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Abstract

As generative models scale to larger inputs across
language, vision, and video domains, the cost of
token-level computation has become a key bottle-
neck. While prior work suggests that only a subset
of tokens significantly influence downstream pre-
dictions, most token selection methods are static,
modality-specific, or incompatible with autore-
gressive generation. In this paper, we propose
QuickMerge, a lightweight token merging frame-
work designed for efficient next-token prediction.

QuickMerge dynamically selects a reduced num-
ber of tokens based on attention norm magnitude,
guided by an entropy-based budget estimator. To
preserve autoregressive compatibility, we intro-
duce a lightweight transformer prior trained over
the merged token sequence. By combining seman-
tic salience estimation, flexible token budgets, and
AR alignment, QuickMerge enables accurate gen-
eration with fewer tokens.

We evaluate QuickMerge across multi-modality
domains, demonstrating consistent improvements
in compute-accuracy tradeoffs. Specifically,
QuickMerge reduces token counts sustantially
while matching as well as exceeding the perfor-
mance of learned tokenizers and fixed-patch base-
lines. Our code implementation can be found at
https://github.com/NoakLiu/QuickMerge.

1. Introduction

Large-scale generative models have achieved remarkable
success across language, vision, and multimodal domains.
However, their inference and training cost grows linearly
with the number of input tokens, creating a fundamental
bottleneck when processing long-context sequences or high-
resolution inputs. This challenge is particularly acute in
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autoregressive (AR) generation, where every input token
participates in recurrent attention and prediction.

Recent efforts have shown that not all tokens contribute
equally to model performance (Ryoo et al., 2021; Kim et al.,
2024). A small subset of salient tokens typically dominates
the output prediction, suggesting the possibility of selective
computation. Yet, most existing token pruning or merging
strategies rely on static heuristics, pre-defined token layouts,
or non-autoregressive assumptions. These approaches either
degrade generation quality or fail to integrate with decoder-
only AR models.

To address this, we propose QuickMerge++, a lightweight
and autoregressive-compatible framework for inference-
time token reduction. Our method introduces three key
innovations: (1) an entropy-aware mechanism to estimate
local input complexity and determine dynamic token bud-
gets; (2) a saliency-guided token merging strategy based
on mass-weighted averaging of semantically redundant to-
kens; and (3) a compact autoregressive prior trained over
the merged token sequences to ensure compatibility with
downstream generation.

QuickMerge++ is modality-agnostic and plug-and-play: it
operates on frozen encoder outputs and applies to text, im-
age, and video inputs alike. Unlike fixed-length quantization
or manual patching, it enables adaptive compression condi-
tioned on semantic density. Empirical results across multi-
ple benchmarks demonstrate that QuickMerge++ achieves
up to 3x token reduction with minimal or no drop in genera-
tion quality.

Our contributions are summarized as follows:

* We identify the mismatch between token-level re-
dundancy and autoregressive decoding, motivating a
saliency-aware merging strategy.

* We propose QuickMerge++, a general-purpose frame-
work that combines entropy-based budgeting, norm-
weighted merging, and AR-compatible modeling.

* We validate our approach across modalities, showing
consistent improvements in efficiency—accuracy trade-
offs on long-context generation tasks.
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2. Related Work

2.1. Tokenization for Vision, Language, and Video

Tokenization forms the foundation for modern generative
models across modalities. In vision, ViT (Dosovitskiy et al.,
2020) and VideoMAE (Tong et al., 2022) adopt patch-based
tokenization, splitting inputs into fixed-size grids. While
simple and effective, these approaches produce a rigid num-
ber of tokens regardless of content complexity.

Quantization-based methods like VQ-VAE (Van Den Oord
et al., 2017) and its extensions introduce discrete latent
representations by learning a codebook. However, they
suffer from fixed vocabulary size, mode collapse, and are
difficult to align with autoregressive generation.

In language modeling, token-free methods such as
ByT5 (Xue et al., 2022) and Charformer (Tay et al., 2021)
eliminate subword tokenization altogether, directly model-
ing raw byte or character sequences. Besides, there are also
contemporary toolbox such as LLMEasyQuant (Liu & Yu,
2025b) and TensorRT (Davoodi et al., 2019) for easy-to-
use quantization on languange models. While conceptually
elegant, these approaches often require deeper models or
extensive training to match subword-level performance.

2.2. Dynamic and Learned Token Selection

Dynamic tokenization aims to adaptively select salient in-
puts based on task or context. TokenLearner (Ryoo et al.,
2021) introduces learned soft-attention pooling to produce a
compact set of tokens for vision tasks. Despite its flexibility,
it lacks autoregressive alignment and enforces a fixed output
size.

LARP (Wang et al., 2024) addresses autoregressive gener-
ation by introducing a learned prior over discrete tokens
for video. It aligns tokenization with AR objectives but is
specific to video and assumes an encoder-decoder structure.

Recent work has explored dynamic and saliency-based to-
ken compression strategies. Nawrot et al. (Nawrot et al.,
2023) propose adaptive token compression in ViTs based on
local feature importance. Thiombiano et al. (Thiombiano
et al., 2025) present entropy-aware routing for efficient gen-
erative modeling. Compared to these, QuickMerge++ in-
troduces a modular, entropy-guided strategy with explicit
autoregressive compatibility.

QuickMerge draws inspiration from these efforts but differs
in three key ways: it supports variable token budgets, op-
erates at inference time with no retraining, and integrates
seamlessly with any backbone.

2.3. Efficient Learning and System Optimization

In parallel with tokenization and compression research, re-
cent advances in efficient learning systems highlight orthog-
onal strategies for accelerating inference and improving
scalability.

HADES (Yang et al., 2024) introduces hardware-accelerated
speculative decoding tailored for large language models,
enabling low-latency generation via speculative sampling
and early validation. FastCache (Liu et al., 2025a) acceler-
ates Diffusion Transformers by replacing costly quadratic
cache lookups with a learnable linear surrogate, delivering
up significiant end-to-end speed-ups. System-level studies
such as (Jin & Yang, 2025; Ji & Luo, 2025) explore elastic
scaling and self-healing inference pipelines in cloud-based
environments, crucial for production-scale deployment of
autoregressive models.

From the learning algorithm side, MT2ST (Liu & Yu, 2024)
and model fusion frameworks (Liu et al., 2025b) aim to
unify task-agnostic and task-specific capabilities under min-
imal retraining. These directions are complementary to
QuickMerge, which focuses on inference-time adaptation
without altering model weights.

Federated and collaborative learning efforts such as
AppFL (Li et al., 2024) and privacy-preserving cloud sys-
tems (Luo & Ji, 2025) push the boundary of distributed and
privacy-aware inference. Their compression-aware infras-
tructure can benefit from adaptive token reduction modules
like QuickMerge to reduce bandwidth and latency.

More broadly, recent works on data augmentation (Yang
et al., 2025; Liu & Jiang, 2024), model compression (Liu,
2024), and retrieval acceleration (Liu et al., 2024; Liu & Yu,
2025a) all signal the growing importance of plug-and-play
modules that integrate with large models without retraining.

QuickMerge situates itself within this efficient learning
paradigm by offering a unified, lightweight, and modality-
agnostic token reducer that complements both architectural
and system-level optimizations.

2.4. Token Merging and Compression

Recent studies have explored reducing token count via prun-
ing and merging. DynamicViT (Rao et al., 2021) prunes
low-importance tokens progressively throughout layers. To-
kenFusion (Kim et al., 2024) merges nearby visual tokens
with similar content to accelerate ViT models.

However, these methods typically require training-time mod-
ifications or degrade performance in generation settings. In
contrast, QuickMerge provides a plug-and-play module that
performs token merging based on entropy and norm-based
scores, and maintains compatibility with autoregressive de-
coding through a lightweight transformer prior.
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Our method can be interpreted as a synthesis of token com-
pression, semantic selection, and autoregressive alignment,
suitable for text, image, and video modalities under a unified
framework.

3. Methodology

We propose QuickMerge++, a modality-agnostic token
compression framework that accelerates generative mod-
eling by reducing sequence length while preserving au-
toregressive compatibility. QuickMerge++ consists of four
main stages: (1) multi-scale entropy-aware saliency esti-
mation, (2) differentiable token merging with structural
weighting, (3) bidirectional autoregressive alignment, and
(4) compression-aware fidelity control.

3.1. Problem Setup

Let X € REXNXD denote token embeddings from a frozen
encoder (e.g., ViT, BERT, VideoMAE). Our goal is to con-
struct a compressed sequence X € REXK*D with K < N,
suitable for downstream left-to-right decoding by an autore-
gressive model fy. The compression function g must satisfy:

X = g(X ), ~ Xt+1

such that K < K.y, fe(ng,)

3.2. Stage 1: Multi-Scale Entropy-Aware Saliency

For each token z;, we estimate its contextual importance
using attention entropy across L transformer layers. Let
A® € RVN*N denote the attention matrix at layer I:

XO(xONT
AW = softmax (\(/5)> 1)
N
HY = -3 A log A 2)
j=1

The average normalized entropy across layers defines the
saliency score:

L
1
si=7 Z Normalize(Hi(l))
=1

This entropy-based signal favors sharp attention tokens with
low uncertainty, identifying key semantic contributors.
3.3. Stage 2: Differentiable Token Merging

We perform soft selection of salient tokens via Gumbel-
softmax:

o _exp((si+9)/7)
toX exp((sy +g5)/T)
M; ~ GumbelSoftmax (7;) 4)

gi ~ Gumbel(0,1) (3)

The token mass used for merging is defined as:

ThZ:Mlsl—é—(l—Ml)e, ek 1

Tokens are grouped into clusters Gy, (e.g., using KNN or
agglomerative cosine clustering). Each merged token is a
saliency-weighted average:

3.4. Stage 3: Bidirectional AR Prior Alignment

After token compression, we obtain a sequence of merged to-
kens X = [Z1,Z2,...,%Kk], where K < N. To ensure that
this compressed representation can be used for autoregres-
sive generation, we introduce a bidirectional AR training
objective.

Let f_, denote the forward autoregressive decoder and f,
the backward decoder. At training time, we jointly train
both directions to predict the next (or previous) token in the
compressed sequence, thus preserving the internal temporal
consistency of the original input.

Forward prediction. At each position ¢ S
{1,2,...,K—1}, the forward decoder predicts the
next token embedding Z;, based on the prefix context:

K-1
Liomara = Y || (@1, &2, o, &) — Fopa |
=1

Backward prediction. Similarly, the backward decoder
predicts the previous token based on the suffix:

K
Lonckwara = Y _ | fe (Erc, Ex 1, B

t=2

) = Foal|”

Combined objective. The final autoregressive training
loss combines both directions:

EAR = Lforward + ['backward

This bidirectional loss encourages the compressed token
sequence to retain enough structural information to allow
fluent left-to-right generation, while also preserving tem-
poral coherence in reverse (e.g., useful for sequence-level
tasks or reversed decoding). Notably, only the forward AR
decoder f_, is used during inference.

3.5. Stage 4: Compression-Aware Fidelity Constraint

To quantify compression impact, we define the cumulative
retained norm:

. ZiETopK(Hz,;H) (Al
- N
izt il
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Assuming norm correlates with informativeness, the follow-
ing fidelity bound holds:

1X = XpaallF < (1 =) |1 X%

where Xpad pads X back to N tokens. This provides an
upper bound on representation error.

3.6. Inference Pipeline

Algorithm 1 QuickMerge++ Inference Pipeline
Require: Token embeddings X € RV*P AR model f,
temperature 7, max token count K ax
1: for layerl = 1to L do
2: AW  softmax(X D (X)T /\/D)
O] O] 0]

3 H;” + —Zj Aij logAl-j

4: end for
5008 %ZlNormalize(Hi(l))
6
7
8

: g; ~ Gumbel(0,1), m; < softmax((s; + ¢;)/7)
: M; < GumbelSoftmaxSample(r;)
: mz<—M181+(1—M1)6

9: {G1,...,Gk} « Cluster(X,m, K = Kpax)

10: for each cluster G, do

1 &, Yieq, oy

12: end for

13: X — {{il,...,if[(}

14: fort =1to K—1do

150 Zyaq < fo(Z1,. .., 2¢)

16: end for

17: return Compressed AR-compatible sequence X

Discussion

QuickMerge++ differs from recent dynamic compression
methods (Nawrot et al., 2023; Thiombiano et al., 2025) by
maintaining full compatibility with left-to-right decoding.
Our entropy-guided saliency combines local and global cues,
and the fidelity-bound analysis provides a practical signal
for compression budget calibration. The entire pipeline
is modular, lightweight, and training-free for the encoder,
enabling plug-and-play integration across modalities.

4. Experiments

We conduct extensive experiments to evaluate Quick-
Merge++ across text, image, and video modalities. Our
experiments are designed to answer the following:

Q1. Can QuickMerge++ reduce token count while preserv-
ing generation quality?

Q2. What is the contribution of each component: entropy-
based budgeting, saliency-guided merging, and autore-
gressive (AR) prior?

Q3. How efficient is QuickMerge++ in terms of runtime,
memory, and compression trade-offs?

4.1. Setup and Metrics

Datasets. We evaluate across modalities: WikiText-
103 (Merity et al., 2016), ImageNet-1K (Deng et al., 2009),
and UCF101 (Soomro et al., 2012), and extend to long-
context tasks: BookSum (Kryscinski et al., 2021), Ego4D-
NLQ (Grauman et al., 2022).

Metrics. We use task-specific quality metrics: PPL (text),
accuracy (image), FVD (video), ROUGE / mAP (long-
context). Efficiency is assessed via compression rate (K /N),
decoding latency, and KV memory cost.

Model. A 6-layer Transformer decoder (hidden size 512)
is trained with fixed pretrained encoders (BERT, ViT, Video-
MAE). QuickMerge++ dynamically selects tokens with en-
tropy threshold o = 0.45 and norm masking. Results are
averaged over 3 seeds.

4.2. Overall Performance (Q1)

Table 1. QuickMerge++ improves performance while compressing
input tokens. Values are mean = std over 3 runs.

Method PPL| AcctT FVD|] CompRate 1
Fixed Patches 214 76.2 108.4 1.00x

VQ-VAE 19.8 74.9 97.2 1.31 x £0.02
Token-Free 17.9 76.3 89.7 2.08 x +0.05
TokenLearner 18.6 77.0 94.1 1.83 x £0.04
QuickMerge++ 17.1 78.1 85.6 2.37 x £0.06

QuickMerge++ consistently achieves stronger results with
fewer tokens. On average, it yields 2.37x compression
with up to 4.3% relative improvement in accuracy or qual-
ity, confirming Q1. The token budget adapts to sequence
complexity—e.g., longer sequences yield higher savings
(Table 3).

4.3. Component Analysis (Q2)

We ablate each component in QuickMerge++:

Table 2. Component-wise ablation (averaged across all tasks).

Variant PPL| Acct FVD|
Full Model 17.1 78.1 85.6
— Entropy Budgeting 184 76.5 91.0
— AR Prior 17.9 76.9 88.3
— Norm Masking 18.7 75.2 93.5

Each module is necessary: removing entropy control
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increases overcompression variance; removing the AR
prior impairs temporal alignment; removing norm mask-
ing merges semantically irrelevant tokens. This supports

Q2.

4.4. Efficiency and Scaling (Q3)

We benchmark runtime and memory usage in autoregressive
generation. Experiments are run on an NVIDIA A100 (batch
size 32):

Table 3. Efficiency metrics of QuickMerge++.

4.6. Conclusion

QuickMerge++ provides a general, adaptive, and efficient
token merging strategy across domains. By leveraging
entropy-guided budgeting, norm-based saliency, and autore-
gressive priors, it reduces token count by 2.0-2.5x while
preserving or improving task performance and reducing
compute cost. All three research questions (Q1-Q3) are
affirmatively answered.

5. Conclusion

We present QuickMerge++, a lightweight and modality-

agnostic framework for token reduction in generative model-

Metric Baseline QuickMerge++ Rel. Change
Latency (ms) 6.3 4.1 —34.9%
KV Memory (MB) 1120 412 —63.2%
Tokens (mean) 128 54 —57.8%

ing. By integrating entropy-aware token budgeting, saliency-
guided merging, and autoregressive prior alignment, Quick-
Merge++ provides a principled solution to the growing

QuickMerge++ significantly reduces decoding latency and
memory load with only minor preprocessing overhead (+1.6
ms). These results confirm Q3.

4.5. Extended Benchmarks

Long-Context. On BookSum (text summarization) and
Ego4D-NLQ (video QA), QuickMerge++ reduces token
count by 2.4-2.7x while improving ROUGE-L and mAP:

Table 4. QuickMerge++ results on long-context benchmarks. It
improves quality metrics while significantly reducing token count.

Task Metric Baseline QuickMerge++ Improve
Quality (1)
BookSum ROUGE-L 36.2 371 +0.9
Ego4D-NLQ mAP@0.5 38.6 40.3 +1.7
Token Count ()
BookSum Tokens 4096 1682 + 33 —58.9%
Ego4D-NLQ Tokens 2048 821 + 25 —59.9%

Cross-Task Transfer. We evaluate QuickMerge++ (no
retraining) on MSCOCO, Something-Something-v2, TVQA,
and QASPER. Compression rates fluctuate based on input
entropy:

Table 5. Generalization across unseen tasks.

inefficiency of dense token sequences. Extensive experi-
ments across text, image, and video domains demonstrate
that QuickMerge++ achieves significant token compression
while maintaining or improving generation quality. Further-
more, it generalizes effectively across tasks and domains
without retraining. These results suggest that adaptive to-
ken merging—grounded in semantic salience and generative
compatibility—can serve as a key building block in the next
generation of efficient autoregressive systems.

In future work, we plan to integrate QuickMerge++ with
streaming decoders, long-context memory modules, and
multi-agent generative systems to further expand its scala-
bility and applicability.
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Theoretical Analysis of Entropy-Based Token
Merging

A. Normalized Entropy Drop (NED)

We define the Normalized Entropy Drop (NED) as a saliency
signal for identifying non-informative tokens:

Hl:n _ Hg)ut
NED; = —+——*—

H+6
where HI" denotes the average incoming attention entropy
of token ¢ and H{ the outgoing entropy, and § > 0 is a
small constant to ensure numerical stability.

Interpretation. Tokens with high incoming entropy but
low outgoing entropy tend to absorb dispersed attention but
contribute little to other tokens—a signal of redundancy.

Monotonicity Lemma.
max attention, we show:
Var(A.;)

EA] Var(4;.)

Under a simplified isotropic soft-

NED; x

This implies that higher NED corresponds to higher incom-
ing attention inconsistency and lower outgoing importance,
motivating removal or merging.

B. Stability Across Layers

We analyze the propagation of NED over attention layers.
Let H. i(l) denote the entropy at layer [, then:

NED{” - NED!"™V| < O(|| x® — x| )

This suggests that NED is stable under small representa-
tion drifts and provides consistent token saliency estimates
across layers.

C. Attention Variance and Merge Risk

Let z; be a candidate for merging and define 0 = Var(A.;).
Then under Gaussian attention models, we derive:

NED?
P[x; contributes significantly] < exp ( 5 - >
0

which supports a probabilistic guarantee that low-NED to-
kens are unlikely to be critical for generation.

Complexity and Error Propagation Bounds
A. Complexity Analysis

Let the original sequence length be N and merged length
be K.

Token Reduction. If QuickMerge++ merges tokens in G
groups with average size |G| = N/K, then the resulting
self-attention cost reduces from:

O(N*D) — O(KZD)=0<<Z|)2D>

showing up to O(|G|?) speedup.

Merge Overhead. Gumbel-softmax and saliency compu-
tation scale linearly in N, i.e., O(ND).

B. Reconstruction Error Upper Bound

Let X = [z1,...,2n] € RY*P and merged tokens be
X = [Z1,...,Zk]. Assume merge groups G; with saliency
weights m ;. Then:
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~ 112
L2 gl =l

i=1j€G;

HX *Xpad

Using triangle inequality and Cauchy-Schwarz:
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Interpretation. This implies that the total information
loss is bounded by how much salient norm mass is retained.
C. Worst-Case Prediction Divergence Bound

Let f be an L-Lipschitz autoregressive model. Let z and 2
be the full and merged sequences, then:

E[lf(2<e) — fz<o ] < L* ElllZ<t — 2<e]?]

implying that downstream prediction error grows at most
linearly with token merge distortion.



