opening price, closing price, and trading volume) from January 1993 to February 2025. CarSales collects

Dataset	Dim	Prediction Length	Split	Frequency	domain
ETTh1, ETTh2	7	96, 192, 336, 720	(6, 2, 2)	Hourly	Electricity
ETTm1, ETTm2	7	96, 192, 336, 720	(6, 2, 2)	15min	Electricity
Weather	21	96, 192, 336, 720	(7, 1, 2)	10min	Environment
Electricity	321	96, 192, 336, 720	(7, 1, 2)	Hourly	Electricity
Traffic	862	96, 192, 336, 720	(7, 1, 2)	Hourly	Transportation
Solar	137	96, 192, 336, 720	(6, 2, 2)	10min	Energy
NASDAQ	12	24, 36, 48, 60	(7, 1, 2)	Daily	Finance
SP500	12	24, 36, 48, 60	(7, 1, 2)	Daily	Finance
Carsales	12	24, 36, 48, 60	(7, 1, 2)	Daily	Market
Website	12	24, 36, 48, 60	(7, 1, 2)	Daily	Web
Power	12	24, 36, 48, 60	(7, 1, 2)	Daily	Energy
METR-LA	207	96, 192, 336, 720	(7, 1, 2)	5min	Transportation

Table 5: Descriptions of multivariate time series datasets used in this research. The dim column represents the number of variates, and the split column specifies the train-validate-test splitting ratio for each dataset.

daily sales of 10 vehicle brands (e.g., Toyota, Honda) in the U.S. from January 2005 to June 2023. The data are compiled from the Vehicle Sales dataset on Kaggle. Power contains daily wind and solar energy production (in MW) records for the French grid from April 2020 to June 2023. The data are compiled from the Wind and Solar Daily Power Production dataset on Kaggle. The website contains six years of daily visit data (e.g., first-time and returning visits) to an academic website, spanning from September 2014 to August 2020.

C PROOF OF THE APPROXIMATE PROPOSITION

We restate the parameters and preconditions to derive the target bound value:

- (A1) The objective time series with finite length is bounded by a positive real constant λ .
- (A2) The NFM generates candidate series $\{\hat{Y}_f^{(i)}\}_{i=1}^{c>1}$ under various θ^i or random states γ^i .
- (A3) The predictive bias of the NFM is bounded by up to $\sup_t |\hat{\mu}_t - \mu_t| = b$.

Proof. First, we derive the expected bound for each independent element $y_t^{(i)}$ in any candidate forecast $\hat{Y}_f^{(i)} = \{y_1^{(i)}, y^{(i)}, \dots, y_c^{(i)}\}$.

Since $y_t^{(i)} \sim \hat{p}(\hat{\mu}_t, \hat{\sigma}_t^2)$, we know from the (A2) that $\{y_t^{(i)}\}_{i=1}^c$ are i.i.d. samples from the same distribution with $\mathbb{E}(y_t^{(i)}) = \hat{\mu}_t$. Thus, according to the law of large numbers, the statistical average of $\{y_t^{(i)}\}_{i=1}^c$ converges to the expectation μ_t almost surely as $c \rightarrow \infty$.

In particular, we have

$$\mathbb{E}|\hat{\mu}_t - \frac{1}{c} \sum_{i=1}^c y_t^{(i)}|^2 = \mathbb{E}|\frac{1}{c} \sum_{i=1}^c (y_t^{(i)} - \hat{\mu}_t) + \hat{\mu}_t - \mu_t|^2 \quad (6)$$

$$= \frac{1}{c^2} \mathbb{E}|\sum_{i=1}^c (y_t^{(i)} - \hat{\mu}_t)|^2 \quad (7)$$

$$= \frac{1}{c^2} \sum_{i=1}^c \mathbb{E}|y_t^{(i)} - \hat{\mu}_t|^2. \quad (8)$$

The last identity holds because $\{y_t^{(i)}\}_{i=1}^c$ are independent, i.e., $\mathbb{E}[(y_t^{(i)} - \hat{\mu}_t)(y_t^{(j)} - \hat{\mu}_t)] = \mathbb{E}(y_t^{(i)} - \hat{\mu}_t) \cdot \mathbb{E}(y_t^{(j)} - \hat{\mu}_t) = 0, i \neq j$.

756 Then, we can bound this term by showing
 757

$$\mathbb{E}|y_t^{(i)} - \hat{\mu}_t|^2 = \mathbb{E}|y_t^{(i)} - \mathbb{E}[y_t^{(i)}]|^2 \quad (9)$$

$$= \mathbb{E}|(y_t^{(i)})^2| - |\mathbb{E}[y_t^{(i)}]|^2 \text{ (variance identity)} \quad (10)$$

$$\leq \mathbb{E}[(y_t^{(i)})^2] \quad (11)$$

$$\leq \sup_{i,t} \{(y_t^{(i)})^2\} = \lambda^2. \text{ (A1)} \quad (12)$$

765 Therefore, we have shown that
 766

$$\mathbb{E}|\hat{\mu}_t - \frac{1}{c} \sum_{i=1}^c y_t^{(i)}|^2 \leq \frac{\lambda^2}{c}. \quad (13)$$

769 for any i ; and in particular, there must exist a set of $\{\tilde{y}_t^{(i)}\}_{i=1}^c$ satisfying
 770

$$|\hat{\mu}_t - \frac{1}{c} \sum_{i=1}^c \tilde{y}_t^{(i)}| \leq \frac{\lambda}{\sqrt{c}}. \quad (14)$$

774 Fixing the set $\{\tilde{y}_t^{(i)}\}_{i=1}^c$, it remains to estimate the distance between the forecast by the NFM Φ and
 775 the expected forecast \tilde{Y}_f , and the true observation X_f , respectively.
 776

777 Since it is trivial to get
 778

$$|\mu_t - \frac{1}{c} \sum_{i=1}^c \tilde{y}_t^{(i)}| \leq |\hat{\mu}_t - \frac{1}{c} \sum_{i=1}^c \tilde{y}_t^{(i)}| + |\hat{\mu}_t - \mu_t| \leq |\hat{\mu}_t - \frac{1}{c} \sum_{i=1}^c \tilde{y}_t^{(i)}| + b. \text{ (A3)} \quad (15)$$

782 We have
 783

$$|x_t - \frac{1}{c} \sum_{i=1}^c \tilde{y}_t^{(i)}| \leq |\mu_t - \frac{1}{c} \sum_{i=1}^c \tilde{y}_t^{(i)}| + |x_t - \mu_t| \leq |\hat{\mu}_t - \frac{1}{c} \sum_{i=1}^c \tilde{y}_t^{(i)}| + b + \sigma. \quad (16)$$

786 Thus, we can derive the expected upper bound as
 787

$$\sum_{t=1}^T |x_t - \frac{1}{c} \sum_{i=1}^c \tilde{y}_t^{(i)}| \leq T \cdot \left(\frac{\lambda}{c} + b + \sigma \right) = \frac{T(\lambda + \sqrt{c}(b + \sigma))}{\sqrt{c}}. \quad (17)$$

791 This completes the proof.
 792

793 C.1 VARIANCE ANALYSIS OF TOTAL SUMMED ERROR 794

795 The above proof gives an intuitive bound, which does not depend on any assumption on the temporal
 796 dependence. In this part, we consider this factor as a pivot for analysing the effects of different
 797 forecasting paradigms, identifying the role of our BDO.
 798

799 The variance of this total error is:
 800

$$\text{var}\left(\sum_{t=1}^T e_t\right) = \sum_{t=1}^T \text{var}(e_t) + 2 \sum_{t < t'} \text{Cov}(e_t, e'_{t'}) \quad (18)$$

803 For simplicity, let the prediction error at each timestep as $e_t := \mu_t - \frac{1}{c} \sum_{i=1}^c \tilde{y}_t^{(i)}$, and temporarily
 804 omit the effect of the predictive bias b of NFM in A3, i.e., $\mu = \hat{\mu}$. Then we can compute the
 805 covariance (autocorrelation) of the errors at any two distinct timesteps k and h ,
 806

$$\text{Cov}(e_k, e_h) = \mathbb{E}[(\mu_k - \tilde{\mu}_k)(\mu_h - \tilde{\mu}_h)] \quad (19)$$

$$= \mathbb{E}[\tilde{\mu}_k \tilde{\mu}_h] - \mu_k \mu_h \quad (20)$$

$$= \text{Cov}(\tilde{\mu}_k \tilde{\mu}_h) \quad (21)$$

810 where we denote $\tilde{\mu}_t := \frac{1}{c} \sum_{i=1}^c \tilde{y}_t^{(i)}$. So we have
 811

$$812 \quad 813 \quad 814 \quad \text{Cov}(\tilde{\mu}_k \tilde{\mu}_h) = \frac{1}{c^2} \sum_{i=1}^c \sum_{j=1}^c \text{Cov}(y_k^{(i)}, y_h^{(j)}) \quad (22)$$

$$815 \quad 816 \quad 817 \quad = \frac{1}{c} \text{Cov}(y_k^{(i)}, y_h^{(i)}), \forall i \quad (23)$$

818 The last inequality holds by assumption A2, which isolates the correlations across different candidates.
 819

820 Now we can consider the role of temporal dependence in the error structure.

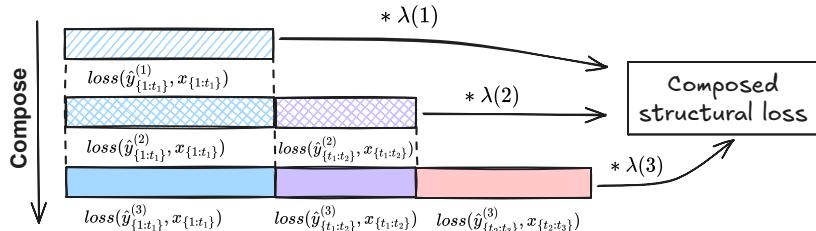
821 **Case 1: Temporal Independence (The DO Paradigm):** The Direct Output (DO) paradigm is
 822 designed to approximately satisfy the assumption of temporal independence, as evidenced in Sec.
 823 2. This implies that the error covariance terms in Eq. 23 are zero. Consequently, the total error
 824 variance is simply the sum of the per-timestep variances. While this structure effectively prevents the
 825 compounding of errors, it often comes at the cost of the model being “unaware” of the sequential
 826 dynamics within the future horizon, potentially leading to higher per-timestep variance. Furthermore,
 827 the variance of the total summed error can only benefit from the combination factor c in reducing the
 828 individual uncertainty at each future timestep $\sum_{t=1}^T \text{var}(e_t)$.
 829

830 **Case 2: Temporal Dependence (The AR Paradigm).** : The typical AR paradigm fundamentally
 831 violates this assumption and thus leads to errors from one step propagating to the next, which causes
 832 the total variance to explode over long horizons. Even though the introduction of the ensembling
 833 factor c would reduce the magnitude of this effect, it does not alter the underlying structural problem
 834 of error accumulation.

835 **Case 3: A Synthesis (The BDO Paradigm).**: Our Boosted Direct Output paradigm operates as a
 836 synthesis of these two extremes. It intentionally violates strict temporal independence by recursively
 837 feeding sub-forecasts back into the model, thereby making it aware of causal dependencies within the
 838 forecast horizon. However, unlike a pure AR model, it would learn a mapping that minimizes the
 839 error covariance. Through hierarchical supervision and its patch-wise output structure inherited from
 840 DO, the model is trained to control the accumulation of errors. The goal is to leverage the benefits of
 841 modeling temporal structure while constraining the error correlation, effectively learning to make the
 842 covariance term in Eq. 23 as small as possible.
 843

844 Note that the above proof and analysis are based on a univariate time series; however, it is easy to
 845 extend the result to the multivariate case using a similar process in a certain normed vector space.
 846

847 D IMPLICIT STRUCTURAL LOSS



848
 849 Figure 10: Illustration of the implicit structural loss of BDO, we exemplify it in the NF consisting of
 850 three sub-forecasters.
 851

852 An interesting property of the BDO paradigm is the implicit structural loss it induces. This connects
 853 our work to recent research on explicit loss engineering, such as positional weighting (Xue et al.,
 854 2023) and patch-wise structural losses (Kudrat et al., 2025). We posit that the BDO learning objective,
 855 formed by the weighted sum of losses from hierarchical sub-forecasts, inherently functions as a
 856 complex structural loss. This seemingly implicit loss can be seen as the generalized version of the
 857 above two.
 858

864 To formalize this property, we first simplify the loss function from Eq.4 as:
 865

$$866 \quad 867 \quad 868 \quad Loss = \sum_{n=1}^N \lambda(n) * f(\hat{Y}_f^{(n)}, X_f^{(n)}) \quad (24)$$

869 where $f(\cdot, \cdot)$ denotes a base error function such as the MAE.
 870

871 Note that in our definitions and notations, $\hat{Y}_f^{(n)} = \{\hat{y}_1^{(n)}, \hat{y}_2^{(n)}, \dots, \hat{y}_{t_n}^{(n)}\}$. We can therefore expand
 872 the total loss into a point-wise sum over all timesteps:
 873

$$874 \quad 875 \quad 876 \quad Loss = \sum_{n=1}^N \sum_{t=1}^{t_n} \lambda(n) * f(\hat{y}_t^{(n)}, x_t) \quad (25)$$

877 The underlying structure of this composite loss, visualized in Figure 10, reveals a key insight: BDO is
 878 not just a recursive forecasting process, but also a method for implicitly constructing a complex and
 879 adaptive structural loss. The properties of this loss can be finely tuned through several mechanisms:
 880 the stage-wise weighting coefficients, the forecast splitting strategy, the choice of the base error
 881 function, and even the architecture of each sub-forecaster.
 882

883 E FULL RESULTS

885 E.1 FULL LONG-TERM FORECASTING RESULTS

887 We present the full version of Table.2 in Table.6 to show the capability of ReNF in Long-Term time
 888 series forecasting.

890 E.2 SHORT-TERM FORECASTING RESULTS

892 In addition, to further verify the generality of ReNF, we test it at six supplementary datasets from
 893 a recent short-term time series forecasting benchmark (Yue et al., 2025). The descriptions of these
 894 datasets can be found in the Table.5. As shown in Table.7, ReNF remains highly competitive against
 895 the recent SOTA models in short-term forecasting task. In fact, the short-term forecast can not
 896 benefit from the BDO to the extent of LTSF, as we hypothesize that when restricted to shorter look-
 897 back windows, the initial short-term forecasts in the BDO process are less accurate. Consequently,
 898 concatenating these noisier predictions can introduce disruptions that limit the full benefit of our
 899 paradigm. From another perspective, while our proposed methods are universally applicable, these
 900 results also highlight the value of more specialized or refined extension of our proposals in further
 901 enhancing the capabilities of BDO in various scenarios.

902 F MORE ABLATIONS

904 F.1 EMA SMOOTHING

906 The results in Table 8 confirm that EMA smoothing yields substantial improvements in final forecast
 907 accuracy. This empirically validates our hypothesis from Section 2: EMA mitigates the detrimental
 908 effects of flawed early stopping, where volatile validation scores lead to the premature saving
 909 of suboptimal models. By providing a more reliable and stable training signal, EMA not only
 910 enhances performance but also establishes the robust foundation necessary to fairly evaluate our other
 911 contributions, such as the BDO paradigm.

913 F.2 PRE-DROPOUT.

915 Our MLP architecture applies dropout to the input data by default as a regularization technique.
 916 While its impact can be subtle and dataset-dependent, we perform an ablation study for the sake
 917 of completeness. The results of this analysis on the ETTh1, ETTh2, and Electricity datasets are
 918 presented in Table 9.

Models	Re-Bound		ReNF		TimeBridge		DUET		TimeDistill		Timer-XL		iTransformer		TimeMixer		PatchTST		Crossformer		DLinear			
	-		ours		((2025a))		(2025)		(2025)		(2025b)		(2024)		(2024b)		(2023)		(2023)		(2023)			
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
Weather	96	0.110	0.149	0.138	0.180	0.144	0.184	0.146	0.191	0.145	0.204	0.157	0.205	0.157	0.206	0.147	0.198	0.150	0.200	0.143	0.210	0.170	0.230	
	192	0.141	0.185	0.182	0.224	0.186	0.226	0.188	0.231	0.188	0.247	0.206	0.250	0.200	0.248	0.192	0.242	0.191	0.239	0.195	0.261	0.216	0.273	
	336	0.177	0.216	0.231	0.266	0.237	0.267	0.235	0.269	0.240	0.286	0.259	0.291	0.252	0.287	0.247	0.284	0.242	0.279	0.254	0.319	0.258	0.307	
	720	0.232	0.261	0.304	0.318	0.312	0.321	0.308	0.319	0.310	0.338	0.337	0.344	0.320	0.336	0.318	0.330	0.312	0.330	0.335	0.385	0.323	0.362	
	Avg.	0.165	0.203	0.214	0.247	0.220	0.250	0.219	0.253	0.221	0.269	0.240	0.273	0.232	0.269	0.226	0.264	0.224	0.262	0.232	0.294	0.242	0.293	
Electricity	96	0.083	0.171	0.118	0.210	0.122	0.216	0.128	0.219	0.128	0.225	0.127	0.219	0.134	0.230	0.153	0.256	0.143	0.247	0.134	0.231	0.140	0.237	
	192	0.097	0.186	0.138	0.229	0.143	0.238	0.145	0.235	0.145	0.241	0.145	0.236	0.154	0.250	0.168	0.269	0.158	0.261	0.146	0.243	0.154	0.251	
	336	0.105	0.196	0.151	0.244	0.163	0.258	0.163	0.255	0.161	0.258	0.159	0.252	0.169	0.265	0.189	0.291	0.168	0.267	0.165	0.264	0.169	0.268	
	720	0.115	0.207	0.173	0.266	0.178	0.274	0.193	0.281	0.195	0.291	0.187	0.277	0.194	0.288	0.228	0.320	0.214	0.307	0.237	0.314	0.204	0.301	
	Avg.	0.100	0.190	0.145	0.237	0.152	0.247	0.157	0.248	0.157	0.254	0.155	0.246	0.163	0.258	0.185	0.284	0.171	0.271	0.171	0.263	0.167	0.264	
Traffic	96	0.234	0.167	0.335	0.226	0.332	0.237	0.360	0.238	0.358	0.256	0.340	0.238	0.358	0.258	0.369	0.257	0.370	0.262	0.326	0.288	0.395	0.275	
	192	0.245	0.175	0.356	0.239	0.343	0.239	0.383	0.249	0.374	0.264	0.360	0.248	0.382	0.271	0.399	0.272	0.386	0.269	0.503	0.263	0.407	0.280	
	336	0.254	0.180	0.366	0.246	0.360	0.249	0.395	0.259	0.389	0.271	0.377	0.256	0.396	0.277	0.407	0.272	0.396	0.275	0.505	0.276	0.417	0.286	
	720	0.284	0.197	0.402	0.267	0.392	0.268	0.435	0.278	0.428	0.292	0.418	0.279	0.445	0.308	0.461	0.316	0.435	0.295	0.552	0.301	0.454	0.308	
	Avg.	0.254	0.180	0.365	0.245	0.357	0.248	0.393	0.256	0.387	0.271	0.374	0.255	0.395	0.279	0.409	0.279	0.397	0.275	0.522	0.282	0.418	0.287	
Solar	96	0.082	0.141	0.157	0.202	0.159	0.196	0.166	0.211	0.166	0.229	0.162	0.221	0.190	0.244	0.179	0.232	0.170	0.234	0.183	0.208	0.199	0.265	
	192	0.087	0.145	0.174	0.210	0.173	0.215	0.199	0.212	0.181	0.239	0.187	0.239	0.193	0.257	0.201	0.259	0.204	0.302	0.208	0.227	0.220	0.281	
	336	0.099	0.156	0.180	0.219	0.193	0.229	0.207	0.215	0.219	0.246	0.205	0.255	0.203	0.266	0.190	0.256	0.212	0.293	0.212	0.239	0.234	0.295	
	720	0.092	0.151	0.190	0.225	0.207	0.237	0.206	0.217	0.199	0.252	0.238	0.279	0.223	0.281	0.203	0.261	0.215	0.307	0.215	0.256	0.243	0.301	
	Avg.	0.090	0.148	0.176	0.214	0.183	0.219	0.195	0.214	0.184	0.242	0.198	0.249	0.202	0.262	0.193	0.252	0.200	0.284	0.205	0.233	0.224	0.286	
ETM1	96	0.189	0.262	0.270	0.325	0.288	0.339	0.279	0.333	0.285	0.344	0.290	0.341	0.300	0.353	0.293	0.345	0.289	0.342	0.314	0.367	0.300	0.345	
	192	0.218	0.284	0.310	0.352	0.326	0.368	0.320	0.358	0.331	0.368	0.337	0.369	0.341	0.380	0.335	0.372	0.329	0.368	0.374	0.410	0.336	0.366	
	336	0.242	0.300	0.343	0.373	0.363	0.394	0.348	0.377	0.359	0.386	0.374	0.393	0.374	0.396	0.368	0.386	0.362	0.390	0.413	0.432	0.367	0.387	
	720	0.249	0.296	0.400	0.405	0.417	0.419	0.405	0.408	0.415	0.416	0.437	0.428	0.429	0.430	0.426	0.417	0.416	0.423	0.753	0.613	0.419	0.417	
	Avg.	0.225	0.286	0.331	0.364	0.349	0.380	0.338	0.369	0.348	0.380	0.359	0.382	0.361	0.390	0.356	0.380	0.349	0.381	0.464	0.456	0.356	0.379	
ETM2	96	0.131	0.214	0.157	0.241	0.157	0.243	0.162	0.249	0.163	0.255	0.175	0.257	0.175	0.266	0.165	0.255	0.296	0.391	0.164	0.256			
	192	0.174	0.246	0.212	0.279	0.218	0.284	0.215	0.288	0.220	0.294	0.242	0.301	0.242	0.312	0.225	0.298	0.221	0.293	0.369	0.416	0.224	0.304	
	336	0.216	0.276	0.262	0.315	0.270	0.321	0.267	0.321	0.269	0.328	0.293	0.337	0.282	0.387	0.277	0.332	0.276	0.327	0.388	0.600	0.277	0.337	
	720	0.283	0.322	0.341	0.368	0.344	0.372	0.348	0.373	0.346	0.369	0.376	0.390	0.375	0.394	0.360	0.385	0.362	0.381	0.750	0.612	0.371	0.401	
	Avg.	0.201	0.265	0.243	0.301	0.247	0.305	0.248	0.308	0.250	0.312	0.271	0.322	0.269	0.327	0.257	0.318	0.256	0.314	0.501	0.505	0.259	0.325	
ETH1	96	0.243	0.300	0.350	0.383	0.355	0.391	0.353	0.386	0.373	0.401	0.364	0.397	0.386	0.405	0.372	0.401	0.377	0.397	0.411	0.435	0.379	0.403	
	192	0.276	0.327	0.385	0.408	0.389	0.414	0.398	0.409	0.411	0.426	0.405	0.424	0.424	0.440	0.413	0.429	0.409	0.425	0.409	0.438	0.408	0.419	
	336	0.294	0.342	0.405	0.425	0.415	0.435	0.415	0.428	0.439	0.444	0.427	0.439	0.449	0.460	0.438	0.450	0.431	0.444	0.433	0.457	0.440	0.440	
	720	0.266	0.322	0.422	0.449	0.443	0.462	0.436	0.458	0.495	0.493	0.439	0.459	0.495	0.487	0.486	0.484	0.457	0.477	0.501	0.514	0.471	0.493	
	Avg.	0.270	0.323	0.391	0.416	0.401	0.426	0.401	0.420	0.430	0.441	0.409	0.430	0.439	0.448	0.427	0.441	0.419	0.436	0.439	0.461	0.423	0.439	
ETH2	96	0.214	0.285	0.261	0.329	0.270	0.331	0.271	0.335	0.273	0.336	0.277	0.343	0.297	0.348	0.281	0.351	0.274	0.337	0.728	0.603	0.300	0.364	
	192	0.261	0.320	0.320	0.370	0.338	0.375	0.335	0.376	0.334	0.381	0.348	0.391	0.372	0.403	0.349	0.387	0.348	0.384	0.723	0.607	0.387	0.423	
	336	0.270	0.327	0.346	0.394	0.370	0.402	0.354	0.398	0.363	0.415	0.375	0.418	0.388	0.416	0.366	0.413	0.377	0.416	0.740	0.628	0.490	0.487	
	720	0.261	0.325	0.381	0.423	0.402	0.434	0.384	0.426	0.408	0.446	0.409	0.458	0.424	0.444	0.401	0.436	0.406	0.441	1.386	0.882	0.704	0.597	
	Avg.	0.252	0.314	0.327	0.379	0.345	0.386	0.336	0.384	0.345	0.395	0.352	0.402	0.370	0.403	0.349	0.397	0.351	0.395	0.894	0.680	0.470	0.468	

Table 6: Full results of long-term forecasting of hyperparameter searching. The Re-Bound column denotes the empirical bound discussed in Sec.3.3. The look-back window is searched from $\{336, 512, 720\}$ for the best performance. Timer-XL uses a 672-length window as in the original paper. All results are averaged across four different prediction lengths: $\{96, 192, 336, 720\}$. The **best** and **second-best** results are highlighted.

GRUBUSTNESS

In Table 10, we present the error bar of ReNF in datasets with relatively small sizes or high instability. It shows that ReNF exhibits high robustness because of its simple structure, which is a favorable characteristic for industrial applications.

H FURTHER EXPLORATIONS

H.1 TWO FACTORS OF BDO

We wish to clarify that our BDO paradigm is comprised of two distinct and essential mechanisms. The first is the addition of a linear head to each block, which generates an explicit sub-forecast from the intermediate representation. The second is the recursive concatenation of this sub-forecast with the input for the subsequent stage, which encourages the network to implicitly learn a post-combination

972	973	974	975	976	977	978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	Model	ReNF (Ours)	OrthoLienar 2025	TimeMix. 2024b	FilterNet 2024	FITS 2024	DLinear 2023	TimeMix.++ 2025	Leddam 2024	CARD 2024	Fredformer 2024	iTrans. 2024	PatchTST 2023																																																																																																																																																																																																																																																																																																																																																																																																																																																
																									Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE																																																																																																																																																																																																																																																																																																																																																																																																																																							
CarSales	24	0.263 0.283	0.320 <u>0.302</u>	0.320 <u>0.318</u>	0.318 <u>0.319</u>	0.359 <u>0.347</u>	0.354 <u>0.350</u>	0.350 <u>0.323</u>	0.320 <u>0.325</u>	0.322 <u>0.337</u>	0.321 <u>0.319</u>	0.326 <u>0.303</u>	0.312 <u>0.319</u>	0.319 <u>0.319</u>	Power	24	1.268 0.855	1.343 <u>0.870</u>	1.341 <u>0.881</u>	1.410 <u>0.916</u>	1.491 <u>0.944</u>	1.390 <u>0.916</u>	<u>1.340</u> <u>0.877</u>	1.397 <u>0.909</u>	1.406 <u>0.886</u>	1.410 <u>0.913</u>	1.462 <u>0.924</u>	1.468 <u>0.935</u>	METRLA	24	0.280 0.298	0.334 <u>0.315</u>	0.332 <u>0.331</u>	0.331 <u>0.330</u>	0.373 <u>0.360</u>	0.368 <u>0.365</u>	0.351 <u>0.348</u>	0.337 <u>0.333</u>	0.348 <u>0.333</u>	0.333 <u>0.335</u>	0.318 <u>0.323</u>	0.332 <u>0.332</u>	0.330 <u>0.330</u>	Website	24	1.335 0.885	1.487 <u>0.922</u>	1.484 <u>0.937</u>	1.614 <u>0.986</u>	1.711 <u>1.028</u>	1.549 <u>0.972</u>	<u>1.470</u> <u>0.934</u>	1.570 <u>0.975</u>	1.547 <u>0.942</u>	1.588 <u>0.981</u>	1.634 <u>0.990</u>	1.650 <u>0.998</u>	SP500	24	0.613 0.348	0.650 <u>0.337</u>	0.671 <u>0.413</u>	0.670 <u>0.402</u>	0.698 <u>0.416</u>	0.645 <u>0.458</u>	<u>0.617</u> <u>0.394</u>	0.680 <u>0.405</u>	0.700 <u>0.378</u>	0.676 <u>0.408</u>	0.700 <u>0.413</u>	0.679 <u>0.410</u>	NASDAQ	24	0.748 0.398	0.800 <u>0.388</u>	0.841 <u>0.480</u>	0.824 <u>0.471</u>	0.874 <u>0.490</u>	0.785 <u>0.533</u>	<u>0.781</u> <u>0.457</u>	0.841 <u>0.471</u>	0.874 <u>0.448</u>	0.852 <u>0.477</u>	0.867 <u>0.480</u>	0.845 <u>0.484</u>	Avg	24	1.354 0.893	1.559 <u>0.946</u>	1.567 <u>0.963</u>	1.680 <u>1.009</u>	1.775 <u>1.052</u>	1.610 <u>0.995</u>	<u>1.467</u> <u>0.933</u>	1.646 <u>0.999</u>	1.583 <u>0.957</u>	1.652 <u>1.008</u>	1.696 <u>1.011</u>	1.710 <u>1.020</u>	Avg	24	1.383 0.913	<u>1.602</u> <u>0.971</u>	1.609 <u>0.988</u>	1.776 <u>1.053</u>	1.958 <u>1.122</u>	1.679 <u>1.020</u>	<u>1.626</u> <u>1.006</u>	1.727 <u>1.043</u>	1.693 <u>1.003</u>	1.752 <u>1.049</u>	1.794 <u>1.061</u>	1.829 <u>1.064</u>	24	0.289 0.306	0.340 <u>0.320</u>	0.338 <u>0.336</u>	0.335 <u>0.379</u>	0.365 <u>0.373</u>	0.368 <u>0.347</u>	<u>0.340</u> <u>0.343</u>	0.338 <u>0.355</u>	0.338 <u>0.340</u>	0.338 <u>0.324</u>	0.327 <u>0.338</u>	0.335 <u>0.335</u>	24	0.613 0.348	0.650 <u>0.337</u>	0.671 <u>0.413</u>	0.670 <u>0.402</u>	0.698 <u>0.416</u>	0.645 <u>0.458</u>	<u>0.617</u> <u>0.394</u>	0.680 <u>0.405</u>	0.700 <u>0.378</u>	0.676 <u>0.408</u>	0.700 <u>0.413</u>	0.679 <u>0.410</u>	24	0.748 0.398	0.800 <u>0.388</u>	0.841 <u>0.480</u>	0.824 <u>0.471</u>	0.874 <u>0.490</u>	0.785 <u>0.533</u>	<u>0.781</u> <u>0.457</u>	0.841 <u>0.471</u>	0.874 <u>0.448</u>	0.852 <u>0.477</u>	0.867 <u>0.480</u>	0.845 <u>0.484</u>	24	1.335 0.885	1.487 <u>0.922</u>	1.484 <u>0.937</u>	1.614 <u>0.986</u>	1.711 <u>1.028</u>	1.549 <u>0.972</u>	<u>1.470</u> <u>0.934</u>	1.570 <u>0.975</u>	1.547 <u>0.942</u>	1.588 <u>0.981</u>	1.634 <u>0.990</u>	1.650 <u>0.998</u>	24	0.613 0.348	0.650 <u>0.337</u>	0.671 <u>0.413</u>	0.670 <u>0.402</u>	0.698 <u>0.416</u>	0.645 <u>0.458</u>	<u>0.617</u> <u>0.394</u>	0.680 <u>0.405</u>	0.700 <u>0.378</u>	0.676 <u>0.408</u>	0.700 <u>0.413</u>	0.679 <u>0.410</u>	24	0.748 0.398	0.800 <u>0.388</u>	0.841 <u>0.480</u>	0.824 <u>0.471</u>	0.874 <u>0.490</u>	0.785 <u>0.533</u>	<u>0.781</u> <u>0.457</u>	0.841 <u>0.471</u>	0.874 <u>0.448</u>	0.852 <u>0.477</u>	0.867 <u>0.480</u>	0.845 <u>0.484</u>	24	1.335 0.885	1.487 <u>0.922</u>	1.484 <u>0.937</u>	1.614 <u>0.986</u>	1.711 <u>1.028</u>	1.549 <u>0.972</u>	<u>1.470</u> <u>0.934</u>	1.570 <u>0.975</u>	1.547 <u>0.942</u>	1.588 <u>0.981</u>	1.634 <u>0.990</u>	1.650 <u>0.998</u>	24	0.613 0.348	0.650 <u>0.337</u>	0.671 <u>0.413</u>	0.670 <u>0.402</u>	0.698 <u>0.416</u>	0.645 <u>0.458</u>	<u>0.617</u> <u>0.394</u>	0.680 <u>0.405</u>	0.700 <u>0.378</u>	0.676 <u>0.408</u>	0.700 <u>0.413</u>	0.679 <u>0.410</u>	24	0.748 0.398	0.800 <u>0.388</u>	0.841 <u>0.480</u>	0.824 <u>0.471</u>	0.874 <u>0.490</u>	0.785 <u>0.533</u>	<u>0.781</u> <u>0.457</u>	0.841 <u>0.471</u>	0.874 <u>0.448</u>	0.852 <u>0.477</u>	0.867 <u>0.480</u>	0.845 <u>0.484</u>	24	1.335 0.885	1.487 <u>0.922</u>	1.484 <u>0.937</u>	1.614 <u>0.986</u>	1.711 <u>1.028</u>	1.549 <u>0.972</u>	<u>1.470</u> <u>0.934</u>	1.570 <u>0.975</u>	1.547 <u>0.942</u>	1.588 <u>0.981</u>	1.634 <u>0.990</u>	1.650 <u>0.998</u>	24	0.613 0.348	0.650 <u>0.337</u>	0.671 <u>0.413</u>	0.670 <u>0.402</u>	0.698 <u>0.416</u>	0.645 <u>0.458</u>	<u>0.617</u> <u>0.394</u>	0.680 <u>0.405</u>	0.700 <u>0.378</u>	0.676 <u>0.408</u>	0.700 <u>0.413</u>	0.679 <u>0.410</u>	24	0.748 0.398	0.800 <u>0.388</u>	0.841 <u>0.480</u>	0.824 <u>0.471</u>	0.874 <u>0.490</u>	0.785 <u>0.533</u>	<u>0.781</u> <u>0.457</u>	0.841 <u>0.471</u>	0.874 <u>0.448</u>	0.852 <u>0.477</u>	0.867 <u>0.480</u>	0.845 <u>0.484</u>	24	1.335 0.885	1.487 <u>0.922</u>	1.484 <u>0.937</u>	1.614 <u>0.986</u>	1.711 <u>1.028</u>	1.549 <u>0.972</u>	<u>1.470</u> <u>0.934</u>	1.570 <u>0.975</u>	1.547 <u>0.942</u>	1.588 <u>0.981</u>	1.634 <u>0.990</u>	1.650 <u>0.998</u>	24	0.613 0.348	0.650 <u>0.337</u>	0.671 <u>0.413</u>	0.670 <u>0.402</u>	0.698 <u>0.416</u>	0.645 <u>0.458</u>	<u>0.617</u> <u>0.394</u>	0.680 <u>0.405</u>	0.700 <u>0.378</u>	0.676 <u>0.408</u>	0.700 <u>0.413</u>	0.679 <u>0.410</u>	24	0.748 0.398	0.800 <u>0.388</u>	0.841 <u>0.480</u>	0.824 <u>0.471</u>	0.874 <u>0.490</u>	0.785 <u>0.533</u>	<u>0.781</u> <u>0.457</u>	0.841 <u>0.471</u>	0.874 <u>0.448</u>	0.852 <u>0.477</u>	0.867 <u>0.480</u>	0.845 <u>0.484</u>	24	1.335 0.885	1.487 <u>0.922</u>	1.484 <u>0.937</u>	1.614 <u>0.986</u>	1.711 <u>1.028</u>	1.549 <u>0.972</u>	<u>1.470</u> <u>0.934</u>	1.570 <u>0.975</u>	1.547 <u>0.942</u>	1.588 <u>0.981</u>	1.634 <u>0.990</u>	1.650 <u>0.998</u>	24	0.613 0.348	0.650 <u>0.337</u>	0.671 <u>0.413</u>	0.670 <u>0.402</u>	0.698 <u>0.416</u>	0.645 <u>0.458</u>	<u>0.617</u> <u>0.394</u>	0.680 <u>0.405</u>	0.700 <u>0.378</u>	0.676 <u>0.408</u>	0.700 <u>0.413</u>	0.679 <u>0.410</u>	24	0.748 0.398	0.800 <u>0.388</u>	0.841 <u>0.480</u>	0.824 <u>0.471</u>	0.874 <u>0.490</u>	0.785 <u>0.533</u>	<u>0.781</u> <u>0.457</u>	0.841 <u>0.471</u>	0.874 <u>0.448</u>	0.852 <u>0.477</u>	0.867 <u>0.480</u>	0.845 <u>0.484</u>	24	1.335 0.885	1.487 <u>0.922</u>	1.484 <u>0.937</u>	1.614 <u>0.986</u>	1.711 <u>1.028</u>	1.549 <u>0.972</u>	<u>1.470</u> <u>0.934</u>	1.570 <u>0.975</u>	1.547 <u>0.942</u>	1.588 <u>0.981</u>	1.634 <u>0.990</u>	1.650 <u>0.998</u>	24	0.613 0.348	0.650 <u>0.337</u>	0.671 <u>0.413</u>	0.670 <u>0.402</u>	0.698 <u>0.416</u>	0.645 <u>0.458</u>	<u>0.617</u> <u>0.394</u>	0.680 <u>0.405</u>	0.700 <u>0.378</u>	0.676 <u>0.408</u>	0.700 <u>0.413</u>	0.679 <u>0.410</u>	24	0.748 0.398	0.800 <u>0.388</u>	0.841 <u>0.480</u>	0.824 <u>0.471</u>	0.874 <u>0.490</u>	0.785 <u>0.533</u>	<u>0.781</u> <u>0.457</u>	0.841 <u>0.471</u>	0.874 <u>0.448</u>	0.852 <u>0.477</u>	0.867 <u>0.480</u>	0.845 <u>0.484</u>	24	1.335 0.885	1.487 <u>0.922</u>	1.484 <u>0.937</u>	1.614 <u>0.986</u>	1.711 <u>1.028</u>	1.549 <u>0.972</u>	<u>1.470</u> <u>0.934</u>	1.570 <u>0.975</u>	1.547 <u>0.942</u>	1.588 <u>0.981</u>	1.634 <u>0.990</u>	1.650 <u>0.998</u>	24	0.613 0.348	0.650 <u>0.337</u>	0.671 <u>0.413</u>	0.670 <u>0.402</u>	0.698 <u>0.416</u>	0.645 <u>0.458</u>	<u>0.617</u> <u>0.394</u>	0.680 <u>0.405</u>	0.700 <u>0.378</u>	0.676 <u>0.408</u>	0.700 <u>0.413</u>	0.679 <u>0.410</u>	24	0.748 0.398	0.800 <u>0.388</u>	0.841 <u>0.480</u>	0.824 <u>0.471</u>	0.874 <u>0.490</u>	0.785 <u>0.533</u>	<u>0.781</u> <u>0.457</u>	0.841 <u>0.471</u>	0.874 <u>0.448</u>	0.852 <u>0.477</u>	0.867 <u>0.480</u>	0.845 <u>0.484</u>	24	1.335 0.885	1.487 <u>0.922</u>	1.484 <u>0.937</u>	1.614 <u>0.986</u>	1.711 <u>1.028</u>	1.549 <u>0.972</u>	<u>1.470</u> <u>0.934</u>	1.570 <u>0.975</u>	1.547 <u>0.942</u>	1.588 <u>0.981</u>	1.634 <u>0.990</u>	1.650 <u>0.998</u>	24	0.613 0.348	0.650 <u>0.337</u>	0.671 <u>0.413</u>	0.670 <u>0.402</u>	0.698 <u>0.416</u>	0.645 <u>0.458</u>	<u>0.617</u> <u>0.394</u>	0.680 <u>0.405</u>	0.700 <u>0.378</u>	0.676 <u>0.408</u>	0.700 <u>0.413</u>	0.679 <u>0.410</u>	24	0.748 0.398	0.800 <u>0.388</u>	0.841 <u>0.480</u>	0.824 <u>0.471</u>	0.874 <u>0.490</u>	0.785 <u>0.533</u>	<u>0.781</u> <u>0.457</u>	0.841 <u>0.471</u>	0.874 <u>0.448</u>	0.852 <u>0.477</u>	0.867 <u>0.480</u>	0.845 <u>0.484</u>	24	1.335 0.885	1.487 <u>0.922</u>	1.484 <u>0.937</u>	1.614 <u>0.986</u>	1.711 <u>1.028</u>

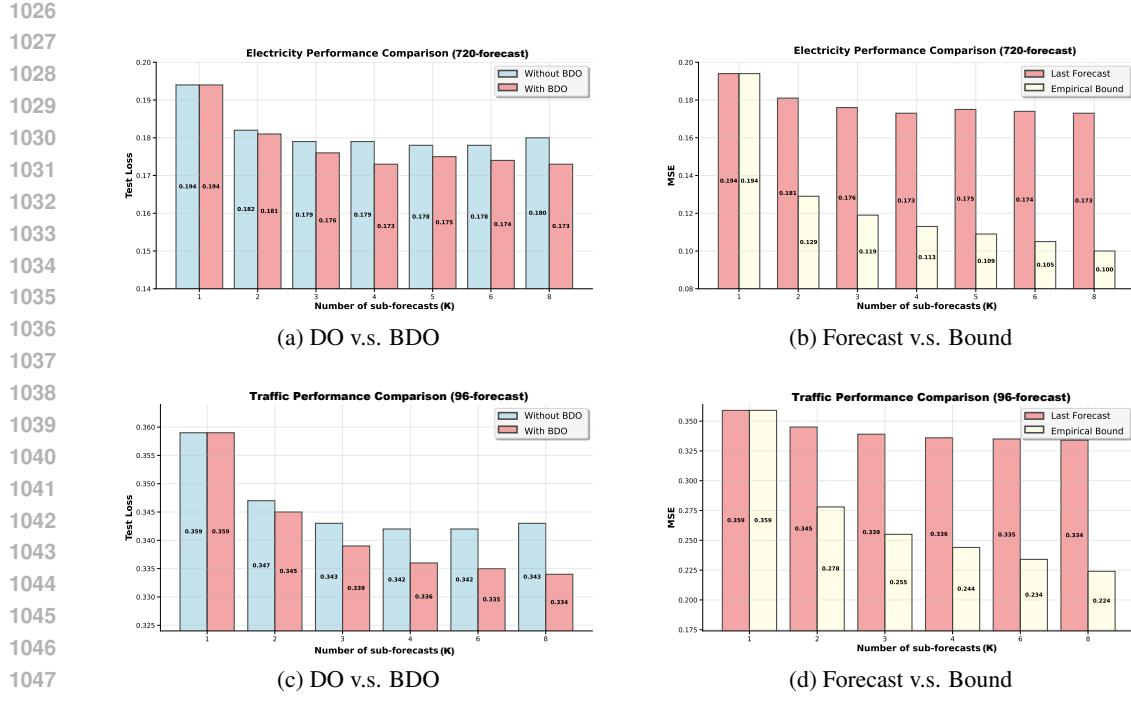


Figure 11: Supplementary illustrations of the performance variation with different numbers of sub-forecasts K. (a). Comparison of using DO or BDO with the Electricity dataset. (b).Comparison between the best forecast and the empirical bound of ReNF with the Electricity dataset. (c). Comparison of using DO or BDO with the Traffic dataset. (d).Comparison between the best forecast and the empirical bound of ReNF with the Traffic dataset.

Variants	ReNF		ReNF		
	origin	w/o EMA	origin	w/o EMA	
Metric	MSE	MAE	MSE	MAE	
ETTh1	96	0.350	0.383	0.357	0.387
	192	0.385	0.408	0.407	0.421
	336	0.405	0.425	0.426	0.435
	720	0.422	0.449	0.447	0.467
	Avg.	0.391	0.416	0.409	0.428
ETTh2	96	0.261	0.329	0.265	0.329
	192	0.320	0.370	0.336	0.375
	336	0.346	0.394	0.397	0.418
	720	0.381	0.423	0.421	0.441
	Avg.	0.327	0.379	0.355	0.391
ETTm1	96	0.270	0.325	0.303	0.347
	192	0.310	0.352	0.341	0.371
	336	0.343	0.373	0.362	0.386
	720	0.401	0.406	0.425	0.420
	Avg.	0.331	0.364	0.358	0.381
ETTm2	96	0.157	0.241	0.162	0.246
	192	0.212	0.279	0.221	0.285
	336	0.262	0.315	0.272	0.322
	720	0.341	0.368	0.352	0.374
	Avg.	0.243	0.301	0.252	0.307

Variants	ReNF		ReNF		
	origin	w/o EMA	origin	w/o EMA	
Metric	MSE	MAE	MSE	MAE	
Weather	96	0.138	0.180	0.139	0.182
	192	0.181	0.224	0.184	0.227
	336	0.231	0.266	0.232	0.266
	720	0.304	0.318	0.308	0.320
	Avg.	0.214	0.247	0.216	0.249
Electricity	96	0.118	0.210	0.124	0.218
	192	0.138	0.229	0.145	0.239
	336	0.151	0.244	0.156	0.252
	720	0.173	0.266	0.182	0.277
	Avg.	0.145	0.237	0.152	0.247
Traffic	96	0.335	0.226	0.341	0.237
	192	0.356	0.239	0.363	0.249
	336	0.366	0.246	0.373	0.256
	720	0.402	0.267	0.411	0.278
	Avg.	0.365	0.245	0.372	0.255
Solar	96	0.157	0.202	0.177	0.232
	192	0.174	0.210	0.193	0.234
	336	0.180	0.219	0.195	0.239
	720	0.190	0.225	0.199	0.242
	Avg.	0.176	0.214	0.191	0.237

Table 8: Full numerical results on the effect of EMA smoothing.

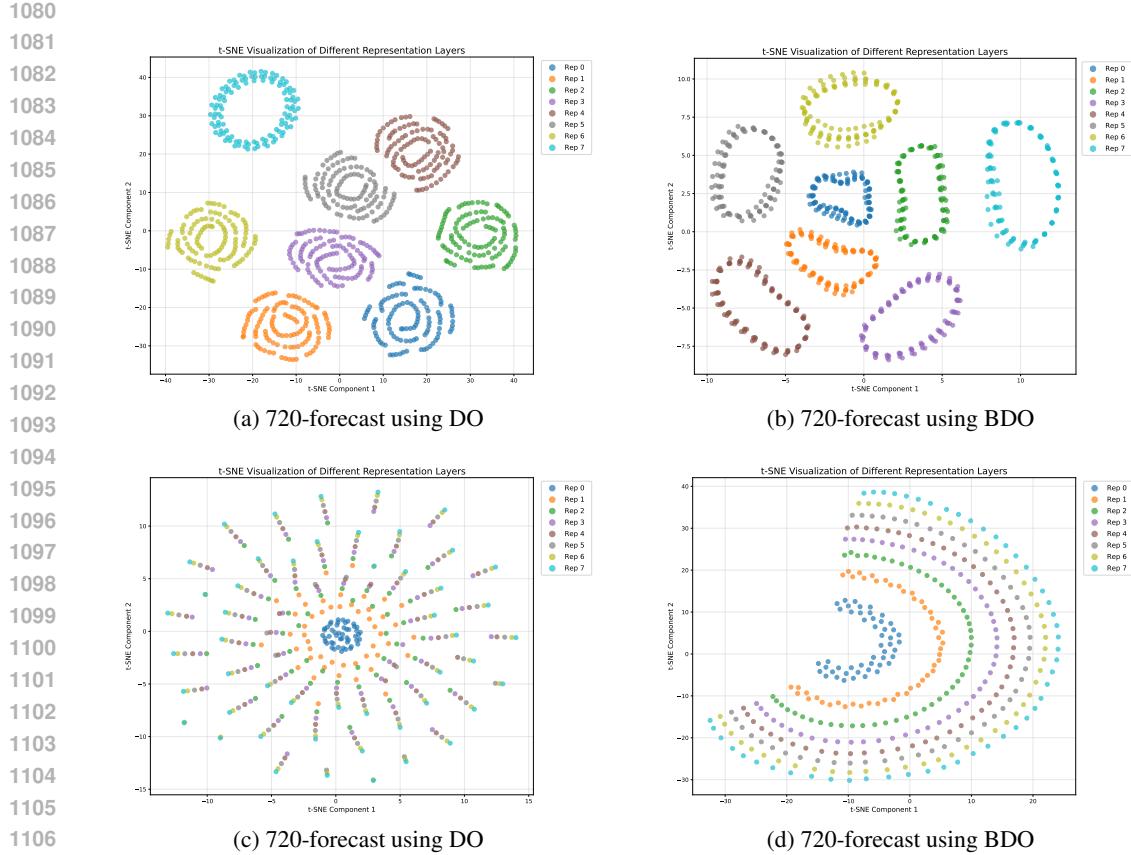


Figure 12: Visualizations of the representations of different layers/sub-forecasters. (a). representations of using DO with the ETTh1 dataset. (b). representations of using BDO with the ETTh1 dataset. (c). representations of using DO with the ETTm1 dataset. (d). representations of using BDO with the ETTm1 dataset. **This indicates that BDO tends to form predictive representations that are homogeneous and hierarchical.**

Variants		ETTh1					ETTh2					Electricity				
Metric		96	192	336	720	Avg.	96	192	336	720	Avg.	96	192	336	720	Avg.
ReNF	MSE	0.350	0.385	0.405	0.422	0.391	0.261	0.320	0.346	0.381	0.327	0.118	0.138	0.151	0.173	0.145
	MAE	0.383	0.408	0.425	0.449	0.416	0.329	0.370	0.394	0.423	0.379	0.210	0.229	0.244	0.266	0.237
ReNF w/o pre-drop	MSE	0.352	0.385	0.406	0.428	0.393	0.260	0.321	0.348	0.383	0.328	0.119	0.138	0.150	0.175	0.146
	MAE	0.386	0.410	0.429	0.454	0.420	0.329	0.370	0.396	0.425	0.380	0.210	0.229	0.243	0.267	0.237

Table 9: Effects of pre-drop.

Model	ReNF				TimeBridge				Confidence
	Dataset		MSE	MAE	MSE	MAE	Interval		
ETTh1	0.391 \pm 0.000	0.417 \pm 0.000	0.399 \pm 0.009	0.424 \pm 0.008	99%				
ETTh2	0.327 \pm 0.000	0.380 \pm 0.000	0.343 \pm 0.018	0.383 \pm 0.014	99%				
Weather	0.214 \pm 0.000	0.247 \pm 0.000	0.219 \pm 0.006	0.250 \pm 0.003	99%				
Solar	0.177 \pm 0.000	0.215 \pm 0.000	0.182 \pm 0.003	0.219 \pm 0.003	99%				

Table 10: Standard deviation and statistical tests for ReNF and TimeBridge on ETTh1, ETTh2, Weather, and Solar datasets. The results are based on the average performance across four prediction lengths from five runs with different random seeds.

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148

Variants	ReNF		ReNF		ReNF	
	origin	w/o factor_1	w/o factor_1	w/o factor_2	w/o factor_2	
Metric	MSE	MAE	MSE	MAE	MSE	MAE
Electricity	96	0.118 0.210	0.119 0.211	0.123 0.215		
	192	0.138 0.229	0.138 0.229	0.145 0.236		
	336	0.151 0.244	0.153 0.245	0.156 0.251		
	720	0.173 0.266	0.179 0.271	0.177 0.269		
	Avg.	0.145 0.237	0.147 0.239	0.150 0.243		
ETTh1	96	0.350 0.383	0.356 0.382	0.356 0.382		
	192	0.385 0.408	0.394 0.406	0.394 0.407		
	336	0.405 0.427	0.420 0.427	0.420 0.425		
	720	0.422 0.449	0.432 0.454	0.436 0.456		
	Avg.	0.391 0.417	0.400 0.417	0.402 0.418		
ETTm1	96	0.270 0.325	0.273 0.327	0.275 0.327		
	192	0.310 0.352	0.311 0.355	0.312 0.353		
	336	0.343 0.373	0.343 0.376	0.342 0.374		
	720	0.401 0.406	0.398 0.409	0.413 0.410		
	Avg.	0.331 0.364	0.331 0.367	0.336 0.366		
Solar	96	0.157 0.202	0.165 0.201	0.170 0.217		
	192	0.174 0.210	0.185 0.215	0.195 0.226		
	336	0.180 0.219	0.185 0.219	0.189 0.233		
	720	0.190 0.225	0.197 0.227	0.197 0.238		
	Avg.	0.176 0.214	0.183 0.216	0.188 0.229		

1173 Table 11: Ablations on the two factors of our BDO implementation. The factor_1 denotes the
 1174 concatenation in input space, and factor_2 denotes the computation of the sub-forecasting losses.

1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199

1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227

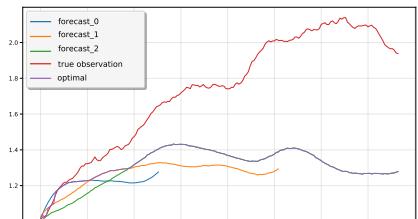
Variants	Metric	ReNF		ReNF	
		origin	exchange	MSE	MAE
ETTh1	96	0.350	0.383	0.384	0.410
	192	0.385	0.408	0.407	0.428
	336	0.405	0.425	0.447	0.456
	720	0.422	0.449	0.502	0.493
	Avg.	0.391	0.416	0.435	0.447
ETTh2	96	0.261	0.329	0.271	0.332
	192	0.320	0.370	0.340	0.376
	336	0.346	0.394	0.381	0.410
	720	0.381	0.423	0.415	0.437
	Avg.	0.327	0.379	0.352	0.389
Electricity	96	0.118	0.210	0.125	0.217
	192	0.138	0.229	0.144	0.235
	336	0.151	0.244	0.160	0.252
	720	0.173	0.266	0.196	0.283
	Avg.	0.145	0.237	0.156	0.247
Traffic	96	0.335	0.226	0.359	0.241
	192	0.356	0.239	0.377	0.249
	336	0.366	0.246	0.389	0.259
	720	0.402	0.267	0.426	0.284
	Avg.	0.365	0.245	0.388	0.258

1228
 1229 Table 12: Performances degrade drastically after using NFs with an improper degree of complexity.
 1230 The Exchange column denotes that the version of ReNF (α and β) is alternated.

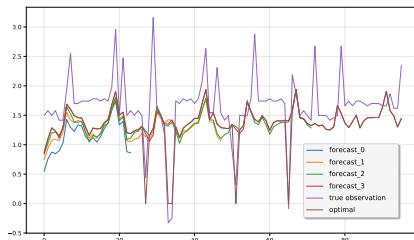
1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

1242 I VISUALIZATION OF PREDICTION

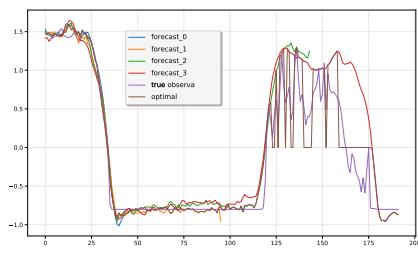
1244 In the following, we present the visualizations of multivariate long-term time series forecasting using
 1245 ReNF. The predicted variable in each figure is randomly selected.



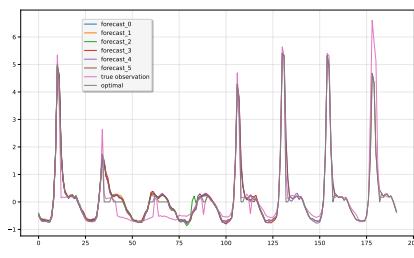
(a) 192-prediction on the weather dataset



(b) 192-prediction on the Electricity dataset

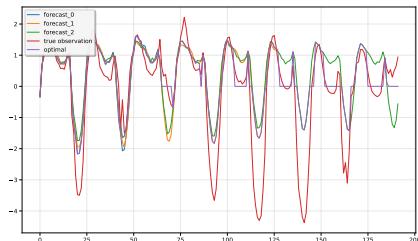


(c) 192-prediction on the Solar dataset

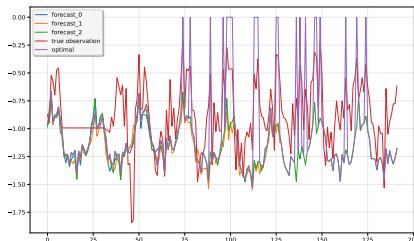


(d) 192-prediction on the Traffic dataset

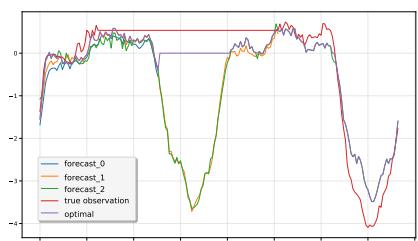
1266 Figure 13: Visualization of forecasting results of ReNF. The figure shows multiple outputs of ReNF
 1267 in different layers, along with the result of applying optimal post-combination.



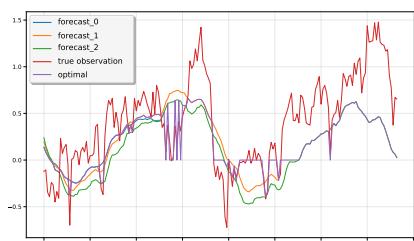
(a) 192-prediction on the ETTh1 dataset



(b) 192-prediction on the ETTh2 dataset



(c) 192-prediction on the ETTm1 dataset



(d) 192-prediction on the ETTm2 dataset

1289 Figure 14: Visualization of forecasting results of ReNF. The figure shows multiple outputs of ReNF
 1290 in different layers, along with the result of applying optimal post-combination.

1296 **J LIMITATION AND FURTHER DISCUSSION**
12971298 The Multiple Neural Forecasting Proposition (MNFP) presented in this paper is foundational but
1299 preliminary. While it provides the core intuition for our work, a more rigorous and deeper exploration
1300 of its theoretical properties or deriving other related theorems could inspire new and promising
1301 research directions.1302 Specifically, under the paradigm of MNFP, the role of Neural Network (NN) in this area becomes
1303 transparent. First and perhaps most importantly, we should leverage NN's capability to create a
1304 powerful post-combination function. While our BDO paradigm is effective, the current recursive
1305 strategy for combining sub-forecasts is not fully optimal. This is evident from the performance gap
1306 between our final forecast and the theoretical empirical bound as the number of stages increases.
1307 Developing more intricate methods to better leverage the full set of sub-forecasts could lead to
1308 substantial accuracy gains. Furthermore, the benefit of BDO is less pronounced on certain datasets,
1309 such as ETTm2. The underlying reasons for this variance warrant further investigation.1310 Second, we are consistently supposed to build more powerful Neural Forecasting Machines (NFM)s)
1311 to approximate the expected distributions of future data, thereby reducing the bias b in the MNFP C.
1312 Therefore, a comprehensive study is needed to verify the effects of our proposed techniques when
1313 applied to other advanced model architectures beyond MLPs.1314 Finally, this work develops the BDO paradigm specifically for the LTSF setting. A key open question
1315 is how this paradigm can be better adapted for diverse forecasting tasks with short input, which could
1316 ultimately lead to a more unified framework for time series forecasting.1318 **K DECLARATION OF THE LLMS USE**
13191320 We utilized a Large Language Model (LLM) to assist in refining the language of this manuscript. The
1321 LLM was used specifically to check for grammatical correctness and to improve the clarity and flow
1322 of expressions, ensuring a professional academic tone. The sole purpose of using the LLM was to
1323 enhance the readability and comprehensibility of the paper based on our first draft. All other contents,
1324 including the core ideas, presentation logic, experimental design, and results, are entirely our own.1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349