FLOWNET: A GENERIC INDEPENDENT AND INTERACTIVE MODEL FOR STREAMFLOW FORECASTING

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

029

031

033 034

037

038

040 041

042

043

044

046

047

048

050 051

052

Paper under double-blind review

ABSTRACT

Streamflow forecasting plays a crucial role in water research for flood prevention, water resource management, or climate resilience. However, it is a challenging task due to complex hydrological system interactions, human interventions and global climate change. In this paper, we introduce FlowNet, a unique local global interactive modeling framework, which is capable of effectively predicting multiple hydrology stations with varied input climate features and data availability at the same time. The key idea of FlowNet is to contruct *independent* prediction models for each station from its local data and from its adjacent neighbors via a hydrological-related directed graph before letting these models to *iteratively* and *interactively* adjust each other to maximize their prediction agreements. This helps to reduce uncertainty, thus improving their accuracy. Additionally, FlowNet dynamically captures inter-station relationships via its directional and delay-aware graph reconstruction method. As a generic framework, FlowNet can be used with any existing Deep Learning (DL) backbone models such as RLinear, PatchTST or iTransformer. However, we also introduce another backbone, called Disentangled Multiscale Cross-attention Transformer (DMCT), to capture the multiscale seasonality-trend information for further performance boost. Extensive experiments on 3 large datasets, including LamaH (with 425 hydrology stations in Europe), CAMELS (672 stations in USA) and MRB (with 26 gauge stations in the Mekong River Basin), show that FlowNet significantly outperforms 18 state-of-the-art (SOTA) prediction methods in terms of MAE, RMSE, and NSE.

1 Introduction

River flow forecasting, which aims to accurately predict future flow conditions using historical hydrological data, is a critical research area with wide-ranging impacts such as flood management, water resource optimization, infrastructure protection, and climate resilience (Feng et al., 2021; Zhou et al., 2025; Jiang et al., 2024). However, despite many research efforts (Giladi et al., 2021; Najafi et al., 2024), it remains a challenging task, as hydrological systems involve complex and nonlinear interactions among many geographic and climate factors such as topography, rainfall, river discharge and soil texture as well as human interventions such as dam constructions (Haddeland et al., 2014).

Traditional streamflow forecasting methods typically rely on physical simulations (Vreugdenhil, 2013) such as MODFLOW (Harbaugh et al., 2000) and SWAT (Gassman et al., 2007), or statistical techniques such as ARIMA (Valipour, 2012) and BJP (Robertson & Wang, 2012). However, these approaches struggle to effectively capture these intricate spatial-temporal dynamics, particularly under conditions of sparse or irregularly sampled data (Brunner et al., 2021). For example, simulation models often require a large amount of specific data such as soil type, land use, or digital elevation models (DEM), which are very difficult to collect and require significant effort, expertise, and computational power to set up (Giladi et al., 2021; Brunner et al., 2021). Moreover, global warming causes complex changes in climate patterns, and consequently breaks stationarity, a key assumption of most traditional models, (possibly) affecting their effectiveness (Milly et al., 2008).

Recently, deep learning has emerged as a powerful approach for modeling long-term complex temporal dynamics in streamflow forecasting tasks with various employed architectures such as RNNs (Zhang et al., 2018), MLPs (Sivakumar et al., 2002), GRUs (Farfan et al. 2024), CNNs (Ghimire et al., 2021), Transformer (Castangia et al., 2023), and especially LSTMs (Man et al.,

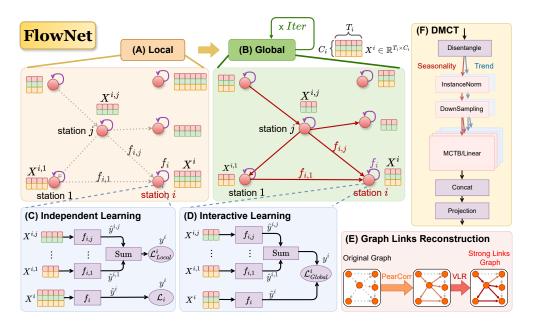


Figure 1: The overall pipeline of FlowNet with a barebone downstream graph $\mathcal G$. In the Local phase (A), for each station i, we train an independent per-station model f_i and cross-station models $f_{i,j}$, where $j \in parents(i)$ (i.e. j is parent of i), to learn the flow of station i via the two independent loss functions $\mathcal L_i$ and $\mathcal L^i_{Local}$ described in (C) (cf. Section 2.2). In the Global phase (B), the per-station model f_i and cross-station models $f_{i,j}$ interactively adjust each other in multiple iterations to maximize their prediction agreements via two global losses $\mathcal L^i_{Global}$ and $\mathcal L^{i,j}_{Global}$ described in (D) (cf. Section 2.2). In (E), the original downstream flow graph is refined by using our proposed methods PearCorr to search the correlated links and then VLR to reconstruct strong links graph (cf. Section 2.4). (F) presents our proposed architecture Disentangled Multiscale Cross-attention Transformer (DMCT) to capture multiscale seasonality-trend information.

2023). These methods do not require wide ranges of complex data like traditional techniques, while acquiring impresive performances in major cases (Vizi et al., 2023). However, most of them often treat monitoring stations independently, neglecting the essential spatial relationships and dependencies of directional water flow between stations (Ding et al., 2020). To address these dependencies, Kratzert et al. (Kratzert et al., 2018) use a single LSTM model to jointly predict multiple stations, implicitly exploiting their underlying physics. Other works such as (Kirschtein et al. 2024) use graphs to explicitly capture relationships among stations via different hydrology and topography aspects and employ GNN-based models to forecast all stations. However, these methods typically rely on restrictive assumptions such as uniform input feature sets, similar training data periods or static adjacency graphs (Zhao et al., 2020; Zhou et al., 2025). They also focus on propagating features among stations, neglecting explicit relationships among predicted outcomes of different stations.

Our contributions. In this paper, we introduce *FlowNet*, a *flexible* and *generalizable* framework specifically designed for multivariate spatio-temporal streamflow forecasting on multiple gauge stations. Compared to existing works, FlowNet has the following key differences.

First, FlowNet also aims to predict all stations jointly like other above mentioned methods. However, it follows an entirely different concept, called *interactive local global modeling strategy* (cf. Section 2.2 for details). Concretely, given a relationship graph of all stations as a backbone, rather than using a single large model like (Kratzert et al., 2018), each station is first represented by a set of smaller arbitrary models, including a *independently* customized *per-station* model and different *independent cross-station* models to predict its own streamflow from its local data and from its neighbors's local data in the *local stage* of FlowNet, respectively. Hence, these models can flexibly exploit all varying available local training data and input features to maximize their learning outcomes. In the *global stage*, all models *iteratively* and *interactively* adjust each other to maximize their prediction agreements by exchanging and fusing their prediction outcomes via the backbone graph, thus reducing prediction uncertainty and further enhancing their accuracy. This interaction scheme is the central of FlowNet and makes it highly data and model flexibility, i.e., it does not require uniform inputs like existing works such as (Kirschtein et al. 2024) and can be used with any existing DL models.

Second, FlowNet captures inter-station relationships by proposing a directional and delay-aware graph reconstruction method, enabling robust *interactive learning* across spatially distributed stations dynamically as described above (cf. Section 2.4 for details).

Third, since FlowNet is a generic framework, it can employ diverse DL models such as MLPs, RNNs, and Transformers for different stations. However, we also propose a specific backbone model for FlowNet, called Disentangled Multiscale Cross-attention Transformer (DMCT), explicitly designed to decompose time series into distinct seasonal and trend components, effectively processing each at multiple temporal scales to improve the prediction accuracy (cf. Section 2.3 for details).

Fourth, we demonstrate the performance of FlowNet in (i) predicting daily water discharges for 425 hydrology stations in the Central Europe from the LamaH-CE dataset (Klingler et al., 2021) and 672 stations in the USA from the CAMELS dataset (Newman et al., 2015) and (ii) predicting water levels for 26 stations in the Mekong River Basin (MRB) collected from the Mekong River Commission (MRC). FlowNet acquires significantly better prediction accuracy in terms of NSE, MAE, and RMSE compared to 18 state-of-the-art (SOTA) prediction models with diverse DL architectures such as Transfomer-based models like CATS and iTransformer, MLP-based models like DLinear and RLinear, CNN-based models like MICN, GNN-based models like GCN, ResGCN and ResGAT, RNN-based models like LSTM and GRU, and hybrid models like AGCLSTM. Many of these models are specifically designed or widely used for streamflow forecasting tasks.

2 Our Proposed Method FlowNet

Let $X \in \mathbb{R}^{T \times C}$ be a multivariate time series, where T is the number of time steps and C is the number of channels. Additionally, we denote the c-th channel in the t-th time step as $X_{t,c} \in \mathbb{R}$, the time series of c-th channel as $X_{:,c} \in \mathbb{R}^T$, and the multivariate data in t-th time step as $X_{t,:} \in \mathbb{R}^C$. Let $S = \{S_1, \ldots, S_N\}$ be the set of N hydrology stations in river networks. We define the downstream flow graph $\mathcal G$ as a directed graph that connects these stations via their direct flow relationships.

Definition 1 (Downstream flow graph \mathcal{G}). Let $\mathcal{G} = (S,A)$ be a directed graph, where $S \in \mathbb{R}^N$ is a set of N stations and $A \in \mathbb{B}^{N \times N}$ is the binary adjacency matrix. Two stations S_i and S_j are linked together, i.e., $A_{i,j} = 1$, if the water flows from S_i to S_j directly. Otherwise, $A_{i,j} = 0$.

For each station S_i , let $X^i \in \mathbb{R}^{T_i \times C_i}$ be the multivariate time series data associated with it, where the c-th channel contains streamflow values and the remaining channels are exogenous variables such as climate. Notably, the number of time steps T_i and the number of channels C_i are station-specific.

Problem formulation. We aim to predict future flow values (i.e. the c-th channel) of all stations jointly. Though all existing works, such as (Zhao et al., 2020), focus on a single large joint prediction model f for all stations, we follow an entirely different approach that constructs a set of M small independent models $F = \{f_k | k = 1..M\}$. Initially, each f_k predicts the flow value of a single station independently in the beginning and belongs to one of the 3 categories including per-station, inflow and outflow forecasting as described below. After that, they iteratively interact with others via the flow graph \mathcal{G} to maximize their prediction agreements, thus reducing uncertainty and increasing their accuracy. This setting is *data flexible*, since in many river basins like the MRB, the time series data lengths and collected hydrology features can be very different at different stations. Rather than choosing only a uniform subset of data for all stations like most existing works such as (Kirschtein et al. 2024), FlowNet can effectively utilize all of them due to its independent learning model to maximize learning generability. Note that, some recent HGNN-based methods such as (Jiang et al., 2024) can deal with data heterogeneous but still require uniform data for nodes with the same type. FlowNet is also *model flexible*, any existing deep learning model can be independently used as f_i , including lightweight models that are computationally efficient and less prone to overfitting, especially when training data are limited. The interaction and ensemble fusion concepts of FlowNet also help it to produce more stable results than existing works.

2.1 OVERVIEW OF FLOWNET

In FlowNet, we have two main kinds of prediction models including: *per-station* and *cross-station* ones. The per-station model uses local data at each station to predict its future streamflow.

Definition 2 (Per-station forecasting). For each station S_i and an arbitrary time step t, our objective is to predict future data $y_t^i = X_{t+1:t+H,c}^i \in \mathbb{R}^{H \times 1}$ of c-th channel water flow from multivariate historical data $x_t^i = X_{t:t-L,:}^i \in \mathbb{R}^{L \times C_i}$ from a model f_i , where L is the lookback window length and H is the future horizon length. For simplicity, we drop the term t out whenever it is clear from the context and let y^i be the ground truth and \hat{y}^i be the prediction at S_i . We learn, $y^i \approx \hat{y}^i = f_i(x^i)$.

In a river network, stations have physical relationships. Particularly, the water flows from upperstream stations to lower-stream stations. These flow relationships are exploited in FlowNet via its local-global interaction scheme shown in Figure 1 using a flow graph $\mathcal G$ to guide the model interactions. Given a station $S_i \in S$, let $parents(S_i)$ be the set of stations S_j where $A_{j,i}=1$ and $childs(S_i)$ be the set of stations S_j where $A_{i,j}=1$. At a time t, we expect that $X_{t,c}^i=\sum_{j\in parents(S_i)}inflow(X_{t:t-L,c}^j)+\epsilon_t$, where inflow is the flow contribution of a parent station S_j within a lookback window L to station S_i and ϵ is a noisy factor. Similarly, we have the outflow relationship from S_i to its child stations. They are exploited to build cross-station models in FlowNet.

Definition 3 (Cross-station prediction). Wlog., let S_i and S_j be two adjacent stations with corresponding data $X^i \in \mathbb{R}^{T_i \times C_i}$ and $X^j \in \mathbb{R}^{T_j \times C_j}$ and $A_{j,i} = 1$. Let $f_{i,j}$ be a model to predict the inflow contribution from station S_j to S_i . Let $\hat{y}^{i,j}$ be the prediction outcome of $f_{i,j}$, we have $\hat{y}^{i,j} = f_{i,j}(x^{i,j})$, where $x^{i,j} = X^j_{-0:-L,:} \oplus X^i_{-0:-L,c}$ be a concatenated historical data of X^j and historical flow of X^i . However, unlike the per-station forecasting in Definition 2, we do not have a ground truth for $\hat{y}^{i,j}$. Instead, it is a learnable latent variable that can be inferred from the inflow relationship discussed above during the training process. Let \hat{y}^i be a prediction groud truth of station S_i , we learn $y^i \approx \hat{y}^i = \sum_{j \in parents(S_i)} f_{i,j}(x^{i,j})$. The outflow cross-station prediction is defined similarly. We use \hat{y}^i_{inflow} and $\hat{y}^i_{outflow}$ to denote predicted inflow and outflow of S_i , respectively.

Overall structure of FlowNet. Figure 1 shows the overall pipeline of our method. Specifically, we first refine the downstream flow graph \mathcal{G} via the graph link reconstruction module (E) to avoid weak relationships, which can happen due to factors such as long-distance stations or human interventions. Then we train all *per-station* and *cross-station* models independently using their local-specific data as much as possible for better performance in the local phase (A). In this way, even if some stations do not have data on some channels or having different channel lengths, they will not affect other stations like existing works such as (Kirschstein & Sun, 2024). In the global phase (B), the central of FlowNet, all models iteratively and interactively exchange their outcomes and adjust themselves to further reducing uncertainty via their flow relationships in \mathcal{G} in *Iter* iterations, where *Iter* is a predefined parameter. Additionally, we propose a Disentangled Multiscale Cross-attention Transformer (DMCT) model to capture the multiscale seasonality and trend information and use it as a base model for FlowNet. Details for each part are described below, and pseudocodes can be found in Appendix F.

2.2 THE LOCAL AND GLOBAL LEARNING PHASES

Local phase - independent learning. As described above, the local phase aims to train a set F of all per-station and cross-station models that are capable of independently predicting flow outcomes for each station. These models provide multiple diverse views on future flow values for each station.

First, for each station S_i , we construct a per-station model f_i and train it independently using all of it available local time series data $X^i \in \mathbb{R}^{T_i \times C_i}$. Intuitively, having more related historical hydrology data can help the model to have better generalization, thus effectively coping with climate changes as pointed out in (Milly et al., 2008). FlowNet, with its independent learning scheme, can help us to do so without having to reduce data to match other stations like (Kirschstein & Sun, 2024; Zhou et al., 2025). Each f_i is trained using the loss function $\mathcal{L}^i = Loss(\hat{y}^i, y^i)$, where Loss is the MAE loss.

Second, we train two sets of cross-station models for each station S_i , including the inflow and outflow models. For each station $S_j \in parents(S_i)$, we create a model $f_{i,j}$. However, we cannot train them independently like the per-station ones, but in groups due to their latent outputs. That also means the training data period will now be restricted to $K^i_{inflow} = min_{S_j \in parents(S_i) \cup S_i}(T_j)$, i.e. nearest K^i_{inflow} time points. Following Definition 3, the local inflow loss will be defined as $\mathcal{L}^i_{Local} = Loss(\hat{y}^i_{inflow}, y^i)$, where $\hat{y}^i_{inflow} = \sum_{S_j \in parents(S_i)} \hat{y}^{i,j}$. The outflow cross-station models are trained similarly.

Global phase - interactive learning. In the global phase, all models will interact with others to adjust their prediction outcomes, thus maximizing their agreements. That can incoporate diverse but consistent views into each station, thus leading to performance improvements as shown in Section 3. Here, we limit the interaction to nearest adjacent neighbors in the graph $\mathcal G$ only to reduce computation overhead. For each station S_i , we have a set of 3 prediction outcomes: $\hat y^i$ from the per-station model, $\hat y^i_{inflow}$ from inflow cross-station models and $\hat y^i_{outflow}$ from outflow cross-station models. The unified/ensembled prediction outcome of station S_i will be:

$$\hat{y}_{Global}^{i} = mean(\hat{y}^{i}, \hat{y}_{inflow}^{i}, \hat{y}_{outflow}^{i})$$

$$\tag{1}$$

We then define a global losses between the ground truth y^i , local prediction \hat{y}^i and global prediction \hat{y}^i_{Global} to update the per-station model f_i as following:

$$\mathcal{L}_{Global}^{i} = \alpha \cdot Loss(\hat{y}^{i}, y^{i}) + (1 - \alpha) \cdot Loss(\hat{y}^{i}, \hat{y}_{Global}^{i})$$
 (2)

where the first term denotes the difference between the ground truth and the prediction result of the model, and the second term denotes the difference between the predicted results of the model and the global result. The purpose is to minimize their differences, thus balancing final prediction outcomes from diverse views. Note that the update process will be restricted to the training period of $K^i_{Global} = min(K^i_{inflow}, K^i_{outflow})$ nearest time points.

Similarly, we do the global update for all cross-station models via the ground truth y^i , their own aggregated result \hat{y}^i_{inflow} or $\hat{y}^i_{outflow}$, and the global result \hat{y}^i_{Global} .

2.3 DISENTANGLED MULTISCALE CROSS-ATTENTION TRANSFORMER

We propose the **D**isentangled **M**ultiscale Cross-attention Transformer (DMCT) as the backbone model to extract the seasonality-trend temporal features efficiently in streamflow prediction. Recent studies, such as DLinear (Zeng et al., 2023), utilizes the seasonality-trend decomposition (STD) method to disentangle the original time series x into seasonality s and trend t independently.

$$\mathbf{s}, \mathbf{t} = \text{SeriesDecomp}(x)$$
 (3)

Next, we utilize a stacked Multiscale Cross-attention Transformer Block (MCTB) to capture the temporal features with multiscale information which has been proven to be efficient (Wang et al., 2024; Zhang et al., 2025). Firstly, we decompose the original sequences seasonality s and trend t into multiscale subsequences: $\{\mathbf{s}^0,\dots,\mathbf{s}^l\}$ and $\{\mathbf{t}^0,\dots,\mathbf{t}^l\}$ by down sampling method from TimeMixer (Wang et al., 2024). Then we based on the distinct properties of seasonality and trend, we apply an independent Cross-attention Transformer block from CATS (Kim et al., 2024) to seasonality and a Linear layer to trend separately. And to balance the efficiency and performance, we apply a Linear layer to extract the multiscale information. At last, we use the concatenate operation to mix the multiscale latent sequences and project to the future sequence length by one Linear layer. Overall, the process of MCTB with l levels is as follows.

$$\{\mathbf{s}^0, \dots, \mathbf{s}^l\} = \text{DownSampling}(\mathbf{s}), \ \{\mathbf{t}^0, \dots, \mathbf{t}^l\} = \text{DownSampling}(\mathbf{t})$$
 (4)

$$\mathbf{h} = \operatorname{Concat}(\operatorname{MCTB}(\mathbf{h}_{\mathbf{s}}^{\ell}) + \operatorname{Linear}(\mathbf{h}_{\mathbf{t}}^{\ell})), \ \ell = 0, \dots, \ell$$
 (5)

$$\hat{y} = \text{Projection}(\mathbf{h}) \tag{6}$$

Additionally, we adapt the instance normalization (Kim et al., 2022) to FlowNet when models learn interactively. Concretely, we use the mean and standard deviation values from the target station S_i to replace the ones of the input time series from the cross-station series $x^{i,j}$ as follows:

$$x^{i,j} = \frac{x^{i,j} - \mu_i}{\sqrt{\sigma_i + \epsilon}}, \quad \hat{y}^{i,j} = \hat{y}^{i,j} \times \sqrt{\sigma_i + \epsilon} + \mu_i \tag{7}$$

where μ_i and σ_i denote the mean and variance of the target station time series x^i , respectively, and ϵ is a small constant for numerical stability.

2.4 GRAPH LINKS RECONSTRUCTION MODULE

As described above, the downstream flow graph \mathcal{G} provides direct relationships among stations. However, not all connected stations contribute effectively to predictive performance due to factors

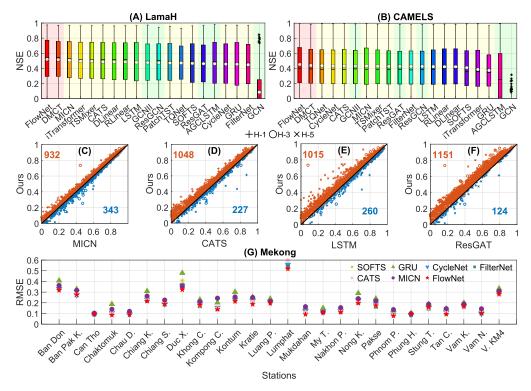


Figure 2: Overall performance of FlowNet for $H \in \{1,3,5\}$. (A) Full NSE results of all studied models on CAMELS (sorted in descending order of mean values). (B) Full NSE results of all studied models on LamaH (sorted). (C-F) NSE comparisons between FlowNet and 4 selected baselines on LamaH. A point over the diagonal line indicates that FlowNet is better. (G) RMSEs of FlowNet compared to some baselines on 26 stations of the Mekong dataset (H = 1).

such as long geographical distances or human interventions (e.g., dams or irrigation systems). For example, the two linked stations, Kontum and Stung Treng, in the MRB are nearly 400km away from each other. Thus, their relationship is weaker. To address this, we propose a two-step scheme that detects and retains only strongly correlated and beneficial links to improve predictive accuracy.

Pearson Correlation Analysis (PearCorr). We utilize the Pearson correlation coefficient to analyze the lag correlations between two adjacent stations S_i and S_j in the graph \mathcal{G} . We repeatedly shift the related time series ω time steps and calculate the Pearson correlation coefficient until reaching the maximum lag threshold Ω . Let $\lambda_{i,j}$ be the maximum correlations under Ω lags (default $\Omega = L$).

$$\lambda_{i,j} = \max(\text{PearCorr}(\text{Shift}(X_{i,c}, \omega), X_{j,c})), \ \omega = 0, \dots, \Omega$$
(8)

Validation-based Links Reconstruction (VLR). Additionally, we propose a validation-based links reconstruction scheme to refine the adjacent matrix $A \in \mathbb{B}^{N \times N}$. Given two adjacent stations S_i and S_j with $A_{j,i} = 1$, we construct two model $f_{i,j}$ that use data from S_j to predict S_i and f_i that predict S_i via its local data. We keep $A_{j,i} = 1$ if S_i and S_j have strong enough correlation and $f_{i,j}$ has close performance to f_i on the validation set (indicated by the loss $\mathcal{L}_{\text{vali}}(.)$).

$$A_{i,j} = \begin{cases} 1 & \text{if } \mathcal{L}_{\text{vali}}(f_{i,j}) < \gamma \mathcal{L}_{\text{vali}}(f_i) \text{ and } \lambda_{i,j} > \phi, \\ 0 & \text{otherwise} \end{cases}$$
 (9)

where ϕ (default 0.7) and γ (default 1.2) are two predefined thresholds.

3 EXPERIMENTS

Benchmarks. We demonstrate the performance of FlowNet for two main tasks: (i) predicting daily water discharges for 425 hydrology stations in the Central Europe from the LamaH-CE dataset (Klingler et al., 2021) and 672 stations in the USA from the CAMELS dataset (Newman et al., 2015)

Dataset		CAMELS			LamaH			Mekong	
Horizon	1	3	5	1	3	5	1	3	5
CycleNet	0.5587	0.4058	0.3361	0.6012	0.4276	0.3433	0.9268	0.8818	0.8476
TQNet	0.5629	0.4070	0.3381	0.5686	0.4686	0.3779	0.9309	0.8862	0.8530
DLinear	0.5330	0.3955	0.3342	0.6100	0.4587	0.3871	0.9315	0.8889	0.8545
RLinear	0.5322	0.3944	0.3362	0.6100	0.4549	0.3906	0.9269	0.8825	0.8472
FilterNet	0.5409	0.3935	0.3418	0.5922	0.4153	0.3385	0.9248	0.8815	0.8483
iTransformer	0.4857	0.3840	0.2861	0.6349	0.4698	0.3805	0.9217	0.8822	0.8431
PatchTST	0.5574	0.4048	0.3150	0.6121	0.4379	0.3672	0.9322	0.8884	0.8427
CATS	0.5565	0.4087	0.3339	0.6315	0.4376	0.3903	0.9206	0.8773	0.8359
LSTM	0.5368	0.3978	0.3338	0.6442	0.4563	0.3356	0.8708	0.8401	0.8130
GRU	0.4733	0.3453	0.2984	0.6427	0.4606	0.2624	0.8862	0.8479	0.8230
MICN	0.5493	0.4071	0.3372	0.6370	0.4837	0.3992	0.9111	0.8766	0.8431
SOFTS	0.5291	0.3772	0.3187	0.5675	0.4557	0.3769	0.9198	0.8774	0.8420
TSMixer	0.5657	0.3949	0.3224	0.6407	0.4577	0.3841	0.9287	0.8838	0.8487
GCN	-0.069	-0.071	-0.072	0.1159	0.0715	0.0657	0.8151	0.7815	0.7577
GCNII	0.5565	0.4064	0.3345	0.5975	0.4463	0.3863	0.8813	0.8320	0.8029
ResGCN	0.5426	0.4005	0.3331	0.5965	0.4387	0.3917	0.8829	0.8284	0.7979
ResGAT	0.5414	0.4019	0.3335	0.6089	0.4062	0.3721	0.8776	0.8207	0.7891
AGCLSTM	0.1956	-0.143	-0.069	0.5966	0.4408	0.3458	0.8876	0.8585	0.7727
DMCT	0.5631	0.4093	0.3422	0.6503	0.4876	0.4060	0.9309	0.8889	0.8530
FlowNet	0.5784	0.4228	0.3540	0.6598	0.4928	0.4067	0.9323	0.8908	0.8555

Table 1: Mean NSE results of 8 selected SOTA baselines compared to our methods DMCT and FlowNet on 3 datasets with 3 different prediction horizon settings $H \in \{1, 3, 5\}$. Best results are highlighted in bold and second best results are underlined.

and (ii) predicting daily water levels for 26 stations in the Mekong River Basin (MRB) collected from the Mekong River Commission (MRC). Please refer to Appendix A for detail descriptions.

Baselines. We compare our method with 18 state-of-the-art (SOTA) baselines including: Transformer-based models (CATS (Kim et al., 2024), iTransformer (Liu et al., 2023), PatchTST (Nie et al., 2023)), MLP-based models (DLinear (Zeng et al., 2023), RLinear (Li et al., 2023), CycleNet (Lin et al., 2024), TQNet (Lin et al., 2025), FilterNet (Yi et al., 2024), SOFTS (Han et al., 2024), TSMixer (Chen et al., 2023)), CNN-based model (MICN (Wang et al., 2023)), GNN-based models (GCN, GCNII, ResGCN, ResGAT (Kirschstein & Sun, 2024)), and RNN-based models (LSTM (Kratzert et al., 2018), GRU (Chung et al., 2014)) and a hybrid model AGCLSTM (Feng et al., 2022). Among them, GNN, GCNII, ResGCN, ResGAT, LSTM and especially AGCLSTM are specifically tailored for streamflow forecasting in (Kratzert et al., 2018; Kirschstein & Sun, 2024; Feng et al., 2022).

Evaluation metrics and experimental settings. We use the Nash–Sutcliffe model efficiency coefficient (NSE), the mean absolute error (MAE) and the root mean squared error (RMSE) as metrics to evaluate the performance for all baselines (c.f. Appendix B for details).

3.1 Main Results

Figure 1 (A) show NSE values of all studied methods over all 425 stations and 3 prediction horizons for LamaH. FlowNet acquires the best overall performances compared to other baselines, following by DMCT. The same results can be observed in (B) for CAMELS. In (C, D, E, F), we directly compare NSEs of FlowNet with top baselines for all 425 stations of LamaH over 3 prediction horizons. FlowNet outperforms ResGAT, a recent GNN-based method, on 1,151/1,275 cases (90.2%) and LSTM, the most success model for streamflow forecasting, on 1,015/1,275 (79.6%). Moreover, major points are far from the diagonal line, indicating that FlowNet has much better performances than others. (G) shows RMSEs of FlowNet compared to selected baselines for all 26 stations of the Mekong dataset with H=1. FlowNet consistently outperforms others in major cases.

Additionally, as shown in Table 1, FlowNet has mean NSEs of (0.932, 0.890, 0.855) for H=(1,3,5) over 26 stations in the Mekong dataset, which are much better than (0.882, 0.828, 0.797) of ResGCN, the best performed GNN-based approach in (Kirschtein et al. 2024). It also outperforms all baselines

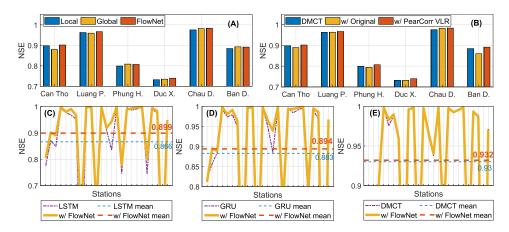


Figure 3: Ablation studies on the Mekong data. (A) Performances of FlowNet when using with Local only, Global only, and Local-Global scheme on 6 selected stations. (B) Performances of DMCT, FlowNet with the original graph $\mathcal G$ and FlowNet with our graph reconstruction strategy on 6 selected stations. (C-E) Performances of FlowNet on all 26 stations when being used with different barebones including LSTM, GRU and our proposed model DMCT.

in terms of mean NSEs over 9 combination cases of datasets and prediction horizons. Full results can be found in Tables 7, 8, and 9 in Appendix C. For RMSE, FlowNet is the best method on 6 and second best method on 2 cases. For MAE, it acquires 4 best and 4 second best over 9 cases.

3.2 ABLATION STUDIES AND ANALYSES

Effects of the local global interaction scheme.

To understand effects of FlowNet's interaction scheme (c.f. Section 2.2), we conduct ablation experiments on 6 stations of the Mekong dataset with significant correlation links from other stations. As shown in Figure 3 (A), the backbone model can benefit significantly from FlowNet (with both local and global phases) with most of the selected stations having the best NSE values, compared to the sole use of the local or

Table 2: Effects of different components of DMCT on the Mekong dataset, where w/o D, w/o M, w/o IN denote without Disentangled, Multiscale and Instance Normalization modules, respectively.

	DMCT	w/o D	w/o M	w/o IN
H=1	0.930	0.920	0.927	-0.18
H=3	0.888	0.877	0.887	-1.81
H=5	0.853	0.843	0.852	-2.45

global phase. This means interactions among stations help to reduce uncertainty, thus increasing performances as we discussed in Section 2.1.

Effects of the graph link reconstruction. In Figure 3 (B), we study deeper on our proposed graph link reconstruction approach, which contains two steps: PearCorr and VLR (c.f. Section 2.4). While using the original graph \mathcal{G} does not lead to clear performance improvements compared to DMCT since stations in the Mekong dataset are far from others (c.f. Figure 5 in Appendix E), thus weakening their relationships. The graph refinement module helps to boost performances in all cases compared to DMCT since weak links are removed, thus making the interactions among models more effective (c.f. refined graphs in Figures 7 and 8 in Appendix E).

Effects of different backbone models. We employ different DL architectures as backbone models for FlowNet, including LSTM, GRU, and our DMCT backbone. Figure 3 (C) shows NSEs for all 26 stations for LSTM and LSTM with FlowNet. As we see, FlowNet significantly boosts the NSE scores of most stations compared to those of LSTM. The mean NSE of FlowNet thus increases to 0.899 from 0.866 of LSTM. The same results can be observed on GRU and DMCT in (D, E), respectively. These demonstrates the generality and flexibility of FlowNet for boosting performances of its employed barebones via its model interactive scheme.

Effects of different components of DMCT. Table 2 demonstrates that Disentangled module, Multiscale module and Instance Normalization are necessary for accurate prediction performance. Notably, without Instance Normalization the model cannot capture the accurate temporal features due to temporal distribution shift (Kim et al., 2022).

Computational analysis. Table 3 shows computational costs of FlowNet and other baselines. FlowNet requires additional cross-station models and interaction overheads. Hence, it is more computationally expensive than its barebone DMCT and other lightweight models lie DLinear. But it is less costly than SOFTS or MICN in terms of memory and parameters. Nevertheless, in exchange for its high computation cost, FlowNet significantly outperforms others in terms of prediction accuracy as shown above.

Hyperparameter sensitivity. We study the sensitivity of all hyperparameters for FlowNet and DMCT in Figure 6 in Appendix D such as the learning rate, the dimension of the hidden layer, the number of multiscale levels, the regulation parameter α , number of global iterations (*Iter*), and look back window size (*L*).

Table 3: Memory consumptions, times per epoch, and parameters for different methods on Can Tho station of the Mekong datasets with lookback length L=32 and predict horizon H=5.

Method	Memory(MB)	Time(s)	Parameters
DLinear	262	0.56	0.3K
LSTM	374	0.71	68K
GRU	358	0.64	51K
iTransformer	332	1.04	0.4M
PatchTST	368	1.13	0.4M
MICN	404	1.14	1.2M
TSMixer	262	0.78	9.2K
SOFTS	436	0.88	0.9K
FilterNet	292	0.62	77K
CATS	268	0.86	0.2M
DMCT	364	1.08	0.5M
FlowNet	424	1.80	1.1M
DMCT	364	1.08	0.5M

4 RELATED WORKS

Traditional streamflow forecasting methods such as ARIMA, Multiple Linear Regression (MLR), and Moving Average (MA), which assume linearity and thus often underperform in capturing the nonlinear and chaotic behavior of hydrological systems (Valipour, 2012; Wu & Chau, 2009; Sivakumar, 2009). Recently, RNN-based models like LSTM and GRU have demonstrated superior performance in capturing nonlinear temporal dependencies in flood forecasting tasks (Kratzert et al., 2018; Zhang et al., 2018). Enhancements such as attention-based LSTMs further improve accuracy by focusing on influential time steps (Ding et al., 2020). However, these models typically treat stations as independent time series and often ignore the spatial interactions between them, which are critical in hydrological systems with directional flow structures. FlowNet, in contrast, aims to predict all stations jointly and use their spatial interaction to improve results.

GNNs are well-suited for hydrological networks, where stations can be represented as nodes and river flows as directed edges. Foundational models such as GCN (Kipf & Welling, 2017), ChebNet (Defferrard et al., 2016), and GraphSAGE (Hamilton et al., 2017) provided mechanisms for learning spatial representations. These approaches have inspired applications in traffic prediction (Song et al., 2020) and later, hydrology. Recent models such as ST-GCN (Feng et al., 2021) integrates GCNs with LSTM and attention mechanisms to capture spatiotemporal dependencies. (Zhou et al., 2025) propose HCGCN, introducing flow direction and time delays directly into a time-delayed directed graph structure, enhancing realism and performance. But they typically require all stations to have identical features and sequence lengths, and rely on static adjacency matrices that fail to reflect dynamic hydrological influences, limiting their effectiveness across heterogeneous and dynamically evolving hydrological networks. HGCN-based models such as (Jiang et al., 2024) are more data flexible than GNNs-based ones but nodes of the same types still require unified inputs. They also focus on feature propagation among nodes rather than outcomes. In contrast, FlowNet uniquely uses independent models to interact with others for better utilizing arbitrary existing data and boosting performance via exchanging and adjusting prediction outcomes iteratively. It also dynamically refine the underlying graph for more effective interactions among stations.

5 CONCLUSION

We introduce a *first independent and interactive modeling framework*, called FlowNet, for streamflow prediction. FlowNet utilizes a unique local-global scheme that establishes individualized models and introduces interactive mechanisms for multiple heterogeneous station data, and establishes synchronous spatio-temporal dependencies for all stations through iterative interactive learning with a dynamic refined graph and a proposed DMCT basebone. FlowNet acquires superior performances compared to 18 SOTA baselines on 3 large scale benchmarks. It is also highly flexible and can be used with any exiting DL models and available data for each station.

6 REPRODUCIBILITY STATEMENT

The LamaH-CE and CAMELS datasets are publicly available, with sources cited in Section 3. The Mekong Water Level dataset and the source code used for all experiments are included in the supplementary material.

REFERENCES

- Nans Addor, Andrew J Newman, Naoki Mizukami, and Martyn P Clark. The camels data set: catchment attributes and meteorology for large-sample studies. *Hydrology and Earth System Sciences*, 21(10):5293–5313, 2017.
- Manuela I Brunner, Louise Slater, Lena M Tallaksen, and Martyn Clark. Challenges in modeling and predicting floods and droughts: A review. *WIRES WATER*, 8(3):e1520, 2021.
- Kaixuan Cai, Jinxin He, Qingliang Li, Wei Shangguan, Lu Li, and Huiming Hu. Meta-lstm in hydrology: Advancing runoff predictions through model-agnostic meta-learning. *Journal of Hydrology*, 639:131521, 2024.
- Marco Castangia, Lina Maria Medina Grajales, Alessandro Aliberti, Claudio Rossi, Alberto Macii, Enrico Macii, and Edoardo Patti. Transformer neural networks for interpretable flood forecasting. *Environ. Model. Softw.*, 160:105581, 2023.
- Si-An Chen, Chun-Liang Li, Nate Yoder, Sercan O Arik, and Tomas Pfister. Tsmixer: An all-mlp architecture for time series forecasting. *arXiv preprint arXiv:2303.06053*, 2023.
- Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. *arXiv* preprint arXiv:1412.3555, 2014.
- Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs with fast localized spectral filtering. In *NeurIPS*, volume 29, pp. 3844–3852, 2016.
- Yukai Ding, Yuelong Zhu, Jun Feng, Pengcheng Zhang, and Zirun Cheng. Interpretable spatio-temporal attention 1stm model for flood forecasting. *Neurocomputing*, 403:348–359, 2020.
- Juan F Farfán-Durán and Luis Cea. Streamflow forecasting with deep learning models: A side-by-side comparison in northwest spain. *Earth Sci. Inform.*, pp. 1–27, 2024.
- Jiabao Feng, Ziqing Wang, Yuxiang Wu, and Yuming Xi. Spatial and temporal aware graph convolutional network for flood forecasting. In *IJCNN*, pp. 1–8, 2021.
- Jun Feng, Haichao Sha, Yukai Ding, Le Yan, and Zhangheng Yu. Graph convolution based spatial-temporal attention lstm model for flood forecasting. In *IJCNN*, pp. 1–8. IEEE, 2022.
- Philip W Gassman, Manuel R Reyes, Colleen H Green, and Jeffrey G Arnold. The soil and water assessment tool: historical development, applications, and future research directions. *Transactions of the ASABE*, 50(4):1211–1250, 2007.
- Sujan Ghimire, Zaher Mundher Yaseen, Aitazaz A Farooque, Ravinesh C Deo, Ji Zhang, and Xiaohui Tao. Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks. *Sci. Rep.*, 11(1):17497, 2021.
- Niv Giladi, Zvika Ben-Haim, Sella Nevo, Yossi Matias, and Daniel Soudry. Physics-aware downsampling with deep learning for scalable flood modeling. *NeurIPS*, 34:1378–1389, 2021.
- Ingjerd Haddeland, Jens Heinke, Hester Biemans, Stephanie Eisner, Martina Flörke, Naota Hanasaki, Markus Konzmann, Fulco Ludwig, Yoshimitsu Masaki, Jacob Schewe, et al. Global water resources affected by human interventions and climate change. *Proc. Natl. Acad. Sci.*, 111(9):3251–3256, 2014.
- William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. In *NeurIPS*, volume 30, pp. 1024–1034, 2017.

- Lu Han, Xu-Yang Chen, Han-Jia Ye, and De-Chuan Zhan. Softs: Efficient multivariate time series forecasting with series-core fusion. *NeurIPS*, 37:64145–64175, 2024.
- Arlen W Harbaugh, Edward R Banta, Mary C Hill, and Michael G McDonald. Modflow-2000, the us geological survey modular ground-water model: User guide to modularization concepts and the ground-water flow process. 2000.
 - Jiange Jiang, Chen Chen, Yang Zhou, Stefano Berretti, Lei Liu, Qingqi Pei, Jianming Zhou, and Shaohua Wan. Heterogeneous dynamic graph convolutional networks for enhanced spatiotemporal flood forecasting by remote sensing. *IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.*, 17: 3108–3122, 2024.
 - Dongbin Kim, Jinseong Park, Jaewook Lee, and Hoki Kim. Are self-attentions effective for time series forecasting? *NeurIPS*, 37:114180–114209, 2024.
 - Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Reversible instance normalization for accurate time-series forecasting against distribution shift. In *ICLR*, 2022.
 - Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
 - Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In *ICLR*, 2017.
 - Nikolas Kirschstein and Yixuan Sun. The merit of river network topology for neural flood forecasting. In *ICML*, pp. 24713–24725, 2024.
 - Christoph Klingler, Karsten Schulz, and Mathew Herrnegger. Lamah— large-sample data for hydrology and environmental sciences for central europe. *Earth Syst. Sci. Data Discuss.*, 2021: 1–46, 2021.
 - Frederik Kratzert, Daniel Klotz, Claus Brenner, Karsten Schulz, and Mathew Herrnegger. Rainfall–runoff modelling using long short-term memory (lstm) networks. *Hydrol. Earth Syst. Sci.*, 22(11): 6005–6022, 2018.
 - Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An investigation on linear mapping. *CoRR*, abs/2305.10721, 2023.
 - Shengsheng Lin, Weiwei Lin, Xinyi Hu, Wentai Wu, Ruichao Mo, and Haocheng Zhong. Cyclenet: Enhancing time series forecasting through modeling periodic patterns. *NeurIPS*, 37:106315–106345, 2024.
 - Shengsheng Lin, Haojun Chen, Haijie Wu, Chunyun Qiu, and Weiwei Lin. Temporal query network for efficient multivariate time series forecasting. *arXiv preprint arXiv:2505.12917*, 2025.
 - Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long. itransformer: Inverted transformers are effective for time series forecasting. *arXiv* preprint *arXiv*:2310.06625, 2023.
 - Huang Man, Tao Chen, and Jiayu Liu. Enhanced lstm with temporal attention and residual connections for hydrological time series prediction. *Water*, 15(2):227, 2023.
 - Paul CD Milly, Julio Betancourt, Malin Falkenmark, Robert M Hirsch, Zbigniew W Kundzewicz, Dennis P Lettenmaier, and Ronald J Stouffer. Stationarity is dead: Whither water management? *Science*, 319(5863):573–574, 2008.
 - Husain Najafi, Pallav Kumar Shrestha, Oldrich Rakovec, Heiko Apel, Sergiy Vorogushyn, Rohini Kumar, Stephan Thober, Bruno Merz, and Luis Samaniego. High-resolution impact-based early warning system for riverine flooding. *Nature communications*, 15(1):3726, 2024.
 - Andrew J Newman, Martyn P Clark, Kevin Sampson, Andrew Wood, Lauren E Hay, Andy Bock, Roland J Viger, David Blodgett, Levi Brekke, JR Arnold, et al. Development of a large-sample watershed-scale hydrometeorological data set for the contiguous usa: data set characteristics and assessment of regional variability in hydrologic model performance. *Hydrol. Earth Syst. Sci.*, 19 (1):209–223, 2015.

- Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words: Long-term forecasting with transformers. In *ICLR*, 2023.
 - Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. *CoRR*, abs/1912.01703, 2019.
- David E Robertson and QJ Wang. A bayesian approach to predictor selection for seasonal streamflow forecasting. *J. Hydrometeorol.*, 13(1):155–171, 2012.
- B Sivakumar, AW Jayawardena, and TMKG Fernando. River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. *J. Hydrol.*, 265(1-4):225–245, 2002.
- Bellie Sivakumar. Nonlinear dynamics and chaos in hydrologic systems: latest developments and a look forward. *Stoch. Environ. Res. Risk Assess.*, 23:1027–1036, 2009.
- Chaoyang Song, Yuxuan Lin, Shengnan Guo, and Hongyuan Wan. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting. In *AAAI*, volume 34, pp. 914–921, 2020.
- Mohammad Valipour. Parameters estimate of autoregressive moving average model for groundwater level forecasting. *J. Earth Sci.*, 3(1):1–3, 2012.
- Zsolt Vizi, Bálint Batki, Luca Rátki, Szabolcs Szalánczi, István Fehérváry, Péter Kozák, and Tímea Kiss. Water level prediction using long short-term memory neural network model for a lowland river: a case study on the tisza river, central europe. *Environ. Sci. Eur.*, 35(1):92, 2023.
- Cornelis Boudewijn Vreugdenhil. *Numerical methods for shallow-water flow*, volume 13. Springer Science & Business Media, 2013.
- Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. MICN: multiscale local and global context modeling for long-term series forecasting. In *ICLR*, 2023.
- Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang, and Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. In *ICLR*, 2024.
- C-L Wu and K-W Chau. Predicting watershed water quality using regression and neural network models. *J. Environ. Inform.*, 13(2):97–105, 2009.
- Kun Yi, Jingru Fei, Qi Zhang, Hui He, Shufeng Hao, Defu Lian, and Wei Fan. Filternet: Harnessing frequency filters for time series forecasting. *NeurIPS*, 37:55115–55140, 2024.
- Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting? In *AAAI*, pp. 11121–11128, 2023.
- Jiawei Zhang, Yuxuan Zheng, and Ling Qi. Modeling spatial and temporal dependencies for multi-step traffic flow forecasting: A graph attention approach. In *SIGSPATIAL*, pp. 1–10, 2018.
- Zichi Zhang, Tuan Dung Pham, Yimeng An, Ngoc Phu Doan, Majed Alsharari, Viet-Hung Tran, Anh-Tuan Hoang, Hans Vandierendonck, and Son T Mai. Waveletmixer: A multi-resolution wavelets based mlp-mixer for multivariate long-term time series forecasting. In *AAAI*, volume 39, pp. 22741–22749, 2025.
- Qun Zhao, Yuelong Zhu, Kai Shu, Dingsheng Wan, Yufeng Yu, Xudong Zhou, and Huan Liu. Joint spatial and temporal modeling for hydrological prediction. *IEEE Access*, 8:78492–78503, 2020.
- Yi Zhou, Yilin Duan, Hong Yao, Xinchuan Li, and Shengwen Li. Incorporating hydrological constraints with deep learning for streamflow prediction. *Expert Syst. Appl.*, 259:125379, 2025. doi: 10.1016/j.eswa.2024.125379.

Appendices

Our appendices are outlined as follows. We describe the details of the dataset that we used to evaluate our method in A. The experiment setups, including the metrics selection, parameter settings and implementation details are described in B. In C, we first show the results with standard deviation that run on multiple different random seeds to demonstrate the stability of FlowNet compared to other baselines. Then we show the full performance comparison on three datasets (CAMELS, LamaH and Mekong) on all evaluation metrics (NSE, RMSE and MAE) and future prediction horizons H. The hyperparameter sensitivity for FlowNet and DMCT is studied in D. We present the refined graphs in E. In F, we provide the pseudo-code for our algorithms. In G, we describe the limitations of our work and we present the broader impact in H. LLM declaration can be found in I.

CONTENTS

A	Data	aset Details	14
	A.1	LamaH Dataset	14
	A.2	CAMELS Dataset	14
	A.3	Mekong Water Level Dataset	15
В	Exp	eriments Details	16
C	Full	Results	17
	C.1	Results with Different Random Seeds	17
	C.2	Full Results of CAMELS	18
	C.3	Full Results of LamaH	19
	C.4	Full Results of Mekong	20
D	Deta	ails of the Hyperparameter Sensitivity	21
E	Gra	phs	22
F	Pseu	ndo-code of Algorithms	24
	F.1	Local Phase	24
	F.2	Global Phase	24
	F.3	Local Global Training Scheme	24
	F.4	Validation-based Links Reconstruction	24
G	Lim	itations	25
Н	Broa	ader Impact	25
I	LLN	∕⁄I Usage	26

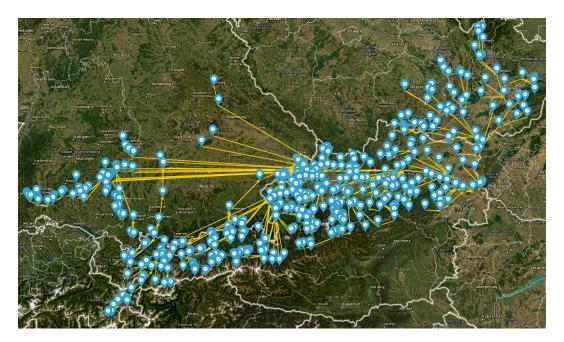


Figure 4: Visualization of the LamaH river network. Each blue marker corresponds to a gauging station from the LamaH dataset, while yellow lines with arrowheads indicate the directed river connections from upstream to downstream.

A DATASET DETAILS

A.1 LAMAH DATASET

The LamaH-CE (Large-Sample Data for Hydrology and Environmental Sciences for Central Europe) dataset, LamaH for short, serves as a critical benchmark for large-scale hydrological modeling, providing standardized data from 859 gauged catchments across Central Europe with daily and hourly resolutions spanning over 35 years of records (Klingler et al., 2021). This dataset consist of long-term hydrological time series, including streamflow, precipitation, and meteorological features with a comprehensive suite of over 60 static catchment attributes, containing topographic indices, climatic statistics, land cover classifications, soil properties, and geological characteristics. Such diversity allows robust exploration of watershed behaviors under varying environmental conditions, particularly supporting machine learning applications in predicting complex hydrological processes.

In our experiments, we extract an 18-year daily subset (2000–2017) from 425 high-quality catchments to ensure temporal consistency and spatial representativeness. The data is partitioned into training (2000–2013), validation (2014–2015), and test sets (2016–2017). We focus on the target variable of daily streamflow, together with four dynamic features including precipitation, topsoil moisture, air temperature, and surface pressure. These features capture key hydrological drivers, with precipitation and moisture informing infiltration-runoff dynamics, while temperature and pressure influence evapotranspiration and atmospheric interactions.

The LamaH dataset provides the streamflow graph inside. Figure 4 shows the station locations and the downstream flow graph of LamaH.

A.2 CAMELS DATASET

The CAMELS dataset (Catchment Attributes and Meteorology for Large-sample Studies) is a benchmark resource for large-sample hydrological modeling, providing standardized data for 671 catchments in the contiguous United States (CONUS) over the period 1980–2014 and is publicly available (Addor et al., 2017). This dataset contains daily time series of meteorological data (e.g., precipitation, temperature) and streamflow measurements with a comprehensive suite of static catchment

Table 4: The summary of Mekong dataset.

Validation Start Date	Testing Validation Start Date Data Points		Testing Data Points	Frequency	Target	
2019/11/1	2021/11/1	731	730	Daily	Water.Level	

attributes, thus allowing the exploration of watershed behavior across diverse climatic and topographic conditions.

The static attributes contains 35 variables spanning multiple categories: climate indices (e.g., mean precipitation, aridity index, snow fraction), topographic features (e.g., mean elevation, slope area), vegetation characteristics (e.g., forest fraction, leaf area index), soil properties (e.g., soil depth, hydraulic conductivity), and geological traits (e.g., carbonate rock proportion, permeability). These attributes are derived from spatially aggregated data and serve as critical inputs for characterizing catchment heterogeneity. Dynamic features include meteorological variables such as precipitation, temperature, and potential evapotranspiration, which are provided at daily resolutions to capture temporal dynamics. The streamflow data, measured at catchment outlets, are used as the target variable for predictive modeling.

We partition the dataset into a 10-year subset, aligning with common practices in hydrological model evaluation. The training set spans October 1, 1997, to September 30, 2004 (7 years), the validation set covers October 1, 2004, to September 30, 2005 (1 year), and the test set extends from October 1, 2005, to September 30, 2007 (2 years).

Preprocessing steps are applied to address scale disparities across catchments. Following Cai et al. (2024), we normalize streamflow values using catchment area and mean annual precipitation to account for volumetric differences. Additionally, a logarithmic transformation for streamflow varibale v is employed to stabilize variance and handle zero-inflation in flow data:

$$v_o = \log_{10}(\sqrt{v + 0.1}) \tag{10}$$

where v_o represents the transformed streamflow feature, and the constant 0.1 prevents numerical instability for zero or near-zero values. This transformation enhances model training by improving the homogeneity of input distributions across catchments of varying sizes and regimes.

There is no streamflow graph provided in CAMELS. Hence we use a KNN graph (with K=2) to simulate the flow relationships. The intution is that if two stations are close, they are more likely affecting others.

A.3 MEKONG WATER LEVEL DATASET

We summarize the overall structure of the Mekong dataset in Table 4, which reports the start dates of the validation and testing sets, the number of data points in each split, the temporal resolution, and the prediction target. Specifically, the dataset adopts a daily frequency, with the validation period starting from November 1, 2019 and the testing period from November 1, 2021, corresponding to 731 and 730 samples, respectively. The forecasting target across all stations is the daily water level.

Table 5 provides fine-grained information for each individual hydrological station. These stations differ substantially in both temporal coverage and sensing modalities: the training periods range from as early as January 1910 (Stung Treng) to as recent as September 2007 (Vam Nao), and the number of training samples varies dramatically from fewer than 5,000 records (Kontum, Vam Nao) to more than 40,000 records (Stung Treng). Furthermore, the input channels are heterogeneous across stations, consisting of one to three variables drawn from water level (WL), water discharge (WD), and rainfall (RF). For example, Chiang Saen provides the richest set of three channels (WL, WD, RF), while many downstream stations such as Kompong Cham or Kratie only include WL.

This variability highlights a key characteristic of the Mekong dataset: it is highly irregular both temporally and spatially. Unlike standardized benchmark datasets with uniform lengths and modalities, the Mekong data reflects the real-world complexities of hydrological monitoring systems, where station deployments differ in historical coverage, measurement availability, and environmental context. Such irregularities make modeling challenging, as methods must handle unbalanced input lengths, hetero-

Table 5: The details of each station dataset. WL denotes water level, WD denotes water discharge, and RF denotes rainfall.

Station	Training Start Date	Training Data Points	Channels	Channel Types
Ban Don	1992/1/1	10166	2	WL, RF
Ban Pak Kanhoung	1989/1/1	11261	1	WL
Can Tho	1979/4/1	14824	2	WL, RF
Chaktomuk	1980/7/1	14367	1	WL
Chau Doc	1960/6/29	21674	2	WL, RF
Chiang Khan	1967/1/1	19297	2	WL, WD
Chiang Saen	1965/12/31	19663	3	WL, WD, RF
Duc Xuyen	1985/1/1	12722	1	WL
Khong Chiam	1966/1/1	19662	2	WL, WD
Kompong Cham	1930/1/1	32811	1	WL
Kontum	2007/2/22	4635	2	WL, RF
Kratie	1933/1/8	31708	1	WL
Luang Prabang	1960/1/1	21854	1	WL
Lumphat	2000/5/7	7117	2	WL, WD
Mukdahan	1960/1/1	21854	2	WL, WD
My Thuan	2006/8/1	4840	2	WL, RF
Nakhon Phanom	1972/4/1	17380	2	WL, WD
Nong Khai	1969/1/1	18566	2	WL, WD
Pakse	1960/1/1	21854	2	WL, WD
Phnom Penh Port	1960/1/1	21854	1	WL
Phung Hiep	1985/1/1	12722	1	WL
Stung Treng	1910/1/1	40116	2	WL, WD
Tan Chau	1997/12/31	7975	2	WL, RF
Vam Kenh	1992/1/1	10166	1	WL
Vam Nao	2007/9/2	4443	2	WL, RF
Vientiane KM4	1923/1/1	35368	1	WL

geneous channel configurations, and station-specific dynamics. We intentionally include this dataset in our evaluation because it offers a stringent testbed for assessing the flexibility and robustness of different methods. Our proposed method FlowNet that generalizes well across the Mekong dataset is more likely to be applicable to other real-world spatiotemporal forecasting problems that share similar irregularities. Figure 5 shows the streamflow graph of the Mekong dataset.

B EXPERIMENTS DETAILS

We evaluate all models using three standard hydrological and machine learning metrics: the Nash–Sutcliffe efficiency coefficient (NSE), root mean squared error (RMSE), and mean absolute error (MAE). These metrics are defined as:

$$NSE = 1 - \frac{\sum_{t=1}^{H} (y_t - \hat{y}_t)^2}{\sum_{t=1}^{H} (y_t - \bar{y})^2}, \text{ RMSE} = \sqrt{\sum_{t=1}^{H} \frac{(y_t - \hat{y}_t)^2}{H}} , \text{ MAE} = \frac{1}{H} \sum_{t=1}^{H} |y_t - \hat{y}_t|$$
(11)

where y_t denotes the ground truth at time step t, \hat{y}_t is the model prediction, and \bar{y} is the temporal mean of y_t . Lower RMSE and MAE values indicate better predictive performance, whereas higher NSE values (closer to 1) indicate higher efficiency in reproducing observed dynamics.

All datasets are preprocessed using a z-score normalization,

$$x' = \frac{x - \mu}{\sigma},\tag{12}$$

where μ and σ denote the mean and standard deviation of the training set, respectively. This ensures that different stations and variables are placed on a comparable scale, which is particularly important for handling heterogeneous hydrological signals.

Figure 5: The original streamflow graph for the Mekong datasets. Each dot presents a station, while each arrow indicates the water flow direction.

All experiments are implemented in PyTorch Paszke et al. (2019) and executed on a cluster equipped with 4 NVIDIA L4 GPUs (24GB memory each). We adopt a batch size of 32 for all GNN-based models, while for other baselines we use 128 for the Mekong dataset and 1024 for LamaH and CAMELS, following their relative dataset sizes. The number of training epochs is fixed to 100. Optimization is performed using the ADAM optimizer Kingma & Ba (2015) with the mean squared error (MSE) loss function.

The input sequence length is set to L=32 for Mekong and L=360 for LamaH and CAMELS, with prediction horizons $H\in\{1,3,5\}$ across all baselines. We conduct a systematic hyperparameter search over: hidden dimension in $\{32,64,128,256\}$, number of layers in $\{1,2,3\}$, learning rate in $\{10^{-1},10^{-2},10^{-3},10^{-4}\}$, loss regularization factor $\alpha\in[0.1,0.95]$, number of global iterations Iter $\in[1,5]$, and global learning rate factor $\beta\in\{0.01,0.1,0.2\}$. The best configuration is selected via validation performance.

Here we provide the hyperparameter settings for reproducibility. DMCT: learning rate: 0.001, hidden dimension: 256, number of layers: 1. FlowNet: loss regularization factor α : 0.95, global learning rate: 0.001, global learning rate factor β : 0.01, number of global iterations Iter: 5.

C FULL RESULTS

C.1 RESULTS WITH DIFFERENT RANDOM SEEDS

To comprehensively evaluate the robustness and performance of the baseline models, we conducted multiple runs using random seeds $\{43,44,45,46,47\}$ on the Mekong dataset under a forecasting horizon of H=1. The mean and standard deviation results across 26 stations are summarized in Table 6. Notably, our proposed models, DMCT and FlowNet, exhibit exceptional performance consistency and competitive accuracy compared to other baselines. Specifically, FlowNet achieves the highest Nash-Sutcliffe Efficiency (NSE) of 0.932 ± 0.002 , alongside the lowest RMSE (0.180 ± 0.004) and MAE (0.114 ± 0.003) , indicating superior predictive precision with minimal variability across random initializations. Similarly, DMCT attains an NSE of 0.930 ± 0.002 , with RMSE and MAE values of 0.185 ± 0.005 and 0.119 ± 0.004 , respectively, demonstrating strong stability and reliability. In contrast, models such as LSTM and GRU show larger standard deviations (e.g., LSTM's NSE std: 0.018), highlighting sensitivity to random seeds, while graph-based approaches like GCN exhibit zero variance due to deterministic architectures but underperform in accuracy. The low standard

deviations of DMCT and FlowNet underscore their insensitivity to initialization, a critical attribute for reproducible and deployable time-series forecasting models in practical scenarios.

Table 6: The full results on baselines with different random seed $\{43, 44, 45, 46, 47\}$, results averaged from 26 stations, shown in mean \pm std, with forecasting length H=1.

Method	NSE	RMSE	MAE
CycleNet	0.927 ± 0.003	0.190 ± 0.004	0.124 ± 0.004
TQNet	0.930 ± 0.002	$0.182 {\pm} 0.004$	0.116 ± 0.003
DLinear	0.931 ± 0.001	0.181 ± 0.003	0.115 ± 0.002
RLinear	0.926 ± 0.005	$0.184{\pm}0.005$	0.117 ± 0.005
FilterNet	0.926 ± 0.003	0.186 ± 0.004	0.121 ± 0.004
iTransformer	0.920 ± 0.003	0.195 ± 0.005	0.131 ± 0.004
PatchTST	0.929 ± 0.005	0.189 ± 0.006	0.124 ± 0.006
CATS	0.919 ± 0.003	0.195 ± 0.005	0.128 ± 0.005
LSTM	$0.886 {\pm} 0.018$	$0.252 {\pm} 0.028$	0.170 ± 0.021
GRU	0.887 ± 0.015	0.249 ± 0.024	0.168 ± 0.017
MICN	0.901 ± 0.016	0.228 ± 0.016	0.154 ± 0.012
SOFTS	0.922 ± 0.004	0.194 ± 0.006	0.130 ± 0.005
TSMixer	0.926 ± 0.004	0.185 ± 0.005	0.120 ± 0.004
GCN	0.815 ± 0.000	0.466 ± 0.000	0.313 ± 0.000
GCNII	0.881 ± 0.000	0.363 ± 0.000	0.241 ± 0.000
ResGCN	0.883 ± 0.000	0.328 ± 0.000	0.221 ± 0.000
ResGAT	0.878 ± 0.000	$0.384 {\pm} 0.000$	0.257 ± 0.000
DMCT	0.930 ± 0.002	$0.185{\pm}0.005$	0.119 ± 0.004
FlowNet	0.932 ± 0.002	0.180 ± 0.004	0.114 ± 0.003

C.2 FULL RESULTS OF CAMELS

Table 7 reports the forecasting performance on the CAMELS dataset across three prediction horizons $(H \in \{1,3,5\})$ and three evaluation metrics (NSE, RMSE, and MAE). Overall, our proposed FlowNet establishes a new state of the art on this benchmark, achieving the best performance in eight out of nine cases, while consistently outperforming the strongest baseline methods.

At the short-term horizon (H=1), FlowNet delivers the highest accuracy across all metrics, with an NSE of 0.5784, RMSE of 250.7, and MAE of 64.01. These improvements over other baselines demonstrate that FlowNet captures fine-scale hydrological dynamics more effectively than existing temporal or graph-based approaches.

For the medium-term horizon (H=3), FlowNet achieves the best NSE (0.4228) and the lowest RMSE (316.2) and MAE (93.97), establishing clear dominance over other baselines. This result highlights the robustness of FlowNet in modeling non-stationary streamflow patterns over longer lead times.

At the long-term horizon (H=5), FlowNet still achieves the state-of-the-art performance. FlowNet again leads in NSE (0.354) and RMSE (342.8), while ranking second in MAE (109.9), just behind MICN (109.4).

Meanwhile, our backbone model, DMCT, also demonstrates competitive results. It achieves second-best overall performance, outperforming classical sequence models (e.g., LSTM, GRU) and modern Transformer-based architectures (e.g., PatchTST, iTransformer), confirming the effectiveness of its design for hydrological forecasting.

In summary, these results highlight two important findings: (i) DMCT already sets a strong baseline by surpassing a broad range of existing deep learning methods, and (ii) FlowNet further advances the state of the art by achieving the best or second-best results across all horizons and metrics. This demonstrates not only the scalability of our framework but also its capacity to generalize across large-scale and challenging hydrological dataset.

Table 7: Forecasting performance on the CAMELS dataset. Our proposed model, FlowNet, demonstrates unequivocal dominance on this benchmark. It achieves the best performance in 8 out of 9 metrics and consistently outperforms the baseline model, DMCT, in all categories. This state-of-the-art performance across all prediction horizons (1, 3, and 5) highlights its superior forecasting capabilities. The best results are marked in red and the second-best in blue.

Method		Horizon 1			Horizon 3]]	Horizon 5	
Metric	NSE↑	RMSE ↓	MAE↓	NSE↑	RMSE ↓	MAE↓	NSE ↑	RMSE ↓	MAE ↓
CycleNet	0.5587	261.5	69.39	0.4058	323	101.4	0.3361	350.6	113.4
TQNet	0.5629	257.6	64.85	0.407	322.6	96.21	0.3381	349.6	114.3
DLinear	0.533	258.1	68.23	0.3955	321.8	96.97	0.3342	347.8	111.6
RLinear	0.5322	258.2	68.34	0.3944	321	97.36	0.3362	346.3	112
FilterNet	0.5409	268.4	77.48	0.3935	331.3	102.9	0.3418	345.9	111.6
iTransformer	0.4857	275.4	70.99	0.384	328.5	99.82	0.2861	369.4	119
PatchTST	0.5574	260.5	67.84	0.4048	324.5	95.39	0.315	359.2	114.5
CATS	0.5565	260.7	66.18	0.4087	321.5	99.3	0.3339	352.1	110.6
LSTM	0.5368	270.3	70.29	0.3978	324	96.81	0.3338	347	111.1
GRU	0.4733	289.7	83.03	0.3453	337.7	108.7	0.2984	361.6	121.8
MICN	0.5493	257.6	66.66	0.4071	320.4	94	0.3372	348.4	109.4
SOFTS	0.5291	268.9	73.9	0.3772	329.7	99.7	0.3187	353.6	113.7
TSMixer	0.5657	259.5	72.72	0.3949	325.3	95.49	0.3224	356	117.1
GCN	-0.0695	472.1	214	-0.071	472.6	214.3	-0.07241	472.9	214.6
GCNII	0.5565	259.7	70.15	0.4064	323.4	99.01	0.3345	351.3	114.8
ResGCN	0.5426	269.4	77.28	0.4005	325.5	100.5	0.3331	351.3	115.2
ResGAT	0.5414	271.9	73.81	0.4019	325.3	99.99	0.3335	350.5	115.1
AGCLSTM	0.1956	331	76.76	-0.143	391.6	105.3	-0.06911	407.8	120.1
DMCT	0.5631	257.8	68.6	0.4093	321	96.33	0.3422	348.5	112.3
FlowNet	0.5784	250.7	64.01	0.4228	316.2	93.97	0.354	342.8	109.9

C.3 FULL RESULTS OF LAMAH

Table 8 reports the forecasting performance on the LamaH dataset, which is more challenging due to its complex hydrological dynamics and diverse catchment characteristics. Several important trends can be observed.

First, our backbone model DMCT provides a consistently strong benchmark across horizons. It secures the second-best NSE at all horizons (0.6503, 0.4876, 0.406 for H=1,3,5), and also ranks among the top models in terms of RMSE and MAE. These results confirm DMCT's ability to effectively capture temporal dependencies and spatial heterogeneity in river basins.

Second, our proposed FlowNet achieves state-of-the-art performance across the majority of metrics. Specifically, FlowNet attains the best NSE at all horizons (0.6598, 0.4928, 0.4067), highlighting its ability to capture flow dynamics more accurately than all competitors. In terms of error-based metrics, FlowNet also secures the best RMSE at horizon 3 (11.25) and horizon 5 (12.7), while maintaining second-best performance at several other positions (e.g., RMSE 7.792 at horizon 1, MAE 6.514 at horizon 3, and MAE 7.536 at horizon 5). Notably, FlowNet consistently outperforms DMCT across all metrics and horizons, confirming robustness and superior generalization ability of the local-global framework of FlowNet.

In summary, FlowNet demonstrates clear dominance on LamaH, achieving the best results in 5 out of 9 categories and ranking second-best in another 3. This consistent advantage over both DMCT and advanced baselines highlights FlowNet's effectiveness in tackling the challenges posed by large-scale and heterogeneous hydrological forecasting tasks.

Table 8: Forecasting performance on the LamaH dataset. On this more challenging dataset, FlowNet demonstrates its robust and superior capabilities. It achieves the best performance in 5 out of 9 categories and secures the second-best position in another 3 categories. Furthermore, FlowNet consistently outperforms the baseline model, DMCT, across all metrics and prediction horizons. The best results are highlighted in red and the second-best in blue.

Method	Horizon 1			Horizon 3			Horizon 5		
Metric	NSE ↑	$RMSE\downarrow$	MAE↓	NSE ↑	$RMSE \downarrow$	MAE↓	NSE↑	$RMSE\downarrow$	MAE ↓
CycleNet	0.6012	9.116	5.047	0.4276	12.62	7.473	0.3433	14.16	8.491
TQNet	0.5686	10.63	6.373	0.4686	11.72	6.889	0.3779	13.7	8.378
DLinear	0.61	8.747	4.868	0.4587	11.65	6.848	0.3871	12.93	7.875
RLinear	0.61	8.712	4.773	0.4549	11.67	6.858	0.3906	12.86	7.813
FilterNet	0.5922	9.547	5.659	0.4153	12.49	7.562	0.3385	13.75	8.665
iTransformer	0.6349	8.567	4.679	0.4698	11.76	6.631	0.3805	13.17	7.718
PatchTST	0.6121	8.938	4.664	0.4379	12.22	6.678	0.3672	13.29	7.846
CATS	0.6315	8.515	4.399	0.4376	12.18	6.641	0.3903	13.05	7.8
LSTM	0.6442	8.078	4.395	0.4563	11.55	6.841	0.3356	13.58	8.738
GRU	0.6427	7.741	4.261	0.4606	11.63	7	0.2624	14.77	9.663
MICN	0.637	8.309	4.395	0.4837	11.42	6.573	0.3992	12.95	7.597
SOFTS	0.5675	9.587	5.674	0.4557	11.88	6.728	0.3769	13.21	8.197
TSMixer	0.6407	8.322	4.35	0.4577	11.75	6.553	0.3841	13.16	7.672
GCN	0.1159	19.21	13.61	0.07155	19.57	13.9	0.06577	19.58	13.82
GCNII	0.5975	9.088	5.202	0.4463	12.19	7.33	0.3863	13.12	8.127
ResGCN	0.5965	9.323	5.41	0.4387	12.2	7.519	0.3917	12.92	7.883
ResGAT	0.6089	8.723	4.847	0.4062	12.92	8.299	0.3721	13.52	8.591
AGCLSTM	0.5966	7.918	4.101	0.4408	11.36	5.966	0.3458	13.09	7.252
DMCT	0.6503	8.002	4.389	0.4876	11.34	6.723	0.406	12.73	7.613
FlowNet	0.6598	7.792	4.385	0.4928	11.25	6.514	0.4067	12.7	7.536

C.4 FULL RESULTS OF MEKONG

Table 9 reports the forecasting results on the Mekong Water Level dataset. The results consistently highlight the superiority of our proposed FlowNet across different prediction horizons. FlowNet attains the best performance in 6 out of 9 evaluation categories and ranks second in an additional 2 cases, demonstrating both robustness and generalization across metrics.

At the short-term horizon (Horizon 1), FlowNet achieves the highest NSE (0.9323), the lowest RMSE (0.1796), and the lowest MAE (0.1144), surpassing all competing methods and setting a new benchmark for near-future water level forecasting. For medium-term prediction (Horizon 3), FlowNet continues to lead with the best NSE (0.8908) and MAE (0.1835), while also securing the second-best RMSE (0.2945). Even at the long-term horizon (Horizon 5), which poses greater forecasting challenges, FlowNet maintains its advantage with the best NSE (0.8555) and competitive error values (RMSE: 0.3757, MAE: 0.2354).

Importantly, FlowNet consistently outperforms the backbone model DMCT across all horizons, underscoring its robustness and adaptability. While other models occasionally attain competitive results in isolated metrics (e.g., DLinear in MAE at Horizon 5 or ResGCN in RMSE at longer horizons), they fail to exhibit the same level of stability across horizons. In contrast, FlowNet's dominance across both accuracy (NSE) and error-based metrics (RMSE, MAE) highlights its capacity to provide reliable predictions under varying forecasting horizon settings.

Overall, these results establish FlowNet as the state of the art for hydrological forecasting on the Mekong Water Level dataset, combining short-term precision with long-term stability.

Table 9: Forecasting performance on the Mekong Water Level dataset. The results clearly demonstrate the dominance of our proposed model, FlowNet. It achieves the best performance in a remarkable 6 out of 9 categories and secures a second-best position in 2 other categories. Furthermore, FlowNet consistently outperforms the baseline model, DMCT, across all metrics and prediction horizons, establishing a new state-of-the-art on this dataset. The best results are highlighted in red and the second-best in blue.

Method	Horizon 1			Horizon 3			Horizon 5		
Metric	NSE ↑	RMSE ↓	MAE↓	NSE↑	RMSE ↓	MAE↓	NSE↑	RMSE ↓	MAE↓
CycleNet	0.9268	0.1916	0.1245	0.8818	0.3052	0.1937	0.8476	0.384	0.2429
TQNet	0.9309	0.1831	0.1168	0.8862	0.2952	0.1848	0.853	0.3786	0.2378
DLinear	0.9315	0.1821	0.1153	0.8889	0.2965	0.1839	0.8545	0.3776	0.2345
RLinear	0.9269	0.1837	0.118	0.8825	0.2991	0.1876	0.8472	0.3817	0.2389
FilterNet	0.9248	0.1886	0.1225	0.8815	0.2988	0.1894	0.8483	0.3812	0.2414
iTransformer	0.9217	0.1955	0.1314	0.8822	0.3009	0.1948	0.8431	0.3783	0.2456
PatchTST	0.9322	0.1876	0.1222	0.8884	0.3003	0.191	0.8427	0.3858	0.2465
CATS	0.9206	0.1962	0.1301	0.8773	0.3045	0.1932	0.8359	0.3911	0.2498
LSTM	0.8708	0.2612	0.1775	0.8401	0.3541	0.2337	0.813	0.4224	0.2778
GRU	0.8862	0.2416	0.1631	0.8479	0.3498	0.231	0.823	0.4156	0.2725
MICN	0.9111	0.2236	0.1505	0.8766	0.3188	0.2063	0.8431	0.3953	0.2547
SOFTS	0.9198	0.1938	0.1311	0.8774	0.3056	0.1977	0.842	0.3814	0.247
TSMixer	0.9287	0.1836	0.1185	0.8838	0.3007	0.1908	0.8487	0.3835	0.2418
GCN	0.8151	0.3134	0.4656	0.7815	0.384	0.562	0.7577	0.3862	0.5778
GCNII	0.8813	0.2407	0.3633	0.832	0.3126	0.4667	0.8029	0.3493	0.5257
ResGCN	0.8829	0.2211	0.3285	0.8284	0.291	0.4388	0.7979	0.3287	0.4999
ResGAT	0.8776	0.2566	0.3836	0.8207	0.3289	0.489	0.7891	0.3701	0.5499
AGCLSTM	0.8876	0.2315	0.1318	0.8585	0.3276	0.2024	0.7727	0.4253	0.2591
DMCT	0.9309	0.1853	0.1198	0.8889	0.2985	0.1868	0.853	0.3802	0.2391
FlowNet	0.9323	0.1796	0.1144	0.8908	0.2945	0.1835	0.8555	0.3757	0.2354

D DETAILS OF THE HYPERPARAMETER SENSITIVITY

We have conducted an extensive experiment for the hyperparameter sensitivity of FlowNet and DMCT, the results are shown in Figure 6. The hyperparameters of FlowNet, including the loss regulation factor α , the initial learning rate of the global phase, the global learning rate factor, and the number of global loops. The hyperparameters of DMCT including the lookback window length, the learning rate, the number of multiscale level, and the dimension of hidden layer.

Loss Regulation Factor α **.** The parameter α is used to regulate the loss function in local-global scheme, to balance the loss between the target node and the link node models. As the results of Figure 6 (A) show, the performance of model on NSE increases with the increasing α until around 0.7 to 0.9.

Global Phase Initial Learning Rate. This hyperparameter is used to set the initial learning rate for the global phase. Due to the local-global scheme, after the local phase, we need to reset the initial learning rate to a small value to avoid the issue of learning. The result of this hyperparameter sensitivity is shown in Figure 6 (B). This shows that when the initial learning rate in global phase is too small, e.g., 1e-4, the performance is not good compared to a larger value of setting.

Global Learning Rate Factor β **.** This factor is used to regulate the learning rate in global phase with the number of global loops. As the results of Figure 6 (C) show, the model has stable performance with the different settings of this hyperparameter β .

Number of Global Iterations. In the local-global scheme, the global phase is iteratively repeated to converge the model. We evaluated the number of iterations in the global phase, which is shown in Figure 6 (D). The results show that with the global phased repeated, the model will converge and have stable performance.

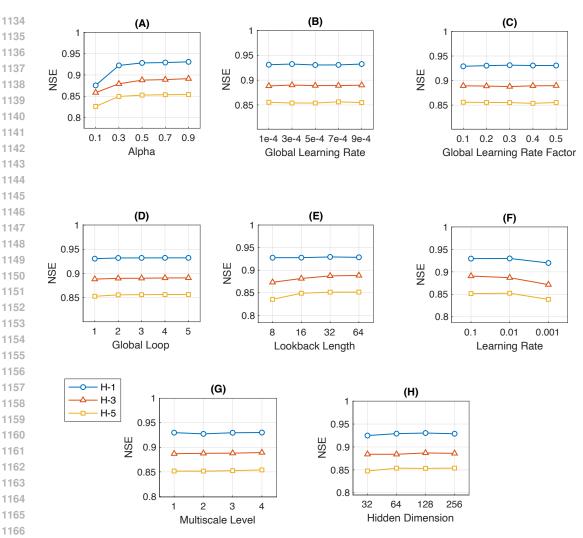


Figure 6: The hyperparameter sensitivity of FlowNet and DMCT.

Look-back Window Length L. In Figure 6 (E), we evaluate the sensitivity of the look-back window length for DMCT. We set 4 different lengths of the look-back window $L \in \{8, 16, 32, 64\}$ and evaluate the performance. The results show that the model performs the best when the look-back window length L is around 32.

Learning Rate. We evaluate 4 different initial learning rate for DMCT and the results are shown in Figure 6 (F), which demonstrates that the best initial learning rate for DMCT is around 0.01.

Number of Multiscale Levels. We study the hyperparameter sensitivity of the number of multiscale level for DMCT. As the results in Figure 6 (G) show, increasing the multiscale levels, the model performs better. This shows that the model can extract more accurate temporal features from multiscale information with higher multiscale levels.

Dimension of Hidden Layers. As the results in Figure 6 (H) show, we have evaluated the sensitivity of the dimension of the hidden layers. These results show that the performance of the model is stable with different settings of the dimensions of the hidden layers.

E GRAPHS

We visualize the graphs in Figures 5, 7, and 8, including the original graph, the graph with Pearson Correlation Analysis (PearCorr) and the graph with Validation-based Links Reconstruction (VLR).

Figure 7: The graph of Pearson Correlation Analysis(PearCorr). We build the links when the links in the original graph have a significant Pearson correlation coefficient.

Figure 8: The graph of Validation-based Links Reconstruction (VLR). We reconstruct the links in the original graph that satisfy the PearCorr and VLR requirement.

PSEUDO-CODE OF ALGORITHMS

F.1 LOCAL PHASE

1242

1243 1244

1245 1246

1247

1248

1253

1257

1261

1262

1266 1267 1268

1269 1270

1271

1272 1273

1275

1276

1279

1286 1287

1289 1290

1291

1292 1293

1294 1295

Algorithm 1 Local Phase - Independent Learning **Input**: Station $i \in V$, cross stations set S := [1, ..., n], train set $\mathbf{X} := [X_{:,1:t}^i, X_{:,1:t}^{i,1}, ..., X_{:,1:t}^{i,n}]$,

```
1249
         model list M := [f_i, f_{i,1}, \dots, f_{i,n}].
1250
         Output: model list M.
1251
          1: for each model in M do
1252
```

 $X \leftarrow select(\mathbf{X})$ Select the corresponding set for each epoch do

```
4:
                                     x, y \leftarrow batch(X)
1254
                                     \{\hat{y}^i, \hat{y}^{i,1}, \dots, \hat{y}^{i,n}\} \leftarrow M(x)
                 5:
1255
                                     \hat{y}_{flow}^i = \sum_{j \in S} \hat{y}^{i,j}
                 6:
1256
                 7:
```

▶ Inflow or outflow depends on the input if model is f_i then $loss \leftarrow \mathcal{L}^i(\hat{y}, y)$ ▶ Per-station loss

Select the corresponding set

8: 9: else if otherwise then 10: $loss \leftarrow \mathcal{L}_{Local}^{i}(\hat{y}_{flow}^{i}, y)$ 1260

end if loss.backward()update(model.params)

1263 14: end for 1264 15: **end for** 1265 16: return M

11:

12:

13:

3:

GLOBAL PHASE F.2

Algorithm 2 Global Phase - Interactive Learning

```
Input: Station i \in V, cross stations set S := [1, \ldots, n], train set \mathbf{X} := [X_{1:t:}^i, X_{1:t:}^{i,1}, \ldots, X_{1:t:}^{i,n}],
model list M := [f_i, f_{i,1}, \dots, f_{i,n}].
```

```
1274
        Output: model list M.
```

```
1277
                3:
                            for each epoch do
1278
                4:
                                   x, y \leftarrow batch(X)
                                   \{\hat{y}^i, \hat{y}^{i,1}, \ldots, \hat{y}^{i,n}\} \leftarrow M(x)
                5:
                                  \hat{y}_{Global}^{i} = \sum_{j \in S} \hat{y}^{i,j}
                6:
```

1280 7: $loss \leftarrow \alpha \cdot Loss(\hat{y}^i, y) + (1 - \alpha) \cdot Loss(\hat{y}^i, \hat{y}^i_{Global}) \triangleright Global loss from Eq. equation 2$ 1281 1282

8: loss.backward()9: update(model.params)1283

1: **for** each model in M **do**

 $X \leftarrow select(\mathbf{X})$

end for 10: 1284 11: **end for** 1285 12: **return** *M*

2:

F.3 LOCAL GLOBAL TRAINING SCHEME

We combine the Local Phase 1 and Global Phase 2 and design a multi-phase training strategy Local Global Scheme, which is in Algorithm 3.

F.4 VALIDATION-BASED LINKS RECONSTRUCTION

We provide the pseudo-code of Validation-based Links Reconstruction (VLR) in Algorithm 4.

Algorithm 3 Local Global Training Scheme

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305 1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319 1320

1321

1322

1323

1324

1325 1326 1327

1328

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340 1341 1342

1343 1344

1345

1347

1348

1349

```
Input: Global iterations N, model list M := [f_i, f_{i,1}, \dots, f_{i,n}], and all the other necessary inputs in
Algorithms 1 and 2.
Output: model list M.
 1: M \leftarrow \text{Algorithm 1}
                                                                                       2: for each iteration do
       M \leftarrow \text{Algorithm 2}
                                                                                      4: end for
5: return M
```

Algorithm 4 Validation-based Links Reconstruction.

Input: Stations $i, j \in V$, directional link $A_{i,j} \in \mathbb{B}$, train set $X_{1:t,:}^i, X_{1:t,:}^{i,j}$ with all channels, validation set $X_{t:t+\tau,c}^{i}$, $X_{t:t+\tau,c}^{i,j}$ with water flow channel c, regulation factor γ , PearCorr correlation value $\lambda_{i,j}$ and the PearCorr threshold value ϕ .

```
Output: Directional flow link A_{i,j}.
```

```
1: Initialize models f_i, f_{i,j}
                                                                                                        \triangleright Train f_i, f_{i,j} on X_{1:t}^i and X_{1:t}^{i,j}
 2: for each epoch do
            x^{i}, y^{i} \leftarrow batch(X^{i}); x^{j}, y^{i} \leftarrow batch(X^{i,j})
            loss_i \leftarrow \mathcal{L}(f_i(x^i), y^i); loss_{i,j} \leftarrow \mathcal{L}(f_{i,j}(x^j), y^i)
 4:
            loss_{i}.backward(); loss_{i,j}.backward()
 5:
            update(f_i.params); update(f_{i,j}.params)
 6:
 7: end for
 8: loss_i \leftarrow f_i(X^i_{t:t+\tau},c); loss_{i,j} \leftarrow f_{i,j}(X^{i,j}_{t:t+\tau,c}) \Rightarrow Validate f_i, f_{i,j} on X^i_{t:t+\tau,c} and X^{i,j}_{t:t+\tau,c} 9: if loss_{i,j} < \gamma loss_i and \lambda_{i,j} > \phi then
            A_{i,j} \leftarrow 1
11: else if otherwise then
            A_{i,j} \leftarrow 0
12:
13: end if
14: return A_{i,j}
```

G LIMITATIONS

While our method FlowNet demonstrates promising results in streamflow forecasting, several limitations remains. First, our framework strongly relies on a relationship graph among hydrology stations (Section 2.2). In river networks exhibiting weak hydrological connectivity or fragmented monitoring systems, our method may revert to independent station-wise prediction. This could diminish the performance advantages observed. Future work could integrate physical hydrological models to enhance robustness under sparse correlation conditions. second, we propose to evaluate our approach on a large-scale benchmark dataset: diverse climatic zones (tropical, temperate, polar), multi-scale gauge configurations (high-density vs. sparse networks), and multi-temporal resolutions (hourly to monthly scales). Notwithstanding these limitations, our experiments demonstrate FlowNet's superiority over conventional GNN/RNN/Transformer baselines across three quantitative metrics (cf. Appendix C). Its flexibility on data and learning methods also permits future integration with advanced methods and can work with irregular datasets that are common in practice.

Η Broader Impact

The proposed method FlowNet provides an effective system to forecasting streamflow. It will be very useful for local authorities to provide water resouce management and contingency plans for coping with climate change. In many vulnerable areas in developing countries, where the data collection system is not well-developed, the data is normally irregular with much missing data, different periods and different collected hydrology feature as in the case of the Mekong River Basin in our study. FlowNet, with its ability to deal with such kind of data effectively, will be extremely useful for these areas.

I LLM USAGE

This manuscript was slightly edited using LLMs for language polishing and writing improvements. The authors retain full responsibility for the research content, including the concepts, analyses, and conclusions.