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ABSTRACT

Neural Forecasters (NFs) are a cornerstone of Long-term Time Series Forecasting
(LTSF). However, progress has been hampered by an overemphasis on architectural
complexity at the expense of fundamental forecasting principles. In this work, we
return to first principles to redesign the LTSF paradigm. We begin by introducing
a Multiple Neural Forecasting Proposition that provides a theoretical motivation
for our approach. We propose Boosted Direct Output (BDO), a novel forecasting
paradigm that synergistically hybridizes the causal nature of Auto-Regressive
(AR) models with the stability of Direct Output (DO). In addition, we stabilize
the learning process by smoothly tracking the model’s parameters. Extensive
experiments show that these principled improvements enable a simple MLP to
achieve state-of-the-art performance, outperforming recent, complex models in
nearly all cases, without any specific considerations in the area. Finally, we
empirically verify our proposition, establishing a dynamic performance bound
and identifying promising directions for future research. The code for review is
available at: https://anonymous.4open.science/r/ReNF-A151.

1 INTRODUCTION

The progression of any real-world event is a unique, non-repeatable process, often governed by
chaotic dynamics we cannot perfectly measure (Robertson| |1929) or describe. This implies that any
observed time series is just one stochastic sample from a complex underlying system. Consequently,
a fundamental open question persists: how can we best estimate the long-term future states depending
only on a single, observed historical sequence?

Deep Neural Networks (DNNs) have recently received increasing attention in Long-Term Time
Series Forecasting (LTSF) (Kim et al., [2025)). Their ability to model high-dimensional, non-linear
dependencies makes the Neural Forecaster (NF) a promising tool for capturing complex temporal
dynamics and implicit dependencies (Laiz et al.,2024). However, the literature reveals several critical
problems that should be addressed to unlock the full potential of DNNSs in this domain.

One confusing puzzle is that both advanced architectures, like transformer-based (Nie et al.,[2023)) and
simple linear-based models (Zeng et al.,|2023), are reported to achieve state-of-the-art performance
interchangeably while their complexity varies significantly. This is partly because some datasets
prefer parsimonious (Deng et al.,[2024) while the others have sufficient volume for complex models
to fit. But perhaps a deeper issue is the insufficient exploration of the networks’ intrinsic capabilities.
As indicated by (Lu et al.,[2025), many NFs contain redundant components and are used selectively
depending on the property of the data, resulting in their full potential remaining untapped without
extensive tuning or regularizations.

Furthermore, the field’s focus has shifted towards designing specialized modules for properties that
are believed to be beneficial for LTSF, such as multi-scale (Wang et al., 2024b) and non-stationary
(Liu et al.l 2022). However, the progress has become erratic because these architectural additions
often yield subtle gains while overlooking fundamental principles. We re-emphasize that progress in
this field becomes circuitous when we introduce advanced models merely according to the empirical
conclusions from other realms, but overlook the detailed instructions for their full utilization. A
primary and more direct path to advancement may lie in fundamentally improving the training
stability and generalization capabilities of NFs themselves.


https://anonymous.4open.science/r/ReNF-A151

Under review as a conference paper at ICLR 2026

Beyond model architecture, we find that the dominant Direct Output (DO) framework does not make
full use of the available supervision. In a standard DO setup, an NF is trained to predict the entire
future horizon in a single forward pass, meaning the label information is leveraged only once per
optimization step (see Sec[2.3] for the detailed explanation). This encourages the model to finally
learn a monolithic representation that maps the entire history to the entire future, without explicitly
modeling the sequential dependencies within the forecast itself. We contend that this approach hinders
the model from developing a more granular, causal understanding of the future, thereby limiting its
full potential.

To address these fundamental shortcomings, this paper proposes a new LTSF framework, derived from
first principles, that establishes a reliable and high-performing benchmark model. Our contributions
are summarized as follows:

* We present a Multiple Neural Forecasting Proposition (MNFP) with empirical evaluations,
which provides a formal motivation for employing multiple Neural Forecasters (NFs) in
Long-Term Time Series Forecasting (LTSF).

* We redesign the forecasting architecture by introducing a novel, streamlined forecasting
paradigm that synergistically combines the strengths of Direct Output (DO) and Auto
Regressive (AR) methods. Furthermore, we apply the Exponential Moving Average (EMA)
technique to effectively stabilize the convergence of Neural Forecasters.

* We conduct extensive experiments to demonstrate that a pure MLP-based forecaster, when
trained with our paradigm, can significantly outperform recent state-of-the-art models
on nearly all standard LTSF benchmarks. These results establish a new and efficient
performance baseline for the field.

2 METHOD

In this section, we lay out the theoretical and methodological foundations of our work. We begin
by introducing a core proposition that provides the theoretical underpinnings for our approach. To
build intuition, we then illustrate our designs using a simple MLP architecture on carefully selected
datasets that highlight the key effects of our methods. The comprehensive experimental setup and
full results on benchmark datasets are detailed in Sec[3]and the Appendix.

2.1 PRELIMINARIES

Neural Forecasting Machine (NFM). In this work, we denote the NFM as a forecaster modeled by
neural nets and satisfying that, given an input time series X € R?s, an NFM yields one and only one
series Y € R* through the operation Y = NFM[t,, t,,, 6, v](X ), where ¢, and ¢, denote the input
and output lengths. The symbol 6 denotes the model’s parameters, and y denotes the random state
encompassing all random factors such as the computational environment and exogenous variables.

Forecasting Task. We characterize a time series forecasting task with four parameters
X, Xy, Y}, Y}, where X, X; denote the history and future portions of an observed time series.
Y denotes the real unobserved future data, while Yf is an empirical forecast generated by an NFM
with input X ;. Since we treat the observed data X as a noisy sample of the true underlying signal,
the ultimate target is to learn a mapping from the history input X, to a prediction Yf that best
approximates the Y.

2.2 THEORETICAL MOTIVATION FOR MULTIPLE FORECASTS

The following proposition provides the theoretical motivation for our work. For simplicity, we present
the proof for the univariate case; however, the proposition can be readily extended to the multivariate
setting.

Proposition 1 (Multiple Neural Forecasting Proposition (MNFP)). In the context of standard machine
learning. Given a NFM ®(ty,t,,0,v) and an observed time series X}, = (x1,22,- -+ , %) where
each element x is drawn from a true distribution p; (i, atz) with mean . and standard deviation o.
One can generate a series by ®: f/f = (y1,Y2, - ,yr) with y; drawn from the expected forecast
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Figure 1: A single trained NFM ®4 can generate multiple forecasts from a fixed input X7, under
various states y. These forecasts are expected to follow the empirical process (p;, t = 1,2,---)
approximated by the NFM with the observed data. The model-expected process is distinguished from
the real data distribution (p;, t = 1,2,---) by a bias.

distribution p(fiy, 67) such that Yf approaches Yy almost surely, and the error between Yf and Xy
is bounded.

Specifically, a trivial but informative upper bound on the 1, error is given by T (X + \/c(b+ 0¢))/+/c
with the following parameters/conditions:

* (Al) The objective time series with finite length is bounded by a positive real constant \.
* (A2) The NFM generates candidate series {Yf(z) }fill under various 0% or random states ~'.
* (A3) The predictive bias of the NFM is bounded by up to sup, |fi; — put| = b.

The proof and further analysis can be found in Appendix [C} To interpret, the shown bound value
provides us with some intuitions: for instance, the forecasting error of the NFM naturally grows with
the forecast horizon 7" and the data range A, because of the expanded solution space. We emphasize
that condition A3 distinguishes between the observed real series and the expected true series. This
frames the observed data not as the absolute ground truth, but as a single, near-optimal sample from
the underlying stochastic process. While it is feasible to theoretically approach the expected forecast,
the empirical gap between any observation x; and the true expectation j; is practically irreducible.

The most critical insight of the proposition is that an accurate forecast is theoretically approachable
even with a rather weak generator, provided a sufficiently large number of candidate outputs is
produced. This proposition is rooted in the well-established theory of ensemble methods
[1969), which demonstrates that combining multiple diverse estimators can lead to a more
accurate and robust final estimate. Furthermore, higher-quality historical data and a more powerful
NFM (which reduces the estimation error b) both serve to constrain the solution space, leading to
better predictions. Inspired by this, we focus on reducing the total error variance by increasing c,
which has been largely overlooked in the recent pursuit of complex, monolithic architectures.

Post combination of multiple forecasts. Given a set of candidate outputs from an NFM, there exist
combinatorial methods to synthesize a single, integrated forecast that would be more accurate than
any individual candidate. We can represent such a method as an unknown functional g, that produces
the post-combined forecast as:

Yoe = 9:({V{"}io) M

In our experiments, we will empirically show the potential of this combination on real-world datasets.
In practice, however, directly creating an optimal combination function without access to future
information is a significant challenge [1989). Therefore, designing a framework that can
implicitly and effectively leverage these multiple forecasts is one of the key principles guiding our
subsequent work.

.
2.3 NOVEL FORECASTING PARADIGM >
The current frameworks in LTSF involve two main strategies: 5 \ /\
1-step Auto Regressive (AR(1)) and Direct Output (DO). While —/

AR models perform consistently with recurrent state space vo »00
models like RNNs (Siami-Namini et al., 2019), they are known Figure 2: Features of DO and BDO.
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to suffer from significant error accumulation in long-horizon forecasting and are empirically evidenced
to largely fall behind DO in LTSF (Zhou et al.| [2021), making a strong reason for the dominant
position of DO in LTSF. However, the shortcomings of the DO approach itself have been largely
overlooked. We argue that despite its simplicity, the most significant weakness of DO, particularly
when compared to AR, is its lack of inherent causality.

To illustrate this, we conduct a simple experiment in Fig[3} we consecutively split a forecast of
length L into m non-overlapped sub-forecasts with length L/m, and each part is predicted by an
independent linear head from a shared representation. The final forecast is a concatenation of these
segments. Empirically, it turns out that the performance of this multi-headed model is nearly identical
to a standard DO model with a single head predicting the full horizon. This result suggests that the
NF is unaware of the temporal relationships within the future sequence and makes the prediction
without considering the distance/interval between the input history and output future. As a result, it
learns to forecast each segment independently, which is fundamentally anti-intuitive.

ETTh1 learning process with independent chunks

e.g., two chunks
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Figure 3: We make the forecast by applying independent heads on several non-overlapped chunks.
The right figure shows the learning process in different settings.
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According to this observation, we propose a new forecasting paradigm as follows,

Definition 1 (Boost Direct Output (BDO)). Given a history time series T,, = {x1, 22, ,Tp}
(abbr. T, {1 : h}) in length h, the NF recursively generates an estimation T, of the future object

Ty = {y1,Y2, -+ ,yr} over N-steps. Let Ty{l : hn—1} be the forecast at step n — 1, then the
forecast at step n is:

Ty{l : hn} :NF([TCMT?J{]' : hnfl}]% n= 1727 e 7N; 2

where ho = 1 and hy = yy.. [, -] indicates the concatenation along the temporal dimension, L is
the entire prediction length. In our implementation, we evenly split the forecasting length into n
segments for convenience, i.e., in Eq.[2} hy = h * N, where N is a factor of L.

Intuitively, BDO recursively generates forecasts for progressively longer horizons, reusing predictions
from previous stages. This incorporates an AR-like causal structure into the forecasting process,
while retaining the patch-wise output characteristic of DO that mitigates significant error accumu-
lation. A balance between these two properties can be achieved by properly setting the number
of recursive stages, N. Furthermore, since short-term forecasting is generally an easier task than
long-term forecasting, BDO effectively creates a learning curriculum and tends to build hierarchical
representations as illustrated in Fig[2] We can reasonably expect this paradigm to outperform both
pure AR and pure DO strategies, especially in the challenging LTSF setting.

2.4 MODEL ARCHITECTURE

We construct our NFs using only MLP and linear layers for three primary reasons: 1) As foundational
deep learning modules, improvements demonstrated on them are broadly applicable and convincing.
2) Their computational efficiency (low FLOPs) facilitates rapid experimentation and verification. 3)
Recent work has shown that simple MLP-based architectures are often sufficient for a wide range of
forecasting tasks (Ekambaram et al.| [2023).

In principle, we build two NF variants, ReNF-a and ReNF-/, which differ in their degree of non-
linearity to better handle datasets of varying complexity. The overall architecture is shown in Fig{]
We stack multiple blocks to adopt the BDO strategy. Each consists of a linear layer for representation
projection, followed by an MLP for nonlinear transformation. Each block is also equipped with
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Figure 4: Model Structure of ReNF.

a dedicated linear head that maps the internal representation back to the data space, steering it to
function as a sub-forecaster for horizon h;, j = 0, 1, ..., k. In the recursive BDO process, the output
of each sub-forecaster is concatenated with the original input data to form the new input for the next
one. To allow for deeper representation flow, the ReNF-/ variant also incorporates skip-connections
between the representation spaces of consecutive blocks.
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We employ RevIN (Kim et al.,[2021)) as the pre-normalization for the initial input data to reduce the
distribution discrepancy between the training and evaluation phases. For consistency, we also apply
pre-normalizations to the input of each sub-forecaster. Additionally, we apply dropout before the
initial linear projection to prevent the model from being overly dependent on the history observation
and the concatenated information in the data space.

The general equation for the transformation process within each sub-forecaster can be written as

follows,
ReNF_Block(T") = Proj(Transform(Proj(Norm(Drop(T))))) 3)

where T denotes the input series, and all the projections are performed on the temporal dimension.

2.5 LEARNING OBJECTIVE

To train a deterministic NF, we adopt the hybrid loss function as used in (Liu et al.|[2025a)), which is a
convex combination of the Mean Absolute Error (MAE) in both the time and frequency domains. The
frequency-domain component has been shown to be effective at reducing spurious autocorrelations in
the labels (Wang et al., 2024a)).

Our BDO framework uniquely generates multiple outputs of varying lengths, enabling us to apply
this loss at each forecasting stage. This hierarchical supervision allows us to fully leverage the label
information at multiple scales, encouraging the model to build causally structured and homogeneous
representations rather than the disconnected ones typical of standard DO forecasts. In the words of
our MNFT, this multi-level supervision provides richer feedback and mutual information from the
observed labels, thereby constraining the solution space more effectively.

In the BDO paradigm, the quality of early, short-term forecasts is critical, as errors at these stages
may still propagate and degrade the performance of subsequent long-term forecasts. To ensure a
stable foundation, we therefore place heavier weights on the losses computed at earlier stages (i.e.,
for shorter forecast horizons). The complete loss function is expressed as follows:

N
loss = Y (y/n) * (o [V = X[l + (1 — a) * [[Freq(V}") — Freq(X[")[1) )
n=1
where || - ||; denotes the [; norm, y and « is predifined coefficients. Freq(-) represents the discrete

fourier transform and Y™ denotes the n-th sub-forecast corresponding to the n-th piece of X ;. A
more in-depth analysis of this loss function is provided in Appendix D]
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2.6 SMOOTHING THE LEARNING FOR TIME SERIES
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Figure 5: Variation of valid and test loss before and after applying EMA smoothing. The valid loss
and test loss are not consistent during the learning process of NFs without smoothing.

Notably, training on standard benchmark datasets is often unstable, partly due to sparse or redundant
information. The non-stationary nature of real-world time series, combined with chronological
data splitting, leads to both internal (batch-to-batch) and external (train/validation/test) distribution
mismatches. This causes the optimization path to be heterogeneous, rendering the learning process
for NFs ineffective. Specifically, internal data redundancy can cause the model to overfit repeated or
spurious patterns (Liu et al.,|2025a), harming generalization, while external distribution shift creates
inconsistencies across the different phases of training. While normalization techniques like RevIN
address the train-test shift, a critical problem remains between validation and testing.

On many datasets, particularly those with smaller volumes, the validation and test losses exhibit
significantly different, and at times conflicting, dynamics during training. This issue invalidates
the early stopping criterion: learning steps become ineffective, and suboptimal models are saved,
preventing a true assessment of a model’s capabilities. This is especially problematic when comparing
models of varying complexities, which naturally have different optimization trajectories.

To mitigate these unexpected effects, we propose smoothing the training trajectory by employing a
”shadow” model for evaluation. We achieve this efficiently using an Exponential Moving Average
(EMA) to track the parameters of the online model, a technique proven effective in self-supervised
learning in self-supervised learning (LeCun, |2022) and generative models (Song et al., |2020). Specif-
ically, let 6 be the parameters of the online model being trained, and 6’ be the parameters of the
shadow model. Then the shadow model’s parameters are upgraded as follows at each iteration.

01’16W = ax* G:JICV + (1 - Ol) * ecurrent (5)

where « is the EMA decay rate. This shadow model is then used for all evaluations. As shown
in Fig. [5] this technique effectively smooths the learning curves and mitigates the inconsistency
between validation and test performance. By providing a more stable and reliable training signal,
EMA prolongs the effective learning period and enables the model to converge to better local minima,
achieving improved generalization.

3 EXPERIMENT

Baselines and Datasets. We compare our model with a suite of recent state-of-the-art methods,
including TimeBridge (Liu et al., 2025a)), DUET (Qiu et al., |2025)), TimeDistill (N1 et al., [2025)),
Timer-XL (Liu et al., [2025b), iTransformer (Liu et al.| 2024)), TimeMixer (Wang et al., [2024b)),
PatchTST (Nie et al.l [2023)), Crossformer (Zhang & Yan, 2023)), and Dlinear (Zeng et al., [2023).
We use widely used benchmark datasets in this area, including electricity (ETTh1l, ETTh2, ETTml,
ETTm?2, Electricity), environment (Weather), energy (Solar-Energy), and transportation (Traffic).
Supplementary datasets for the evaluation on short-term forecasting and the detailed descriptions of
these datasets are included in Appendix

Setups. All experiments were conducted on a single NVIDIA 4090 GPU with 24GB of memory, using
the Adam optimizer (Kingma & Ba,[2014) and a fixed random seed of 2021 for reproducibility. Results
for all baseline models were reproduced using their official source code and optimal configurations.
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For our model, ReNF, we searched for the optimal learning rate in the range from 0.0001 to 0.005,
the EMA decay rates in the range from 0.99 to 0.999, and the number of layers from 2 to 8. We apply
ReNF-a to ETTh1 and ETTh2 datasets, and ReNF-/3 to others. The look-back window of ReNF is
searched over {336, 512, 720} for the best performance. The drop_last bug is corrected following the
TFB benchmark (Qiu et al., [2025).

3.1 MAIN RESULT

The results, presented in Table 2] demonstrate a powerful conclusion: without resorting to
complex, specialized modules for multi-resolution, periodicity, or cross-variate dependencies,
a simple MLP-based model can achieve exceptional performance. By focusing instead on
fundamentally improving the forecasting paradigm and stabilizing the training process,
our MLP model-ReNF sets a new state-of-the-art. Overall,
ReNF surpasses all leading 2024 models by a significant Model ReNF TimeBridge DUET

margin and outperforms even the very competitive 2025 Params (MB) | 0.200 | 0.887 | 4.128
. . . ‘Weather

SOTA methods in almost all cases. This provides strong FLOPs (GB) | 0.004 | 4262 | 0.143

evidence for the effectiveness of our proposed techniques. g | s )| 0393 | 0ag0 [ aess
m.

However, we do not claim that existing specialized tech- FLOPs (GB) | 0003 | 1604 | 0.051

niques are redundant. Rather, as discussed in Sec[2.6] many Traffic | Porm OB [21.476| 12431 | 9910
. . . 0 ratnc

of these architectural designs were evaluated within unsta- FLOPs (GB) [22.813| 479.231 | 15.575

ble training frameworks, suggesting that their true effects ] ]
may need tedious re-evaluation, which may be a promising Table 1 Efﬁc1ency comparison of
future work. For instance, on the complex Traffic dataset, RGNF, TimeBridge, and DUET. All m?t'
while ReNF shows significant improvement over many Tics are averaged across the four predic-
baselines, it does not surpass the MSE score of the large ton lengths.

Transformer-based model, TimeBridge. We compare the model complexity in FLOPs and params
between the most competitive models in the Table[T]} showing that ReNF reduces 20x the complexity
in FLOPs compared to TimeBridge with the Traffic dataset. This suggests that more complex models
might still work better on datasets with high non-linearity.

ReNF TimeBridge DUET TimeDistill Timer-XL  iTransformer TimeMixer PatchTST  Crossformer  DLinear

Models h . y . : ]
ours ({2023a)) (2023 {2073 {20256) ({2024) ({20245 2073 (2073 {2023

Metric  MSE MAE | MSE MAE | MSE_MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
Weather |0.214 0.247[0.220 0.250| 0219 0.253| 0221 0.269] 0.240 0.273]0.232 0.269 [0.226 0.264]0.224 0.262] 0.232 0.294 |0.242 0.293

Electricity | 0.145 0.237]0.152 0.247] 0.157 0.248] 0.157 0.254 | 0.155 0.246]0.163 0.258]0.185 0.284]0.171 0.271] 0.171 0.263]0.167 0.264

Traffic [0.365 0.245[0.357 0.2480.393 0.256] 0387 0.271 | 0.374 0.255[0.395 0.279 |0.409 0.279|0.397 0.275| 0.522 0.282]0.418 0.287

Solar  [0.176 0.214|0.183 0.219] 0.195 0214 0.184 0.242] 0.198 0.249]0.202 0.262 |0.193 0.252|0.200 0.284| 0.205 0.233|0.224 0.286

ETTml |0.331 0.364]0349 0380|0338 0.369]0.348 0.380 | 0.359 0382|0361 0.390 0356 0.380]0.349 0.381] 0.464 0.456 |0.356 0.379
ETTm2 |0.243 0.301]0.247 0305|0248 0.308]0.250 0312 | 0271 0322|0269 0.327]0.257 0.318]0.256 0.314] 0.501 0.505 |0.259 0.325
ETThl [0.391 0.416]0.401 0.426] 0401 0.420]0.430 0.441 | 0.409 0.430]0.439 0.448 0427 0.441]0.419 0.436] 0439 0.461 |0.425 0.439

ETTh2 0327 0.379]0.345 0.386]0.336 0.385]0.345 0.305 | 0.352 0.402[0.370 0.403 |0.349 0.397]0.351 0.395] 0.894 0.680 | 0.470 0.468

Table 2: Results of long-term forecasting of hyperparameter searching. All results are averaged
across four different prediction lengths: {96,192, 336, 720}. The best and second-best results are
highlighted in red and blue, respectively. Full results are listed in Appendix @

3.2 ABLATION STUDY

Effect of EMA. To analyze the impact of EMA, we recorded the evaluation dynamics of ReNF with
and without our smoothing technique. The results, shown in Fig. [f] clearly demonstrate EMA’s role.
It is notable that we also record the variation of test loss as evidence for the effect of improving the
generalization ability.

First, on smaller or less stable datasets like ETTh2, EMA mitigates spurious overfitting and stabilizes
the learning curves. This provides a more reliable signal for early stopping and prolongs the effective
training period. Second, on large, high-quality datasets such as Electricity, the choice of EMA decay
rate can influence performance. By selecting an appropriate rate, the generalization ability of the NF
can be substantially enhanced. Full numerical results for all datasets are available in the Appendix.
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Figure 7: Effect of the BDO forecast.

Effect of BDO. We investigate the effect of the BDO paradigm with the following settings:
1) Keep the depth of ReNF, but disable the recursive input concatenation and apply the
loss function only to the final output; 2) Directly change the number of layers/sub-forecasts.
By config.1, the BDO reduces to DO with the model
structure unchanged. The results, shown in Fig. Layer = K=1 K=2 K=3 K=4 K=5 K=6

demonstrate that even on the ETTh1 dataset, which has MSE | 0.311 0.309] 0307 | 0.307] 0.307 | 0.307

limited data and is difficult to optimize with deep repre- """ |maE| 0322 | 0320{ 0319 | 0319|0319 | 0310

sentations, our BDO strategy can still yield superior per- MSE | 0411 | 0.408 0407 | 0.406 | 0.404 | 0.401

formance, especially for very long-term forecasts. This ~ ETTml| b 10 100 [0.408 | 0.407 [0.407 | 0.407

finding empirically supports our claim, derived from

proposition[2.2] that leveraging multiple, hierarchically-  Traffic MSE | 04261 0.415 | 04101 0.406  0.403 | 0.402
MAE | 0.281]0.274 | 0.272|0.270 | 0.267 | 0.267

generated sub-forecasts provides valuable mutual infor-

mation that enhances the final prediction. Table 3: 720-length forecast with varying

Furthermore, it is shown clearly in Fig. [8a) that the number of layers (sub-forecasts).
performance of ReNF with the BDO strategy can con-

sistently improve as K increases. In stark contrast, the performance of the DO model stagnates or
degrades with added depth. This difference highlights BDO’s ability to effectively utilize deeper
architectures. This meaningful phenomenon suggests that our paradigm may unlock a new, more
effective scaling law for LTSF models. Diverse examples are shown in the Table |3|and the Appendix

3.3 EMPIRICAL EVALUATION OF THE PROPOSITION

Dataset ETTml ETTm2 ETThl ETTh2 Weather Electricity Solar Traffic
ReNF Last Forecast 0.331 0.243 0.391 0.327 0.214 0.145 0.176 | 0.365
e
Empirical Bound | 0.225 0.201 0.270 0.252 0.165 0.100 0.090 | 0.254

Table 4: Comparison between the last single forecast and the optimal post-combined forecast of
ReNF. The shown metrics are MSE and are averaged across the four prediction lengths.

To empirically evaluate our Multiple Neural Forecasting Proposition, we implement the post-
combination strategy described in Sec. [2.2] This requires defining a combination function, g.
While finding an optimal solution without future knowledge is difficult, we can establish a theoretical
upper bound on performance. Given the ground truth labels, a trivial yet optimal strategy is to select,
at each timestep, the forecast value from among all candidates that has the smallest error. By applying
this “oracle” combination, we aim to explore two points: 1) to quantify the potential accuracy
improvement achievable through post-combination, thereby establishing a dynamic empirical bound
for our forecasting model; and 2) to verify that this empirical bound behaves in a manner consistent
with the intuitions of the MNFP 2.2
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Figure 8: Performance variation with different numbers of sub-forecasts K. (a). Comparison of using
DO or BDO. (b).Comparison between the best forecast and the empirical bound of ReNF.

Table [] presents the performance of this oracle post-combination strategy, revealing a significant
gap between the final ReNF forecast and the empirically optimal combination. While this oracle
performance is unattainable in practice, the resulting empirical bound is highly informative. On one
hand, it indicates that any single forecast is suboptimal and that powerful combinatorial strategies
for improving predictions must exist (a promising direction for future work). On the other hand, it
shows that we are still far from perfectly leveraging the information contained within the multiple
sub-forecasts. This gap is precisely what motivates our BDO paradigm, which is designed to help the
neural network implicitly learn a more effective combination function g..

Furthermore, Fig. [B(b) shows how this empirical bound varies with the number of sub-forecasts .
The bound consistently decays as K increases, even when the model’s performance saturates. This
result aligns perfectly with the core insight from MNFP: the theoretical performance limit improves
as the number of candidate forecasts grows.

151 — forecast 0

forecast 1
—— forecast 2
—— true observation
10
—— optimal

(a) 96-prediction on the Electricity dataset (b) 192-prediction on the ETTm2 dataset

Figure 9: Visualization of forecasting results of ReNF. The figure shows multiple outputs of ReNF in
different layers, along with the result of applying optimal post-combination.

In a nutshell, our evaluation of the MNFP clarifies two primary roles for Neural Networks in this
domain. First, NNs should be leveraged to learn a powerful post-combination function over multiple
candidate forecasts. Second, more powerful base forecasters must be developed to better approximate
the true data-generating distribution, directly reducing the predictive bias b as identified in our

proposition[2.2]

4 CONCLUSION

We propose a fundamental proposition to support the mechanism of multiple forecasts. Based on
this proposition, we introduce a novel paradigm that combines the advantages of current forecasting
methods, enabling more accurate predictions in a hierarchical representation space. To remedy
training instability, we leverage EMA to smooth the learning process of neural forecasters. Our
empirical results show that with these techniques, a simple MLP can outperform recent SOTA models
with significantly less complexity. The value of our proposition is also evaluated and confirmed by
experimental results, clearly identifying the role of the Neural Network in building the Long-Term
Time Series forecasters.
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5 REPRODUCIBILITY STATEMENT

We have put a lot of effort into ensuring the reproducibility of this work, including the code in the
anonymous repository https://anonymous.4open.science/r/ReNF-A151, a complete
data description in the Appendix [B| and clear explanations of the assumptions and proof of the
proposition in the Appendix [C]

REFERENCES

John M Bates and Clive WJ Granger. The combination of forecasts. Journal of the operational
research society, 20(4):451-468, 1969.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123—-140, 1996.

Cristian Challu, Kin G. Olivares, Boris N. Oreshkin, Federico Garza Ramirez, Max Mergenthaler-
Canseco, and Artur Dubrawski. Nhits: neural hierarchical interpolation for time series forecasting.
2023. doi: 10.1609/aaai.v37i6.25854. URL https://doi.org/10.1609/aaai.v3716.
25854.

Tianqgi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794,
2016.

Robert T Clemen. Combining forecasts: A review and annotated bibliography. International journal
of forecasting, 5(4):559-583, 1989.

Adrien Cortés, Rémi Rehm, and Victor Letzelter. Winner-takes-all for multivariate probabilistic time
series forecasting. arXiv preprint arXiv:2506.05515, 2025.

Jinliang Deng, Feiyang Ye, Du Yin, Xuan Song, Ivor Tsang, and Hui Xiong. Parsimony or capability?
decomposition delivers both in long-term time series forecasting. Advances in Neural Information
Processing Systems, 37:66687-66712, 2024.

Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam.
Tsmixer: Lightweight mlp-mixer model for multivariate time series forecasting. In Proceedings of
the 29th ACM SIGKDD conference on knowledge discovery and data mining, pp. 459—469, 2023.

Jongseon Kim, Hyungjoon Kim, HyunGi Kim, Dongjun Lee, and Sungroh Yoon. A comprehensive
survey of deep learning for time series forecasting: architectural diversity and open challenges.
Artificial Intelligence Review, 58(7):1-95, 2025.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
versible instance normalization for accurate time-series forecasting against distribution shift. In
International conference on learning representations, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Dilfira Kudrat, Zongxia Xie, Yanru Sun, Tianyu Jia, and Qinghua Hu. Patch-wise structural loss for
time series forecasting. arXiv preprint arXiv:2503.00877, 2025.

Rodrigo GonzAAlez Laiz, Tobias Schmidt, and Steffen Schneider. Self-supervised contrastive
learning performs non-linear system identification. arXiv preprint arXiv:2410.14673,2024.

Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open
Review, 62(1):1-62, 2022.

Peiyuan Liu, Beiliang Wu, Yifan Hu, Naiqi Li, Tao Dai, Jigang Bao, and Shu-tao Xia. Timebridge:
Non-stationarity matters for long-term time series forecasting. arXiv preprint arXiv:2410.04442,
2025a.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting. Advances in neural information processing systems, 35:
9881-9893, 2022.

10


https://anonymous.4open.science/r/ReNF-A151
https://doi.org/10.1609/aaai.v37i6.25854
https://doi.org/10.1609/aaai.v37i6.25854

Under review as a conference paper at ICLR 2026

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2024.

Yong Liu, Guo Qin, Xiangdong Huang, Jianmin Wang, and Mingsheng Long. Timer-x1: Long-context
transformers for unified time series forecasting. arXiv preprint arXiv:2410.04803, 2025b.

Yihang Lu, Yangyang Xu, Qitao Qin, and Xianwei Meng. Timecapsule: Solving the jigsaw puzzle of
long-term time series forecasting with compressed predictive representations. In Proceedings of the
31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 2, pp. 1987-1998,
2025.

Dhruv D Modi and Rong Pan. Enhancing transformer-based foundation models for time series
forecasting via bagging, boosting and statistical ensembles. arXiv preprint arXiv:2508.16641,
2025.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT
press, 2018.

Hanh H Nguyen and Christine W Chan. Multiple neural networks for a long term time series forecast.
Neural Computing & Applications, 13(1):90-98, 2004.

Juntong Ni, Zewen Liu, Shiyu Wang, Ming Jin, and Wei Jin. Timedistill: Efficient long-term time
series forecasting with mlp via cross-architecture distillation. arXiv preprint arXiv:2502.15016,
2025.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2023.

Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis
expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437,
2019.

Xihao Piao, Zheng Chen, Taichi Murayama, Yasuko Matsubara, and Yasushi Sakurai. Fredformer:
Frequency debiased transformer for time series forecasting. In Proceedings of the 30th ACM
SIGKDD conference on knowledge discovery and data mining, pp. 2400-2410, 2024.

Xiangfei Qiu, Xingjian Wu, Yan Lin, Chenjuan Guo, Jilin Hu, and Bin Yang. Duet: Dual clustering
enhanced multivariate time series forecasting. In Proceedings of the 31st ACM SIGKDD Conference
on Knowledge Discovery and Data Mining V. 1, pp. 1185-1196, 2025.

Howard Percy Robertson. The uncertainty principle. Physical Review, 34(1):163, 1929.

Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. The performance of Istm and bilstm
in forecasting time series. In 2019 IEEE International conference on big data (Big Data), pp.
3285-3292. IEEE, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Hao Wang, Licheng Pan, Zhichao Chen, Degui Yang, Sen Zhang, Yifei Yang, Xinggao Liu, Haoxuan
Li, and Dacheng Tao. Fredf: Learning to forecast in the frequency domain. arXiv preprint
arXiv:2402.02399, 2024a.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang, and
Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. arXiv preprint
arXiv:2405.14616, 2024b.

Shiyu Wang, Jiawei Li, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Shengtong Ju, Zhixuan

Chu, and Ming Jin. Timemixer++: A general time series pattern machine for universal predictive
analysis. In ICLR, 2025.

11



Under review as a conference paper at ICLR 2026

Zhijian Xu, Ailing Zeng, and Qiang Xu. Fits: Modeling time series with 10k parameters. arXiv
preprint arXiv:2307.03756, 2024.

Wang Xue, Tian Zhou, Qingsong Wen, Jinyang Gao, Bolin Ding, and Rong Jin. Card: Channel
aligned robust blend transformer for time series forecasting. arXiv preprint arXiv:2305.12095,
2023.

Wang Xue, Tian Zhou, Qingsong Wen, Jinyang Gao, Bolin Ding, and Rong Jin. Card: Channel
aligned robust blend transformer for time series forecasting. arXiv preprint arXiv:2305.12095,
2024.

Kun Yi, Jingru Fei, Qi Zhang, Hui He, Shufeng Hao, Defu Lian, and Wei Fan. Filternet: Harnessing
frequency filters for time series forecasting. Advances in Neural Information Processing Systems,
37:55115-55140, 2024.

Guoqi Yu, Jing Zou, Xiaowei Hu, Angelica I Aviles-Rivero, Jing Qin, and Shujun Wang. Revitalizing
multivariate time series forecasting: learnable decomposition with inter-series dependencies and
intra-series variations modeling. In Proceedings of the 41st International Conference on Machine
Learning, pp. 57818-57841, 2024.

Wenzhen Yue, Yong Liu, Haoxuan Li, Hao Wang, Xianghua Ying, Ruohao Guo, Bowei Xing, and
Ji Shi. Olinear: A linear model for time series forecasting in orthogonally transformed domain.
arXiv preprint arXiv:2505.08550, 2025.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121-11128, 2023.

G Peter Zhang. Time series forecasting using a hybrid arima and neural network model. Neurocom-
puting, 50:159-175, 2003.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The eleventh international conference on learning
representations, 2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106-11115, 2021.

12



Under review as a conference paper at ICLR 2026

Supplementary Material

A RELATED WORK

We note that ReNF is not the first work to address LTSF using multiple short-term forecasts. A
pioneering and highly relevant study by (Nguyen & Chan, 2004) proposed a machine called MNN,
which generates long-term forecasts using multiple neural networks, each responsible for a specific
interval of the output. The essential distinction between MNN and our approach is that we generate
sub-forecasts recursively, with the explicit goal of injecting causality into the DO strategy. In contrast,
each sub-network in MNN functions as a standalone AR(1) model. This difference stems from our
distinct motivation: whereas MNN was designed primarily to mitigate the error accumulation of
one-step-ahead NN models, our work begins with a foundational forecasting proposition. Based
on this proposition, we leverage modern deep learning techniques to effectively utilize multiple
sub-forecasts, achieving strong empirical results on a wide range of real-world datasets, which
constitutes one of our main contributions.

A recently proposed work using the multiple-choice learning paradigm (Cortés et al., [2025) is also
relevant, as it demonstrates an ability to handle the diverse and multi-modal nature of the future
from a probabilistic perspective. Furthermore, the characterization of TimeMCL as a conditional
stationary quantizer for time series may offer additional theoretical support and interpretations for
our framework.

Ensemble. Our work also connects to classic ensemble methods in machine learning (Mohri et al.,
2018). For instance, the recursive workflow of ReNF is analogous to gradient-boosted regression
models (Chen & Guestrin, 2016)), which construct a strong predictor from multiple weak ones.
Additionally, the collaborative training can be viewed as a form of bagging (Breiman, 1996), which
effectively resamples the data to train diverse forecasters. In this context, an even more recent study
(Modi & Panl [2025) re-certified the benefits of such ensemble methods for enhancing Transformer-
based NFs, providing further empirical support for the direction of our research.

Forecast Combinations. Forecast combination is a classic technique for improving forecast accuracy
and robustness by leveraging the diverse strengths of multiple models (Clemen, [1989). In this
work, we extend this concept (Bates & Granger}, [1969)) to the domain of deep learning for long-term
time series forecasting. Rather than combining distinct, parallel forecasters into a hybrid model
(Zhang|, 2003), our framework achieves this goal efficiently within a single, structured approach
for generating and implicitly combining forecasts within a single neural network. By recursively
stacking sub-forecasts, similar in spirit to N-BEATS (Oreshkin et al.l 2019) and NHits (Challu et al.|
2023) which ensure the frequency diversity of the forecasts in different stages, we learn and compose
multiple forecasts in different lengths while the representation is both deep and diverse, allowing the
LSTF task to benefit from the full power of modern machine learning.

B DETAILS OF DATASETS

The ETTh1, ETTh2, ETTm]1, and ETTm?2 datasets record the temperature of electricity transformers
every hour and every 15 minutes. The Weather dataset contains 21 weather information, measured
every 10 minutes in Germany. The Electricity dataset records the amount of electricity used by 321
customers every hour. The Solar dataset records how much electricity is produced by solar power
stations every 10 minutes, from 137 solar power stations, in 2006. The Traffic dataset records how
busy the roads are in San Francisco, every hour, from 862 sensors on the freeway.

In addition, we also evaluate the short-term time series forecasting on six datasets that are used in
the study (Yue et al., |[2025)). The METR-LA database was populated with traffic network data in
Los Angeles during the springtime period of 2012, specifically from March to June. This data was
collected at an interval of five minutes. The NASDAQ includes the daily NASDAQ index and key
economic indicators from 2010 to 2024. The SP500 records daily SP500 index data (e.g., opening
price, closing price, and trading volume) from January 1993 to February 2025. CarSales collects
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Dataset | Dim | Prediction Length | Split | Frequency | domain
ETTh1,ETTh2 | 7 | 96,192,336,720 | (6,2,2) | Hourly | Electricity
ETTml, ETTm2 | 7 | 96,192,336,720 | (6,2,2) | 15min | Electricity
Weather ‘ 21 ‘ 96, 192, 336, 720 ‘ 7,1,2) ‘ 10min ‘ Environment
Electricity | 321 | 96,192,336,720 | (7,1,2) | Hourly | Electricity
Traffic | 862 | 96,192,336,720 | (7,1,2) | Hourly | Transportation
Solar | 137 | 96,192,336,720 | (6,2,2) | 10min | Energy
NASDAQ | 12 | 24,36,48,60 | (7,1,2) | Daily | Finance
SP500 | 12 | 24,36,48,60 | (7,1,2) | Daily | Finance
Carsales | 12 | 24,36,48,60 | (7,1,2) | Daily | Market
Website | 12 | 24,36,48,60 | (7,1,2)| Daily |  Web
Power | 12 | 24,36,48,60 | (7,1,2) | Daily | Energy
METR-LA | 207 | 96,192,336,720 | (7,1,2) | 5min | Transportation

Table 5: Descriptions of multivariate time series datasets used in this research. The dim column
represents the number of variates, and the split column specifies the train-validate-test splitting ratio
for each dataset.

daily sales of 10 vehicle brands (e.g., Toyota, Honda) in the U.S. from January 2005 to June 2023.
The data are compiled from the Vehicle Sales dataset on Kaggle. Power contains daily wind and solar
energy production (in MW) records for the French grid from April 2020 to June 2023. The data are
compiled from the Wind and Solar Daily Power Production dataset on Kaggle. The website contains
six years of daily visit data (e.g,. first-time and returning visits) to an academic website, spanning
from September 2014 to August 2020.

C PROOF OF THE APPROXIMATE PROPOSITION

We restate the parameters and preconditions to derive the target bound value:

* (A1) The objective time series with finite length is bounded by a positive real constant \.
* (A2) The NFM generates candidate series {Yf(l) 3z 11 under various 6 or random states 7°.
* (A3) The predictive bias of the NFM is bounded by up to sup, | — p¢| = b.
Proof. First, we derive the expected bound for each independent element yt(i) in any candidate
forecast )Aff(l) = {0 y@ oyl
Since yt(i) ~ p(fit, 67), we know from the (A2) that {yt(i)}fz1 are i.i.d. samples from the same
distribution with E(yt(l)) = [1z. Thus, according to the law of large numbers, the statistical average of
{ygl)}le converges to the expectation p; almost surely as ¢ — oo.

In particular, we have

R IS 1o . PN
Elje —— Y P =EI2 D (" — i) + e — fief? ©)
=1 =1
1 5 D
=SB ) — ) @
=1
1 C A
= 5 D Ely” — jul. ®)
=1

The last identity holds because {yy)};?:l are independent, i.e., ]E[(y§7) - ﬂt)(yt(j) — )] = ]E(yt(z) -
) By — ) = 0,i# j.
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Then, we can bound this term by showing

Ely;” — fu|* = Elyy” — Ely"]? ©)
= E|(yt ) | — |]E[y§i)]|2 (variance identity) (10)
<E[(y")? (11)
< sup{(y”)*} = X (A1) (12)

Therefore, we have shown that
N I~ G A2
Elp - - >y P <~ (13)
i=1

for any ¢; and in particular, there must exist a set of {gjt(l) }¢_, satisfying

1 i
Iﬂt72~()l f (14)

=1

Fixing the set {yt }¢_,. it remains to estimate the distance between the forecast by the NFM @ and
the expected forecast Y, and the true observation X ¢, respectively.

Since it is trivial to get

(i e N e
mt—fz D<= 3B e = el < e = - D030 b (A3 (15)

=1 i=1

We have

I ~(1) < . ~(7) . <17 71 c _(4) b 16
e Zy | < lpe — Zyt |+ |ze — pe| < |fne czyt |+ b+ 0. (16)

i:l =1

Thus, we can derive the expected upper bound as

= 1 &G B T(A + Ve(b+ 0))
;|xt—ggy§)|§T~(z+b+a)= v . (17)

This completes the proof.

C.1 VARIANCE ANALYSIS OF TOTAL SUMMED ERROR

The above proof gives an intuitive bound, which does not depend on any assumption on the temporal
dependence. In this part, we consider this factor as a pivot for analysing the effects of different
forecasting paradigms, identifying the role of our BDO.

The variance of this total error is:

T
var(z e Zvar et) + 2 Z Cov(et, e}) (18)
t=1 t=1

t<t’

For simplicity, let the prediction error at each timestep as ¢ e; 1= s — % Py g}f’), and temporarily
omit the effect of the predictive bias b of NFM in A3, i.e., x = ji. Then we can compute the
covariance (autocorrelation) of the errors at any two distinct timesteps k and h,

Cov(er,en) = E[(pur — i) (pin — tin)] (19)
= Elfirfin] — prfin (20)
— Cou(jixfin) @1
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where we denote i, := 1 3¢ 7", So we have

L 1 c c ; )
Cov(jiiin) = > >~ Covyy”,u;) 22)
i=1j=1
1 ) )
_ ECOU(y,g”,y,(j)), Vi (23)

The last inequality holds by assumption A2, which isolates the correlations across different candidates.
Now we can consider the role of temporal dependence in the error structure.

Case 1: Temporal Independence (The DO Paradigm): The Direct Output (DO) paradigm is
designed to approximately satisfy the assumption of temporal independence, as evidenced in Sec.
[l This implies that the error covariance terms in Eq. 23] are zero. Consequently, the total error
variance is simply the sum of the per-timestep variances, While this structure effectively prevents the
compounding of errors, it often comes at the cost of the model being “unaware” of the sequential
dynamics within the future horizon, potentially leading to higher per-timestep variance. Furthermore,
the variance of the total summed error can only benefit from the combination factor ¢ in reducing the

individual uncertainty at each future timestep Zle var(e).

Case 2: Temporal Dependence (The AR Paradigm). : The typical AR paradigm fundamentally
violates this assumption and thus leads to errors from one step propagating to the next, which causes
the total variance to explode over long horizons. Even though the introduction of the ensembling
factor ¢ would reduce the magnitude of this effect, it does not alter the underlying structural problem
of error accumulation.

Case 3: A Synthesis (The BDO Paradigm).: Our Boosted Direct Output paradigm operates as a
synthesis of these two extremes. It intentionally violates strict temporal independence by recursively
feeding sub-forecasts back into the model, thereby making it aware of causal dependencies within the
forecast horizon. However, unlike a pure AR model, it would learn a mapping that minimizes the
error covariance. Through hierarchical supervision and its patch-wise output structure inherited from
DO, the model is trained to control the accumulation of errors. The goal is to leverage the benefits of
modeling temporal structure while constraining the error correlation, effectively learning to make the
covariance term in Eq. 23]as small as possible.

Note that the above proof and analysis are based on a univariate time series; however, it is easy to
extend the result to the multivariate case using a similar process in a certain normed vector space.

D IMPLICIT STRUCTURAL LOSS

* (1)

O 1 loss(@Y L zpay) !
8 1 Yoy T} \ *A(2) Composeol
g. | J—ﬁ structural loss

r ] 1
o | loss(y(z)_ T {14,}) |loss(Q(2)_ T {tt))
o II {1t} T{Ll:ta} i {ty:ta}r T{trta} i I " )\(3)

~(3 ~ ~
loss(y({l):tl)’ z{lrtn}) loss(yg,):tz}’ z(tl:tz}) loss(y(éz:tz}, z{fzits})

Figure 10: Hlustration of the implicit structural loss of BDO, we exemplify it in the NF consisting of
three sub-forecasters.

An interesting property of the BDO paradigm is the implicit structural loss it induces. This connects
our work to recent research on explicit loss engineering, such as positional weighting
and patch-wise structural losses (Kudrat et al.,2025). We posit that the BDO learning objective,
formed by the weighted sum of losses from hierarchical sub-forecasts, inherently functions as a
complex structural loss. This seemingly implicit loss can be seen as the generalized version of the
above two.
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To formalize this property, we first simplify the loss function from Eqf]as:
N
Loss = Z A(n) * f(Yf(”)7 Xj(cn)) (24)
n=1

where f(-, ) denotes a base error function such as the MAE.
Note that in our definitions and notations, }7;") = {g{”), ggn), e ,g]f:) }. We can therefore expand
the total loss into a point-wise sum over all timesteps:

tn

N
Loss = Z Z A(n) = f(gt(”), xt) (25)

n=1t=1

The underlying structure of this composite loss, visualized in Figure[T0] reveals a key insight: BDO is
not just a recursive forecasting process, but also a method for implicitly constructing a complex and
adaptive structural loss. The properties of this loss can be finely tuned through several mechanisms:
the stage-wise weighting coefficients, the forecast splitting strategy, the choice of the base error
function, and even the architecture of each sub-forecaster.

E FULL RESULTS

E.1 FULL LONG-TERM FORECASTING RESULTS

We present the full version of Table[2]in Table[6]to show the capability of ReNF in Long-Term time
series forecasting.

E.2 SHORT-TERM FORECASTING RESULTS

In addition, to further verify the generality of ReNF, we test it at six supplementary datasets from
a recent short-term time series forecasting benchmark (Yue et al} 2025). The descriptions of these
datasets can be found in the Table[5} As shown in Table[/] ReNF remains highly competitive against
the recent SOTA models in short-term forecasting task. In fact, the short-term forecast can not
benefit from the BDO to the extent of LTSF, as we hypothesize that when restricted to shorter look-
back windows, the initial short-term forecasts in the BDO process are less accurate. Consequently,
concatenating these noisier predictions can introduce disruptions that limit the full benefit of our
paradigm. From another perspective, while our proposed methods are universally applicable, these
results also highlight the value of more specialized or refined extension of our proposals in further
enhancing the capabilities of BDO in various scenarios.

F MORE ABLATIONS

F.1 EMA SMOOTHING

The results in Table[§]confirm that EMA smoothing yields substantial improvements in final forecast
accuracy. This empirically validates our hypothesis from Section[2} EMA mitigates the detrimental
effects of flawed early stopping, where volatile validation scores lead to the premature saving
of suboptimal models. By providing a more reliable and stable training signal, EMA not only
enhances performance but also establishes the robust foundation necessary to fairly evaluate our other
contributions, such as the BDO paradigm.

F.2 PRE-DROPOUT.

Our MLP architecture applies dropout to the input data by default as a regularization technique.
While its impact can be subtle and dataset-dependent, we perform an ablation study for the sake
of completeness. The results of this analysis on the ETTh1, ETTh2, and Electricity datasets are
presented in Table[9]
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Re-Bound ReNF TimeBridge DUET TimeDistill ~ Timer-XL iTransformer TimeMixer PatchTST  Crossformer  DLinear
- ours ({2025a)) {2025) (2023 {2025b) {2024) (2024b) (2023) ({2023 2023)

Models

Metric MSE MAE | MSE MAE | MSE MAE | MSE  MAE MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

96 0.110 0.149 (0.138 0.180 |0.144 0.184(0.146 0.191|0.145 0.204 |0.157 0.205|0.157 0.206 [0.147 0.198]0.150 0.200| 0.143 0.210 {0.170 0.230

5| 192 0.141 0.185]0.182 0.224|0.186 0.226| 0.188 0.231 | 0.188 0.247 |0.206 0.250|0.200 0.248 [0.192 0.242|0.191 0.239|0.195 0.261 [0.216 0.273
% 336 0.177 0.216 | 0.231 0.266 | 0.237 0.267|0.235 0.269 | 0.240 0.286 |0.259 0.291|0.252 0.287 |0.247 0.284|0.242 0.279|0.254 0.319 | 258 0.307
2720 0232 0.261]0.304 0.318]0.312 0.321|0.308 0319|0310 0.338 |0.337 0.344]0.320 0.336 |0.318 0.330|0.312 0.330| 0.335 0.385 |0.323 0.362

‘Avg. 0.165 0.203 |0.214 0.247|0.220 0.250| 0.219 0.253 | 0.221 0.269|0.240 0.273]0.232 0.269 | 0.226 0.264|0.224 0.262|0.232 0.294 | 0.242 0.293

96 0.083 0.171(0.118 0.210(0.122 0.216(0.128 0.219 | 0.128 0.225 |0.127 0.2190.134 0.230 |0.153 0.256|0.143 0.247|0.134 0.231 |0.140 0.237
192 0.097 0.186|0.138 0.229 0.145 0.241 |0.145 0.236|0.154 0.250 [0.168 0.269|0.158 0.261| 0.146 0.243 |0.154 0.251
336 0.105 0.196 |0.151 0.244 |0.163 0.258 0.161 0.258 |0.159 0.252(0.169 0.265 |0.189 0.291]0.168 0.267 | 0.165 0.264 |0.169 0.268
720 [0.115 0.207 |0.173 0.266|0.178 0.274 0.195 0.291 |0.187 0.277|0.194 0.288 | 0.228 0.320|0.214 0.307 | 0.237 0.314 |0.204 0.301

Electricity

Avg. 0.100 0.190|0.145 0.237 {0.152 0.247 0.157 0.254 |0.155 0.246|0.163 0.258|0.185 0.284|0.171 0.271| 0.171 0.263|0.167 0.264

96 0.234 0.167 0.226 (0.332
192 0.245 0.175 56 0.23910.343
336 0.254 0.180|0.366 0.246 | 0.360
720 10.284 0.197|0.402 0.267|0.392 0.268

0.358 0.256 |0.340 0.238(0.358 0.258 |0.369 0.257|0.370 0.262|0.526 0.288 |0.395 0.275
0.374 0.264 |0.360 0.248 |0.382 0.271 [0.399 0.272]0.386 0.269|0.503 0.263 |0.407 0.280
0.389 0.271 [0.377 0.256|0.396 0.277 |0.407 0.272]0.396 0.275|0.505 0.276 |0.417 0.286
0.428 0.292 |0.418 0.279|0.445 0.308 | 0.461 0.316|0.435 0.295|0.552 0.301 |0.454 0.308

Traffic

Avg. 0.254 0.180|0.365 0.245[0.357 0.248|0.393 0.256 | 0.387 0.271 |0.374 0.255]0.395 0.279 {0.409 0.279]0.397 0.275|0.522 0.282 (0.418 0.287

96 0.082 0.141(0.157 0.202(0.159 0.196| 0.166 0.211 | 0.166 0.229 |0.162 0.221|0.190 0.244 [0.179 0.232|0.170 0.234|0.183 0.208 |0.199 0.265
192 0.087 0.145(0.174 0.210{0.173 0.215]0.199 0.212 | 0.181 0.239 |0.187 0.239|0.193 0.257 |0.201 0.259{0.204 0.302|0.208 0.227 |0.220 0.281
336 0.099 0.156|0.180 0.21910.193 0.229| 0.207 0.215] 0.191 0.246 |0.205 0.255|0.203 0.266 [0.190 0.256(0.212 0.293|0.212 0.239 |0.234 0.295
720 10.092 0.151]0.190 0.225]0.207 0.237]0.206 0.217 | 0.199 0.252 [0.238 0.279[0.223 0.281 |0.203 0.261|0.215 0.307 | 0.215 0.256 {0.243 0.301

Solar

Avg. 0.090 0.148 |0.176 0.214[0.183 0.219| 0.195 0.214 | 0.184 0.242 |0.198 0.249|0.202 0.262 |0.193 0.252]0.200 0.284|0.205 0.233 [0.224 0.286

96 0.189 0.262(0.270 0.325|0.288 0.339| 0.279 0.333 | 0.285 0.344 |0.290 0.341|0.300 0.353 [0.293 0.345|0.289 0.342| 0.314 0.367 |0.300 0.345

192 0.218 0.284|0.310 0.352|0.326 0.368| 0.320 0.358 | 0.331 0.368 |0.337 0.369|0.341 0.380 |0.335 0.372|0.329 0.368 | 0.374 0.410 [0.336 0.366
336 0.242 0.300|0.343 0.373|0.363 0.394 | (

348 0.37710.359 0.386(0.374 0.393]0.374 0.396 |0.368 0.386|0.362 0.390|0.413 0.432 {0.367 0.387
720 10.249 0.296 | 0.400 0.405|0.417 0.419| 0.405 0.408 | 0.415 0.416 |0.437 0.4280.429 0.430|0.426 0.417|0.416 0.423|0.753 0.613 |0.419 0.417

ETTml

Avg. 0.225 0.2860.331 0.364|0.349 0.380| 0.338 0.369 | 0.348 0.380 |0.359 0.382]0.361 0.390 |0.356 0.380|0.349 0.381| 0.464 0.456 [0.356 0.379

96 0.131 0.214|0.157 0.241(0.157 0.24310.162 0.249 | 0.163 0.255 |0.175 0.257|0.175 0.266 |0.165 0.256|0.165 0.255|0.296 0.391 |0.164 0.256
192 0.174 0.246 (0.212 0.279(0.218 0.288 | 0.220 0.294 |0.242 0.301|0.242 0.312 {0.225 0.298]0.221 0.293|0.369 0.416 |0.224 0.304
336 0.216 0.276|0.262 0.315|0.270 0.321 |0 0.321 1 0.269 0.328 [0.293 0.337(0.282 0.337 |0.277 0.332]0.276 0.327|0.588 0.600 |0.277 0.337
720 10.283 0.322]0.341 0.368|0.344 0.372]0.348 0.373 | 0.346 0.369 [0.376 0.390|0.375 0.394 |0.360 0.385|0.362 0.381|0.750 0.612|0.371 0.401

ETTm2

Avg. 0.201 0.2650.243 0.301|0.247 0.305|0.248 0.308 | 0.250 0.312|0.271 0.322|0.269 0.327 |0.257 0.318|0.256 0.314| 0.501 0.505|0.259 0.325

96 0.243 0.300(0.350 0.383(0.355 0.391 | 0.353 0.386 | 0.373 0.401 |0.364 0.397|0.386 0.405 |0.372 0.401|0.377 0.397|0.411 0.435|0.379 0.403

192 0.276 0.327(0.385 0.408 | 0.389 0.414|0.398 0.409 | 0.411 0.426 |0.405 0.424|0.424 0.440 |0.413 0.429|0.409 0.425|0.409 0.438 | 0.408 0.419

)
336 0.294 0.342|0.405 0.425|0.415 0.435|0.415 0.428 | 0.439 0.444 |0.427 0.439|0.449 0.460 [0.438 0.450(0.431 0.444|0.433 0.457 [0.440 440
)

720 0.266 0.3220.422 0.449|0.443 0.462|0.436 0.458 | 0.495 0.493 |0.439 0.459]0.495 0.487 |0.486 0.484|0.457 0.477|0.501 0.514 |0.471 0.493

ETThl

Avg. 0.270 0.3230.391 0.416|0.401 0.426|0.401 0.420| 0.430 0.441 |0.409 0.430|0.439 0.448 |0.427 0.441|0.419 0.436| 0.439 0.461 [0.425 0.439

96 0.214 0.285(0.261 0.329(0.270 0.331(0.271 0.335|0.273 0.336 |0.277 0.343|0.297 0.348 | 0.281 0.351|0.274 0.337|0.728 0.603 |0.300 0.364
192 0.261 0.320(0.320 0.370|0.338 0.375| 0.335 0.376 | 0.334 0.381 |0.348 0.391|0.372 0.403 | 349 0.387|0.348 0.384|0.723 0.607 | 0.387 0.423
336 0.270 0.327 |0.346 0.394|0.370 0.402|0.354 0.398 | 0.363 0.415]0.375 0.4180.388 0.418 |0.366 0.413(0.377 0.416|0.740 0.628 |0.490 0.487
720 0.261 0.325]0.381 0.423|0.402 0.434| 0.384 0.426 | 0.408 0.446 |0.409 0.458|0.424 0.444 |0.401 0.436|0.406 0.441|1.386 0.882|0.704 0.597

ETTh2

|Avg. (0252 0.314]0.327 0.379]0345 0.386 0336 0384 ]0.345 0.395 |0.352 0.402]0.370 0403 |0.349 0.397]0.351 0.395] 0.894 0.680 |0.470 0.468

Table 6: Full results of long-term forecasting of hyperparameter searching. The Re-Bound col-
umn denotes the empirical bound discussed in Sec[3.3] The look-back window is searched from
{336, 512,720} for the best performance. Timer-XL uses a 672-length window as in the original
paper. All results are averaged across four different prediction lengths: {96, 192, 336, 720}. The best
and second-best results are highlighted.

G ROUBUSTENESS

In Table[T0] we present the error bar of ReNF in datasets with relatively small sizes or high instability.
It shows that ReNF exhibits high robustness because of its simple structure, which is a favorable
characteristic for industrial applications.

H FURTHER EXPLORATIONS

H.1 Two FACTORS OF BDO

We wish to clarify that our BDO paradigm is comprised of two distinct and essential mechanisms. The
first is the addition of a linear head to each block, which generates an explicit sub-forecast from the
intermediate representation. The second is the recursive concatenation of this sub-forecast with the
input for the subsequent stage, which encourages the network to implicitly learn a post-combination
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Model ReNF OrthoLienar  TimeMix. FilterNet FITS DLinear TimeMix.++ Leddam CARD Fredformer iTrans. PatchTST

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0.263 0.283 0320 0.302 0.320 0.318 0.318 0.319 0.359 0.347 0.354 0.350 0.323 0.320 0.325 0.322 0.337 0321 0319 0.326 0.303 0.312 0.319 0.319
36 0.280 0.298 0.334 0.315 0.332 0.331 0.331 0.330 0.373 0.360 0.368 0.365 0.351 0.348 0.337 0.333 0.348 0.333 0.333 0.335 0318 0.323 0.332 0.330
48 0.299 0.315 0.347 0.345 0343 0.342 0.341 0.385 0.370 0.382 0.379 0.351 0.342 0.351 0.346 0.362 0.345 0.349 0.344 0331 0332 0.347 0.344
60 0.315 0.328 0.358 0.355 0351 0.352 0.349 0.399 0.385 0.388 0.380 0.363 0.352 0.361 0.353 0.372 0.353 0.359 0.349 0.344 0.342 0.355 0.348

CarSales

Avg 0.289 0.306 0.340 0.320 0.338 0.336 0.336 0.335 0.379 0.365 0.373 0.368 0.347 0.340 0.343 0.338 0.355 0.338 0.340 0.338 0.324 0.327 0.338 0.335

24 1.268 0.855 1.343 0.870 1.341 0.881 1.410 0.916 1.491 0.944 1390 0916 1.340 0.877 1.397 0.909 1.406 0.886 1.410 0913 1462 0.924 1468 0.935
36 1.336 0.880 1.445 0.903 1.420 0914 1.590 0.968 1.621 0.994 1.518 0.957 1.446 0.920 1.509 0.951 1.506 0.921 1.538 0.953 1.582 0.964 1.593 0.972
48 1.354 0.893 1.559 0.946 1.567 0.963 1.680 1.009 1.775 1.052 1.610 0.995 1467 0933 1.646 0.999 1.583 0.957 1.652 1.008 1.696 1.011 1.710 1.020
60 1.383 0.913 1.602 0971 1.609 0.988 1.776 1.053 1.958 1.122 1.679 1.020 1.626 1.006 1.727 1.043 1.693 1.003 1.752 1.049 1.796 1.061 1.829 1.064

Power

Avg 1.335 0.885 1.487 0.922 1.484 0937 1.614 0986 1.711 1.028 1.549 0.972 1.470 0934 1570 0.975 1.547 0.942 1.588 0.981 1.634 0.990 1.650 0.998
24 0.613 3 0.650 0.337 0.671 0.413 0.670 0.402 0.698 0.416 0.645 0.458 0.617 0.394 0.680 0.405 0.700 0.378 0.676 0.408 0.700 0.413 0.679 0.410
5 36 0.748 0.800 0.388 0.841 0.480 0.824 0.471 0.874 0490 0.785 0.533 0.781 0.457 0.841 0471 0.874 0448 0.852 0.477 0.867 0.480 0.845 0.484
£ 48 0.860 0.905 0.427 0.964 0.531 0.955 0.521 1.013 0.546 0.885 0.585 0.842 0.520 0.963 0.528 1.017 0.498 0.982 0.526 1.017 0.539 0.972 0.536
E 60  0.950 0.999 0.457 1.047 0.573 1.050 0.563 1.122 0.589 0.959 0.623 0.958 0.551 1.029 0.556 1.126 0.541 1.084 0.569 1.079 0.572 1.077 0.578

Avg 0.793 0414 0.838 0.402 0.881 0.499 0.875 0.489 0.927 0.510 0.819 0.550 0.799 0.480 0.878 0.490 0.929 0.466 0.898 0.495 0916 0.501 0.893 0.502

24 0.155 0.286 0.186 0.306 0.229 0.335 0.273 0.357 0.431 0469 0315 0.393 0.231 0.349 0.240 0.345 0.325 0370 0216 0.335 0.181 0.305 0.245 0.350
36 0.224 0.343 0.272 0.356 0.361 0.420 0.401 0.441 0.554 0.552 0.385 0.447 0328 0.397 0.327 0.405 0428 0442 0.331 0411 0.343 0.370 0.429
48 0.283 0.386 0365 0.391 0.501 0.507 0.530 0.522 0.694 0.647 0.436 0.486 0.450 0.473 0.446 0475 0457 0.478 0.483 0.496 0.263 0.370 0.504 0.513

60 0.267 0.374 0.486 0.481 0.571 0.562 0.630 0.592 0.736 0.673 0.468 0.510 0.525 0.517 0.561 0.549 0.596 0.566 0.556 0.547 0.323 0.410 0.587 0.565

‘Website

Avg 0233 0.348 0.327 0.383 0.415 0.456 0.458 0.478 0.604 0.585 0.401 0.459 0384 0.434 0.393 0.443 0451 0464 0396 0447 0.248 0357 0.426 0.464

24 0150 0.270 0.155 0.271 0.159 0.288 0.181 0.317 0.193 0.334 0.189 0.330 0.172 0.305 0.175 0.308 0.156 0.276 0.181 0.315 0.180 0.309 0.164 0.298
36 0.204 0322 0209 0.317 0218 0.343 0.224 0.341 0.259 0.389 0.250 0.363 0.227 0.344 0.232 0.358 0.206 0.319 0.239 0.365 0.225 0.346 0.221 0.341
48 0.251 0.355 0.258 0.358 0.264 0.367 0.280 0.384 0.324 0.439 0.291 0.398 0.272 0.383 0.276 0.388 0.258 0.354 0.283 0.394 0.275 0.383 0.278 0.397

60 0.295 0.386 0305 0.387 0.322 0.416 0.332 0416 0.391 0486 0377 0.475 0319 0413 0325 0423 0303 0385 0341 0.438 0.322 0418 0.321 0.409

SP500

Avg 0.225 0.333 0.231 0.333 0.241 0353 0.254 0.365 0.291 0412 0.277 0.391 0.247 0361 0252 0.369 0.231 0.333 0.261 0.378 0.250 0.364 0.246 0.361

24 0114 0.211 0.121 0216 0.122 0221 0.130 0.230 0.140 0.244 0.155 0.274 0.132 0.233 0.125 0.222 0.124 0.220 0.128 0.226 0.137 0.237 0.127 0.224
36 0.155 0.253 0.163 0.261 0.183 0279 0.175 0.273 0.184 0.284 0.196 0.306 0.177 0.278 0.174 0.271 0.167 0.266 0.170 0.268 0.184 0.280 0.174 0.269
48 0.196 0.290 0205 0.296 0.200 0.298 0.224 0.314 0.234 0.324 0.244 0.344 0216 0311 0222 0312 0.218 0307 0218 0.306 0.229 0.318 0.225 0.314
60 0.236 0.321 0259 0.336 0.238 0.328 0.259 0.340 0.282 0.357 0.318 0.401 0.249 0.337 0.264 0.341 0.264 0341 0262 0.339 0279 0.352 0.265 0.339

NASDAQ

Avg 0.175 0.269 0.187 0.277 0.186 0.281 0.197 0.289 0.210 0.302 0.228 0.331 0.193 0.290 0.196 0.286 0.193 0.284 0.194 0.285 0.207 0.297 0.198 0.286

Table 7: Full results for the short-term forecasting. We use the look-back window with length 7' = 36
to predict lengths {24, 36, 48, 60}. The best results and second-best results are highlighted.

function as motivated by MNFP. To disentangle their respective contributions, we conduct an ablation
study on these two factors.

The results on the Electricity, ETTh1, and ETTm1 datasets, shown in Table @ indicate that the
two components are synergistic; removing either one leads to a notable degradation in performance.
Overall, we find that the hierarchical supervision from the sub-forecasts plays a more significant
role. This is expected, as it not only allows for repeated reuse of label information but also enforces
a causal and homogeneous structure on the predictive representations across layers, an effect we
visualize in Figure[I2] However, a few anomalous results suggest that other unresolved factors, such
as the quality of the ground truth labels, may also influence performance in certain cases.

H.2 PREFERENCE OF DEEP REPRESENTATIONS.

In Sec. 2.4] we introduce two variants of MLPs with a few differences. The primary distinction is the
inclusion of skip-connections between representations in ReNF-/3, which facilitates the learning of
deeper, more complex non-linear dynamics. To justify this design choice, the following experiments
demonstrate the performance degradation that occurs when a model’s complexity is mismatched with
the dataset’s intrinsic characteristics.

Specifically, we apply the ReNF-g to the ETTh1 and ETTh2 datasets, and apply the alpha version to
the large volume Electricity and Traffic datasets. The results are shown in the Table [T2] from which
we can deduce that the complex deep representations of ReNF-£ are clearly detrimental to ETTh
datasets. In stark contrast, large-volume datasets like Electricity and Traffic benefit from deeper,
more expressive representations. This finding provides a direct explanation, from the perspective of
representation depth, for the recurring phenomenon where simpler, parsimonious NFs outperform
more complex ones on certain benchmarks. It underscores the critical importance of matching model
capacity to the intrinsic characteristics of the time series data, identifying a clear direction for future
work in adaptive forecaster design.
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Figure 11: Supplementary illustrations of the performance variation with different numbers of sub-
forecasts K. (a). Comparison of using DO or BDO with the Electricity dataset. (b).Comparison
between the best forecast and the empirical bound of ReNF with the Electricity dataset. (c). Compari-
son of using DO or BDO with the Traffic dataset. (d).Comparison between the best forecast and the
empirical bound of ReNF with the Traffic dataset.
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. ReNF ReNF . ReNF ReNF
Variants - Variants -

origin w/o EMA origin w/o EMA

Metric MSE MAE MSE MAE Metric MSE MAE | MSE MAE

96 | 0.350 0.383 | 0.357 0.387 96 0.138 0.180 | 0.139 0.182

192 | 0385 0.408 | 0.407 0.421 192 0.181 0.224 | 0.184 0.227

ETThl | 336 | 0405 0425 | 0426 0435 Weather | 336 0231 0266 | 0.232 0.266

720 0.304 0.318 | 0.308 0.320
Avg. 0214 0247 | 0.216 0.249

96 0.118 0.210 | 0.124 0.218
192 0.138 0.229 | 0.145 0.239
Electricity | 336  0.151 0.244 | 0.156 0.252
720 0.173 0.266 | 0.182 0.277

Avg. 0.145 0237 | 0.152 0.247

720 | 0422 0.449 | 0.447 0.467
‘Avg. 0.391 0416 | 0409 0.428

96 | 0.261 0.329 | 0.265 0.329
192 | 0.320 0.370 | 0.336 0.375
ETTh2 | 336 | 0.346 0.394 | 0.397 0.418
720 | 0.381 0423 | 0421 0.441

| Avg. | 0327 0379 | 0355 0.391
96 0335 0226 | 0341 0.237
96 0.270 0.325 | 0.303 0.347 192 0356 0239 | 0363 0.249
192 | 0.310 0.352 | 0.341 0.371 Traffic 336 0.366 0.246 | 0.373 0.256
ETTml | 336 | 0.343 0.373 | 0.362 0.386 720 0402 0267 | 0411 0278

720 | 0401 0.406 | 0.425 0.420 Avg. 0365 0245 | 0372 0255

| Avg. | 0331 0364 | 0358 0.381 96 0157 0202 | 0177 0232

96 | 0.157 0.241 | 0.162 0.246 192  0.174 0.210 | 0.193 0.234

192 | 0212 0279 | 0221 0.285 Solar 336 0.180 0.219 | 0.195 0.239

ETTm2 | 336 | 0.262 0.315 | 0.272 0.322 720 0.190 0.225 | 0.199 0.242
720 | 0.341 0.368 | 0.352 0.374 ‘ Avg.  0.176 0214 ‘ 0.191 0.237

| Avg. | 0243 0301 | 0.252 0307

Table 8: Full numerical results on the effect
of EMA smoothing.
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Figure 12: Visualizations of the representations of different layers/sub-forecasters. (a). representations

of using DO with the ETTh1 dataset. (b).

representations of using BDO with the ETTh1 dataset.

(c). representations of using DO with the ETTm1 dataset. (d). representations of using BDO
with the ETTm1 dataset. This indicates that BDO tends to form predictive representations that are

homogeneous and hierachical.

Variants | ETTh1 | ETTh2 | Electricity
Metric | 96 192 336 720 Avg. | 96 192 336 720 Avg. | 9 192 336 720 Ave
ReNF MSE | 0.350 0.385 0.405 0422 0391]0.261 0.320 0.346 0.381 0.327]0.118 0.138 0.151 0.173 0.145
MAE | 0.383 0.408 0.425 0.449 0416|0329 0370 0.394 0.423 0.379 (0210 0.229 0.244 0.266 0.237
ReNF w/ drop | MSE [ 0:352 0.385 0406 0.428 0393]0.260 0.321 0348 0383 0328]0.119 0.138 0.150 0.175 0.146
ERT WIOPIE-CIOP | \1AR 0386 0.410 0.429 0454 0420(0329 0370 0396 0.425 0380 [0210 0229 0.243 0267 0.237
Table 9: Effects of pre-drop.
Model ‘ ReNF ‘ TimeBridge ‘ Confidence
Dataset | MSE MAE |  MSE MAE | Interval
ETThl | 0.391 £0.000 0.417 £0.000 | 0.399 £0.009 0.424 £ 0.008 99%
ETTh2 | 0.327£0.000 0.380£0.000 | 0.343£0.018 0.383 £0.014 99%
Weather | 0.214 £0.000 0.247 £0.000 | 0.219 £0.006 0.250 £ 0.003 99%
Solar 0.177 £0.000 0.215+0.000 | 0.182+0.003 0.219 4+ 0.003 99%

Table 10: Standard deviation and statistical tests for ReNF and TimeBridge on ETTh1, ETTh2,
Weather, and Solar datasets. The results are based on the average performance across four prediction
lengths from five runs with different random seeds.

21



Under review as a conference paper at ICLR 2026

. ReNF ReNF ReNF
Variants -
origin w/o factor_1 w/o factor2
Metric MSE MAE | MSE MAE | MSE MAE

96 (0.118 0.210(0.119 0.211]0.123 0.215
192 10.138 0.2290.138 0.229|0.145 0.236
Electricity | 336 [0.151 0.244[0.153 0.245|0.156 0.251
72010.173 0.266|0.179 0.271|0.177 0.269

| Avg. [0.145 0.237[0.147 0.239]0.150 0.243

96 [0.350 0.38310.356 0.382|0.356 0.382
192 10.385 0.408|0.394 0.406|0.394 0.407
ETThl | 336 |0.405 0.427|0.420 0.427|0.420 0.425
7201 0.422 0.449|0.432 0.454|0.436 0.456

| Avg.|0.391 0.417]0.400 0.417|0.402 0.418

96 [0.270 0.325]0.273 0.327|0.275 0.327
192 10.310 0.352{0.311 0.355|0.312 0.353
ETTml |336(0.343 0.373|0.343 0.376|0.342 0.374
7201 0.401 0.406|0.398 0.409 |0.413 0.410

|Avg.| 0331 0.364]0.331 03670.336 0.366

96 |0.157 0.202]0.165 0.201{0.170 0.217
19210.174 0.210|0.185 0.215|0.195 0.226
Solar | 336 [0.180 0.2190.185 0.2190.189 0.233
720 10.190 0.225/0.197 0.227|0.197 0.238

| Avg.|0.176 0.214]0.183 02160.188 0.229

Table 11: Ablations on the two factors of our BDO implementation. The factor_1 denotes the
concatenation in input space, and factor_2 denotes the computation of the sub-forecasting losses.
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. ReNF ReNF
Variants -

origin exchange

Metric MSE MAE | MSE MAE

96 10.350 0.383]0.384 0.410
192 (0.385 0.408 |0.407 0.428
ETThl | 336 |0.405 0.425|0.447 0.456
720 10.422 0.449]0.502 0.493

| Avg.[0.391 0.416]0.435 0.447

96 |10.261 0.329]0.271 0.332
192 10.320 0.370|0.340 0.376
ETTh2 |336[0.346 0.394|0.381 0.410
720 10.381 0.423]0.415 0.437

| Avg. [0.327 0.379]0.352 0.389

96 |0.118 0.210|0.125 0.217
192 10.138 0.229|0.144 0.235
Electricity | 336 | 0.151 0.244 (0.160 0.252
720 |0.173 0.266|0.196 0.283

| Avg.0.145 0.237]0.156 0.247

96 10.335 0.226|0.359 0.241
1921 0.356 0.239(0.377 0.249
Traffic | 336 [0.366 0.246|0.389 0.259
720 10.402 0.267 | 0.426 0.284

| Avg.|0.365 0.245]0.388 0.258

Table 12: Performances degrade drastically after using NFs with an improper degree of complexity.
The Exchange column denotes that the version of ReNF (« and f3) is alternated.
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I VISUALIZATION OF PREDICTION

In the following, we present the visualizations of multivariate long-term time series forecasting using
ReNF. The predicted variable in each figure is randomly selected.

(c) 192-prediction on the Solar dataset

(b) 192-prediction on the Electricity dataset

E)

(d) 192-prediction on the Traffic dataset

Figure 13: Visualization of forecasting results of ReNF. The figure shows multiple outputs of ReNF
in different layers, along with the result of applying optimal post-combination.

(c) 192-prediction on the ETTm1 dataset

(d) 192-prediction on the ETTm?2 dataset

Figure 14: Visualization of forecasting results of ReNF. The figure shows multiple outputs of ReNF
in different layers, along with the result of applying optimal post-combination.
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J  LIMITATION AND FURTHER DISCUSSION

The Multiple Neural Forecasting Proposition (MNFP) presented in this paper is foundational but
preliminary. While it provides the core intuition for our work, a more rigorous and deeper exploration
of its theoretical properties or deriving other related theorems could inspire new and promising
research directions.

Specifically, under the paradigm of MNFP, the role of Neural Network (NN) in this area becomes
transparent. First and perhaps most importantly, we should leverage NN’s capability to create a
powerful post-combination function. While our BDO paradigm is effective, the current recursive
strategy for combining sub-forecasts is not fully optimal. This is evident from the performance gap
between our final forecast and the theoretical empirical bound as the number of stages increases.
Developing more intricate methods to better leverage the full set of sub-forecasts could lead to
substantial accuracy gains. Furthermore, the benefit of BDO is less pronounced on certain datasets,
such as ETTm?2. The underlying reasons for this variance warrant further investigation.

Second, we are consistently supposed to build more powerful Neural Forecasting Machines (NFMs)
to approximate the expected distributions of future data, thereby reducing the bias b in the MNFP
Therefore, a comprehensive study is needed to verify the effects of our proposed techniques when
applied to other advanced model architectures beyond MLPs.

Finally, this work develops the BDO paradigm specifically for the LTSF setting. A key open question
is how this paradigm can be better adapted for diverse forecasting tasks with short input, which could
ultimately lead to a more unified framework for time series forecasting.

K DECLARATION OF THE LLMS USE

We utilized a Large Language Model (LLM) to assist in refining the language of this manuscript. The
LLM was used specifically to check for grammatical correctness and to improve the clarity and flow
of expressions, ensuring a professional academic tone. The sole purpose of using the LLM was to
enhance the readability and comprehensibility of the paper based on our first draft. All other contents,
including the core ideas, presentation logic, experimental design, and results, are entirely our own.
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