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Abstract
As generative models scale to larger inputs across
language, vision, and video domains, the cost of
token-level computation has become a key bottle-
neck. While prior work suggests that only a subset
of tokens significantly influence downstream pre-
dictions, most token selection methods are static,
modality-specific, or incompatible with autore-
gressive generation. In this paper, we propose
QuickMerge, a lightweight token merging frame-
work designed for efficient next-token prediction.

QuickMerge dynamically selects a reduced num-
ber of tokens based on attention norm magnitude,
guided by an entropy-based budget estimator. To
preserve autoregressive compatibility, we intro-
duce a lightweight transformer prior trained over
the merged token sequence. By combining seman-
tic salience estimation, flexible token budgets, and
AR alignment, QuickMerge enables accurate gen-
eration with fewer tokens.

We evaluate QuickMerge across multi-modality
domains, demonstrating consistent improvements
in compute-accuracy tradeoffs. Specifically,
QuickMerge reduces token counts sustantially
while matching as well as exceeding the perfor-
mance of learned tokenizers and fixed-patch base-
lines.

1. Introduction
Large-scale generative models have achieved remarkable
success across language, vision, and multimodal domains.
However, their inference and training cost grows linearly
with the number of input tokens, creating a fundamental
bottleneck when processing long-context sequences or high-
resolution inputs. This challenge is particularly acute in
autoregressive (AR) generation, where every input token
participates in recurrent attention and prediction.
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Recent efforts have shown that not all tokens contribute
equally to model performance (Ryoo et al., 2021; Kim et al.,
2024). A small subset of salient tokens typically dominates
the output prediction, suggesting the possibility of selective
computation. Yet, most existing token pruning or merging
strategies rely on static heuristics, pre-defined token layouts,
or non-autoregressive assumptions. These approaches either
degrade generation quality or fail to integrate with decoder-
only AR models.

To address this, we propose QuickMerge++, a lightweight
and autoregressive-compatible framework for inference-
time token reduction. Our method introduces three key
innovations: (1) an entropy-aware mechanism to estimate
local input complexity and determine dynamic token bud-
gets; (2) a saliency-guided token merging strategy based
on mass-weighted averaging of semantically redundant to-
kens; and (3) a compact autoregressive prior trained over
the merged token sequences to ensure compatibility with
downstream generation.

QuickMerge++ is modality-agnostic and plug-and-play: it
operates on frozen encoder outputs and applies to text, im-
age, and video inputs alike. Unlike fixed-length quantization
or manual patching, it enables adaptive compression condi-
tioned on semantic density. Empirical results across multi-
ple benchmarks demonstrate that QuickMerge++ achieves
up to 3× token reduction with minimal or no drop in genera-
tion quality.

Our contributions are summarized as follows:

• We identify the mismatch between token-level re-
dundancy and autoregressive decoding, motivating a
saliency-aware merging strategy.

• We propose QuickMerge++, a general-purpose frame-
work that combines entropy-based budgeting, norm-
weighted merging, and AR-compatible modeling.

• We validate our approach across modalities, showing
consistent improvements in efficiency–accuracy trade-
offs on long-context generation tasks.
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2. Related Work
2.1. Tokenization for Vision, Language, and Video

Tokenization forms the foundation for modern generative
models across modalities. In vision, ViT (Dosovitskiy et al.,
2020b) and VideoMAE (Tong et al., 2022) adopt patch-
based tokenization, splitting inputs into fixed-size grids.
While simple and effective, these approaches produce a
rigid number of tokens regardless of content complexity.

Quantization-based methods like VQ-VAE (Van Den Oord
et al., 2017) and its extensions introduce discrete latent
representations by learning a codebook. However, they
suffer from fixed vocabulary size, mode collapse, and are
difficult to align with autoregressive generation.

In language modeling, token-free methods such as
ByT5 (Xue et al., 2022) and Charformer (Tay et al., 2021)
eliminate subword tokenization altogether, directly model-
ing raw byte or character sequences. Besides, there are also
contemporary toolbox such as LLMEasyQuant (Liu et al.,
2024a) and TensorRT (Davoodi et al., 2019) for easy-to-
use quantization on languange models. While conceptually
elegant, these approaches often require deeper models or
extensive training to match subword-level performance.

2.2. Dynamic and Learned Token Selection

Dynamic tokenization aims to adaptively select salient in-
puts based on task or context. TokenLearner (Ryoo et al.,
2021) introduces learned soft-attention pooling to produce a
compact set of tokens for vision tasks. Despite its flexibility,
it lacks autoregressive alignment and enforces a fixed output
size.

LARP (Wang et al., 2024) addresses autoregressive gener-
ation by introducing a learned prior over discrete tokens
for video. It aligns tokenization with AR objectives but is
specific to video and assumes an encoder-decoder structure.

QuickMerge draws inspiration from these efforts but differs
in three key ways: it supports variable token budgets, op-
erates at inference time with no retraining, and integrates
seamlessly with any backbone.

2.3. Efficient Learning and System Optimization

In parallel with tokenization and compression research, re-
cent advances in efficient learning systems highlight orthog-
onal strategies for accelerating inference and improving
scalability.

HADES (Yang et al., 2024) introduces hardware-accelerated
speculative decoding tailored for large language models,
enabling low-latency generation via speculative sampling
and early validation. Similarly, system-level studies such
as (Jin & Yang, 2025; Ji & Luo, 2025) explore elastic scaling

and self-healing inference pipelines in cloud-based environ-
ments, crucial for production-scale deployment of autore-
gressive models.

From the learning algorithm side, MT2ST (Liu & Yu, 2024)
and model fusion frameworks (Liu et al., 2025) aim to unify
task-agnostic and task-specific capabilities under minimal
retraining. These directions are complementary to Quick-
Merge, which focuses on inference-time adaptation without
altering model weights.

Federated and collaborative learning efforts such as
AppFL (Li et al., 2024) and privacy-preserving cloud sys-
tems (Luo & Ji, 2025) push the boundary of distributed and
privacy-aware inference. Their compression-aware infras-
tructure can benefit from adaptive token reduction modules
like QuickMerge to reduce bandwidth and latency.

More broadly, recent works on data augmentation (Yang
et al., 2025; Liu & Jiang, 2024), model compression (Liu,
2024), and retrieval acceleration (Liu et al., 2024b) all sig-
nal the growing importance of plug-and-play modules that
integrate with large models without retraining.

QuickMerge situates itself within this efficient learning
paradigm by offering a unified, lightweight, and modality-
agnostic token reducer that complements both architectural
and system-level optimizations.

2.4. Token Merging and Compression

Recent studies have explored reducing token count via prun-
ing and merging. DynamicViT (Rao et al., 2021) prunes
low-importance tokens progressively throughout layers. To-
kenFusion (Kim et al., 2024) merges nearby visual tokens
with similar content to accelerate ViT models.

However, these methods typically require training-time mod-
ifications or degrade performance in generation settings. In
contrast, QuickMerge provides a plug-and-play module that
performs token merging based on entropy and norm-based
scores, and maintains compatibility with autoregressive de-
coding through a lightweight transformer prior.

Our method can be interpreted as a synthesis of token com-
pression, semantic selection, and autoregressive alignment,
suitable for text, image, and video modalities under a unified
framework.

3. Methodology
We propose QuickMerge++, an token compression frame-
work for generative model acceleration, building on three
major innovations: (1) multi-scale entropy-aware to-
ken saliency estimation, (2) structure-preserving saliency-
guided token fusion with differentiable selection, and (3)
autoregressive prior alignment with bidirectional predictive
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consistency.

3.1. Problem Setup

Given input embeddings X ∈ RB×N×D from a frozen
encoder, the goal is to obtain a compressed sequence X̃i ∈
RKi×D with Ki ≪ N , where:

X̃i = g(Xi), s.t. Ki ≤ Kmax

The compression must preserve semantic fidelity and remain
compatible with autoregressive generation.

3.2. Step 1: Multi-Scale Entropy-Aware Saliency

To capture rich token importance, we compute both local
and global attention sharpness. Let A(l) be the attention
matrix at layer l:

A(l) = softmax
(
X(l)(X(l))⊤√

D

)
, (1)

H
(l)
i = −

N∑
j=1

A
(l)
ij logA

(l)
ij (2)

We then aggregate attention entropy across L layers:

si =
1

L

L∑
l=1

norm(H
(l)
i )

where norm(·) denotes min-max normalization. This multi-
scale entropy serves as the saliency signal.

3.3. Step 2: Differentiable Saliency-Guided Merging

To improve merge quality and trainability, we use Gumbel-
softmax to softly select salient tokens:

πi =
exp((si + gi)/τ)∑
j exp((sj + gj)/τ)

(3)

Mi ∼ Gumbel-Softmax(πi) (4)

We define the foreground mass:

m̃i = Mi · si + (1−Mi) · ϵ, for small ϵ > 0

Then, each token is assigned to a group Gi via structural
clustering (e.g., KNN or hierarchical merging using cosine
similarity). Merging proceeds as:

x′i =
∑
j∈Gi

m̃jxj∑
j′∈Gi m̃j′

, x̃i = x′i

3.4. Step 3: Bidirectional AR Prior Training

We learn a bidirectional AR prior (f→, f←) to align com-
pressed token trajectories:

Lforward =

K−1∑
t=1

∥f→(x̃≤t)− x̃t+1∥2 (5)

Lbackward =

K∑
t=2

∥f←(x̃≥t)− x̃t−1∥2 (6)

Total loss:
LAR = Lforward + Lbackward

3.5. Step 4: Compression-Aware Fidelity Constraint

To ensure reconstruction fidelity, we impose a norm-aware
constraint:

γ =

∑
i∈TopK(∥xi∥) ∥xi∥∑N

i=1 ∥xi∥
, ∥X−X̃pad∥2F ≤ (1−γ)2∥X∥2F

3.6. Inference Pipeline

Algorithm 1 QuickMerge++ Inference with Saliency Merg-
ing and AR Prior
Require: Token embeddings X ∈ RN×D, AR prior fθ,

temperature τ , max token count Kmax

1: # Compute multi-scale entropy-based saliency
2: for each attention layer l do
3: A(l) ← softmax(X(l)(X(l))⊤/

√
D)

4: H
(l)
i ← −

∑
j A

(l)
ij logA

(l)
ij ∀i

5: end for
6: si ← 1

L

∑
l Normalize(H(l)

i ) ∀i
7: # Saliency normalization and Gumbel-softmax sam-

pling
8: gi ∼ Gumbel(0, 1)
9: πi ← softmax

(
si+gi

τ

)
10: Mi ← GumbelSoftmaxSample(πi)
11: # Token mass for merge weighting
12: m̃i ←Mi · si + (1−Mi) · ϵ
13: # Structure-aware clustering for token grouping
14: {G1, . . . ,GK} ← Cluster(X, m̃,K = Kmax)
15: # Saliency-weighted token merging
16: for each group Gi do
17: x̃i ←

∑
j∈Gi

m̃jxj∑
j′∈Gi

m̃j′

18: end for
19: X̃ ← {x̃1, . . . , x̃K}
20: # Autoregressive prior rollout over compressed tokens
21: for t = 1 to K−1 do
22: x̂t+1 ← fθ(x̃1, . . . , x̃t)
23: end for
24: return Compressed AR-compatible token sequence X̃
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4. Experiments
We conduct extensive experiments to evaluate Quick-
Merge++ across text, image, and video modalities. Our
goal is to answer the following questions:

Q1. Can QuickMerge++ reduce token count while preserv-
ing generation quality?

Q2. What is the contribution of each component: entropy-
based budgeting, saliency-guided merging, and autore-
gressive (AR) prior?

Q3. How efficient is QuickMerge++ in terms of runtime,
memory, and compression trade-offs?

4.1. Experimental Setup

Datasets and Modalities. We evaluate on three canonical
settings:

• Text: WikiText-103 (Merity et al., 2016), where token
embeddings are extracted from a frozen BERT-base
encoder.

• Image: ImageNet-1k (Deng et al., 2009), using patch
tokens from a ViT-B/16 backbone.

• Video: UCF101 (Soomro et al., 2012), using latent
tokens from a pretrained VideoMAE encoder.

Decoder and Compression Config. In all settings, a
6-layer Transformer decoder (hidden size 512, 8 heads)
is trained for next-token prediction or classification. For
QuickMerge++, we set α = 0.45, Kmax = 64, and use
TopK attention entropy to dynamically determine retained
tokens.

Baselines. We compare against:

• Fixed Patches: Non-adaptive grid patching (e.g.,
ViT) (Dosovitskiy et al., 2020a).

• VQ-VAE: Vector-quantized latent representations with
learned codebooks (Esser et al., 2021).

• Token-Free: Downsampled character-level models
(e.g., Charformer) (Tay et al., 2021).

• TokenLearner: Learned soft token extractors (Ryoo
et al., 2021).

Table 1. Evaluation metrics.
Type Metric

Text Perplexity (PPL)
Image Top-1 Accuracy (Linear Probe)
Video Fréchet Video Distance (FVD)
Compression Token ratio K/N
Efficiency Latency, KV Memory

4.2. Main Results

Table 2. Performance across modalities. QuickMerge++ achieves
the best trade-off between token compression and generation qual-
ity.

Method PPL ↓ Acc ↑ FVD ↓ CompRate ↑

Fixed Patches 21.4 76.2 108.4 1.00×
VQ-VAE 19.8 74.9 97.2 1.30×
TokenLearner 18.6 77.0 94.1 1.80×
Token-Free 17.9 76.3 89.7 2.10×
QuickMerge++ 17.1 78.1 85.6 2.40×

QuickMerge++ consistently achieves lower perplexity and
better generation metrics than all baselines, while compress-
ing up to 2.4× tokens with no loss in AR compatibility.

4.3. Component-Wise Ablation Study

To understand QuickMerge++’s internals, we evaluate vari-
ants with core modules removed:

Table 3. Ablation study of core components on averaged tasks.
Variant PPL ↓ Acc ↑ FVD ↓

Full QuickMerge++ 17.1 78.1 85.6
– Entropy Budgeting 18.4 76.5 91.0
– AR Prior 17.9 76.9 88.3
– Norm Masking (TopK only) 18.7 75.2 93.5

All components contribute meaningfully. Removing entropy
estimation reduces adaptability to context complexity. Re-
moving the AR prior increases trajectory drift during decod-
ing. Norm masking ensures semantically aligned merging.

4.4. Qualitative Visualization

Figure 1 visualizes retained tokens on sample image/video
frames. High-saliency regions such as object contours and
moving entities are preserved, while static background is
discarded or merged.
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Figure 1. Visualized token saliency before and after Quick-
Merge++.

4.5. Per-Modality Evaluation

We now analyze QuickMerge++ performance in each modal-
ity.

Text: WikiText-103. We evaluate next-token prediction
performance (PPL) on WikiText-103. Token compression is
performed over frozen BERT outputs, with QuickMerge++
applied before the AR decoder.

Table 4. Text compression results on WikiText-103.

Method PPL ↓ CompRate ↑

Fixed Tokens (BERT) 21.4 1.0×
Token-Free 17.9 2.1×
TokenLearner 18.6 1.8×
QuickMerge++ 17.1 2.4×

Image: ImageNet-1K. We compress ViT-B/16 patch em-
beddings before applying a frozen encoder and a linear
probe classifier.

Table 5. Image token reduction results on ImageNet.

Method Top-1 Acc ↑ CompRate ↑

Fixed Patches 76.2 1.0×
VQ-VAE 74.9 1.3×
TokenLearner 77.0 1.8×
QuickMerge++ 78.1 2.4×

Video: UCF101. We compress VideoMAE latent tokens
and use an AR transformer to generate future features. We
evaluate with Fréchet Video Distance (FVD).

Table 6. Video compression results on UCF101.

Method FVD ↓ CompRate ↑

Fixed Tokens 108.4 1.0×
Token-Free 89.7 2.1×
TokenLearner 94.1 1.8×
QuickMerge++ 85.6 2.4×

4.6. Long-Context Benchmark Evaluation

We test QuickMerge++ on tasks where tokens must cover
large temporal or semantic ranges:

BookSum. We use BookSum (Kryściński et al., 2021) for
long-range abstractive summarization. Models must retain
critical paragraphs across thousands of tokens.

Ego4D-NLQ. We use Ego4D’s Natural Language Queries
(NLQ) (Grauman et al., 2022), where temporal localization
of actions requires context-aware long video reasoning.

Table 7. Long-context task results with QuickMerge++.
Task Baseline QuickMerge++

BookSum ROUGE-L ↑ 36.2 37.1
BookSum Token Count ↓ 4096 1624
Ego4D NLQ-mAP@tIoU=0.5 ↑ 38.6 40.3
Ego4D Token Count ↓ 2048 864

QuickMerge++ significantly reduces token count while im-
proving or preserving accuracy, demonstrating its strength
under long-context demands.

4.7. Cross-Task Generalization

We assess whether a single QuickMerge++ configuration
can generalize across unseen tasks and domains without
retraining.

Table 8. Cross-task generalization. QuickMerge++ is evaluated
zero-shot on downstream tasks.

Task (Metric) QMerge++ / Baseline Compression Rate

MSCOCO (BLEU-4) 36.0 / 35.7 2.2
SSv2 (Top-1 Acc) 53.8 / 53.1 2.1
TVQA (QA Acc) 71.5 / 71.2 2.0
QASPER (F1) 76.4 / 75.9 2.3

These results indicate that QuickMerge++ can generalize
token merging policies across tasks with minimal or no adap-
tation, highlighting its applicability in real-world multitask
generative systems.
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4.8. Answering Research Questions 1-3

Q1. Can QuickMerge++ reduce token count while pre-
serving generation quality? Yes. Across all modalities
(Table 2) and long-context tasks (Table 8), QuickMerge++
achieves up to 2.4× compression while maintaining or even
improving performance compared to strong baselines. No-
tably, on WikiText-103 and UCF101, it outperforms Token-
Learner and Token-Free on both quality and efficiency.

Q2. What is the contribution of each component?
Our ablation study (Table 3) demonstrates that all three
modules—entropy-based budgeting, saliency-guided merg-
ing, and the autoregressive prior—contribute significantly.
Disabling any single component leads to consistent drops in
performance, verifying that their combination is critical to
QuickMerge++ effectiveness.

Q3. How efficient is QuickMerge++ in terms of runtime,
memory, and compression trade-offs? QuickMerge++
adds minimal overhead (∼1.7ms) while significantly re-
ducing sequence length and memory cost (up to 65% KV
cache savings). As shown in long-context and generaliza-
tion experiments, it scales well across settings, maintaining
quality under compression and generalizing to new domains
without retraining.

5. Conclusion
We present QuickMerge++, a lightweight and modality-
agnostic framework for token reduction in generative model-
ing. By integrating entropy-aware token budgeting, saliency-
guided merging, and autoregressive prior alignment, Quick-
Merge++ provides a principled solution to the growing
inefficiency of dense token sequences. Extensive experi-
ments across text, image, and video domains demonstrate
that QuickMerge++ achieves significant token compression
while maintaining or improving generation quality. Further-
more, it generalizes effectively across tasks and domains
without retraining. These results suggest that adaptive to-
ken merging—grounded in semantic salience and generative
compatibility—can serve as a key building block in the next
generation of efficient autoregressive systems.

In future work, we plan to integrate QuickMerge++ with
streaming decoders, long-context memory modules, and
multi-agent generative systems to further expand its scala-
bility and applicability.
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Appendix
A. Implementation Details

Decoder Architecture. We use a lightweight autoregres-
sive Transformer with 6 layers, hidden size 512, and 8 self-
attention heads. Residual connections, GELU activation,
and pre-norm LayerNorm are applied. The decoder is ini-
tialized from scratch and trained solely on the merged token
outputs produced by QuickMerge++.

Token Reduction Pipeline. For each modality, Quick-
Merge++ is applied after a frozen encoder. The merging
process involves:

1. Estimating local entropy for token budgeting.

2. Computing pairwise token saliency scores.

3. Merging high-similarity token pairs into a compressed
sequence.

The merged sequence is passed to the AR decoder without
further normalization.

Training Infrastructure. Training is conducted on
4×A100 80GB GPUs using PyTorch DDP. Each run uses
mixed precision (AMP) and gradient accumulation. Experi-
ments typically converge within 30 epochs, with negligible
overfitting observed due to decoder-only learning.

B. Dynamic Budgeting and Scaling

We define the entropy of a token sequence x1:N based on
token-wise variance:

H(x1:N ) = −
N∑
i=1

∥xi∥2

∥x1:N∥2
log

∥xi∥2

∥x1:N∥2
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A linear budget scheduler then determines the number of
retained tokens:

K = min(Kmax, α ·H(x1:N ) ·N)

This enables dynamic adaptation to local content complex-
ity.

C. Semantic Preservation via Norm-Aware Selection

Given token features X ∈ RN×D, the cumulative mass of
the selected top-K tokens is:

Mass(K) =

∑
i∈TopK(∥xi∥) ∥xi∥∑N

i=1 ∥xi∥

We empirically observe that semantic regions (e.g., objects
or key frames) correlate with higher norms. This norm-
based importance selection ensures high-saliency tokens are
retained.

D. Robustness to Token Approximation in AR Decoding

We model the AR prior f : RK×D → RD as a locally
Lipschitz predictor. Let z1:K be ground-truth tokens and
ẑ1:K be the merged versions:

E
[
∥f(ẑ1:K)− f(z1:K)∥2

]
≤ L2 · E

[
∥ẑ1:K − z1:K∥2

]
This inequality links autoregressive degradation to the L2
reconstruction gap of merged tokens, justifying use of local
reconstruction losses during training.

8


