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ABSTRACT

Streamflow forecasting plays a crucial role in water research for flood prevention,
water resource management, or climate resilience. However, it is a challenging
task due to complex hydrological system interactions, human interventions and
global climate change. In this paper, we introduce FlowNet, a unique local global
interactive modeling framework, which is capable of effectively predicting mul-
tiple hydrology stations with varied input climate features and data availability
at the same time. The key idea of FlowNet is to contruct independent prediction
models for each station from its local data and from its adjacent neighbors via
a hydrological-related directed graph before letting these models to iteratively
and interactively adjust each other to maximize their prediction agreements. This
helps to reduce uncertainty, thus improving their accuracy. Additionally, FlowNet
dynamically captures inter-station relationships via its directional and delay-aware
graph reconstruction method. As a generic framework, FlowNet can be used with
any existing Deep Learning (DL) backbone models such as RLinear, PatchTST
or iTransformer. However, we also introduce another backbone, called Disentan-
gled Multiscale Cross-attention Transformer (DMCT), to capture the multiscale
seasonality-trend information for further performance boost. Extensive experiments
on 3 large datasets, including LamaH (with 425 hydrology stations in Europe),
CAMELS (672 stations in USA) and MRB (with 26 gauge stations in the Mekong
River Basin), show that FlowNet significantly outperforms 18 state-of-the-art
(SOTA) prediction methods in terms of MAE, RMSE, and NSE.

1 INTRODUCTION

River flow forecasting, which aims to accurately predict future flow conditions using historical
hydrological data, is a critical research area with wide-ranging impacts such as flood management,
water resource optimization, infrastructure protection, and climate resilience (Feng et al., 2021; Zhou
et al., 2025; Jiang et al., 2024). However, despite many research efforts (Giladi et al., 2021; Najafi
et al., 2024), it remains a challenging task, as hydrological systems involve complex and nonlinear
interactions among many geographic and climate factors such as topography, rainfall, river discharge
and soil texture as well as human interventions such as dam constructions (Haddeland et al., 2014).

Traditional streamflow forecasting methods typically rely on physical simulations (Vreugdenhil,
2013) such as MODFLOW (Harbaugh et al., 2000) and SWAT (Gassman et al., 2007), or statistical
techniques such as ARIMA (Wang et al., 2018) and BJP (Robertson & Wang, 2012). However, these
approaches struggle to effectively capture these intricate spatial-temporal dynamics, particularly
under conditions of sparse or irregularly sampled data (Brunner et al., 2021). For example, simulation
models often require a large amount of specific data such as soil type, land use, or digital elevation
models (DEM), which are very difficult to collect and require significant effort, expertise, and
computational power to set up (Giladi et al., 2021; Brunner et al., 2021). Moreover, global warming
causes complex changes in climate patterns, and consequently breaks stationarity, a key assumption
of most traditional models, (possibly) affecting their effectiveness (Milly et al., 2008).

Recently, deep learning has emerged as a powerful approach for modeling long-term complex
temporal dynamics in streamflow forecasting tasks with various employed architectures such as
MLPs (Sivakumar et al., 2002), GRUs (Farfan et al. 2024), CNNs (Ghimire et al., 2021), Transformer
(Castangia et al., 2023), and especially LSTMs (Hu et al., 2020). These methods do not require
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Figure 1: The overall pipeline of FlowNet with a barebone downstream graph G. In the Local phase
(A), for each station i, we train an independent per-station model fi and cross-station models fi,j ,
where j ∈ parents(i) (i.e. j is parent of i), to learn the flow of station i via the two independent
loss functions Li and Li

Local described in (C) (cf. Section 2.2). In the Global phase (B), the per-
station model fi and cross-station models fi,j interactively adjust each other in multiple iterations to
maximize their prediction agreements via two global losses Li

Global and Li,j
Global described in (D) (cf.

Section 2.2). In (E), the original downstream flow graph is refined by using our proposed methods
PearCorr to search the correlated links and then VLR to reconstruct strong links graph (cf. Section
2.4). (F) presents our proposed architecture Disentangled Multiscale Cross-attention Transformer
(DMCT) to capture multiscale seasonality-trend information.

wide ranges of complex data like traditional techniques, while acquiring impresive performances in
major cases (Vizi et al., 2023). However, most of them often treat monitoring stations independently,
neglecting the essential spatial relationships and dependencies of directional water flow between
stations (Ding et al., 2020). To address these dependencies, Kratzert et al. (Kratzert et al., 2018) use a
single LSTM model to jointly predict multiple stations, implicitly exploiting their underlying physics.
Other works such as (Kirschtein et al. 2024) use graphs to explicitly capture relationships among
stations via different hydrology and topography aspects and employ GNN-based models to forecast
all stations. However, these methods typically rely on restrictive assumptions such as uniform input
feature sets, similar training data periods or static adjacency graphs (Zhao et al., 2020; Zhou et al.,
2025). They also focus on propagating features among stations, neglecting explicit relationships
among predicted outcomes of different stations.

Our contributions. In this paper, we introduce FlowNet, a flexible and generalizable framework
specifically designed for multivariate spatio-temporal streamflow forecasting on multiple gauge
stations jointly. Compared to existing works, FlowNet has the following key differences.

First, FlowNet also aims to predict all stations jointly like other above mentioned methods. However,
it follows an entirely different concept, called interactive local global modeling strategy (cf. Section
2.2 for details). Concretely, given a relationship graph of all stations as a backbone, rather than using
a single large model like (Kratzert et al., 2018), each station is first represented by a set of smaller
arbitrary models, including a independently customized per-station model and different independent
cross-station models to predict its own streamflow from its local data and from its neighbors’s
local data in the local stage of FlowNet, respectively. Hence, these models can flexibly exploit all
varying available local training data and input features to maximize their learning outcomes. In the
global stage, all models iteratively and interactively adjust each other to maximize their prediction
agreements by exchanging and fusing their prediction outcomes via the backbone graph, thus reducing
prediction uncertainty and further enhancing their accuracy. This interaction scheme is the central of
FlowNet and makes it highly data and model flexibility, i.e., it does not require uniform inputs like
existing works such as (Kirschtein et al. 2024) and can be used with any existing DL models.
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Table 1: Summary of notations in the paper.

Notation Definition

X ∈ RT×C multivariate time series with time steps T and channel C

S = {S1, . . . , SN} the set of N hydrology stations in river networks

A ∈ BN×N the adjacent matrix of stations

G = (S,A) a directed graph of stations

xi
t = Xi

t−L:t,: ∈ RL×Ci the historical data at station Si from t− L to t

xi,j = Xj
t−L:t,: ⊕Xi

t−L:t,c a concatenated historical data of Xj and historical flow of Xi

F = {fk|k = 1..M} a set of M small independent models

fi per-station model of station Si

fi,j cross-station model of stations Si, Sj

yi
t = Xi

t+1:t+H,c ∈ RH×1 the future data of c-th channel associate from historical data xi
t

ŷi = fi(x
i) a prediction outcome of station Si

ŷi,j = fi,j(x
i,j) the prediction outcome of fi,j

ŷi
inflow the predicted inflow of Si

ŷi
outflow the predicted outflow of Si

s, t the seasonality/trend components of time series

h the multiscale latent sequences of Transformer block

Ω the maximum lag threshold for Pearson Correlation Analysis

λ the maximum correlations under Ω lags

Second, FlowNet captures inter-station relationships by proposing a directional and delay-aware
graph reconstruction method, enabling robust interactive learning across spatially distributed stations
dynamically as described above (cf. Section 2.4 for details).

Third, since FlowNet is a generic framework, it can employ diverse DL models such as MLPs, RNNs,
and Transformers for different stations. However, we also propose a specific backbone model for
FlowNet, called Disentangled Multiscale Cross-attention Transformer (DMCT), explicitly designed
to decompose time series into distinct seasonal and trend components, effectively processing each at
multiple temporal scales to improve the prediction accuracy (cf. Section 2.3 for details).

Fourth, we demonstrate the performance of FlowNet in (i) predicting daily water discharges for 425
hydrology stations in the Central Europe from the LamaH-CE dataset (Klingler et al., 2021) and 672
stations in the USA from the CAMELS dataset (Newman et al., 2015) and (ii) predicting water levels
for 26 stations in the Mekong River Basin (MRB) collected from the Mekong River Commission
(MRC). FlowNet acquires significantly better prediction accuracy in terms of NSE, MAE, and
RMSE compared to 18 state-of-the-art (SOTA) prediction models with diverse DL architectures
such as Transfomer-based models like CATS and iTransformer, MLP-based models like DLinear
and RLinear, CNN-based models like MICN, GNN-based models like GCN, ResGCN and ResGAT,
RNN-based models like LSTM and GRU, and hybrid models like AGCLSTM. Many of these models
are specifically designed or widely used for streamflow forecasting tasks.

2 OUR PROPOSED METHOD FLOWNET

Let X ∈ RT×C be a multivariate time series, where T is the number of time steps and C is the
number of channels. Additionally, we denote the c-th channel in the t-th time step as Xt,c ∈ R, the
time series of c-th channel as X:,c ∈ RT , and the multivariate data in t-th time step as Xt,: ∈ RC .

Problem formulation. Let S = {S1, . . . , SN} be the set of N hydrology stations in river networks.
Let G be a directed graph that connects these stations via their direct flow relationships as follows.
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Definition 1 (Downstream flow graph G). Let G = (S,A) be a directed graph, where S ∈ RN is a
set of N stations and A ∈ BN×N is the binary adjacency matrix. Two stations Si and Sj are linked
together, i.e., Ai,j = 1, if the water flows from Si to Sj directly. Otherwise, Ai,j = 0.

For each station Si, let Xi ∈ RTi×Ci be the multivariate time series data associated with it, where
the c-th channel contains streamflow values and the remaining channels are exogenous variables such
as climate. Notably, the number of time steps Ti and the number of channels Ci are station-specific.
We aim to predict future flow values (i.e. the c-th channel) of all stations jointly.

Key concepts of FlowNet. Though all existing works, such as (Zhao et al., 2020), focus on a
single large joint prediction model f for all stations, we follow an entirely different approach that
constructs a set of M small independent models F = {fk|k = 1..M} and train them in two different
phases: the local and global ones. Initially, in the local phase, each fk predicts the flow value of
a single station independently in the beginning and belongs to one of the 3 categories including
per-station (i.e. measured flow at a station), inflow (i.e. water flow into a station) and outflow (i.e.
water flow out a station) forecasting as described in Section 2.1. After that, in the global phase, these
models iteratively interact with others to adjust themselves via the flow graph G to maximize their
prediction agreements, thus reducing uncertainty and increasing their accuracy (cf. Section 2.2). This
setting is data flexible, since in many river basins like the MRB, the time series data lengths and
collected hydrology features can be very different at different stations. Rather than choosing only
a uniform subset of data for all stations like most existing works such as (Kirschtein et al. 2024),
FlowNet can effectively utilize all of them due to its independent learning model to maximize learning
generability. Concretely, each model can be trained in the local phase using all available data locally.
During the global phase, the data is limited to common data of participated models. Note that, some
recent HGNN-based methods such as (Jiang et al., 2024) can deal with data heterogeneous but still
require uniform data for nodes with the same type. Moreover, FlowNet is also model flexible, any
existing deep learning model can be independently used as fi, including lightweight models that are
computationally efficient and less prone to overfitting, especially when training data are limited. The
interaction and ensemble fusion concepts of FlowNet among per-station, inflow, and outflow models
also help it to produce more stable results than existing works.

2.1 OVERVIEW OF FLOWNET

In FlowNet, we have two main kinds of prediction models including: per-station and cross-station
ones. The per-station model uses local data at each station to predict its future streamflow.

Definition 2 (Per-station forecasting). For each station Si and an arbitrary time step t, our objective
is to predict future data yit = Xi

t+1:t+H,c ∈ RH×1 of c-th channel water flow from multivariate
historical data xi

t = Xi
t−L:t,: ∈ RL×Ci from a model fi, where L is the lookback window length and

H is the future horizon length. For simplicity, we drop the term t out whenever it is clear from the
context and let yi be the ground truth and ŷi be the prediction at Si. We learn, yi ≈ ŷi = fi(x

i).

In a river network, stations have physical relationships. Particularly, the water flows from upper-
stream stations to lower-stream stations. These flow relationships are exploited in FlowNet via
its local-global interaction scheme shown in Figure 1 using a flow graph G to guide the model
interactions. Given a station Si ∈ S, let parents(Si) be the set of stations Sj where Aj,i = 1
and childs(Si) be the set of stations Sj where Ai,j = 1. At a time t, we expect that Xi

t,c =∑
j∈parents(Si)

inflow(Xj
t−L:t,c) + ϵt, where inflow is the flow contribution of a parent station

Sj within a lookback window L to station Si and ϵ is a noisy factor. Similarly, we have the outflow
relationship from Si to its child stations. They are exploited to build cross-station models in FlowNet.

Definition 3 (Cross-station prediction). Wlog., let Si and Sj be two adjacent stations with corre-
sponding data Xi ∈ RTi×Ci and Xj ∈ RTj×Cj and Aj,i = 1. Let fi,j be a model to predict the
inflow contribution from station Sj to Si. At an abitrary time t, let ŷi,jt be the prediction outcome of
fi,j , we have ŷi,jt = fi,j(x

i,j
t ), where xi,j

t = Xj
t−L:t,: ⊕Xi

t−L:t,c be a concatenated historical data
of Xj and historical flow of Xi. However, unlike the per-station forecasting in Definition 2, we do not
have a ground truth yi,jt . Instead, it is a learnable latent variable that can be inferred from the inflow
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relationship discussed above during the training process. Similarly, we drop the term t out for sim-
plicity. Let ŷi be a prediction outcome of station Si, we learn yi ≈ ŷi =

∑
j∈parents(Si)

fi,j(x
i,j).

The outflow cross-station prediction is defined similarly. We use ŷiinflow and ŷioutflow to denote
predicted inflow and outflow of Si, respectively.

Overall structure of FlowNet. Figure 1 shows the overall pipeline of our method. Specifically, we
first refine the downstream flow graph G via the graph link reconstruction module (E) to avoid weak
relationships, which can happen due to factors such as long-distance stations or human interventions
(cf. Section 2.4). Then we train all per-station and cross-station models independently using their
local-specific data as much as possible for better performance in the local phase (A). In this way,
even if some stations do not have data on some channels or having different channel lengths, they
will not affect other stations like existing works such as (Kirschstein & Sun, 2024) (cf. Section 2.2).
In the global phase (B), the central of FlowNet, all models iteratively and interactively exchange their
outcomes and adjust themselves using common data among them to further reducing uncertainty via
their flow relationships in G in Iter iterations, where Iter is a predefined parameter (cf. Section 2.2).
Additionally, we propose a Disentangled Multiscale Cross-attention Transformer (DMCT) model to
capture the multiscale seasonality and trend information and use it as a base model for FlowNet (cf.
Section 2.3). Details for each part are described below, and pseudocodes can be found in Appendix F.

2.2 THE LOCAL AND GLOBAL LEARNING PHASES

Local phase - independent learning. As described above, the local phase aims to train a set F of all
per-station and cross-station models that are capable of independently predicting flow outcomes for
each station. These models provide multiple diverse views on future flow values for each station.

First, for each station Si, we construct a per-station model fi and train it independently using all of it
available local time series data Xi ∈ RTi×Ci . Intuitively, having more related historical hydrology
data can help the model to have better generalization, thus effectively coping with climate changes as
pointed out in (Milly et al., 2008). FlowNet, with its independent learning scheme, can help us to do
so without having to reduce data to match other stations like (Kirschstein & Sun, 2024; Zhou et al.,
2025). Each fi is trained using the loss function Li = Loss(ŷi, yi), where Loss is the MAE loss.

Second, we train two sets of cross-station models for each station Si, including the inflow and
outflow models. For each station Sj ∈ parents(Si), we create a model fi,j . However, we cannot
train them independently like the per-station ones, but in groups due to their latent outputs. That
also means the training data period will now be restricted to Ki

inflow = minSj∈parents(Si)∪Si
(Tj),

i.e. nearest Ki
inflow time points. Following Definition 3, the local inflow loss will be defined

as Li
Local = Loss(ŷiinflow, y

i), where ŷiinflow =
∑

Sj∈parents(Si)
ŷi,j . The outflow cross-station

models are trained similarly.

Global phase - interactive learning. In the global phase, all models will interact with others to
adjust their prediction outcomes, thus maximizing their agreements. That can incoporate diverse but
consistent views into each station, thus leading to performance improvements as shown in Section 3.
Here, we limit the interaction to nearest adjacent neighbors in the graph G only to reduce computation
overhead. For each station Si, we have a set of 3 prediction outcomes: ŷi from the per-station
model, ŷiinflow from inflow cross-station models and ŷioutflow from outflow cross-station models.
The unified/ensembled prediction outcome of station Si will be:

ŷiGlobal = mean(ŷiinflow, ŷ
i
outflow) (1)

We then define a global losses between the ground truth yi, local prediction ŷi and global prediction
ŷiGlobal to update the per-station model fi as following:

Li
Global = α · Loss(ŷi, yi) + (1− α) · Loss(ŷi, ŷiGlobal) (2)

where the first term denotes the difference between the ground truth and the prediction result of
the model, and the second term denotes the difference between the predicted results of the model
and the global result. The purpose is to minimize their differences, thus balancing final prediction
outcomes from diverse views. Note that the update process will be restricted to the training period of
Ki

Global = min(Ki
inflow,K

i
outflow) nearest time points, and if both inflow and outflow models do

not exist, Li
Global will be equivalent to the per-station loss Li.

5
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Similarly, we do the global update for all cross-station models via the ground truth yi, their own
aggregated result ŷiinflow or ŷioutflow, and the global result ŷiGlobal.

2.3 DISENTANGLED MULTISCALE CROSS-ATTENTION TRANSFORMER

We propose the Disentangled Multiscale Cross-attention Transformer (DMCT) as the backbone
model to extract the seasonality-trend temporal features efficiently in streamflow prediction. Recent
studies, such as DLinear (Zeng et al., 2023), utilizes the seasonality-trend decomposition (STD)
method to disentangle the original time series xi of Si into seasonality si and trend ti independently.
For simplicity, we omit the station notation i in the following contents unless otherwise stated.

s, t = SeriesDecomp(x) (3)

Next, we utilize a stacked Multiscale Cross-attention Transformer Block (MCTB) to capture the
temporal features with multiscale information which has been proven to be efficient (Wang et al.,
2024b; Zhang et al., 2025). Firstly, we decompose the original sequences seasonality s and trend t into
multiscale subsequences: {s0, . . . , sl} and {t0, . . . , tl} by down sampling method from TimeMixer
(Wang et al., 2024b). Then we based on the distinct properties of seasonality and trend, we apply an
independent Cross-attention Transformer block from CATS (Kim et al., 2024) to seasonality and a
Linear layer to trend separately. And to balance the efficiency and performance, we apply a Linear
layer to extract the multiscale information. At last, we use the concatenate operation to mix the
multiscale latent sequences and project to the future sequence length by one Linear layer. Overall,
the process of MCTB with l levels is as follows.

{s0, . . . , sl} = DownSampling(s), {t0, . . . , tl} = DownSampling(t) (4)

h = Concat(MCTB(hℓ
s) + Linear(hℓ

t)), ℓ = 0, . . . , l (5)
ŷ = Projection(h) (6)

Additionally, we adapt the instance normalization (Kim et al., 2022) to FlowNet when models learn
interactively. Concretely, we use the mean and standard deviation values from the target station Si to
replace the ones of the input time series from the cross-station series xi,j and predicted output ŷi,j as
follows:

xi,j =
xi,j − µi√
σi + ϵ

, ŷi,j = ŷi,j ×
√
σi + ϵ+ µi (7)

where µi and σi denote the mean and variance of the target station time series xi, respectively, and ϵ
is a small constant for numerical stability.

2.4 GRAPH LINKS RECONSTRUCTION MODULE

As described above, the downstream flow graph G provides direct relationships among stations.
However, not all connected stations contribute effectively to predictive performance due to factors
such as long geographical distances or human interventions (e.g., dams or irrigation systems). For
example, the two linked stations, Kontum and Stung Treng, in the MRB are nearly 400km away from
each other. Thus, their relationship is weaker. To address this, we propose a two-step scheme that
detects and retains only strongly correlated and beneficial links to improve predictive accuracy.

Pearson Correlation Analysis (PearCorr). We utilize the Pearson correlation coefficient to analyze
the lag correlations between two adjacent stations Si and Sj in the graph G. We repeatedly shift the
related time series ω time steps and calculate the Pearson correlation coefficient until reaching the
maximum lag threshold Ω. Let λi,j be the maximum correlations under Ω lags (default Ω = L).

λi,j = max(PearCorr(Shift(Xi
:,c, ω), X

j
:,c)), ω = 0, . . . ,Ω (8)

Validation-based Links Reconstruction (VLR). Additionally, we propose a validation-based links
reconstruction scheme to refine the adjacent matrix A ∈ BN×N . Given two adjacent stations Si and
Sj with Aj,i = 1, we construct two model fi,j that use data from Sj to predict Si and fi that predict
Si via its local data. We keep Aj,i = 1 if Si and Sj have strong enough correlation and fi,j has close
performance to fi on the validation set (indicated by the loss Lvali(.)).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: Overall performance of FlowNet for H ∈ {1, 3, 5}. (A) Full NSE results of all studied
models on CAMELS (sorted in descending order of mean values). (B) Full NSE results of all studied
models on LamaH (sorted). (C-F) NSE comparisons between FlowNet and 4 selected baselines on
LamaH. A point over the diagonal line indicates that FlowNet is better. (G) RMSEs of FlowNet
compared to some baselines on 26 stations of the Mekong dataset (H = 1).

Ai,j =

{
1 if Lvali(fi,j) < γ·Lvali(fi) and λi,j > ϕ,

0 otherwise
(9)

where ϕ (default 0.7) and γ (default 1.2) are two predefined thresholds.

3 EXPERIMENTS

Benchmarks. We demonstrate the performance of FlowNet for two main tasks: (i) predicting daily
water discharges for 425 hydrology stations in the Central Europe from the LamaH-CE dataset
(Klingler et al., 2021) and 671 stations in the USA from the CAMELS dataset (Newman et al., 2015)
and (ii) predicting daily water levels for 26 stations in the Mekong River Basin (MRB) collected from
the Mekong River Commission (MRC). Please refer to Appendix A for detail descriptions.

Baselines. We compare our method with 18 state-of-the-art (SOTA) baselines including: Transformer-
based models (CATS (Kim et al., 2024), iTransformer (Liu et al., 2023), PatchTST (Nie et al., 2023)),
MLP-based models (DLinear (Zeng et al., 2023), RLinear (Li et al., 2023), CycleNet (Lin et al.,
2024), TQNet (Lin et al., 2025), FilterNet (Yi et al., 2024), SOFTS (Han et al., 2024), TSMixer
(Chen et al., 2023)), CNN-based model (MICN (Wang et al., 2023)), GNN-based models (GCN,
GCNII, ResGCN, ResGAT (Kirschstein & Sun, 2024)), and RNN-based models (LSTM (Kratzert
et al., 2018), GRU (Chung et al., 2014)) and a hybrid model AGCLSTM (Feng et al., 2022). Among
them, GNN, GCNII, ResGCN, ResGAT, LSTM and especially AGCLSTM are specifically tailored
for streamflow forecasting in (Kratzert et al., 2018; Kirschstein & Sun, 2024; Feng et al., 2022).

Evaluation metrics and experimental settings. We use the Nash–Sutcliffe model efficiency
coefficient (NSE), the mean absolute error (MAE) and the root mean squared error (RMSE) as
metrics to evaluate the performance for all baselines (c.f. Appendix B for details).
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Table 2: Mean NSE results of 18 selected SOTA baselines compared to our methods DMCT and
FlowNet on 3 datasets with 3 different prediction horizon settings H ∈ {1, 3, 5}. Best results are
highlighted in bold and second best results are underlined.

Dataset CAMELS LamaH Mekong

Horizon 1 3 5 1 3 5 1 3 5

CycleNet 0.5587 0.4058 0.3361 0.6012 0.4276 0.3433 0.9268 0.8818 0.8476
TQNet 0.5629 0.4070 0.3381 0.5686 0.4686 0.3779 0.9309 0.8862 0.8530
DLinear 0.5330 0.3955 0.3342 0.6100 0.4587 0.3871 0.9315 0.8889 0.8545
RLinear 0.5322 0.3944 0.3362 0.6100 0.4549 0.3906 0.9269 0.8825 0.8472
FilterNet 0.5409 0.3935 0.3418 0.5922 0.4153 0.3385 0.9248 0.8815 0.8483
iTransformer 0.4857 0.3840 0.2861 0.6349 0.4698 0.3805 0.9217 0.8822 0.8431
PatchTST 0.5574 0.4048 0.3150 0.6121 0.4379 0.3672 0.9322 0.8884 0.8427
CATS 0.5565 0.4087 0.3339 0.6315 0.4376 0.3903 0.9206 0.8773 0.8359
LSTM 0.5368 0.3978 0.3338 0.6442 0.4563 0.3356 0.8708 0.8401 0.8130
GRU 0.4733 0.3453 0.2984 0.6427 0.4606 0.2624 0.8862 0.8479 0.8230
MICN 0.5493 0.4071 0.3372 0.6370 0.4837 0.3992 0.9111 0.8766 0.8431
SOFTS 0.5291 0.3772 0.3187 0.5675 0.4557 0.3769 0.9198 0.8774 0.8420
TSMixer 0.5657 0.3949 0.3224 0.6407 0.4577 0.3841 0.9287 0.8838 0.8487
GCN -0.069 -0.071 -0.072 0.1159 0.0715 0.0657 0.8151 0.7815 0.7577
GCNII 0.5565 0.4064 0.3345 0.5975 0.4463 0.3863 0.8813 0.8320 0.8029
ResGCN 0.5426 0.4005 0.3331 0.5965 0.4387 0.3917 0.8829 0.8284 0.7979
ResGAT 0.5414 0.4019 0.3335 0.6089 0.4062 0.3721 0.8776 0.8207 0.7891
AGCLSTM 0.1956 -0.143 -0.069 0.5966 0.4408 0.3458 0.8876 0.8585 0.7727

DMCT 0.5631 0.4093 0.3422 0.6503 0.4876 0.4060 0.9309 0.8889 0.8530
FlowNet 0.5784 0.4228 0.3540 0.6598 0.4928 0.4067 0.9323 0.8908 0.8555

3.1 MAIN RESULTS

Figure 2 (A) show NSE values of all studied methods over all 425 stations and 3 prediction horizons
for LamaH. FlowNet acquires the best overall performances compared to other baselines, following
by DMCT. The same results can be observed in (B) for CAMELS. In (C, D, E, F), we directly
compare NSEs of FlowNet with top baselines for all 425 stations of LamaH over 3 prediction
horizons. FlowNet outperforms ResGAT, a recent GNN-based method, on 1,151/1,275 cases (90.2%)
and LSTM, the most success model for streamflow forecasting, on 1,015/1,275 (79.6%). Moreover,
major points are far from the diagonal line, indicating that FlowNet has much better performances
than others. (G) shows RMSEs of FlowNet compared to selected baselines for all 26 stations of the
Mekong dataset with H = 1. FlowNet consistently outperforms others in major cases.

Additionally, as shown in Table 2, FlowNet has mean NSEs of (0.932, 0.890, 0.855) for H = (1, 3, 5)
over 26 stations in the Mekong dataset, which are much better than (0.882, 0.828, 0.797) of ResGCN,
the best performed GNN-based approach in (Kirschtein et al. 2024). It also outperforms all baselines
in terms of mean NSEs over 9 combination cases of datasets and prediction horizons. Full results
can be found in Tables 8, 9, and 10 in Appendix C. For RMSE, FlowNet is the best method on 6 and
second best method on 2 cases. For MAE, it acquires 4 best and 4 second best over 9 cases.

3.2 ABLATION STUDIES AND ANALYSES Table 3: Effects of different components of DMCT
on the Mekong dataset, where w/o D, w/o M, w/o
IN denote without Disentangled, Multiscale and
Instance Normalization modules, respectively.

DMCT w/o D w/o M w/o IN
H=1 0.930 0.920 0.927 -0.18
H=3 0.888 0.877 0.887 -1.81
H=5 0.853 0.843 0.852 -2.45

Effects of the local global interaction scheme.
To understand effects of FlowNet’s interaction
scheme (c.f. Section 2.2), we conduct ablation
experiments on 6 stations of the Mekong dataset
with significant correlation links from other sta-
tions. As shown in Figure 3 (A), the backbone
model can benefit significantly from FlowNet
(with both local and global phases) with most
of the selected stations having the best NSE val-
ues, compared to the sole use of the local or
global phase. This means interactions among stations help to reduce uncertainty, thus increasing
performances as we discussed in Section 2.1.
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Figure 3: Ablation studies on the Mekong data. (A) Performances of FlowNet when using with Local
only, Global only, and Local-Global scheme on 6 selected stations. (B) Performances of DMCT,
FlowNet with the original graph G and FlowNet with our graph reconstruction strategy on 6 selected
stations. (C-E) Performances of FlowNet on all 26 stations when being used with different barebones
including LSTM, GRU and our proposed model DMCT.

Effects of the graph link reconstruction. In Figure 3 (B), we study deeper on our proposed graph
link reconstruction approach, which contains two steps: PearCorr and VLR (c.f. Section 2.4). While
using the original graph G does not lead to clear performance improvements compared to DMCT
since stations in the Mekong dataset are far from others (c.f. Figure 5 in Appendix E), thus weakening
their relationships. The graph refinement module helps to boost performances in all cases compared
to DMCT since weak links are removed, thus making the interactions among models more effective
(c.f. refined graphs in Figures 9 and 10 in Appendix E).

Effects of different backbone models. We employ different DL architectures as backbone models
for FlowNet, including LSTM, GRU, and our DMCT backbone. Figure 3 (C) shows NSEs for all 26
stations for LSTM and LSTM with FlowNet. As we see, FlowNet significantly boosts the NSE scores
of most stations compared to those of LSTM. The mean NSE of FlowNet thus increases to 0.899 from
0.866 of LSTM. The same results can be observed on GRU and DMCT in (D, E), respectively. These
demonstrates the generality and flexibility of FlowNet for boosting performances of its employed
barebones via its model interactive scheme.

Effects of different components of DMCT. Table 3 demonstrates that Disentangled module, Multi-
scale module and Instance Normalization are necessary for accurate prediction performance. Notably,
without Instance Normalization the model cannot capture the accurate temporal features due to
temporal distribution shift (Kim et al., 2022).

Table 4: Memory consumptions, times per epoch,
and parameters for different methods on Can Tho
station of the Mekong datasets with lookback
length L = 32 and predict horizon H = 5.

Method Memory(MB) Time(s) Parameters

DLinear 262 0.56 0.3K
LSTM 374 0.71 68K
GRU 358 0.64 51K

iTransformer 332 1.04 0.4M
PatchTST 368 1.13 0.4M

MICN 404 1.14 1.2M
TSMixer 262 0.78 9.2K
SOFTS 436 0.88 0.9K

FilterNet 292 0.62 77K
CATS 268 0.86 0.2M

DMCT 364 1.08 0.5M
FlowNet 424 1.80 1.1M

Computational analysis. Table 4 shows com-
putational costs of FlowNet and other baselines.
FlowNet requires additional cross-station mod-
els and interaction overheads. Hence, it is more
computationally expensive than its barebone
DMCT and other lightweight models lie DLin-
ear. But it is less costly than SOFTS or MICN
in terms of memory and parameters. Never-
theless, in exchange for its high computation
cost, FlowNet significantly outperforms others
in terms of prediction accuracy as shown above.

Hyperparameter sensitivity. We study the sen-
sitivity of all hyperparameters for FlowNet and
DMCT in Figure 7 in Appendix D such as the
learning rate, the dimension of the hidden layer,
the number of multiscale levels, the regulation
parameter α, number of global iterations (Iter),
and look back window size (L).
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4 RELATED WORKS

River flow forecasting plays a critical role in flood management, water resource optimization,
infrastructure protection, and climate resilience and has attracted many research efforts such as (Feng
et al., 2021; Kratzert et al., 2019; Zhou et al., 2025; Bindas et al., 2024; Song et al., 2025; Eddin
et al., 2025; Wang et al., 2024a; Kratzert et al., 2024).

Traditional streamflow forecasting methods such as ARIMA, Multiple Linear Regression (MLR),
and Moving Average (MA), which assume linearity and thus often underperform in capturing the
nonlinear and chaotic behavior of hydrological systems (Sivakumar, 2009). Recently, RNN-based
models like LSTM and GRU have demonstrated superior performance in capturing nonlinear temporal
dependencies in flood forecasting tasks (Kratzert et al., 2018). Enhancements such as attention-based
LSTMs further improve accuracy by focusing on influential time steps (Ding et al., 2020). However,
these models typically treat stations as independent time series and often ignore the spatial interactions
between them, which are critical in hydrological systems with directional flow structures. FlowNet,
in contrast, aims to predict all stations jointly and use their spatial interaction to improve results.

GNNs are well-suited for hydrological networks, where stations can be represented as nodes and
river flows as directed edges. Foundational models such as GCN (Kipf & Welling, 2017), ChebNet
(Defferrard et al., 2016), and GraphSAGE (Hamilton et al., 2017) provided mechanisms for learning
spatial representations. These approaches have inspired applications in traffic prediction (Song et al.,
2020) and later, hydrology. Recent models such as ST-GCN (Feng et al., 2021) integrates GCNs
with LSTM and attention mechanisms to capture spatiotemporal dependencies. (Zhou et al., 2025)
propose HCGCN, introducing flow direction and time delays directly into a time-delayed directed
graph structure, enhancing realism and performance. But they typically require all stations to have
identical features and sequence lengths, and rely on static adjacency matrices that fail to reflect
dynamic hydrological influences, limiting their effectiveness across heterogeneous and dynamically
evolving hydrological networks. HGCN-based models such as (Jiang et al., 2024) are more data
flexible than GNNs-based ones but nodes of the same types still require unified inputs. They also
focus on feature propagation among nodes rather than outcomes. In contrast, FlowNet uniquely uses
independent models to interact with others for better utilizing arbitrary existing data and boosting
performance via exchanging and adjusting prediction outcomes iteratively. It also dynamically refine
the underlying graph for more effective interactions among stations.

Recently, many SOTA methods in general time series forecasting have been introduced in the literature
and archived SOTA performances on various time series benchmarks such as iTransformer (Liu et al.,
2023), FilterNet (Yi et al., 2024), TQNet (Lin et al., 2025), CycleNet (Lin et al., 2024), Informer
(Zhou et al., 2021), AutoFormer (Wu et al., 2021), FEDFormer (Zhou et al., 2022), PatchTST (Nie
et al., 2023), CAT (Kim et al., 2024), DLinear (Zeng et al., 2023) or RLinear (Li et al., 2023). These
methods can also be applied for streamflow forecasting. Hence, we include them into our study to
ensure our comparison is not limited only to models specifically designed for hydrology.

5 CONCLUSION

We introduce a first independent and interactive modeling framework, called FlowNet, for streamflow
prediction. FlowNet utilizes a unique local-global scheme that establishes individualized models
and introduces interactive mechanisms for multiple heterogeneous station data, and establishes
synchronous spatio-temporal dependencies for all stations through iterative interactive learning with
a dynamic refined graph and a proposed DMCT basebone. FlowNet acquires superior performances
compared to 18 SOTA baselines on 3 large scale benchmarks. It is also highly flexible and can be
used with any exiting DL models and available data for each station.

6 REPRODUCIBILITY STATEMENT

The LamaH-CE and CAMELS datasets are publicly available, with sources cited in Section 3.
The Mekong Water Level dataset and the source code used for all experiments are included in the
supplementary material.
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Appendices
Our appendices are outlined as follows. We describe the details of the dataset that we used to evaluate
our method in A. The experiment setups, including the metrics selection, parameter settings and
implementation details are described in B. In C, we first show the results with standard deviation that
run on multiple different random seeds to demonstrate the stability of FlowNet compared to other
baselines. Then we show the full performance comparison on three datasets (CAMELS, LamaH and
Mekong) on all evaluation metrics (NSE, RMSE and MAE) and future prediction horizons H . The
hyperparameter sensitivity for FlowNet and DMCT is studied in D. We present the refined graphs in
E. In F, we provide the pseudo-code for our algorithms. In G, we describe the limitations of our work
and we present the broader impact in H. LLM declaration can be found in I.
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Figure 4: Visualization of the LamaH river network. Each blue marker corresponds to a gauging
station from the LamaH dataset, while yellow lines with arrowheads indicate the directed river
connections from upstream to downstream.

A DATASET DETAILS

A.1 LAMAH DATASET

The LamaH-CE (Large-Sample Data for Hydrology and Environmental Sciences for Central Europe)
dataset, LamaH for short, serves as a critical benchmark for large-scale hydrological modeling,
providing standardized data from 859 gauged catchments across Central Europe with daily and
hourly resolutions spanning over 35 years of records (Klingler et al., 2021). This dataset consist of
long-term hydrological time series, including streamflow, precipitation, and meteorological features
with a comprehensive suite of over 60 static catchment attributes, containing topographic indices,
climatic statistics, land cover classifications, soil properties, and geological characteristics. Such
diversity allows robust exploration of watershed behaviors under varying environmental conditions,
particularly supporting machine learning applications in predicting complex hydrological processes.

In our experiments, we extract an 18-year daily subset (2000–2017) from 425 high-quality catchments
to ensure temporal consistency and spatial representativeness. The data is partitioned into training
(2000–2013), validation (2014–2015), and test sets (2016–2017). We focus on the target variable of
daily streamflow, together with four dynamic features including precipitation, topsoil moisture, air
temperature, and surface pressure. These features capture key hydrological drivers, with precipitation
and moisture informing infiltration-runoff dynamics, while temperature and pressure influence
evapotranspiration and atmospheric interactions.

The LamaH dataset provides the streamflow graph inside. Figure 4 shows the station locations and
the downstream flow graph of LamaH.

A.2 CAMELS DATASET

The CAMELS dataset (Catchment Attributes and Meteorology for Large-sample Studies) is a bench-
mark resource for large-sample hydrological modeling, providing standardized data for 671 catch-
ments in the contiguous United States (CONUS) over the period 1980–2014 and is publicly available
(Addor et al., 2017). This dataset contains daily time series of meteorological data (e.g., precipi-
tation, temperature) and streamflow measurements with a comprehensive suite of static catchment
attributes, thus allowing the exploration of watershed behavior across diverse climatic and topographic
conditions.
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Table 5: The summary of Mekong dataset.

Validation
Start Date

Testing
Start Date

Validation
Data Points

Testing
Data Points Frequency Target

2019/11/1 2021/11/1 731 730 Daily Water.Level

The static attributes contains 35 variables spanning multiple categories: climate indices (e.g., mean
precipitation, aridity index, snow fraction), topographic features (e.g., mean elevation, slope area),
vegetation characteristics (e.g., forest fraction, leaf area index), soil properties (e.g., soil depth,
hydraulic conductivity), and geological traits (e.g., carbonate rock proportion, permeability). These
attributes are derived from spatially aggregated data and serve as critical inputs for characterizing
catchment heterogeneity. Dynamic features include meteorological variables such as precipitation,
temperature, and potential evapotranspiration, which are provided at daily resolutions to capture
temporal dynamics. The streamflow data, measured at catchment outlets, are used as the target
variable for predictive modeling.

We partition the dataset into a 10-year subset, aligning with common practices in hydrological model
evaluation. The training set spans October 1, 1997, to September 30, 2004 (7 years), the validation
set covers October 1, 2004, to September 30, 2005 (1 year), and the test set extends from October 1,
2005, to September 30, 2007 (2 years).

Preprocessing steps are applied to address scale disparities across catchments. Following Cai et al.
(2024), we normalize streamflow values using catchment area and mean annual precipitation to
account for volumetric differences. Additionally, a logarithmic transformation for streamflow varibale
v is employed to stabilize variance and handle zero-inflation in flow data:

vo = log10(
√
v + 0.1) (10)

where vo represents the transformed streamflow feature, and the constant 0.1 prevents numerical
instability for zero or near-zero values. This transformation enhances model training by improving
the homogeneity of input distributions across catchments of varying sizes and regimes.

There is no streamflow graph provided in CAMELS. Hence we use a KNN graph (with K = 2) to
simulate the flow relationships. The intution is that if two stations are close, they are more likely
affecting others.

A.3 MEKONG WATER LEVEL DATASET

We summarize the overall structure of the Mekong dataset in Table 5, which reports the start dates of
the validation and testing sets, the number of data points in each split, the temporal resolution, and
the prediction target. Specifically, the dataset adopts a daily frequency, with the validation period
starting from November 1, 2019 and the testing period from November 1, 2021, corresponding to 731
and 730 samples, respectively. The forecasting target across all stations is the daily water level.

Table 6 provides fine-grained information for each individual hydrological station. These stations
differ substantially in both temporal coverage and sensing modalities: the training periods range from
as early as January 1910 (Stung Treng) to as recent as September 2007 (Vam Nao), and the number of
training samples varies dramatically from fewer than 5,000 records (Kontum, Vam Nao) to more than
40,000 records (Stung Treng). Furthermore, the input channels are heterogeneous across stations,
consisting of one to three variables drawn from water level (WL), water discharge (WD), and rainfall
(RF). For example, Chiang Saen provides the richest set of three channels (WL, WD, RF), while
many downstream stations such as Kompong Cham or Kratie only include WL.

This variability highlights a key characteristic of the Mekong dataset: it is highly irregular both tempo-
rally and spatially. Unlike standardized benchmark datasets with uniform lengths and modalities, the
Mekong data reflects the real-world complexities of hydrological monitoring systems, where station
deployments differ in historical coverage, measurement availability, and environmental context. Such
irregularities make modeling challenging, as methods must handle unbalanced input lengths, hetero-
geneous channel configurations, and station-specific dynamics. We intentionally include this dataset
in our evaluation because it offers a stringent testbed for assessing the flexibility and robustness of
different methods. Our proposed method FlowNet that generalizes well across the Mekong dataset
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Table 6: The details of each station dataset. WL denotes water level, WD denotes water discharge,
and RF denotes rainfall.

Station Training Start Date Training Data Points Channels Channel Types
Ban Don 1992/1/1 10166 2 WL, RF
Ban Pak Kanhoung 1989/1/1 11261 1 WL
Can Tho 1979/4/1 14824 2 WL, RF
Chaktomuk 1980/7/1 14367 1 WL
Chau Doc 1960/6/29 21674 2 WL, RF
Chiang Khan 1967/1/1 19297 2 WL, WD
Chiang Saen 1965/12/31 19663 3 WL, WD, RF
Duc Xuyen 1985/1/1 12722 1 WL
Khong Chiam 1966/1/1 19662 2 WL, WD
Kompong Cham 1930/1/1 32811 1 WL
Kontum 2007/2/22 4635 2 WL, RF
Kratie 1933/1/8 31708 1 WL
Luang Prabang 1960/1/1 21854 1 WL
Lumphat 2000/5/7 7117 2 WL, WD
Mukdahan 1960/1/1 21854 2 WL, WD
My Thuan 2006/8/1 4840 2 WL, RF
Nakhon Phanom 1972/4/1 17380 2 WL, WD
Nong Khai 1969/1/1 18566 2 WL, WD
Pakse 1960/1/1 21854 2 WL, WD
Phnom Penh Port 1960/1/1 21854 1 WL
Phung Hiep 1985/1/1 12722 1 WL
Stung Treng 1910/1/1 40116 2 WL, WD
Tan Chau 1997/12/31 7975 2 WL, RF
Vam Kenh 1992/1/1 10166 1 WL
Vam Nao 2007/9/2 4443 2 WL, RF
Vientiane KM4 1923/1/1 35368 1 WL

Figure 5: The original streamflow graph for the Mekong datasets. Each dot presents a station, while
each arrow indicates the water flow direction.

is more likely to be applicable to other real-world spatiotemporal forecasting problems that share
similar irregularities. Figure 5 shows the streamflow graph of the Mekong dataset.

B EXPERIMENTS DETAILS
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B.1 EXPERIMENTS SETUP

We evaluate all models using three standard hydrological and machine learning metrics: the
Nash–Sutcliffe efficiency coefficient (NSE), root mean squared error (RMSE), and mean absolute
error (MAE). These metrics are defined as:

NSE = 1−
∑H

t=1(yt − ŷt)
2∑H

t=1(yt − ȳ)2
, RMSE =

√√√√ H∑
t=1

(yt − ŷt)2

H
, MAE =

1

H

H∑
t=1

|yt − ŷt| (11)

where yt denotes the ground truth at time step t, ŷt is the model prediction, and ȳ is the temporal
mean of yt. Lower RMSE and MAE values indicate better predictive performance, whereas higher
NSE values (closer to 1) indicate higher efficiency in reproducing observed dynamics.

All datasets are preprocessed using a z-score normalization,

x′ =
x− µ

σ
, (12)

where µ and σ denote the mean and standard deviation of the training set, respectively. This ensures
that different stations and variables are placed on a comparable scale, which is particularly important
for handling heterogeneous hydrological signals.

All experiments are implemented in PyTorch Paszke et al. (2019) and executed on a cluster equipped
with 4 NVIDIA L4 GPUs (24GB memory each). We adopt a batch size of 32 for all GNN-based
models, while for other baselines we use 128 for the Mekong dataset and 1024 for LamaH and 256
for CAMELS, following their relative dataset sizes. The number of training epochs is fixed to 100.
Optimization is performed using the ADAM optimizer Kingma & Ba (2015) with the mean squared
error (MSE) loss function.

The input sequence length is set to L = 32 for Mekong and L = 360 for LamaH and CAMELS,
with prediction horizons H ∈ {1, 3, 5} across all baselines. We conduct a systematic hyperparameter
search over: hidden dimension in {32, 64, 128, 256}, number of layers in {1, 2, 3}, learning rate in
{10−1, 10−2, 10−3, 10−4}, loss regularization factor α ∈ [0.1, 0.95], number of global iterations
Iter ∈ [1, 5], and global learning rate factor β ∈ {0.01, 0.1, 0.2}. The best configuration is se-
lected via validation performance. We use the similar search strategies for baselines, number of
heads in {2, 4, 8}, patch and stride length in {16, 48, 96, 160, 320}, forward function dimension
{128, 256, 512, 1024}, and cycle length in {12, 36, 60, 120}.
Here we provide the hyperparameter settings for reproducibility. DMCT: learning rate: 0.001, hidden
dimension: 256, number of layers: 1. FlowNet: loss regularization factor α: 0.95, global learning
rate: 0.001, global learning rate factor β: 0.01, number of global iterations Iter: 5.

B.2 BASELINES DETAILS

Transformer-based Models (PatchTST, iTransformer, CATS). These models represent the most in-
fluential architectural developments for long-sequence forecasting. PatchTST introduced patching and
channel-independent attention, enabling efficient modeling of long temporal contexts. iTransformer
inverted the attention dimension to emphasize cross-variable dependencies, advancing multivariate
modeling. CATS further demonstrated that cross-attention only architecture for Transformer enhances
inter-series interactions. Collectively, these models define the current SOTA direction for scalable
Transformer-based forecasting.

MLP-based Models (DLinear, RLinear, CycleNet, TQNet, FilterNet, SOFTS, TSMixer). Recent
work has shown that well-designed MLP architectures can match or surpass complex Transformer
models while being highly efficient. DLinear, RLinear, Cycle, TQNet and FilterNet revealed the
surprising strength of decomposition-based linear layers, reshaping the community’s understand-
ing of linear models. Mixer-style models such as TSMixer and SOFTS introduced mixing for
channel–temporal interactions, providing strong MLP-based baselines. These models collectively
represent the competitive methods with lightweight design in modern time-series forecasting.

CNN-based Model (MICN). CNN-based architectures remain highly effective for extracting local
temporal patterns and short-term dependencies. MICN exemplifies this line of work by leveraging
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convolutional inductive biases to achieve strong performance with high computational efficiency.
This class of models forms a crucial comparison point against Transformer- and MLP-based models.

GNN-based Models (GCN, GCNII, ResGCN, ResGAT). Including these baselines is important for
streamflow tasks where temporal series are coupled through spatial and graph structures. GCN/GCNII
enable stable deep graph feature extraction, while ResGCN and ResGAT incorporate residual learning
and attention to enhance long-range spatial dependency modeling.

RNN-based Models (LSTM, GRU). LSTM and GRU remain widely used benchmarks due to their
strong performance on moderate-length dependencies and robustness under limited data. They are
extensively adopted in hydrology and environmental modeling, serving as standard baselines for
streamflow forecasting. Their inclusion ensures comparability with long-standing literature.

Hybrid Model (AGCLSTM). AGCLSTM combines graph convolutions with recurrent dynamics
and was specifically designed for streamflow prediction. It jointly models spatial topology and
temporal evolution, reflecting domain-specific state-of-the-art modeling practice. This baseline is
critical because it targets the same task domain as ours and represents one of the strongest specialized
competitors.

C FULL RESULTS

C.1 RESULTS WITH DIFFERENT RANDOM SEEDS

To comprehensively evaluate the robustness and performance of the baseline models, we conducted
multiple runs using random seeds {43, 44, 45, 46, 47} on the Mekong dataset under a forecasting
horizon of H = 1. The mean and standard deviation results across 26 stations are summarized
in Table 7. Notably, our proposed models, DMCT and FlowNet, exhibit exceptional performance
consistency and competitive accuracy compared to other baselines. Specifically, FlowNet achieves the
highest Nash-Sutcliffe Efficiency (NSE) of 0.932±0.002, alongside the lowest RMSE (0.180±0.004)
and MAE (0.114± 0.003), indicating superior predictive precision with minimal variability across
random initializations. Similarly, DMCT attains an NSE of 0.930± 0.002, with RMSE and MAE
values of 0.185±0.005 and 0.119±0.004, respectively, demonstrating strong stability and reliability.
In contrast, models such as LSTM and GRU show larger standard deviations (e.g., LSTM’s NSE std:
0.018), highlighting sensitivity to random seeds, while graph-based approaches like GCN exhibit
zero variance due to deterministic architectures but underperform in accuracy. The low standard
deviations of DMCT and FlowNet underscore their insensitivity to initialization, a critical attribute
for reproducible and deployable time-series forecasting models in practical scenarios.

Table 7: The full results on baselines with different random seed {43, 44, 45, 46, 47}, results averaged
from 26 stations, shown in mean ± std, with forecasting length H = 1.

Method NSE RMSE MAE
CycleNet 0.927±0.003 0.190±0.004 0.124±0.004
TQNet 0.930±0.002 0.182±0.004 0.116±0.003
DLinear 0.931±0.001 0.181±0.003 0.115±0.002
RLinear 0.926±0.005 0.184±0.005 0.117±0.005
FilterNet 0.926±0.003 0.186±0.004 0.121±0.004
iTransformer 0.920±0.003 0.195±0.005 0.131±0.004
PatchTST 0.929±0.005 0.189±0.006 0.124±0.006
CATS 0.919±0.003 0.195±0.005 0.128±0.005
LSTM 0.886±0.018 0.252±0.028 0.170±0.021
GRU 0.887±0.015 0.249±0.024 0.168±0.017
MICN 0.901±0.016 0.228±0.016 0.154±0.012
SOFTS 0.922±0.004 0.194±0.006 0.130±0.005
TSMixer 0.926±0.004 0.185±0.005 0.120±0.004
GCN 0.815±0.000 0.466±0.000 0.313±0.000
GCNII 0.881±0.000 0.363±0.000 0.241±0.000
ResGCN 0.883±0.000 0.328±0.000 0.221±0.000
ResGAT 0.878±0.000 0.384±0.000 0.257±0.000
DMCT 0.930±0.002 0.185±0.005 0.119±0.004
FlowNet 0.932±0.002 0.180±0.004 0.114±0.003
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Table 8: Forecasting performance on the CAMELS dataset. Our proposed model, FlowNet, demon-
strates unequivocal dominance on this benchmark. It achieves the best performance in 8 out of 9
metrics and consistently outperforms the baseline model, DMCT, in all categories. This state-of-
the-art performance across all prediction horizons (1, 3, and 5) highlights its superior forecasting
capabilities. The best results are marked in red and the second-best in blue.

Method Horizon 1 Horizon 3 Horizon 5
Metric NSE ↑ RMSE ↓ MAE ↓ NSE ↑ RMSE ↓ MAE ↓ NSE ↑ RMSE ↓ MAE ↓

CycleNet 0.5587 261.5 69.39 0.4058 323 101.4 0.3361 350.6 113.4
TQNet 0.5629 257.6 64.85 0.407 322.6 96.21 0.3381 349.6 114.3
DLinear 0.533 258.1 68.23 0.3955 321.8 96.97 0.3342 347.8 111.6
RLinear 0.5322 258.2 68.34 0.3944 321 97.36 0.3362 346.3 112
FilterNet 0.5409 268.4 77.48 0.3935 331.3 102.9 0.3418 345.9 111.6
iTransformer 0.4857 275.4 70.99 0.384 328.5 99.82 0.2861 369.4 119
PatchTST 0.5574 260.5 67.84 0.4048 324.5 95.39 0.315 359.2 114.5
CATS 0.5565 260.7 66.18 0.4087 321.5 99.3 0.3339 352.1 110.6
LSTM 0.5368 270.3 70.29 0.3978 324 96.81 0.3338 347 111.1
GRU 0.4733 289.7 83.03 0.3453 337.7 108.7 0.2984 361.6 121.8
MICN 0.5493 257.6 66.66 0.4071 320.4 94 0.3372 348.4 109.4
SOFTS 0.5291 268.9 73.9 0.3772 329.7 99.7 0.3187 353.6 113.7
TSMixer 0.5657 259.5 72.72 0.3949 325.3 95.49 0.3224 356 117.1
GCN -0.0695 472.1 214 -0.071 472.6 214.3 -0.07241 472.9 214.6
GCNII 0.5565 259.7 70.15 0.4064 323.4 99.01 0.3345 351.3 114.8
ResGCN 0.5426 269.4 77.28 0.4005 325.5 100.5 0.3331 351.3 115.2
ResGAT 0.5414 271.9 73.81 0.4019 325.3 99.99 0.3335 350.5 115.1
AGCLSTM 0.1956 331 76.76 -0.143 391.6 105.3 -0.06911 407.8 120.1
DMCT 0.5631 257.8 68.6 0.4093 321 96.33 0.3422 348.5 112.3
FlowNet 0.5784 250.7 64.01 0.4228 316.2 93.97 0.354 342.8 109.9

C.2 FULL RESULTS OF CAMELS

Table 8 reports the forecasting performance on the CAMELS dataset across three prediction horizons
(H ∈ {1, 3, 5}) and three evaluation metrics (NSE, RMSE, and MAE). Overall, our proposed
FlowNet establishes a new state of the art on this benchmark, achieving the best performance in eight
out of nine cases, while consistently outperforming the strongest baseline methods.

At the short-term horizon (H = 1), FlowNet delivers the highest accuracy across all metrics, with
an NSE of 0.5784, RMSE of 250.7, and MAE of 64.01. These improvements over other baselines
demonstrate that FlowNet captures fine-scale hydrological dynamics more effectively than existing
temporal or graph-based approaches.

For the medium-term horizon (H = 3), FlowNet achieves the best NSE (0.4228) and the lowest
RMSE (316.2) and MAE (93.97), establishing clear dominance over other baselines. This result
highlights the robustness of FlowNet in modeling non-stationary streamflow patterns over longer lead
times.

At the long-term horizon (H = 5), FlowNet still achieves the state-of-the-art performance. FlowNet
again leads in NSE (0.354) and RMSE (342.8), while ranking second in MAE (109.9), just behind
MICN (109.4).

Meanwhile, our backbone model, DMCT, also demonstrates competitive results. It achieves second-
best overall performance, outperforming classical sequence models (e.g., LSTM, GRU) and modern
Transformer-based architectures (e.g., PatchTST, iTransformer), confirming the effectiveness of its
design for hydrological forecasting.

In summary, these results highlight two important findings: (i) DMCT already sets a strong baseline
by surpassing a broad range of existing deep learning methods, and (ii) FlowNet further advances
the state of the art by achieving the best or second-best results across all horizons and metrics. This
demonstrates not only the scalability of our framework but also its capacity to generalize across
large-scale and challenging hydrological dataset.
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Table 9: Forecasting performance on the LamaH dataset. On this more challenging dataset, FlowNet
demonstrates its robust and superior capabilities. It achieves the best performance in 5 out of 9
categories and secures the second-best position in another 3 categories. Furthermore, FlowNet
consistently outperforms the baseline model, DMCT, across all metrics and prediction horizons. The
best results are highlighted in red and the second-best in blue.

Method Horizon 1 Horizon 3 Horizon 5
Metric NSE ↑ RMSE ↓ MAE ↓ NSE ↑ RMSE ↓ MAE ↓ NSE ↑ RMSE ↓ MAE ↓

CycleNet 0.6012 9.116 5.047 0.4276 12.62 7.473 0.3433 14.16 8.491
TQNet 0.5686 10.63 6.373 0.4686 11.72 6.889 0.3779 13.7 8.378
DLinear 0.61 8.747 4.868 0.4587 11.65 6.848 0.3871 12.93 7.875
RLinear 0.61 8.712 4.773 0.4549 11.67 6.858 0.3906 12.86 7.813
FilterNet 0.5922 9.547 5.659 0.4153 12.49 7.562 0.3385 13.75 8.665
iTransformer 0.6349 8.567 4.679 0.4698 11.76 6.631 0.3805 13.17 7.718
PatchTST 0.6121 8.938 4.664 0.4379 12.22 6.678 0.3672 13.29 7.846
CATS 0.6315 8.515 4.399 0.4376 12.18 6.641 0.3903 13.05 7.8
LSTM 0.6442 8.078 4.395 0.4563 11.55 6.841 0.3356 13.58 8.738
GRU 0.6427 7.741 4.261 0.4606 11.63 7 0.2624 14.77 9.663
MICN 0.637 8.309 4.395 0.4837 11.42 6.573 0.3992 12.95 7.597
SOFTS 0.5675 9.587 5.674 0.4557 11.88 6.728 0.3769 13.21 8.197
TSMixer 0.6407 8.322 4.35 0.4577 11.75 6.553 0.3841 13.16 7.672
GCN 0.1159 19.21 13.61 0.07155 19.57 13.9 0.06577 19.58 13.82
GCNII 0.5975 9.088 5.202 0.4463 12.19 7.33 0.3863 13.12 8.127
ResGCN 0.5965 9.323 5.41 0.4387 12.2 7.519 0.3917 12.92 7.883
ResGAT 0.6089 8.723 4.847 0.4062 12.92 8.299 0.3721 13.52 8.591
AGCLSTM 0.5966 7.918 4.101 0.4408 11.36 5.966 0.3458 13.09 7.252
DMCT 0.6503 8.002 4.389 0.4876 11.34 6.723 0.406 12.73 7.613
FlowNet 0.6598 7.792 4.385 0.4928 11.25 6.514 0.4067 12.7 7.536

C.3 FULL RESULTS OF LAMAH

Table 9 reports the forecasting performance on the LamaH dataset, which is more challenging due to
its complex hydrological dynamics and diverse catchment characteristics. Several important trends
can be observed.

First, our backbone model DMCT provides a consistently strong benchmark across horizons. It
secures the second-best NSE at all horizons (0.6503, 0.4876, 0.406 for H = 1, 3, 5), and also
ranks among the top models in terms of RMSE and MAE. These results confirm DMCT’s ability to
effectively capture temporal dependencies and spatial heterogeneity in river basins.

Second, our proposed FlowNet achieves state-of-the-art performance across the majority of metrics.
Specifically, FlowNet attains the best NSE at all horizons (0.6598, 0.4928, 0.4067), highlighting its
ability to capture flow dynamics more accurately than all competitors. In terms of error-based metrics,
FlowNet also secures the best RMSE at horizon 3 (11.25) and horizon 5 (12.7), while maintaining
second-best performance at several other positions (e.g., RMSE 7.792 at horizon 1, MAE 6.514 at
horizon 3, and MAE 7.536 at horizon 5). Notably, FlowNet consistently outperforms DMCT across
all metrics and horizons, confirming robustness and superior generalization ability of the local-global
framework of FlowNet.

In summary, FlowNet demonstrates clear dominance on LamaH, achieving the best results in 5 out of
9 categories and ranking second-best in another 3. This consistent advantage over both DMCT and
advanced baselines highlights FlowNet’s effectiveness in tackling the challenges posed by large-scale
and heterogeneous hydrological forecasting tasks.

C.4 FULL RESULTS OF MEKONG

Table 10 reports the forecasting results on the Mekong Water Level dataset. The results consistently
highlight the superiority of our proposed FlowNet across different prediction horizons. FlowNet
attains the best performance in 6 out of 9 evaluation categories and ranks second in an additional 2
cases, demonstrating both robustness and generalization across metrics.
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Table 10: Forecasting performance on the Mekong Water Level dataset. The results clearly demon-
strate the dominance of our proposed model, FlowNet. It achieves the best performance in a
remarkable 6 out of 9 categories and secures a second-best position in 2 other categories. Further-
more, FlowNet consistently outperforms the baseline model, DMCT, across all metrics and prediction
horizons, establishing a new state-of-the-art on this dataset. The best results are highlighted in red
and the second-best in blue.

Method Horizon 1 Horizon 3 Horizon 5
Metric NSE ↑ RMSE ↓ MAE ↓ NSE ↑ RMSE ↓ MAE ↓ NSE ↑ RMSE ↓ MAE ↓

CycleNet 0.9268 0.1916 0.1245 0.8818 0.3052 0.1937 0.8476 0.384 0.2429
TQNet 0.9309 0.1831 0.1168 0.8862 0.2952 0.1848 0.853 0.3786 0.2378
DLinear 0.9315 0.1821 0.1153 0.8889 0.2965 0.1839 0.8545 0.3776 0.2345
RLinear 0.9269 0.1837 0.118 0.8825 0.2991 0.1876 0.8472 0.3817 0.2389
FilterNet 0.9248 0.1886 0.1225 0.8815 0.2988 0.1894 0.8483 0.3812 0.2414
iTransformer 0.9217 0.1955 0.1314 0.8822 0.3009 0.1948 0.8431 0.3783 0.2456
PatchTST 0.9322 0.1876 0.1222 0.8884 0.3003 0.191 0.8427 0.3858 0.2465
CATS 0.9206 0.1962 0.1301 0.8773 0.3045 0.1932 0.8359 0.3911 0.2498
LSTM 0.8708 0.2612 0.1775 0.8401 0.3541 0.2337 0.813 0.4224 0.2778
GRU 0.8862 0.2416 0.1631 0.8479 0.3498 0.231 0.823 0.4156 0.2725
MICN 0.9111 0.2236 0.1505 0.8766 0.3188 0.2063 0.8431 0.3953 0.2547
SOFTS 0.9198 0.1938 0.1311 0.8774 0.3056 0.1977 0.842 0.3814 0.247
TSMixer 0.9287 0.1836 0.1185 0.8838 0.3007 0.1908 0.8487 0.3835 0.2418
GCN 0.8151 0.3134 0.4656 0.7815 0.384 0.562 0.7577 0.3862 0.5778
GCNII 0.8813 0.2407 0.3633 0.832 0.3126 0.4667 0.8029 0.3493 0.5257
ResGCN 0.8829 0.2211 0.3285 0.8284 0.291 0.4388 0.7979 0.3287 0.4999
ResGAT 0.8776 0.2566 0.3836 0.8207 0.3289 0.489 0.7891 0.3701 0.5499
AGCLSTM 0.8876 0.2315 0.1318 0.8585 0.3276 0.2024 0.7727 0.4253 0.2591
DMCT 0.9309 0.1853 0.1198 0.8889 0.2985 0.1868 0.853 0.3802 0.2391
FlowNet 0.9323 0.1796 0.1144 0.8908 0.2945 0.1835 0.8555 0.3757 0.2354

At the short-term horizon (Horizon 1), FlowNet achieves the highest NSE (0.9323), the lowest
RMSE (0.1796), and the lowest MAE (0.1144), surpassing all competing methods and setting a
new benchmark for near-future water level forecasting. For medium-term prediction (Horizon 3),
FlowNet continues to lead with the best NSE (0.8908) and MAE (0.1835), while also securing
the second-best RMSE (0.2945). Even at the long-term horizon (Horizon 5), which poses greater
forecasting challenges, FlowNet maintains its advantage with the best NSE (0.8555) and competitive
error values (RMSE: 0.3757, MAE: 0.2354).

Importantly, FlowNet consistently outperforms the backbone model DMCT across all horizons,
underscoring its robustness and adaptability. While other models occasionally attain competitive
results in isolated metrics (e.g., DLinear in MAE at Horizon 5 or ResGCN in RMSE at longer
horizons), they fail to exhibit the same level of stability across horizons. In contrast, FlowNet’s
dominance across both accuracy (NSE) and error-based metrics (RMSE, MAE) highlights its capacity
to provide reliable predictions under varying forecasting horizon settings.

Overall, these results establish FlowNet as the state of the art for hydrological forecasting on the
Mekong Water Level dataset, combining short-term precision with long-term stability.

C.5 RESULTS COMPARISON WITH EALSTM

Table 11 reports the forecasting results of EALSTM Kratzert et al. (2019) and FlowNet on CAMELS
dataset. The results show the superior performance of FlowNet compared to EALSTM over most of
cases 7/9. At the horizon 1, FlowNet achieves better results over all the metrics of NSE, RMSE and
MAE. At horizon 3 and horizon 5, FlowNet attains best performance of NSE and RMSE.
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Table 11: Mean results of FlowNet compared to EALSTM on CAMELS with 3 different prediction
horizon settings H ∈ {1, 3, 5}. Best results are highlighted in bold.

Method Horizon 1 Horizon 3 Horizon 5
Metric NSE ↑ RMSE ↓ MAE ↓ NSE ↑ RMSE ↓ MAE ↓ NSE ↑ RMSE ↓ MAE ↓

EALSTM 0.564 256.6 64.18 0.4199 316.6 93.2 0.3531 342.8 109.14
FlowNet 0.5784 250.7 64.01 0.4228 316.2 93.97 0.354 342.8 109.9

Table 12: Mean results of FlowNet compared to TimesFM on CAMELS with 3 different prediction
horizon settings H ∈ {1, 3, 5}. Best results are highlighted in bold.

Method Horizon 1 Horizon 3 Horizon 5
Metric NSE ↑ RMSE ↓ MAE ↓ NSE ↑ RMSE ↓ MAE ↓ NSE ↑ RMSE ↓ MAE ↓

TimesFM 0.5577 255.7 61.77 0.3746 327.2 91.99 0.2952 358.5 109.5
FlowNet 0.5784 250.7 64.01 0.4228 316.2 93.97 0.354 342.8 109.9

C.6 RESULTS COMPARISON WITH TIMESFM

Tables 12 and 13 report the forecasting performance of TimesFM Das et al. (2024) and FlowNet on
CAMELS and LamaH datasets. These tables show that FlowNet achieves better performance across
the majority of metrics on NSE and RMSE.

C.7 ABLATION RESULTS OF LOCAL GLOBAL

Table 14 reports the comparison results of local, global phases and FlowNet on Mekong dataset.
FlowNet using both local and global phases shows the better performance compared to using local or
global phases only.

C.8 ABLATION RESULTS OF BACKBONE MODELS

Table 15 reports the ablation results of 3 different backbone models LSTM, GRU and DMCT with and
without FlowNet on Mekong dataset. The results show that using FlowNet consistently improves the
performance compared with the original models, which demonstrate the generalization of FlowNet.

C.9 ABLATION RESULTS OF GRAPHS

Table 16 reports the ablation results of DMCT, with Original graph and with PearCorr VLR graph.
The results show that the model learns the incorrect relationships from the original graph and the
performance decreased, however, when apply the PearCorr VLR graph, the performance boosted,
which demonstrates that the model can get benefit from a good graph.

C.10 ABLATION RESULTS OF CAMELS KNN SETTINGS

We conduct experiments for the ablation of KNN settings on CAMELS dataset. Table 17 shows that
the best performance is using KNN=2 case.
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Table 13: Mean results of FlowNet compare to TimesFM on LamaH with 3 different prediction
horizon settings H ∈ {1, 3, 5}. Best results are highlighted in bold.

Method Horizon 1 Horizon 3 Horizon 5
Metric NSE ↑ RMSE ↓ MAE ↓ NSE ↑ RMSE ↓ MAE ↓ NSE ↑ RMSE ↓ MAE ↓

TimesFM 0.63 8.304 4.002 0.4376 11.97 6.266 0.3517 13.5 7.491
FlowNet 0.6598 7.792 4.385 0.4928 11.25 6.514 0.4067 12.7 7.536

Table 14: Mean ablation results of local and global phases compare to FlowNet on 3 datasets with
prediction horizon setting H = 1. Best results are highlighted in bold.

Dataset CAMELS LamaH Mekong

Metric NSE ↑ RMSE ↓ MAE ↓ NSE ↑ RMSE ↓ MAE ↓ NSE ↑ RMSE ↓ MAE ↓
Local 0.5631 257.8 68.6 0.6503 8.002 4.389 0.9309 0.1853 0.1198
Global 0.517 285.8 86.68 0.5963 8.701 5.259 0.9296 0.1875 0.1214

FlowNet 0.5784 250.7 64.01 0.6598 7.792 4.385 0.9323 0.1796 0.1144

C.11 RUNTIMES OF FLOWNET

Runtimes of FlowNet depend on the number of edges in the flow graph due to its inflow and outflow
models. The flow graphs in an area normally follow forest styles (i.e. a collection of tree-based
components) due to the flow natures of rivers (circle connections may still happen but not very
common) as we can see from Figure 4 for LamaH and Figure 5 for MRB data. Hence, the numbers
of edges are typically smaller than the numbers of stations. For example, in LamaH, we have 452
stations but there are only 372 edges. For MRB data, we have 26 stations and 24 edges. Even for
CAMEL-US, due to the absence of flow graphs, we use KNN graphs as a replacement, the number of
edges is bounded by K· 671 stations. Hence, in real-world settings, the number of edges is O(N),
where N is the number of stations. Hence the number of models is also O(N) (actually around 3 ·N ).

As shown in Table 4, FlowNet (with DMCT basebone) is among the most expensive methods
together with SOFT, iTransformer, PatchTST and MICN. However, its slower training time results in
significantly better prediction accuracy than other methods as demonstrated in Table 2 and Figure 2
in the revised paper. And in our paper, we aim at enhancing prediction accuracy rather than training
speeds. Moreover, in terms of inference times, FlowNet with DMCT is only slightly slower than
ordinary approaches as we demonstrated in the below Table 18. FlowNet takes 7.208s for inference
while DMCT and MICN take 5.358s and 4.102s, respectively. FlowNet uses an acceptable extra
inference time to get a significant performance boost. When using the much faster basebone like
RLinear, the runtime of FlowNet will be much smaller.

To reduce runtimes of FlowNet, rather than predicting a large area, we can divide it into smaller
catchment areas and perform FlowNet on these sub-areas instead. For example, CAMEL-US covers
the whole USA. In such an enormous area, the geographics, topography, and climate conditions will
be significantly different for different locations, leading to significantly different flow characteristics
in different stations at different subareas. For example, stations in mountain areas tend to have faster
and unstable flows than in plain areas. Trying to jointly predict these stations can be ineffective.
Hence, by focusing on smaller areas, we can reduce the number of graph links and models, thus
significantly enhancing the overall performance.

Moreover, in terms of algorithmics, FlowNet is a highly parallelable method. For example, during
the local phase, per-station, inflow and outflow models can all be trained in parallel due to their
independences. Similarly, the interaction during the global phase can also be parallelized quite
straightforwardly.
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Table 15: Mean ablation results of 3 different backbone models LSTM, GRU and DMCT with
and without FlowNet on Mekong dataset with prediction horizon setting H = 1. Best results are
highlighted in bold.

Dataset LSTM GRU DMCT

Metric NSE ↑ RMSE ↓ MAE ↓ NSE ↑ RMSE ↓ MAE ↓ NSE ↑ RMSE ↓ MAE ↓
w/o FlowNet 0.8708 0.2612 0.1775 0.8862 0.2416 0.1631 0.9309 0.1853 0.1198
w/ FlowNet 0.899 0.2017 0.1344 0.894 0.1969 0.1285 0.9323 0.1796 0.1144

Table 16: Mean ablation results of DMCT, with Original graph and with PearCorr VLR on Mekong
dataset with prediction horizon H ∈ {1, 3, 5}. Best results are highlighted in bold.

Horizons Horizon 1 Horizon 3 Horizon 5

Metric NSE ↑ RMSE ↓ MAE ↓ NSE ↑ RMSE ↓ MAE ↓ NSE ↑ RMSE ↓ MAE ↓
DMCT 0.9309 0.1853 0.1198 0.8889 0.2985 0.1868 0.853 0.3802 0.2391

w/ Original 0.8583 0.1918 0.2772 0.8012 0.3966 0.2673 0.7607 0.4762 0.3174
w/ PearCorr VLR 0.9323 0.1796 0.1144 0.8908 0.2945 0.1835 0.8555 0.3757 0.2354

C.12 STATISTICAL SIGNIFICANCE COMPARISON

Figure 6 shows the statistical significance comparison of methods across stations where FlowNet is
significant better than all other methods (with p− value threshold α = 0.05). Taking the comparison
of FlowNet and PatchTST as an example, the p− value is 1.086e−25 ≪ 0.05, and looking deeper to
each station, FlowNet has better NSE in 468/671 cases(69.7%) compared to PatchTST with max NSE
differences of 0.5556, while PatchTST only has better NSE in 203/671 cases (30.2%). And taking
the comparison of FlowNet and SOFTS as an another example, the p− value is 3.132e−51 ≪ 0.05,
and looking deeper to each station, FlowNet has better NSE in 533/671 cases(79.4%) compared to
SOFTS with max NSE differences of 0.6618, while SOFTS only has better NSE in 138/671 cases
(20.5%).

D DETAILS OF THE HYPERPARAMETER SENSITIVITY

We have conducted an extensive experiment for the hyperparameter sensitivity of FlowNet and
DMCT, the results are shown in Figure 7. The hyperparameters of FlowNet, including the loss
regulation factor α, the initial learning rate of the global phase, the global learning rate factor, and the
number of global loops. The hyperparameters of DMCT including the lookback window length, the
learning rate, the number of multiscale level, and the dimension of hidden layer.

Loss Regulation Factor α. The parameter α is used to regulate the loss function in local-global
scheme, to balance the loss between the target node and the link node models. As the results of Figure
7 (A) show, the performance of model on NSE increases with the increasing α until around 0.7 to 0.9.
In addition, we performed another study on LamaH, which is much larger than MRB. The results
are shown in Figure 8. For H = 1, H = 3 and H = 5, the best values for α are 0.9, 0.5 and 0.3,
respectively. These show the effectiveness of the global interaction phase and the consistency loss.

Global Phase Initial Learning Rate. This hyperparameter is used to set the initial learning rate
for the global phase. Due to the local-global scheme, after the local phase, we need to reset the
initial learning rate to a small value to avoid the issue of learning. The result of this hyperparameter
sensitivity is shown in Figure 7 (B). This shows that when the initial learning rate in global phase is
too small, e.g., 1e-4, the performance is not good compared to a larger value of setting.

Global Learning Rate Factor β. This factor is used to regulate the learning rate in global phase with
the number of global loops. As the results of Figure 7 (C) show, the model has stable performance
with the different settings of this hyperparameter β.

Number of Global Iterations. In the local-global scheme, the global phase is iteratively repeated to
converge the model. We evaluated the number of iterations in the global phase, which is shown in
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Table 17: The results of different KNN settings on CAMELS of FlowNet with different horizon
length H ∈ {1, 3, 5}. Best results are highlighted in bold.

Horizons Horizon 1 Horizon 3 Horizon 5

Metric NSE ↑ RMSE ↓ MAE ↓ NSE ↑ RMSE ↓ MAE ↓ NSE ↑ RMSE ↓ MAE ↓
KNN=2 0.5784 250.7 64.01 0.4228 316.2 93.97 0.354 342.8 109.9
KNN=5 0.5442 267.3 75.76 0.4106 323.2 101.2 0.3427 349 117.1

KNN=10 0.3784 323 102.4 0.3906 328.6 105.6 0.3333 352.2 121.5

Table 18: Inference time for different methods on CAMELS dataset with horizon length H = 1.

Methods Inference Time (s)
FlowNet (DMCT) 7.208
FlowNet (RLinear) 1.717

DMCT 5.358
DLinear 1.144
RLinear 1.234
CycleNet 3.018
TQNet 3.611

FilterNet 1.649
iTransformer 2.999

SOFTS 2.577
CATS 3.147

TSMixer 1.891
LSTM 1.134
GRU 1.001

PatchTST 3.2
MICN 4.102
GCN 0.325

GCNII 0.35
ResGCN 0.37
ResGAT 0.394

AGCLSTM 0.693

Figure 7 (D). The results show that with the global phased repeated, the model will converge and
have stable performance.

Look-back Window Length L. In Figure 7 (E), we evaluate the sensitivity of the look-back window
length for DMCT. We set 4 different lengths of the look-back window L ∈ {8, 16, 32, 64} and
evaluate the performance. The results show that the model performs the best when the look-back
window length L is around 32.

Learning Rate. We evaluate 4 different initial learning rate for DMCT and the results are shown in
Figure 7 (F), which demonstrates that the best initial learning rate for DMCT is around 0.01.

Number of Multiscale Levels. We study the hyperparameter sensitivity of the number of multiscale
level for DMCT. As the results in Figure 7 (G) show, increasing the multiscale levels, the model
performs better. This shows that the model can extract more accurate temporal features from
multiscale information with higher multiscale levels.

Dimension of Hidden Layers. As the results in Figure 7 (H) show, we have evaluated the sensitivity
of the dimension of the hidden layers. These results show that the performance of the model is stable
with different settings of the dimensions of the hidden layers.

E GRAPHS

We visualize the graphs in Figures 5, 9, and 10, including the original graph, the graph with Pearson
Correlation Analysis (PearCorr) and the graph with Validation-based Links Reconstruction (VLR).
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Figure 6: Statistical significance comparison of methods across stations (Paired Wilcoxon Signed-
Rank Test) on CAMELS dataset with horizon length H = 1. (A) Significance result with p− value
threshold α = 0.05 and h = 1 means the reference method (row) significant better than the compared
against method (column), (B) p− value matrix.

F PSEUDO-CODE OF ALGORITHMS

F.1 LOCAL PHASE

Algorithm 1 Local Phase - Independent Learning

Input: Station i ∈ V , cross stations set S := [1, . . . , n], train set X := [Xi
:,1:t, X

i,1
:,1:t, . . . , X

i,n
:,1:t],

model list M := [fi, fi,1, . . . , fi,n].
Output: model list M .

1: for each model in M do
2: X ← select(X) ▷ Select the corresponding set
3: for each epoch do
4: x, y ← batch(X)
5: {ŷi, ŷi,1, . . . , ŷi,n} ←M(x)
6: ŷiflow =

∑
j∈S ŷi,j ▷ Inflow or outflow depends on the input

7: if model is fi then
8: loss← Li(ŷ, y) ▷ Per-station loss
9: else if otherwise then

10: loss← Li
Local(ŷ

i
flow, y) ▷ Cross-station loss

11: end if
12: loss.backward()
13: update(model.params)
14: end for
15: end for
16: return M

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

32 64 128 256

Hidden Dimension

0.8

0.85

0.9

0.95

1

N
S

E
(H)

8 16 32 64

Lookback Length

0.8

0.85

0.9

0.95

1

N
S

E

(E)

1 2 3 4

Multiscale Level

0.8

0.85

0.9

0.95

1

N
S

E

(G)

0.1 0.01 0.001

Learning Rate

0.8

0.85

0.9

0.95

1

N
S

E

(F)

1e-4 3e-4 5e-4 7e-4 9e-4

Global Learning Rate

0.85

0.9

0.95

1

N
S

E

(B)

1 2 3 4 5

Global Loop

0.85

0.9

0.95

1

N
S

E

(D)

0.1 0.2 0.3 0.4 0.5

Global Learning Rate Factor

0.85

0.9

0.95

1

N
S

E

(C)

0.1 0.3 0.5 0.7 0.9 1

Alpha

0.8

0.85

0.9

0.95

1

N
S

E

(A)

H-1

H-3

H-5

Figure 7: The hyperparameter sensitivity of FlowNet and DMCT.
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Figure 8: The Mean NSE results of the ablation study of alpha on LamaH dataset with alpha
α ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}, Iter = 3 and forecasting length H ∈ {1, 3, 5}.
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Figure 9: The graph of Pearson Correlation Analysis(PearCorr). We build the links when the links in
the original graph have a significant Pearson correlation coefficient.

Figure 10: The graph of Validation-based Links Reconstruction (VLR). We reconstruct the links in
the original graph that satisfy the PearCorr and VLR requirement.

F.2 GLOBAL PHASE

F.3 LOCAL GLOBAL TRAINING SCHEME

We combine the Local Phase 1 and Global Phase 2 and design a multi-phase training strategy Local
Global Scheme, which is in Algorithm 3.

F.4 VALIDATION-BASED LINKS RECONSTRUCTION

We provide the pseudo-code of Validation-based Links Reconstruction (VLR) in Algorithm 4.
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Algorithm 2 Global Phase - Interactive Learning

Input: Station i ∈ V , cross stations set S := [1, . . . , n], train set X := [Xi
1:t,:, X

i,1
1:t,:, . . . , X

i,n
1:t,:],

model list M := [fi, fi,1, . . . , fi,n].
Output: model list M .

1: for each model in M do
2: X ← select(X) ▷ Select the corresponding set
3: for each epoch do
4: x, y ← batch(X)
5: {ŷi, ŷi,1, . . . , ŷi,n} ←M(x)
6: ŷiGlobal =

∑
j∈S ŷi,j

7: loss← α · Loss(ŷi, y) + (1− α) · Loss(ŷi, ŷiGlobal) ▷ Global loss from Eq.equation 2
8: loss.backward()
9: update(model.params)

10: end for
11: end for
12: return M

Algorithm 3 Local Global Training Scheme
Input: Global iterations N , model list M := [fi, fi,1, . . . , fi,n], and all the other necessary inputs in
Algorithms 1 and 2.
Output: model list M .

1: M ← Algorithm 1 ▷ Local Phase
2: for each iteration do
3: M ← Algorithm 2 ▷ Global Phase
4: end for
5: return M

G LIMITATIONS

While our method FlowNet demonstrates promising results in streamflow forecasting, several limita-
tions remains. First, our framework strongly relies on a relationship graph among hydrology stations
(Section 2.2). In river networks exhibiting weak hydrological connectivity or fragmented monitoring
systems, our method may revert to independent station-wise prediction. This could diminish the
performance advantages observed. Future work could integrate physical hydrological models to
enhance robustness under sparse correlation conditions. Second, we propose to evaluate our approach
on a large-scale benchmark dataset: diverse climatic zones (tropical, temperate, polar), multi-scale
gauge configurations (high-density vs. sparse networks), and multi-temporal resolutions (hourly
to monthly scales). Notwithstanding these limitations, our experiments demonstrate FlowNet’s
superiority over conventional GNN/RNN/Transformer baselines across three quantitative metrics
(cf. Appendix C). Its flexibility on data and learning methods also permits future integration with
advanced methods and can work with irregular datasets that are common in practice.

H BROADER IMPACT

The proposed method FlowNet provides an effective system to forecasting streamflow. It will be very
useful for local authorities to provide water resouce management and contingency plans for coping
with climate change. In many vulnerable areas in developing countries, where the data collection
system is not well-developed, the data is normally irregular with much missing data, different periods
and different collected hydrology feature as in the case of the Mekong River Basin in our study.
FlowNet, with its ability to deal with such kind of data effectively, will be extremely useful for these
areas.
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Algorithm 4 Validation-based Links Reconstruction.

Input: Stations i, j ∈ V , directional link Ai,j ∈ B, train set Xi
1:t,:, X

i,j
1:t,: with all channels, validation

set Xi
t:t+τ,c, X

i,j
t:t+τ,c with water flow channel c, regulation factor γ, PearCorr correlation value λi,j

and the PearCorr threshold value ϕ.
Output: Directional flow link Ai,j .

1: Initialize models fi, fi,j
2: for each epoch do ▷ Train fi, fi,j on Xi

1:t,: and Xi,j
1:t,:

3: xi, yi ← batch(Xi);xj , yi ← batch(Xi,j)
4: lossi ← L(fi(xi), yi); lossi,j ← L(fi,j(xj), yi)
5: lossi.backward(); lossi,j .backward()
6: update(fi.params);update(fi,j .params)
7: end for
8: lossi ← fi(X

i
t:t+τ , c); lossi,j ← fi,j(X

i,j
t:t+τ,c) ▷ Validate fi, fi,j on Xi

t:t+τ,c and Xi,j
t:t+τ,c

9: if lossi,j < γlossi and λi,j > ϕ then
10: Ai,j ← 1
11: else if otherwise then
12: Ai,j ← 0
13: end if
14: return Ai,j

I LLM USAGE

This manuscript was slightly edited using LLMs for language polishing and writing improvements.
The authors retain full responsibility for the research content, including the concepts, analyses, and
conclusions.
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