

000 001 002 003 004 005 FLOWNET: A GENERIC INDEPENDENT AND INTERAC- 006 TIVE MODEL FOR STREAMFLOW FORECASTING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

ABSTRACT

031 Streamflow forecasting plays a crucial role in water research for flood prevention,
032 water resource management, or climate resilience. However, it is a challenging
033 task due to complex hydrological system interactions, human interventions and
034 global climate change. In this paper, we introduce FlowNet, a *unique local global*
035 *interactive modeling* framework, which is capable of effectively predicting mul-
036 tiple hydrology stations with varied input climate features and data availability
037 at the same time. The key idea of FlowNet is to construct *independent* prediction
038 models for each station from its local data and from its adjacent neighbors via
039 a hydrological-related directed graph before letting these models to *iteratively*
040 and *interactively* adjust each other to maximize their prediction agreements. This
041 helps to reduce uncertainty, thus improving their accuracy. Additionally, FlowNet
042 dynamically captures inter-station relationships via its directional and delay-aware
043 graph reconstruction method. As a generic framework, FlowNet can be used with
044 any existing Deep Learning (DL) backbone models such as RLinear, PatchTST
045 or iTransformer. However, we also introduce another backbone, called Disentan-
046 gled Multiscale Cross-attention Transformer (DMCT), to capture the multiscale
047 seasonality-trend information for further performance boost. Extensive experiments
048 on 3 large datasets, including LamaH (with 425 hydrology stations in Europe),
049 CAMELS (672 stations in USA) and MRB (with 26 gauge stations in the Mekong
050 River Basin), show that FlowNet significantly outperforms 18 state-of-the-art
(SOTA) prediction methods in terms of MAE, RMSE, and NSE.

051 1 INTRODUCTION 052

053 River flow forecasting, which aims to accurately predict future flow conditions using historical
054 hydrological data, is a critical research area with wide-ranging impacts such as flood management,
055 water resource optimization, infrastructure protection, and climate resilience (Feng et al., 2021; Zhou
056 et al., 2025; Jiang et al., 2024). However, despite many research efforts (Giladi et al., 2021; Najafi
057 et al., 2024), it remains a challenging task, as hydrological systems involve complex and nonlinear
058 interactions among many geographic and climate factors such as topography, rainfall, river discharge
059 and soil texture as well as human interventions such as dam constructions (Haddeland et al., 2014).

060 Traditional streamflow forecasting methods typically rely on physical simulations (Vreugdenhil,
061 2013) such as MODFLOW (Harbaugh et al., 2000) and SWAT (Gassman et al., 2007), or statistical
062 techniques such as ARIMA (Wang et al., 2018) and BJP (Robertson & Wang, 2012). However, these
063 approaches struggle to effectively capture these intricate spatial-temporal dynamics, particularly
064 under conditions of sparse or irregularly sampled data (Brunner et al., 2021). For example, simulation
065 models often require a large amount of specific data such as soil type, land use, or digital elevation
066 models (DEM), which are very difficult to collect and require significant effort, expertise, and
067 computational power to set up (Giladi et al., 2021; Brunner et al., 2021). Moreover, global warming
068 causes complex changes in climate patterns, and consequently breaks stationarity, a key assumption
069 of most traditional models, (possibly) affecting their effectiveness (Milly et al., 2008).

070 Recently, deep learning has emerged as a powerful approach for modeling long-term complex
071 temporal dynamics in streamflow forecasting tasks with various employed architectures such as
072 MLPs (Sivakumar et al., 2002), GRUs (Farfan et al. 2024), CNNs (Ghimire et al., 2021), Transformer
073 (Castangia et al., 2023), and especially LSTMs (Hu et al., 2020). These methods do not require
074

Figure 1: The overall pipeline of *FlowNet* with a barebone downstream graph \mathcal{G} . In the *Local phase* (A), for each station i , we train an independent per-station model f_i and cross-station models $f_{i,j}$, where $j \in \text{parents}(i)$ (i.e. j is parent of i), to learn the flow of station i via the two independent loss functions \mathcal{L}_i and $\mathcal{L}_{\text{Local}}$ described in (C) (cf. Section 2.2). In the *Global phase* (B), the per-station model f_i and cross-station models $f_{i,j}$ *interactively* adjust each other in multiple iterations to maximize their prediction agreements via two global losses $\mathcal{L}_{\text{Global}}$ and $\mathcal{L}_{\text{Global}}^{i,j}$ described in (D) (cf. Section 2.2). In (E), the original downstream flow graph is refined by using our proposed methods PearCorr to search the correlated links and then VLR to reconstruct strong links graph (cf. Section 2.4). (F) presents our proposed architecture *Disentangled Multiscale Cross-attention Transformer* (*DMCT*) to capture multiscale seasonality-trend information.

wide ranges of complex data like traditional techniques, while acquiring impressive performances in major cases (Vizi et al., 2023). However, most of them often treat monitoring stations independently, neglecting the essential spatial relationships and dependencies of directional water flow between stations (Ding et al., 2020). To address these dependencies, Kratzert et al. (Kratzert et al., 2018) use a single LSTM model to jointly predict multiple stations, implicitly exploiting their underlying physics. Other works such as (Kirschstein et al. 2024) use graphs to explicitly capture relationships among stations via different hydrology and topography aspects and employ GNN-based models to forecast all stations. However, these methods typically rely on restrictive assumptions such as uniform input feature sets, similar training data periods or static adjacency graphs (Zhao et al., 2020; Zhou et al., 2025). They also focus on propagating features among stations, neglecting explicit relationships among predicted outcomes of different stations.

Our contributions. In this paper, we introduce *FlowNet*, a *flexible* and *generalizable* framework specifically designed for multivariate spatio-temporal streamflow forecasting on multiple gauge stations *jointly*. Compared to existing works, *FlowNet* has the following key differences.

First, *FlowNet* also aims to predict all stations jointly like other above mentioned methods. However, it follows an entirely different concept, called *interactive local global modeling strategy* (cf. Section 2.2 for details). Concretely, given a relationship graph of all stations as a backbone, rather than using a single large model like (Kratzert et al., 2018), each station is first represented by a set of smaller arbitrary models, including a *independently customized per-station* model and different *independent cross-station* models to predict its own streamflow from its local data and from its neighbors's local data in the *local stage* of *FlowNet*, respectively. Hence, these models can flexibly exploit all varying available local training data and input features to maximize their learning outcomes. In the *global stage*, all models *iteratively* and *interactively* adjust each other to maximize their prediction agreements by exchanging and fusing their prediction outcomes via the backbone graph, thus reducing prediction uncertainty and further enhancing their accuracy. This interaction scheme is the central of *FlowNet* and makes it highly *data and model flexibility*, i.e., it does not require uniform inputs like existing works such as (Kirschstein et al. 2024) and can be used with any existing DL models.

108
109
110 Table 1: Summary of notations in the paper.
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Notation	Definition
$X \in \mathbb{R}^{T \times C}$	multivariate time series with time steps T and channel C
$S = \{S_1, \dots, S_N\}$	the set of N hydrology stations in river networks
$A \in \mathbb{B}^{N \times N}$	the adjacent matrix of stations
$\mathcal{G} = (S, A)$	a directed graph of stations
$x_t^i = X_{t-L:t,:}^i \in \mathbb{R}^{L \times C_i}$	the historical data at station S_i from $t - L$ to t
$x^{i,j} = X_{t-L:t,:}^j \oplus X_{t-L:t,c}^i$	a concatenated historical data of X^j and historical flow of X^i
$F = \{f_k k = 1..M\}$	a set of M small independent models
f_i	per-station model of station S_i
$f_{i,j}$	cross-station model of stations S_i, S_j
$y_t^i = X_{t+1:t+H,c}^i \in \mathbb{R}^{H \times 1}$	the future data of c -th channel associate from historical data x_t^i
$\hat{y}^i = f_i(x^i)$	a prediction outcome of station S_i
$\hat{y}^{i,j} = f_{i,j}(x^{i,j})$	the prediction outcome of $f_{i,j}$
\hat{y}_{inflow}^i	the predicted inflow of S_i
$\hat{y}_{outflow}^i$	the predicted outflow of S_i
\mathbf{s}, \mathbf{t}	the seasonality/trend components of time series
\mathbf{h}	the multiscale latent sequences of Transformer block
Ω	the maximum lag threshold for Pearson Correlation Analysis
λ	the maximum correlations under Ω lags

Second, FlowNet captures inter-station relationships by proposing a directional and delay-aware graph reconstruction method, enabling robust *interactive learning* across spatially distributed stations dynamically as described above (cf. Section 2.4 for details).

Third, since FlowNet is a generic framework, it can employ diverse DL models such as MLPs, RNNs, and Transformers for different stations. However, we also propose a specific backbone model for FlowNet, called Disentangled Multiscale Cross-attention Transformer (DMCT), explicitly designed to decompose time series into distinct seasonal and trend components, effectively processing each at multiple temporal scales to improve the prediction accuracy (cf. Section 2.3 for details).

Fourth, we demonstrate the performance of FlowNet in (i) predicting daily water discharges for 425 hydrology stations in the Central Europe from the Lamah-CE dataset (Klingler et al., 2021) and 672 stations in the USA from the CAMELS dataset (Newman et al., 2015) and (ii) predicting water levels for 26 stations in the Mekong River Basin (MRB) collected from the Mekong River Commission (MRC). FlowNet acquires significantly better prediction accuracy in terms of NSE, MAE, and RMSE compared to 18 state-of-the-art (SOTA) prediction models with diverse DL architectures such as Transformer-based models like CATS and iTransformer, MLP-based models like DLinear and RLinear, CNN-based models like MICN, GNN-based models like GCN, ResGCN and ResGAT, RNN-based models like LSTM and GRU, and hybrid models like AGCLSTM. Many of these models are specifically designed or widely used for streamflow forecasting tasks.

2 OUR PROPOSED METHOD FLOWNET

Let $X \in \mathbb{R}^{T \times C}$ be a multivariate time series, where T is the number of time steps and C is the number of channels. Additionally, we denote the c -th channel in the t -th time step as $X_{t,c} \in \mathbb{R}$, the time series of c -th channel as $X_{:,c} \in \mathbb{R}^T$, and the multivariate data in t -th time step as $X_{t,:} \in \mathbb{R}^C$.

Problem formulation. Let $S = \{S_1, \dots, S_N\}$ be the set of N hydrology stations in river networks. Let \mathcal{G} be a directed graph that connects these stations via their direct flow relationships as follows.

162 **Definition 1** (Downstream flow graph \mathcal{G}). Let $\mathcal{G} = (S, A)$ be a directed graph, where $S \in \mathbb{R}^N$ is a
 163 set of N stations and $A \in \mathbb{B}^{N \times N}$ is the binary adjacency matrix. Two stations S_i and S_j are linked
 164 together, i.e., $A_{i,j} = 1$, if the water flows from S_i to S_j directly. Otherwise, $A_{i,j} = 0$.
 165

166 For each station S_i , let $X^i \in \mathbb{R}^{T_i \times C_i}$ be the multivariate time series data associated with it, where
 167 the c -th channel contains streamflow values and the remaining channels are exogenous variables such
 168 as climate. Notably, the number of time steps T_i and the number of channels C_i are station-specific.
 169 We aim to predict future flow values (i.e. the c -th channel) of all stations jointly.

170 **Key concepts of FlowNet.** Though all existing works, such as (Zhao et al., 2020), focus on a
 171 single large joint prediction model f for all stations, we follow an entirely different approach that
 172 constructs a set of M small independent models $F = \{f_k | k = 1..M\}$ and train them in two different
 173 phases: the *local* and *global* ones. Initially, in the *local* phase, each f_k predicts the flow value of
 174 a single station independently in the beginning and belongs to one of the 3 categories including
 175 *per-station* (i.e. measured flow at a station), *inflow* (i.e. water flow into a station) and *outflow* (i.e.
 176 water flow out a station) forecasting as described in Section 2.1. After that, in the *global* phase, these
 177 models *iteratively interact* with others to adjust themselves via the flow graph \mathcal{G} to maximize their
 178 prediction agreements, thus reducing uncertainty and increasing their accuracy (cf. Section 2.2). This
 179 setting is *data flexible*, since in many river basins like the MRB, the time series data lengths and
 180 collected hydrology features can be very different at different stations. Rather than choosing only
 181 a uniform subset of data for all stations like most existing works such as (Kirschstein et al. 2024),
 182 FlowNet can effectively utilize all of them due to its *independent* learning model to maximize learning
 183 generability. Concretely, each model can be trained in the local phase using all available data locally.
 184 During the global phase, the data is limited to common data of participated models. Note that, some
 185 recent HGNN-based methods such as (Jiang et al., 2024) can deal with data heterogeneous but still
 186 require uniform data for nodes with the same type. Moreover, FlowNet is also *model flexible*, any
 187 existing deep learning model can be independently used as f_i , including lightweight models that are
 188 computationally efficient and less prone to overfitting, especially when training data are limited. The
 189 interaction and ensemble fusion concepts of FlowNet among *per-station*, *inflow*, and *outflow* models
 190 also help it to produce more stable results than existing works.

2.1 OVERVIEW OF FLOWNET

192 In FlowNet, we have two main kinds of prediction models including: *per-station* and *cross-station*
 193 ones. The per-station model uses local data at each station to predict its future streamflow.
 194

195 **Definition 2** (Per-station forecasting). For each station S_i and an arbitrary time step t , our objective
 196 is to predict future data $y_t^i = X_{t+1:t+H,c}^i \in \mathbb{R}^{H \times 1}$ of c -th channel water flow from multivariate
 197 historical data $x_t^i = X_{t-L:t,:}^i \in \mathbb{R}^{L \times C_i}$ from a model f_i , where L is the lookback window length and
 198 H is the future horizon length. For simplicity, we drop the term t out whenever it is clear from the
 199 context and let y^i be the ground truth and \hat{y}^i be the prediction at S_i . We learn, $y^i \approx \hat{y}^i = f_i(x^i)$.
 200

201 In a river network, stations have physical relationships. Particularly, the water flows from upper-
 202 stream stations to lower-stream stations. These flow relationships are exploited in FlowNet via
 203 its *local-global interaction scheme* shown in Figure 1 using a flow graph \mathcal{G} to guide the model
 204 interactions. Given a station $S_i \in S$, let $\text{parents}(S_i)$ be the set of stations S_j where $A_{j,i} = 1$
 205 and $\text{child}(S_i)$ be the set of stations S_j where $A_{i,j} = 1$. At a time t , we expect that $X_{t,c}^i =$
 206 $\sum_{j \in \text{parents}(S_i)} \text{inflow}(X_{t-L:t,c}^j) + \epsilon_t$, where *inflow* is the flow contribution of a parent station
 207 S_j within a lookback window L to station S_i and ϵ is a noisy factor. Similarly, we have the *outflow*
 208 relationship from S_i to its child stations. They are exploited to build cross-station models in FlowNet.
 209

210 **Definition 3** (Cross-station prediction). *Wlog*, let S_i and S_j be two adjacent stations with corre-
 211 sponding data $X^i \in \mathbb{R}^{T_i \times C_i}$ and $X^j \in \mathbb{R}^{T_j \times C_j}$ and $A_{j,i} = 1$. Let $f_{i,j}$ be a model to predict the
 212 inflow contribution from station S_j to S_i . At an arbitrary time t , let $\hat{y}_t^{i,j}$ be the prediction outcome of
 213 $f_{i,j}$, we have $\hat{y}_t^{i,j} = f_{i,j}(x_t^{i,j})$, where $x_t^{i,j} = X_{t-L:t,:}^j \oplus X_{t-L:t,c}^i$ be a concatenated historical data
 214 of X^j and historical flow of X^i . However, unlike the per-station forecasting in Definition 2, we do not
 215 have a ground truth $y_t^{i,j}$. Instead, it is a learnable latent variable that can be inferred from the inflow

216 *relationship discussed above during the training process. Similarly, we drop the term t out for sim-
 217 $plicity. Let \hat{y}^i be a prediction outcome of station S_i , we learn $y^i \approx \hat{y}^i = \sum_{j \in parents(S_i)} f_{i,j}(x^{i,j})$.
 218 The outflow cross-station prediction is defined similarly. We use \hat{y}_{inflow}^i and $\hat{y}_{outflow}^i$ to denote
 219 predicted inflow and outflow of S_i , respectively.$*

221 **Overall structure of FlowNet.** Figure 1 shows the overall pipeline of our method. Specifically, we
 222 first refine the downstream flow graph \mathcal{G} via the graph link reconstruction module (E) to avoid weak
 223 relationships, which can happen due to factors such as long-distance stations or human interventions
 224 (cf. Section 2.4). Then we train all *per-station* and *cross-station* models independently using their
 225 local-specific data as much as possible for better performance in the local phase (A). In this way,
 226 even if some stations do not have data on some channels or having different channel lengths, they
 227 will not affect other stations like existing works such as (Kirschstein & Sun, 2024) (cf. Section 2.2).
 228 In the global phase (B), the central of FlowNet, all models iteratively and interactively exchange their
 229 outcomes and adjust themselves *using common data among them* to further reducing uncertainty via
 230 their flow relationships in \mathcal{G} in $Iter$ iterations, where $Iter$ is a predefined parameter (cf. Section 2.2).
 231 Additionally, we propose a Disentangled Multiscale Cross-attention Transformer (DMCT) model to
 232 capture the multiscale seasonality and trend information and use it as a base model for FlowNet (cf.
 233 Section 2.3). Details for each part are described below, and pseudocodes can be found in Appendix F.
 234

2.2 THE LOCAL AND GLOBAL LEARNING PHASES

236 **Local phase - independent learning.** As described above, the local phase aims to train a set F of all
 237 *per-station* and *cross-station* models that are capable of independently predicting flow outcomes for
 238 each station. These models provide multiple diverse views on future flow values for each station.

239 First, for each station S_i , we construct a *per-station* model f_i and train it independently using all of it
 240 available local time series data $X^i \in \mathbb{R}^{T_i \times C_i}$. Intuitively, having more related historical hydrology
 241 data can help the model to have better generalization, thus effectively coping with climate changes as
 242 pointed out in (Milly et al., 2008). FlowNet, with its independent learning scheme, can help us to do
 243 so without having to reduce data to match other stations like (Kirschstein & Sun, 2024; Zhou et al.,
 244 2025). Each f_i is trained using the loss function $\mathcal{L}^i = Loss(\hat{y}^i, y^i)$, where *Loss* is the MAE loss.

245 Second, we train two sets of *cross-station* models for each station S_i , including the *inflow* and
 246 *outflow* models. For each station $S_j \in parents(S_i)$, we create a model $f_{i,j}$. However, we cannot
 247 train them independently like the *per-station* ones, but in groups due to their latent outputs. That
 248 also means the training data period will now be restricted to $K_{inflow}^i = \min_{S_j \in parents(S_i) \cup S_i} (T_j)$,
 249 i.e. nearest K_{inflow}^i time points. Following Definition 3, the local inflow loss will be defined
 250 as $\mathcal{L}_{Local}^i = Loss(\hat{y}_{inflow}^i, y^i)$, where $\hat{y}_{inflow}^i = \sum_{S_j \in parents(S_i)} \hat{y}^{i,j}$. The *outflow* cross-station
 251 models are trained similarly.

252 **Global phase - interactive learning.** In the global phase, all models will interact with others to
 253 adjust their prediction outcomes, thus maximizing their agreements. That can incorporate diverse but
 254 consistent views into each station, thus leading to performance improvements as shown in Section 3.
 255 Here, we limit the interaction to nearest adjacent neighbors in the graph \mathcal{G} only to reduce computation
 256 overhead. For each station S_i , we have a set of 3 prediction outcomes: \hat{y}^i from the *per-station*
 257 model, \hat{y}_{inflow}^i from *inflow* *cross-station* models and $\hat{y}_{outflow}^i$ from *outflow* *cross-station* models.
 258 The unified/ensembled prediction outcome of station S_i will be:

$$\hat{y}_{Global}^i = \text{mean}(\hat{y}_{inflow}^i, \hat{y}_{outflow}^i) \quad (1)$$

261 We then define a global losses between the ground truth y^i , local prediction \hat{y}^i and global prediction
 262 \hat{y}_{Global}^i to update the *per-station* model f_i as following:

$$\mathcal{L}_{Global}^i = \alpha \cdot Loss(\hat{y}^i, y^i) + (1 - \alpha) \cdot Loss(\hat{y}^i, \hat{y}_{Global}^i) \quad (2)$$

265 where the first term denotes the difference between the ground truth and the prediction result of
 266 the model, and the second term denotes the difference between the predicted results of the model
 267 and the global result. The purpose is to minimize their differences, thus balancing final prediction
 268 outcomes from diverse views. Note that the update process will be restricted to the training period of
 269 $K_{Global}^i = \min(K_{inflow}^i, K_{outflow}^i)$ nearest time points, and if both *inflow* and *outflow* models do
 not exist, \mathcal{L}_{Global}^i will be equivalent to the *per-station* loss \mathcal{L}^i .

270 Similarly, we do the global update for all cross-station models via the ground truth y^i , their own
 271 aggregated result \hat{y}_{inflow}^i or $\hat{y}_{outflow}^i$, and the global result \hat{y}_{Global}^i .
 272

273 2.3 DISENTANGLER MULTISCALE CROSS-ATTENTION TRANSFORMER

275 We propose the **Disentangled Multiscale Cross-attention Transformer** (DMCT) as the backbone
 276 model to extract the seasonality-trend temporal features efficiently in streamflow prediction. Recent
 277 studies, such as DLinear (Zeng et al., 2023), utilizes the seasonality-trend decomposition (STD)
 278 method to disentangle the original time series x^i of S^i into seasonality s^i and trend t^i independently.
 279 For simplicity, we omit the station notation i in the following contents unless otherwise stated.

$$280 \quad \mathbf{s}, \mathbf{t} = \text{SeriesDecomp}(x) \quad (3)$$

282 Next, we utilize a stacked Multiscale Cross-attention Transformer Block (MCTB) to capture the
 283 temporal features with multiscale information which has been proven to be efficient (Wang et al.,
 284 2024b; Zhang et al., 2025). Firstly, we decompose the original sequences seasonality \mathbf{s} and trend \mathbf{t} into
 285 multiscale subsequences: $\{\mathbf{s}^0, \dots, \mathbf{s}^l\}$ and $\{\mathbf{t}^0, \dots, \mathbf{t}^l\}$ by down sampling method from TimeMixer
 286 (Wang et al., 2024b). Then we based on the distinct properties of seasonality and trend, we apply an
 287 independent Cross-attention Transformer block from CATS (Kim et al., 2024) to seasonality and a
 288 Linear layer to trend separately. And to balance the efficiency and performance, we apply a Linear
 289 layer to extract the multiscale information. At last, we use the concatenate operation to mix the
 290 multiscale latent sequences and project to the future sequence length by one Linear layer. Overall,
 291 the process of MCTB with l levels is as follows.

$$292 \quad \{\mathbf{s}^0, \dots, \mathbf{s}^l\} = \text{DownSampling}(\mathbf{s}), \{\mathbf{t}^0, \dots, \mathbf{t}^l\} = \text{DownSampling}(\mathbf{t}) \quad (4)$$

$$293 \quad \mathbf{h} = \text{Concat}(\text{MCTB}(\mathbf{h}_s^\ell) + \text{Linear}(\mathbf{h}_t^\ell)), \ell = 0, \dots, l \quad (5)$$

$$294 \quad \hat{y} = \text{Projection}(\mathbf{h}) \quad (6)$$

296 Additionally, we adapt the instance normalization (Kim et al., 2022) to FlowNet when models learn
 297 interactively. Concretely, we use the mean and standard deviation values from the target station S_i to
 298 replace the ones of the input time series from the cross-station series $x^{i,j}$ and predicted output $\hat{y}^{i,j}$ as
 299 follows:

$$300 \quad x^{i,j} = \frac{x^{i,j} - \mu_i}{\sqrt{\sigma_i + \epsilon}}, \hat{y}^{i,j} = \hat{y}^{i,j} \times \sqrt{\sigma_i + \epsilon} + \mu_i \quad (7)$$

303 where μ_i and σ_i denote the mean and variance of the target station time series x^i , respectively, and ϵ
 304 is a small constant for numerical stability.

306 2.4 GRAPH LINKS RECONSTRUCTION MODULE

308 As described above, the downstream flow graph \mathcal{G} provides direct relationships among stations.
 309 However, not all connected stations contribute effectively to predictive performance due to factors
 310 such as long geographical distances or human interventions (e.g., dams or irrigation systems). For
 311 example, the two linked stations, Kontum and Stung Treng, in the MRB are nearly 400km away from
 312 each other. Thus, their relationship is weaker. To address this, we propose a two-step scheme that
 313 detects and retains only strongly correlated and beneficial links to improve predictive accuracy.

314 **Pearson Correlation Analysis (PearCorr).** We utilize the Pearson correlation coefficient to analyze
 315 the lag correlations between two adjacent stations S_i and S_j in the graph \mathcal{G} . We repeatedly shift the
 316 related time series ω time steps and calculate the Pearson correlation coefficient until reaching the
 317 maximum lag threshold Ω . Let $\lambda_{i,j}$ be the maximum correlations under Ω lags (default $\Omega = L$).
 318

$$319 \quad \lambda_{i,j} = \max(\text{PearCorr}(\text{Shift}(X_{:,c}^i, \omega), X_{:,c}^j)), \omega = 0, \dots, \Omega \quad (8)$$

320 **Validation-based Links Reconstruction (VLR).** Additionally, we propose a validation-based links
 321 reconstruction scheme to refine the adjacent matrix $A \in \mathbb{B}^{N \times N}$. Given two adjacent stations S_i and
 322 S_j with $A_{j,i} = 1$, we construct two model $f_{i,j}$ that use data from S_j to predict S_i and f_i that predict
 323 S_i via its local data. We keep $A_{j,i} = 1$ if S_i and S_j have strong enough correlation and $f_{i,j}$ has close
 324 performance to f_i on the validation set (indicated by the loss $\mathcal{L}_{\text{vali}}(\cdot)$).

Figure 2: Overall performance of FlowNet for $H \in \{1, 3, 5\}$. (A) Full NSE results of all studied models on CAMELS (sorted in descending order of mean values). (B) Full NSE results of all studied models on LamaH (sorted). (C-F) NSE comparisons between FlowNet and 4 selected baselines on LamaH. A point over the diagonal line indicates that FlowNet is better. (G) RMSEs of FlowNet compared to some baselines on 26 stations of the Mekong dataset ($H = 1$).

$$A_{i,j} = \begin{cases} 1 & \text{if } \mathcal{L}_{\text{vali}}(f_{i,j}) < \gamma \cdot \mathcal{L}_{\text{vali}}(f_i) \text{ and } \lambda_{i,j} > \phi, \\ 0 & \text{otherwise} \end{cases} \quad (9)$$

where ϕ (default 0.7) and γ (default 1.2) are two predefined thresholds.

3 EXPERIMENTS

Benchmarks. We demonstrate the performance of FlowNet for two main tasks: (i) predicting daily water discharges for 425 hydrology stations in the Central Europe from the LamaH-CE dataset (Klingler et al., 2021) and 671 stations in the USA from the CAMELS dataset (Newman et al., 2015) and (ii) predicting daily water levels for 26 stations in the Mekong River Basin (MRB) collected from the Mekong River Commission (MRC). Please refer to Appendix A for detail descriptions.

Baselines. We compare our method with 18 state-of-the-art (SOTA) baselines including: Transformer-based models (CATS (Kim et al., 2024), iTransformer (Liu et al., 2023), PatchTST (Nie et al., 2023)), MLP-based models (DLinear (Zeng et al., 2023), RLinear (Li et al., 2023), CycleNet (Lin et al., 2024), TQNet (Lin et al., 2025), FilterNet (Yi et al., 2024), SOFTS (Han et al., 2024), TSMixer (Chen et al., 2023)), CNN-based model (MICN (Wang et al., 2023)), GNN-based models (GCN, GCNII, ResGCN, ResGAT (Kirschstein & Sun, 2024)), and RNN-based models (LSTM (Kratzert et al., 2018), GRU (Chung et al., 2014)) and a hybrid model AGCLSTM (Feng et al., 2022). Among them, GNN, GCNII, ResGCN, ResGAT, LSTM and especially AGCLSTM are specifically tailored for streamflow forecasting in (Kratzert et al., 2018; Kirschstein & Sun, 2024; Feng et al., 2022).

Evaluation metrics and experimental settings. We use the Nash–Sutcliffe model efficiency coefficient (NSE), the mean absolute error (MAE) and the root mean squared error (RMSE) as metrics to evaluate the performance for all baselines (c.f. Appendix B for details).

378 Table 2: Mean NSE results of 18 selected SOTA baselines compared to our methods DMCT and
 379 FlowNet on 3 datasets with 3 different prediction horizon settings $H \in \{1, 3, 5\}$. Best results are
 380 highlighted in bold and second best results are underlined.

Dataset	CAMELS			LamaH			Mekong		
	Horizon	1	3	5	1	3	5	1	3
CycleNet	0.5587	0.4058	0.3361	0.6012	0.4276	0.3433	0.9268	0.8818	0.8476
TQNet	0.5629	0.4070	0.3381	0.5686	0.4686	0.3779	0.9309	0.8862	0.8530
DLinear	0.5330	0.3955	0.3342	0.6100	0.4587	0.3871	0.9315	<u>0.8889</u>	<u>0.8545</u>
RLinear	0.5322	0.3944	0.3362	0.6100	0.4549	0.3906	0.9269	0.8825	0.8472
FilterNet	0.5409	0.3935	0.3418	0.5922	0.4153	0.3385	0.9248	0.8815	0.8483
iTransformer	0.4857	0.3840	0.2861	0.6349	0.4698	0.3805	0.9217	0.8822	0.8431
PatchTST	0.5574	0.4048	0.3150	0.6121	0.4379	0.3672	<u>0.9322</u>	0.8884	0.8427
CATS	0.5565	0.4087	0.3339	0.6315	0.4376	0.3903	<u>0.9206</u>	0.8773	0.8359
LSTM	0.5368	0.3978	0.3338	0.6442	0.4563	0.3356	0.8708	0.8401	0.8130
GRU	0.4733	0.3453	0.2984	0.6427	0.4606	0.2624	0.8862	0.8479	0.8230
MICN	0.5493	0.4071	0.3372	0.6370	0.4837	0.3992	0.9111	0.8766	0.8431
SOFTS	0.5291	0.3772	0.3187	0.5675	0.4557	0.3769	0.9198	0.8774	0.8420
TSMixer	<u>0.5657</u>	0.3949	0.3224	0.6407	0.4577	0.3841	0.9287	0.8838	0.8487
GCN	-0.069	-0.071	-0.072	0.1159	0.0715	0.0657	0.8151	0.7815	0.7577
GCNII	0.5565	0.4064	0.3345	0.5975	0.4463	0.3863	0.8813	0.8320	0.8029
ResGCN	0.5426	0.4005	0.3331	0.5965	0.4387	0.3917	0.8829	0.8284	0.7979
ResGAT	0.5414	0.4019	0.3335	0.6089	0.4062	0.3721	0.8776	0.8207	0.7891
AGCLSTM	0.1956	-0.143	-0.069	0.5966	0.4408	0.3458	0.8876	0.8585	0.7727
DMCT	0.5631	<u>0.4093</u>	<u>0.3422</u>	<u>0.6503</u>	<u>0.4876</u>	<u>0.4060</u>	0.9309	<u>0.8889</u>	0.8530
FlowNet	0.5784	0.4228	0.3540	0.6598	0.4928	0.4067	0.9323	0.8908	0.8555

3.1 MAIN RESULTS

Figure 2 (A) show NSE values of all studied methods over all 425 stations and 3 prediction horizons for LamaH. FlowNet acquires the best overall performances compared to other baselines, following by DMCT. The same results can be observed in (B) for CAMELS. In (C, D, E, F), we directly compare NSEs of FlowNet with top baselines for all 425 stations of LamaH over 3 prediction horizons. FlowNet outperforms ResGAT, a recent GNN-based method, on 1,151/1,275 cases (90.2%) and LSTM, the most success model for streamflow forecasting, on 1,015/1,275 (79.6%). Moreover, major points are far from the diagonal line, indicating that FlowNet has much better performances than others. (G) shows RMSEs of FlowNet compared to selected baselines for all 26 stations of the Mekong dataset with $H = 1$. FlowNet consistently outperforms others in major cases.

Additionally, as shown in Table 2, FlowNet has mean NSEs of (0.932, 0.890, 0.855) for $H = (1, 3, 5)$ over 26 stations in the Mekong dataset, which are much better than (0.882, 0.828, 0.797) of ResGCN, the best performed GNN-based approach in (Kirschstein et al. 2024). It also outperforms all baselines in terms of mean NSEs over 9 combination cases of datasets and prediction horizons. Full results can be found in Tables 8, 9, and 10 in Appendix C. For RMSE, FlowNet is the best method on 6 and second best method on 2 cases. For MAE, it acquires 4 best and 4 second best over 9 cases.

3.2 ABLATION STUDIES AND ANALYSES

Effects of the local global interaction scheme. To understand effects of FlowNet’s interaction scheme (c.f. Section 2.2), we conduct ablation experiments on 6 stations of the Mekong dataset with significant correlation links from other stations. As shown in Figure 3 (A), the backbone model can benefit significantly from FlowNet (with both local and global phases) with most of the selected stations having the best NSE values, compared to the sole use of the local or global phase. This means interactions among stations help to reduce uncertainty, thus increasing performances as we discussed in Section 2.1.

Table 3: Effects of different components of DMCT on the Mekong dataset, where w/o D, w/o M, w/o IN denote without Disentangled, Multiscale and Instance Normalization modules, respectively.

	DMCT	w/o D	w/o M	w/o IN
H=1	0.930	0.920	0.927	-0.18
H=3	0.888	0.877	0.887	-1.81
H=5	0.853	0.843	0.852	-2.45

Figure 3: Ablation studies on the Mekong data. (A) Performances of FlowNet when using with Local only, Global only, and Local-Global scheme on 6 selected stations. (B) Performances of DMCT, FlowNet with the original graph \mathcal{G} and FlowNet with our graph reconstruction strategy on 6 selected stations. (C-E) Performances of FlowNet on all 26 stations when being used with different barebones including LSTM, GRU and our proposed model DMCT.

Effects of the graph link reconstruction. In Figure 3 (B), we study deeper on our proposed graph link reconstruction approach, which contains two steps: PearCorr and VLR (c.f. Section 2.4). While using the original graph \mathcal{G} does not lead to clear performance improvements compared to DMCT since stations in the Mekong dataset are far from others (c.f. Figure 5 in Appendix E), thus weakening their relationships. The graph refinement module helps to boost performances in all cases compared to DMCT since weak links are removed, thus making the interactions among models more effective (c.f. refined graphs in Figures 9 and 10 in Appendix E).

Effects of different backbone models. We employ different DL architectures as backbone models for FlowNet, including LSTM, GRU, and our DMCT backbone. Figure 3 (C) shows NSEs for all 26 stations for LSTM and LSTM with FlowNet. As we see, FlowNet significantly boosts the NSE scores of most stations compared to those of LSTM. The mean NSE of FlowNet thus increases to 0.899 from 0.866 of LSTM. The same results can be observed on GRU and DMCT in (D, E), respectively. These demonstrates the generality and flexibility of FlowNet for boosting performances of its employed barebones via its model interactive scheme.

Effects of different components of DMCT. Table 3 demonstrates that Disentangled module, Multi-scale module and Instance Normalization are necessary for accurate prediction performance. Notably, without Instance Normalization the model cannot capture the accurate temporal features due to temporal distribution shift (Kim et al., 2022).

Computational analysis. Table 4 shows computational costs of FlowNet and other baselines. FlowNet requires additional cross-station models and interaction overheads. Hence, it is more computationally expensive than its barebone DMCT and other lightweight models lie DLinear. But it is less costly than SOFTS or MICN in terms of memory and parameters. Nevertheless, in exchange for its high computation cost, FlowNet significantly outperforms others in terms of prediction accuracy as shown above.

Hyperparameter sensitivity. We study the sensitivity of all hyperparameters for FlowNet and DMCT in Figure 7 in Appendix D such as the learning rate, the dimension of the hidden layer, the number of multiscale levels, the regulation parameter α , number of global iterations ($Iter$), and look back window size (L).

Table 4: Memory consumptions, times per epoch, and parameters for different methods on Can Tho station of the Mekong datasets with lookback length $L = 32$ and predict horizon $H = 5$.

Method	Memory(MB)	Time(s)	Parameters
DLinear	262	0.56	0.3K
LSTM	374	0.71	68K
GRU	358	0.64	51K
iTransformer	332	1.04	0.4M
PatchTST	368	1.13	0.4M
MICN	404	1.14	1.2M
TSMixer	262	0.78	9.2K
SOFTS	436	0.88	0.9K
FilterNet	292	0.62	77K
CATS	268	0.86	0.2M
DMCT	364	1.08	0.5M
FlowNet	424	1.80	1.1M

486
487
488
489

4 RELATED WORKS

490
491
492
493

River flow forecasting plays a critical role in flood management, water resource optimization, infrastructure protection, and climate resilience and has attracted many research efforts such as (Feng et al., 2021; Kratzert et al., 2019; Zhou et al., 2025; Bindas et al., 2024; Song et al., 2025; Eddin et al., 2025; Wang et al., 2024a; Kratzert et al., 2024).

494
495
496
497
498
499
500

Traditional streamflow forecasting methods such as ARIMA, Multiple Linear Regression (MLR), and Moving Average (MA), which assume linearity and thus often underperform in capturing the nonlinear and chaotic behavior of hydrological systems (Sivakumar, 2009). Recently, RNN-based models like LSTM and GRU have demonstrated superior performance in capturing nonlinear temporal dependencies in flood forecasting tasks (Kratzert et al., 2018). Enhancements such as attention-based LSTMs further improve accuracy by focusing on influential time steps (Ding et al., 2020). However, these models typically treat stations as independent time series and often ignore the spatial interactions between them, which are critical in hydrological systems with directional flow structures. FlowNet, in contrast, aims to predict all stations jointly and use their spatial interaction to improve results.

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515

GNNs are well-suited for hydrological networks, where stations can be represented as nodes and river flows as directed edges. Foundational models such as GCN (Kipf & Welling, 2017), ChebNet (Defferrard et al., 2016), and GraphSAGE (Hamilton et al., 2017) provided mechanisms for learning spatial representations. These approaches have inspired applications in traffic prediction (Song et al., 2020) and later, hydrology. Recent models such as ST-GCN (Feng et al., 2021) integrates GCNs with LSTM and attention mechanisms to capture spatiotemporal dependencies. (Zhou et al., 2025) propose HGCN, introducing flow direction and time delays directly into a time-delayed directed graph structure, enhancing realism and performance. But they typically require all stations to have identical features and sequence lengths, and rely on static adjacency matrices that fail to reflect dynamic hydrological influences, limiting their effectiveness across heterogeneous and dynamically evolving hydrological networks. HGCN-based models such as (Jiang et al., 2024) are more data flexible than GNNs-based ones but nodes of the same types still require unified inputs. They also focus on feature propagation among nodes rather than outcomes. In contrast, FlowNet uniquely uses independent models to interact with others for better utilizing arbitrary existing data and boosting performance via exchanging and adjusting prediction outcomes iteratively. It also dynamically refine the underlying graph for more effective interactions among stations.

516
517
518
519
520
521
522
523

Recently, many SOTA methods in general time series forecasting have been introduced in the literature and archived SOTA performances on various time series benchmarks such as iTransformer (Liu et al., 2023), FilterNet (Yi et al., 2024), TQNet (Lin et al., 2025), CycleNet (Lin et al., 2024), Informer (Zhou et al., 2021), AutoFormer (Wu et al., 2021), FEDFormer (Zhou et al., 2022), PatchTST (Nie et al., 2023), CAT (Kim et al., 2024), DLinear (Zeng et al., 2023) or RLinear (Li et al., 2023). These methods can also be applied for streamflow forecasting. Hence, we include them into our study to ensure our comparison is not limited only to models specifically designed for hydrology.

524
525

5 CONCLUSION

526
527
528
529
530
531
532
533

We introduce a *first independent and interactive modeling framework*, called FlowNet, for streamflow prediction. FlowNet utilizes a unique local-global scheme that establishes individualized models and introduces interactive mechanisms for multiple heterogeneous station data, and establishes synchronous spatio-temporal dependencies for all stations through iterative interactive learning with a dynamic refined graph and a proposed DMCT backbone. FlowNet acquires superior performances compared to 18 SOTA baselines on 3 large scale benchmarks. It is also highly flexible and can be used with any exiting DL models and available data for each station.

534
535
536

6 REPRODUCIBILITY STATEMENT

537
538
539

The LamaH-CE and CAMELS datasets are publicly available, with sources cited in Section 3. The Mekong Water Level dataset and the source code used for all experiments are included in the supplementary material.

540 REFERENCES
541

542 Nans Addor, Andrew J Newman, Naoki Mizukami, and Martyn P Clark. The camels data set:
543 catchment attributes and meteorology for large-sample studies. *Hydrol. Earth Syst. Sci.*, 21(10):
544 5293–5313, 2017.

545 Tadd Bindas, Wen-Ping Tsai, Jiangtao Liu, Farshid Rahmani, Dapeng Feng, Yuchen Bian, Kathryn
546 Lawson, and Chaopeng Shen. Improving river routing using a differentiable muskingum-cunge
547 model and physics-informed machine learning. *Water Resour. Res.*, 60(1):e2023WR035337, 2024.

548 Manuela I Brunner, Louise Slater, Lena M Tallaksen, and Martyn Clark. Challenges in modeling and
549 predicting floods and droughts: A review. *WIRES WATER*, 8(3):e1520, 2021.

550 Kaixuan Cai, Jinxin He, Qingliang Li, Wei Shangguan, Lu Li, and Huiming Hu. Meta-lstm in
551 hydrology: Advancing runoff predictions through model-agnostic meta-learning. *J. Hydrol.*, 639:
552 131521, 2024.

553 Marco Castangia, Lina Maria Medina Grajales, Alessandro Aliberti, Claudio Rossi, Alberto Macii,
554 Enrico Macii, and Edoardo Patti. Transformer neural networks for interpretable flood forecasting.
555 *Environ. Model. Softw.*, 160:105581, 2023.

556 Si-An Chen, Chun-Liang Li, Nate Yoder, Sercan O Arik, and Tomas Pfister. Tsmixer: An all-mlp
557 architecture for time series forecasting. *arXiv preprint arXiv:2303.06053*, 2023.

558 Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
559 gated recurrent neural networks on sequence modeling. *arXiv preprint arXiv:1412.3555*, 2014.

560 Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
561 time-series forecasting. In *ICML*, 2024.

562 Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
563 graphs with fast localized spectral filtering. In *NeurIPS*, volume 29, pp. 3844–3852, 2016.

564 Yukai Ding, Yuelong Zhu, Jun Feng, Pengcheng Zhang, and Zirun Cheng. Interpretable spatio-
565 temporal attention lstm model for flood forecasting. *Neurocomputing*, 403:348–359, 2020.

566 Mohamad Hakam Shams Eddin, Yikui Zhang, Stefan Kollet, and Juergen Gall. Rivermamba: A state
567 space model for global river discharge and flood forecasting. In *NeurIPS*, 2025.

568 Juan F Farfán-Durán and Luis Cea. Streamflow forecasting with deep learning models: A side-by-side
569 comparison in northwest spain. *Earth Sci. Inform.*, pp. 1–27, 2024.

570 Jun Feng, Zhongyi Wang, Yirui Wu, and Yuqi Xi. Spatial and temporal aware graph convolutional
571 network for flood forecasting. In *IJCNN*, pp. 1–8, 2021.

572 Jun Feng, Haichao Sha, Yukai Ding, Le Yan, and Zhangcheng Yu. Graph convolution based spatial-
573 temporal attention lstm model for flood forecasting. In *IJCNN*, pp. 1–8. IEEE, 2022.

574 Philip W Gassman, Manuel R Reyes, Colleen H Green, and Jeffrey G Arnold. The soil and water
575 assessment tool: historical development, applications, and future research directions. *Transactions
576 of the ASABE*, 50(4):1211–1250, 2007.

577 Sujan Ghimire, Zaher Mundher Yaseen, Aitzaz A Farooque, Ravinesh C Deo, Ji Zhang, and Xiaohui
578 Tao. Streamflow prediction using an integrated methodology based on convolutional neural network
579 and long short-term memory networks. *Sci. Rep.*, 11(1):17497, 2021.

580 Niv Giladi, Zvika Ben-Haim, Sella Nevo, Yossi Matias, and Daniel Soudry. Physics-aware downsam-
581 pling with deep learning for scalable flood modeling. *NeurIPS*, 34:1378–1389, 2021.

582 Ingjerd Haddeland, Jens Heinke, Hester Biemans, Stephanie Eisner, Martina Flörke, Naota Hanasaki,
583 Markus Konzmann, Fulco Ludwig, Yoshimitsu Masaki, Jacob Schewe, et al. Global water resources
584 affected by human interventions and climate change. *Proc. Natl. Acad. Sci.*, 111(9):3251–3256,
585 2014.

594 William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
 595 In *NeurIPS*, volume 30, pp. 1024–1034, 2017.
 596

597 Lu Han, Xu-Yang Chen, Han-Jia Ye, and De-Chuan Zhan. Softs: Efficient multivariate time series
 598 forecasting with series-core fusion. *NeurIPS*, 37:64145–64175, 2024.

599 Arlen W Harbaugh, Edward R Banta, Mary C Hill, and Michael G McDonald. Modflow-2000, the us
 600 geological survey modular ground-water model: User guide to modularization concepts and the
 601 ground-water flow process. 2000.

602

603 Youchuan Hu, Le Yan, Tingting Hang, and Jun Feng. Stream-flow forecasting of small rivers based
 604 on lstm. *arXiv preprint arXiv:2001.05681*, 2020.

605

606 Jiaoge Jiang, Chen Chen, Yang Zhou, Stefano Berretti, Lei Liu, Qingqi Pei, Jianming Zhou, and
 607 Shaohua Wan. Heterogeneous dynamic graph convolutional networks for enhanced spatiotemporal
 608 flood forecasting by remote sensing. *IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.*, 17:
 609 3108–3122, 2024.

610

611 Dongbin Kim, Jinseong Park, Jaewook Lee, and Hoki Kim. Are self-attentions effective for time
 612 series forecasting? *NeurIPS*, 37:114180–114209, 2024.

613

614 Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Reversible
 615 instance normalization for accurate time-series forecasting against distribution shift. In *ICLR*,
 2022.

616

617 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *ICLR*, 2015.

618

619 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 In *ICLR*, 2017.

620

621 Nikolas Kirschstein and Yixuan Sun. The merit of river network topology for neural flood forecasting.
 In *ICML*, pp. 24713–24725, 2024.

622

623 Christoph Klingler, Karsten Schulz, and Mathew Herrnegger. Lamah— large-sample data for
 624 hydrology and environmental sciences for central europe. *Earth Syst. Sci. Data Discuss.*, 2021:
 625 1–46, 2021.

626

627 Frederik Kratzert, Daniel Klotz, Claus Brenner, Karsten Schulz, and Mathew Herrnegger. Rainfall–
 628 runoff modelling using long short-term memory (lstm) networks. *Hydrol. Earth Syst. Sci.*, 22(11):
 629 6005–6022, 2018.

630

631 Frederik Kratzert, Daniel Klotz, Guy Shalev, Günter Klambauer, Sepp Hochreiter, and Grey Nearing.
 632 Towards learning universal, regional, and local hydrological behaviors via machine learning applied
 633 to large-sample datasets. *Hydrol. Earth Syst. Sci.*, 23(12):5089–5110, 2019.

634

635 Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing. Hess opinions: Never train a long
 636 short-term memory (lstm) network on a single basin. *Hydrol. Earth Syst. Sci.*, 28(17):4187–4201,
 2024.

637

638 Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An
 639 investigation on linear mapping. *CoRR*, abs/2305.10721, 2023.

640

641 Shengsheng Lin, Weiwei Lin, Xinyi Hu, Wentai Wu, Ruichao Mo, and Haocheng Zhong. Cyclenet:
 642 Enhancing time series forecasting through modeling periodic patterns. *NeurIPS*, 37:106315–
 106345, 2024.

643

644 Shengsheng Lin, Haojun Chen, Haijie Wu, Chunyun Qiu, and Weiwei Lin. Temporal query network
 645 for efficient multivariate time series forecasting. *arXiv preprint arXiv:2505.12917*, 2025.

646

647 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 648 itransformer: Inverted transformers are effective for time series forecasting. *arXiv preprint
 649 arXiv:2310.06625*, 2023.

648 Paul CD Milly, Julio Betancourt, Malin Falkenmark, Robert M Hirsch, Zbigniew W Kundzewicz,
 649 Dennis P Lettenmaier, and Ronald J Stouffer. Stationarity is dead: Whither water management?
 650 *Science*, 319(5863):573–574, 2008.

651 Husain Najafi, Pallav Kumar Shrestha, Oldrich Rakovec, Heiko Apel, Sergiy Vorogushyn, Rohini
 652 Kumar, Stephan Thober, Bruno Merz, and Luis Samaniego. High-resolution impact-based early
 653 warning system for riverine flooding. *Nat. Commun.*, 15(1):3726, 2024.

654 Andrew J Newman, Martyn P Clark, Kevin Sampson, Andrew Wood, Lauren E Hay, Andy Bock,
 655 Roland J Viger, David Blodgett, Levi Brekke, JR Arnold, et al. Development of a large-sample
 656 watershed-scale hydrometeorological data set for the contiguous usa: data set characteristics and
 657 assessment of regional variability in hydrologic model performance. *Hydrol. Earth Syst. Sci.*, 19
 658 (1):209–223, 2015.

659 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
 660 words: Long-term forecasting with transformers. In *ICLR*, 2023.

661 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 662 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Z. Yang,
 663 Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
 664 and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. *CoRR*, abs/1912.01703, 2019.

665 David E Robertson and QJ Wang. A bayesian approach to predictor selection for seasonal streamflow
 666 forecasting. *J. Hydrometeorol.*, 13(1):155–171, 2012.

667 B Sivakumar, AW Jayawardena, and TMKG Fernando. River flow forecasting: use of phase-space
 668 reconstruction and artificial neural networks approaches. *J. Hydrol.*, 265(1-4):225–245, 2002.

669 Bellie Sivakumar. Nonlinear dynamics and chaos in hydrologic systems: latest developments and a
 670 look forward. *Stoch. Environ. Res. Risk Assess.*, 23:1027–1036, 2009.

671 Chao Song, Youfang Lin, Shengnan Guo, and Huaiyu Wan. Spatial-temporal synchronous graph
 672 convolutional networks: A new framework for spatial-temporal network data forecasting. In *AAAI*,
 673 volume 34, pp. 914–921, 2020.

674 Yalan Song, Tadd Bindas, Chaopeng Shen, Haoyu Ji, Wouter JM Knoben, Leo Lonzarich, Martyn P
 675 Clark, Jiangtao Liu, Katie van Werkhoven, Sam Lamont, et al. High-resolution national-scale
 676 water modeling is enhanced by multiscale differentiable physics-informed machine learning. *Water
 677 Resour. Res.*, 61(4):e2024WR038928, 2025.

678 Zsolt Vizi, Bálint Batki, Luca Rátka, Szabolcs Szalánczi, István Fehérváry, Péter Kozák, and Tímea
 679 Kiss. Water level prediction using long short-term memory neural network model for a lowland
 680 river: a case study on the tisza river, central europe. *Environ. Sci. Eur.*, 35(1):92, 2023.

681 Cornelis Bouwewijn Vreugdenhil. *Numerical methods for shallow-water flow*, volume 13. Springer
 682 Science & Business Media, 2013.

683 Chao Wang, Shijie Jiang, Yi Zheng, Feng Han, Rohini Kumar, Oldrich Rakovec, and Siqi Li.
 684 Distributed hydrological modeling with physics-encoded deep learning: A general framework and
 685 its application in the amazon. *Water Resour. Res.*, 60(4):e2023WR036170, 2024a.

686 Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. MICN: multi-
 687 scale local and global context modeling for long-term series forecasting. In *ICLR*, 2023.

688 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang, and
 689 Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. In *ICLR*,
 690 2024b.

691 Zhi-Yu Wang, Jun Qiu, and Fang-Fang Li. Hybrid models combining emd/eemd and arima for
 692 long-term streamflow forecasting. *Water*, 10(7):853, 2018.

693 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
 694 with auto-correlation for long-term series forecasting. *NeurIPS*, 34:22419–22430, 2021.

702 Kun Yi, Jingru Fei, Qi Zhang, Hui He, Shufeng Hao, Defu Lian, and Wei Fan. Filternet: Harnessing
703 frequency filters for time series forecasting. *NeurIPS*, 37:55115–55140, 2024.

704

705 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
706 forecasting? In *AAAI*, pp. 11121–11128, 2023.

707

708 Zichi Zhang, Tuan Dung Pham, Yimeng An, Ngoc Phu Doan, Majed Alsharari, Viet-Hung Tran,
709 Anh-Tuan Hoang, Hans Vandierendonck, and Son T Mai. Waveletmixer: A multi-resolution
710 wavelets based mlp-mixer for multivariate long-term time series forecasting. In *AAAI*, volume 39,
711 pp. 22741–22749, 2025.

712

713 Qun Zhao, Yuelong Zhu, Kai Shu, Dingsheng Wan, Yufeng Yu, Xudong Zhou, and Huan Liu. Joint
714 spatial and temporal modeling for hydrological prediction. *IEEE Access*, 8:78492–78503, 2020.

715

716 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wanhai
717 Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In *AAAI*,
718 volume 35, pp. 11106–11115, 2021.

719

720 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
721 enhanced decomposed transformer for long-term series forecasting. In *ICML*, pp. 27268–27286.
722 PMLR, 2022.

723

724 Yi Zhou, Yilin Duan, Hong Yao, Xinchuan Li, and Shengwen Li. Incorporating hydrological
725 constraints with deep learning for streamflow prediction. *Expert Syst. Appl.*, 259:125379, 2025.
726 doi: 10.1016/j.eswa.2024.125379.

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 Appendices

758 Our appendices are outlined as follows. We describe the details of the dataset that we used to evaluate
 759 our method in A. The experiment setups, including the metrics selection, parameter settings and
 760 implementation details are described in B. In C, we first show the results with standard deviation that
 761 run on multiple different random seeds to demonstrate the stability of FlowNet compared to other
 762 baselines. Then we show the full performance comparison on three datasets (CAMELS, LamaH and
 763 Mekong) on all evaluation metrics (NSE, RMSE and MAE) and future prediction horizons H . The
 764 hyperparameter sensitivity for FlowNet and DMCT is studied in D. We present the refined graphs in
 765 E. In F, we provide the pseudo-code for our algorithms. In G, we describe the limitations of our work
 766 and we present the broader impact in H. LLM declaration can be found in I.

767 CONTENTS

770 A Dataset Details	17
771 A.1 LamaH Dataset	17
772 A.2 CAMELS Dataset	17
773 A.3 Mekong Water Level Dataset	18
776 B Experiments Details	19
778 B.1 Experiments Setup	20
779 B.2 Baselines Details	20
781 C Full Results	21
783 C.1 Results with Different Random Seeds	21
784 C.2 Full Results of CAMELS	22
785 C.3 Full Results of LamaH	23
787 C.4 Full Results of Mekong	23
788 C.5 Results Comparison with EALSTM	24
789 C.6 Results Comparison with TimesFM	25
791 C.7 Ablation Results of Local Global	25
793 C.8 Ablation Results of Backbone Models	25
794 C.9 Ablation Results of Graphs	25
796 C.10 Ablation Results of CAMELS KNN Settings	25
797 C.11 Runtimes of FlowNet	26
798 C.12 Statistical Significance Comparison	27
801 D Details of the Hyperparameter Sensitivity	27
803 E Graphs	28
805 F Pseudo-code of Algorithms	29
807 F.1 Local Phase	29
808 F.2 Global Phase	31
809 F.3 Local Global Training Scheme	31

810	F.4 Validation-based Links Reconstruction	31
811		
812	G Limitations	32
813		
814	H Broader Impact	32
815		
816	I LLM Usage	33
817		
818		
819		
820		
821		
822		
823		
824		
825		
826		
827		
828		
829		
830		
831		
832		
833		
834		
835		
836		
837		
838		
839		
840		
841		
842		
843		
844		
845		
846		
847		
848		
849		
850		
851		
852		
853		
854		
855		
856		
857		
858		
859		
860		
861		
862		
863		

Figure 4: Visualization of the LamaH river network. Each blue marker corresponds to a gauging station from the LamaH dataset, while yellow lines with arrowheads indicate the directed river connections from upstream to downstream.

A DATASET DETAILS

A.1 LAMAH DATASET

The LamaH-CE (Large-Sample Data for Hydrology and Environmental Sciences for Central Europe) dataset, LamaH for short, serves as a critical benchmark for large-scale hydrological modeling, providing standardized data from 859 gauged catchments across Central Europe with daily and hourly resolutions spanning over 35 years of records (Klingler et al., 2021). This dataset consist of long-term hydrological time series, including streamflow, precipitation, and meteorological features with a comprehensive suite of over 60 static catchment attributes, containing topographic indices, climatic statistics, land cover classifications, soil properties, and geological characteristics. Such diversity allows robust exploration of watershed behaviors under varying environmental conditions, particularly supporting machine learning applications in predicting complex hydrological processes.

In our experiments, we extract an 18-year daily subset (2000–2017) from 425 high-quality catchments to ensure temporal consistency and spatial representativeness. The data is partitioned into training (2000–2013), validation (2014–2015), and test sets (2016–2017). We focus on the target variable of daily streamflow, together with four dynamic features including precipitation, topsoil moisture, air temperature, and surface pressure. These features capture key hydrological drivers, with precipitation and moisture informing infiltration-runoff dynamics, while temperature and pressure influence evapotranspiration and atmospheric interactions.

The LamaH dataset provides the streamflow graph inside. Figure 4 shows the station locations and the downstream flow graph of LamaH.

A.2 CAMELS DATASET

The CAMELS dataset (Catchment Attributes and Meteorology for Large-sample Studies) is a benchmark resource for large-sample hydrological modeling, providing standardized data for 671 catchments in the contiguous United States (CONUS) over the period 1980–2014 and is publicly available (Addor et al., 2017). This dataset contains daily time series of meteorological data (e.g., precipitation, temperature) and streamflow measurements with a comprehensive suite of static catchment attributes, thus allowing the exploration of watershed behavior across diverse climatic and topographic conditions.

918
919
920 Table 5: The summary of Mekong dataset.
921
922
923
924

Validation Start Date	Testing Start Date	Validation Data Points	Testing Data Points	Frequency	Target
2019/11/1	2021/11/1	731	730	Daily	Water.Level

925 The static attributes contains 35 variables spanning multiple categories: climate indices (e.g., mean
926 precipitation, aridity index, snow fraction), topographic features (e.g., mean elevation, slope area),
927 vegetation characteristics (e.g., forest fraction, leaf area index), soil properties (e.g., soil depth,
928 hydraulic conductivity), and geological traits (e.g., carbonate rock proportion, permeability). These
929 attributes are derived from spatially aggregated data and serve as critical inputs for characterizing
930 catchment heterogeneity. Dynamic features include meteorological variables such as precipitation,
931 temperature, and potential evapotranspiration, which are provided at daily resolutions to capture
932 temporal dynamics. The streamflow data, measured at catchment outlets, are used as the target
933 variable for predictive modeling.

934 We partition the dataset into a 10-year subset, aligning with common practices in hydrological model
935 evaluation. The training set spans October 1, 1997, to September 30, 2004 (7 years), the validation
936 set covers October 1, 2004, to September 30, 2005 (1 year), and the test set extends from October 1,
937 2005, to September 30, 2007 (2 years).

938 Preprocessing steps are applied to address scale disparities across catchments. Following Cai et al.
939 (2024), we normalize streamflow values using catchment area and mean annual precipitation to
940 account for volumetric differences. Additionally, a logarithmic transformation for streamflow variable
941 v is employed to stabilize variance and handle zero-inflation in flow data:

$$942 v_o = \log_{10}(\sqrt{v + 0.1}) \quad (10)$$

943 where v_o represents the transformed streamflow feature, and the constant 0.1 prevents numerical
944 instability for zero or near-zero values. This transformation enhances model training by improving
945 the homogeneity of input distributions across catchments of varying sizes and regimes.

946 There is no streamflow graph provided in CAMELS. Hence we use a KNN graph (with $K = 2$) to
947 simulate the flow relationships. The intuition is that if two stations are close, they are more likely
948 affecting others.

949 A.3 MEKONG WATER LEVEL DATASET

950 We summarize the overall structure of the Mekong dataset in Table 5, which reports the start dates of
951 the validation and testing sets, the number of data points in each split, the temporal resolution, and
952 the prediction target. Specifically, the dataset adopts a daily frequency, with the validation period
953 starting from November 1, 2019 and the testing period from November 1, 2021, corresponding to 731
954 and 730 samples, respectively. The forecasting target across all stations is the daily water level.

955 Table 6 provides fine-grained information for each individual hydrological station. These stations
956 differ substantially in both temporal coverage and sensing modalities: the training periods range from
957 as early as January 1910 (Stung Treng) to as recent as September 2007 (Vam Nao), and the number of
958 training samples varies dramatically from fewer than 5,000 records (Kontum, Vam Nao) to more than
959 40,000 records (Stung Treng). Furthermore, the input channels are heterogeneous across stations,
960 consisting of one to three variables drawn from water level (WL), water discharge (WD), and rainfall
961 (RF). For example, Chiang Saen provides the richest set of three channels (WL, WD, RF), while
962 many downstream stations such as Kompong Cham or Kratie only include WL.

963 This variability highlights a key characteristic of the Mekong dataset: it is highly irregular both tempo-
964 rally and spatially. Unlike standardized benchmark datasets with uniform lengths and modalities, the
965 Mekong data reflects the real-world complexities of hydrological monitoring systems, where station
966 deployments differ in historical coverage, measurement availability, and environmental context. Such
967 irregularities make modeling challenging, as methods must handle unbalanced input lengths, hetero-
968 geneous channel configurations, and station-specific dynamics. We intentionally include this dataset
969 in our evaluation because it offers a stringent testbed for assessing the flexibility and robustness of
970 different methods. Our proposed method FlowNet that generalizes well across the Mekong dataset

972 Table 6: The details of each station dataset. WL denotes water level, WD denotes water discharge,
 973 and RF denotes rainfall.

974

975 Station	Training Start Date	Training Data Points	Channels	Channel Types
976 Ban Don	1992/1/1	10166	2	WL, RF
977 Ban Pak Kanhoun	1989/1/1	11261	1	WL
978 Can Tho	1979/4/1	14824	2	WL, RF
979 Chaktomuk	1980/7/1	14367	1	WL
980 Chau Doc	1960/6/29	21674	2	WL, RF
981 Chiang Khan	1967/1/1	19297	2	WL, WD
982 Chiang Saen	1965/12/31	19663	3	WL, WD, RF
983 Duc Xuyen	1985/1/1	12722	1	WL
984 Khong Chiam	1966/1/1	19662	2	WL, WD
985 Kompong Cham	1930/1/1	32811	1	WL
986 Kontum	2007/2/22	4635	2	WL, RF
987 Kratie	1933/1/8	31708	1	WL
988 Luang Prabang	1960/1/1	21854	1	WL
989 Lumphat	2000/5/7	7117	2	WL, WD
990 Mukdahan	1960/1/1	21854	2	WL, WD
991 My Thuan	2006/8/1	4840	2	WL, RF
992 Nakhon Phanom	1972/4/1	17380	2	WL, WD
993 Nong Khai	1969/1/1	18566	2	WL, WD
994 Pakse	1960/1/1	21854	2	WL, WD
995 Phnom Penh Port	1960/1/1	21854	1	WL
996 Phung Hiep	1985/1/1	12722	1	WL
997 Stung Treng	1910/1/1	40116	2	WL, WD
998 Tan Chau	1997/12/31	7975	2	WL, RF
999 Vam Kenh	1992/1/1	10166	1	WL
1000 Vam Nao	2007/9/2	4443	2	WL, RF
1001 Vientiane KM4	1923/1/1	35368	1	WL

1017 Figure 5: The original streamflow graph for the Mekong datasets. Each dot presents a station, while
 1018 each arrow indicates the water flow direction.

1020 is more likely to be applicable to other real-world spatiotemporal forecasting problems that share
 1021 similar irregularities. Figure 5 shows the streamflow graph of the Mekong dataset.

1023 B EXPERIMENTS DETAILS

1024

1025

1026
1027**B.1 EXPERIMENTS SETUP**1028
1029
1030

We evaluate all models using three standard hydrological and machine learning metrics: the Nash–Sutcliffe efficiency coefficient (NSE), root mean squared error (RMSE), and mean absolute error (MAE). These metrics are defined as:

1031
1032
1033

$$\text{NSE} = 1 - \frac{\sum_{t=1}^H (y_t - \hat{y}_t)^2}{\sum_{t=1}^H (y_t - \bar{y})^2}, \text{ RMSE} = \sqrt{\frac{1}{H} \sum_{t=1}^H (y_t - \hat{y}_t)^2}, \text{ MAE} = \frac{1}{H} \sum_{t=1}^H |y_t - \hat{y}_t| \quad (11)$$

1034
1035
1036
1037

where y_t denotes the ground truth at time step t , \hat{y}_t is the model prediction, and \bar{y} is the temporal mean of y_t . Lower RMSE and MAE values indicate better predictive performance, whereas higher NSE values (closer to 1) indicate higher efficiency in reproducing observed dynamics.

1038

All datasets are preprocessed using a z-score normalization,

1039
1040

$$x' = \frac{x - \mu}{\sigma}, \quad (12)$$

1041
1042
1043

where μ and σ denote the mean and standard deviation of the training set, respectively. This ensures that different stations and variables are placed on a comparable scale, which is particularly important for handling heterogeneous hydrological signals.

1044
1045
1046
1047
1048
1049

All experiments are implemented in PyTorch Paszke et al. (2019) and executed on a cluster equipped with 4 NVIDIA L4 GPUs (24GB memory each). We adopt a batch size of 32 for all GNN-based models, while for other baselines we use 128 for the Mekong dataset and 1024 for LamaH and 256 for CAMELS, following their relative dataset sizes. The number of training epochs is fixed to 100. Optimization is performed using the ADAM optimizer Kingma & Ba (2015) with the mean squared error (MSE) loss function.

1050
1051
1052
1053
1054
1055
1056
1057

The input sequence length is set to $L = 32$ for Mekong and $L = 360$ for LamaH and CAMELS, with prediction horizons $H \in \{1, 3, 5\}$ across all baselines. We conduct a systematic hyperparameter search over: hidden dimension in $\{32, 64, 128, 256\}$, number of layers in $\{1, 2, 3\}$, learning rate in $\{10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}\}$, loss regularization factor $\alpha \in [0.1, 0.95]$, number of global iterations $\text{Iter} \in [1, 5]$, and global learning rate factor $\beta \in \{0.01, 0.1, 0.2\}$. The best configuration is selected via validation performance. We use the similar search strategies for baselines, number of heads in $\{2, 4, 8\}$, patch and stride length in $\{16, 48, 96, 160, 320\}$, forward function dimension $\{128, 256, 512, 1024\}$, and cycle length in $\{12, 36, 60, 120\}$.

1058
1059
1060

Here we provide the hyperparameter settings for reproducibility. DMCT: learning rate: 0.001, hidden dimension: 256, number of layers: 1. FlowNet: loss regularization factor α : 0.95, global learning rate: 0.001, global learning rate factor β : 0.01, number of global iterations Iter : 5.

1061
1062**B.2 BASELINES DETAILS**1063
1064

Transformer-based Models (PatchTST, iTransformer, CATS). These models represent the most influential architectural developments for long-sequence forecasting. PatchTST introduced patching and channel-independent attention, enabling efficient modeling of long temporal contexts. iTransformer inverted the attention dimension to emphasize cross-variable dependencies, advancing multivariate modeling. CATS further demonstrated that cross-attention only architecture for Transformer enhances inter-series interactions. Collectively, these models define the current SOTA direction for scalable Transformer-based forecasting.

1072
1073
1074
1075
1076
1077
1078
1079

MLP-based Models (DLinear, RLinear, CycleNet, TQNet, FilterNet, SOFTS, TSMixer). Recent work has shown that well-designed MLP architectures can match or surpass complex Transformer models while being highly efficient. DLinear, RLinear, Cycle, TQNet and FilterNet revealed the surprising strength of decomposition-based linear layers, reshaping the community’s understanding of linear models. Mixer-style models such as TSMixer and SOFTS introduced mixing for channel-temporal interactions, providing strong MLP-based baselines. These models collectively represent the competitive methods with lightweight design in modern time-series forecasting.

CNN-based Model (MICN). CNN-based architectures remain highly effective for extracting local temporal patterns and short-term dependencies. MICN exemplifies this line of work by leveraging

1080 convolutional inductive biases to achieve strong performance with high computational efficiency.
 1081 This class of models forms a crucial comparison point against Transformer- and MLP-based models.
 1082

1083 **GNN-based Models (GCN, GCNII, ResGCN, ResGAT).** Including these baselines is important for
 1084 streamflow tasks where temporal series are coupled through spatial and graph structures. GCN/GCNII
 1085 enable stable deep graph feature extraction, while ResGCN and ResGAT incorporate residual learning
 1086 and attention to enhance long-range spatial dependency modeling.

1087 **RNN-based Models (LSTM, GRU).** LSTM and GRU remain widely used benchmarks due to their
 1088 strong performance on moderate-length dependencies and robustness under limited data. They are
 1089 extensively adopted in hydrology and environmental modeling, serving as standard baselines for
 1090 streamflow forecasting. Their inclusion ensures comparability with long-standing literature.

1091 **Hybrid Model (AGCLSTM).** AGCLSTM combines graph convolutions with recurrent dynamics
 1092 and was specifically designed for streamflow prediction. It jointly models spatial topology and
 1093 temporal evolution, reflecting domain-specific state-of-the-art modeling practice. This baseline is
 1094 critical because it targets the same task domain as ours and represents one of the strongest specialized
 1095 competitors.

1096 C FULL RESULTS

1098 C.1 RESULTS WITH DIFFERENT RANDOM SEEDS

1100 To comprehensively evaluate the robustness and performance of the baseline models, we conducted
 1101 multiple runs using random seeds $\{43, 44, 45, 46, 47\}$ on the Mekong dataset under a forecasting
 1102 horizon of $H = 1$. The mean and standard deviation results across 26 stations are summarized
 1103 in Table 7. Notably, our proposed models, DMCT and FlowNet, exhibit exceptional performance
 1104 consistency and competitive accuracy compared to other baselines. Specifically, FlowNet achieves the
 1105 highest Nash-Sutcliffe Efficiency (NSE) of 0.932 ± 0.002 , alongside the lowest RMSE (0.180 ± 0.004)
 1106 and MAE (0.114 ± 0.003), indicating superior predictive precision with minimal variability across
 1107 random initializations. Similarly, DMCT attains an NSE of 0.930 ± 0.002 , with RMSE and MAE
 1108 values of 0.185 ± 0.005 and 0.119 ± 0.004 , respectively, demonstrating strong stability and reliability.
 1109 In contrast, models such as LSTM and GRU show larger standard deviations (e.g., LSTM's NSE std:
 1110 0.018), highlighting sensitivity to random seeds, while graph-based approaches like GCN exhibit
 1111 zero variance due to deterministic architectures but underperform in accuracy. The low standard
 1112 deviations of DMCT and FlowNet underscore their insensitivity to initialization, a critical attribute
 1113 for reproducible and deployable time-series forecasting models in practical scenarios.

1114 Table 7: The full results on baselines with different random seed $\{43, 44, 45, 46, 47\}$, results averaged
 1115 from 26 stations, shown in mean \pm std, with forecasting length $H = 1$.

Method	NSE	RMSE	MAE
CycleNet	0.927 ± 0.003	0.190 ± 0.004	0.124 ± 0.004
TQNet	0.930 ± 0.002	0.182 ± 0.004	0.116 ± 0.003
DLinear	0.931 ± 0.001	0.181 ± 0.003	0.115 ± 0.002
RLinear	0.926 ± 0.005	0.184 ± 0.005	0.117 ± 0.005
FilterNet	0.926 ± 0.003	0.186 ± 0.004	0.121 ± 0.004
iTransformer	0.920 ± 0.003	0.195 ± 0.005	0.131 ± 0.004
PatchTST	0.929 ± 0.005	0.189 ± 0.006	0.124 ± 0.006
CATS	0.919 ± 0.003	0.195 ± 0.005	0.128 ± 0.005
LSTM	0.886 ± 0.018	0.252 ± 0.028	0.170 ± 0.021
GRU	0.887 ± 0.015	0.249 ± 0.024	0.168 ± 0.017
MICN	0.901 ± 0.016	0.228 ± 0.016	0.154 ± 0.012
SOFTS	0.922 ± 0.004	0.194 ± 0.006	0.130 ± 0.005
TSMixer	0.926 ± 0.004	0.185 ± 0.005	0.120 ± 0.004
GCN	0.815 ± 0.000	0.466 ± 0.000	0.313 ± 0.000
GCNII	0.881 ± 0.000	0.363 ± 0.000	0.241 ± 0.000
ResGCN	0.883 ± 0.000	0.328 ± 0.000	0.221 ± 0.000
ResGAT	0.878 ± 0.000	0.384 ± 0.000	0.257 ± 0.000
DMCT	0.930 ± 0.002	0.185 ± 0.005	0.119 ± 0.004
FlowNet	0.932 ± 0.002	0.180 ± 0.004	0.114 ± 0.003

1134 Table 8: Forecasting performance on the CAMELS dataset. Our proposed model, FlowNet, demon-
 1135 strates unequivocal dominance on this benchmark. It achieves the best performance in 8 out of 9
 1136 metrics and consistently outperforms the baseline model, DMCT, in all categories. This state-of-
 1137 the-art performance across all prediction horizons (1, 3, and 5) highlights its superior forecasting
 1138 capabilities. The best results are marked in **red** and the second-best in **blue**.

1139

1140 Method	1141 Horizon 1			1142 Horizon 3			1143 Horizon 5		
	Metric	NSE \uparrow	RMSE \downarrow	MAE \downarrow	NSE \uparrow	RMSE \downarrow	MAE \downarrow	NSE \uparrow	RMSE \downarrow
CycleNet	0.5587	261.5	69.39	0.4058	323	101.4	0.3361	350.6	113.4
TQNet	0.5629	257.6	64.85	0.407	322.6	96.21	0.3381	349.6	114.3
DLinear	0.533	258.1	68.23	0.3955	321.8	96.97	0.3342	347.8	111.6
RLinear	0.5322	258.2	68.34	0.3944	321	97.36	0.3362	346.3	112
FilterNet	0.5409	268.4	77.48	0.3935	331.3	102.9	0.3418	345.9	111.6
iTransformer	0.4857	275.4	70.99	0.384	328.5	99.82	0.2861	369.4	119
PatchTST	0.5574	260.5	67.84	0.4048	324.5	95.39	0.315	359.2	114.5
CATS	0.5565	260.7	66.18	0.4087	321.5	99.3	0.3339	352.1	110.6
LSTM	0.5368	270.3	70.29	0.3978	324	96.81	0.3338	347	111.1
GRU	0.4733	289.7	83.03	0.3453	337.7	108.7	0.2984	361.6	121.8
MICN	0.5493	257.6	66.66	0.4071	320.4	94	0.3372	348.4	109.4
SOFTS	0.5291	268.9	73.9	0.3772	329.7	99.7	0.3187	353.6	113.7
TSMixer	0.5657	259.5	72.72	0.3949	325.3	95.49	0.3224	356	117.1
GCN	-0.0695	472.1	214	-0.071	472.6	214.3	-0.07241	472.9	214.6
GCNII	0.5565	259.7	70.15	0.4064	323.4	99.01	0.3345	351.3	114.8
ResGCN	0.5426	269.4	77.28	0.4005	325.5	100.5	0.3331	351.3	115.2
ResGAT	0.5414	271.9	73.81	0.4019	325.3	99.99	0.3335	350.5	115.1
AGCLSTM	0.1956	331	76.76	-0.143	391.6	105.3	-0.06911	407.8	120.1
DMCT	0.5631	257.8	68.6	0.4093	321	96.33	0.3422	348.5	112.3
FlowNet	0.5784	250.7	64.01	0.4228	316.2	93.97	0.354	342.8	109.9

1159

1160

1161

1162 C.2 FULL RESULTS OF CAMELS

1163

1164 Table 8 reports the forecasting performance on the CAMELS dataset across three prediction horizons
 1165 ($H \in \{1, 3, 5\}$) and three evaluation metrics (NSE, RMSE, and MAE). Overall, our proposed
 1166 FlowNet establishes a new state of the art on this benchmark, achieving the best performance in eight
 1167 out of nine cases, while consistently outperforming the strongest baseline methods.

1168 At the short-term horizon ($H = 1$), FlowNet delivers the highest accuracy across all metrics, with
 1169 an NSE of 0.5784, RMSE of 250.7, and MAE of 64.01. These improvements over other baselines
 1170 demonstrate that FlowNet captures fine-scale hydrological dynamics more effectively than existing
 1171 temporal or graph-based approaches.

1172 For the medium-term horizon ($H = 3$), FlowNet achieves the best NSE (0.4228) and the lowest
 1173 RMSE (316.2) and MAE (93.97), establishing clear dominance over other baselines. This result
 1174 highlights the robustness of FlowNet in modeling non-stationary streamflow patterns over longer lead
 1175 times.

1176 At the long-term horizon ($H = 5$), FlowNet still achieves the state-of-the-art performance. FlowNet
 1177 again leads in NSE (0.354) and RMSE (342.8), while ranking second in MAE (109.9), just behind
 1178 MICN (109.4).

1179 Meanwhile, our backbone model, DMCT, also demonstrates competitive results. It achieves second-
 1180 best overall performance, outperforming classical sequence models (e.g., LSTM, GRU) and modern
 1181 Transformer-based architectures (e.g., PatchTST, iTransformer), confirming the effectiveness of its
 1182 design for hydrological forecasting.

1183 In summary, these results highlight two important findings: (i) DMCT already sets a strong baseline
 1184 by surpassing a broad range of existing deep learning methods, and (ii) FlowNet further advances
 1185 the state of the art by achieving the best or second-best results across all horizons and metrics. This
 1186 demonstrates not only the scalability of our framework but also its capacity to generalize across
 1187 large-scale and challenging hydrological dataset.

Table 9: Forecasting performance on the LamaH dataset. On this more challenging dataset, FlowNet demonstrates its robust and superior capabilities. It achieves the best performance in 5 out of 9 categories and secures the second-best position in another 3 categories. Furthermore, FlowNet consistently outperforms the baseline model, DMCT, across all metrics and prediction horizons. The best results are highlighted in red and the second-best in blue.

Method	Horizon 1			Horizon 3			Horizon 5		
	Metric	NSE \uparrow	RMSE \downarrow	MAE \downarrow	NSE \uparrow	RMSE \downarrow	MAE \downarrow	NSE \uparrow	RMSE \downarrow
CycleNet	0.6012	9.116	5.047	0.4276	12.62	7.473	0.3433	14.16	8.491
TQNet	0.5686	10.63	6.373	0.4686	11.72	6.889	0.3779	13.7	8.378
DLinear	0.61	8.747	4.868	0.4587	11.65	6.848	0.3871	12.93	7.875
RLinear	0.61	8.712	4.773	0.4549	11.67	6.858	0.3906	12.86	7.813
FilterNet	0.5922	9.547	5.659	0.4153	12.49	7.562	0.3385	13.75	8.665
iTransformer	0.6349	8.567	4.679	0.4698	11.76	6.631	0.3805	13.17	7.718
PatchTST	0.6121	8.938	4.664	0.4379	12.22	6.678	0.3672	13.29	7.846
CATS	0.6315	8.515	4.399	0.4376	12.18	6.641	0.3903	13.05	7.8
LSTM	0.6442	8.078	4.395	0.4563	11.55	6.841	0.3356	13.58	8.738
GRU	0.6427	7.741	4.261	0.4606	11.63	7	0.2624	14.77	9.663
MICN	0.637	8.309	4.395	0.4837	11.42	6.573	0.3992	12.95	7.597
SOFTS	0.5675	9.587	5.674	0.4557	11.88	6.728	0.3769	13.21	8.197
TSMixer	0.6407	8.322	4.35	0.4577	11.75	6.553	0.3841	13.16	7.672
GCN	0.1159	19.21	13.61	0.07155	19.57	13.9	0.06577	19.58	13.82
GCNII	0.5975	9.088	5.202	0.4463	12.19	7.33	0.3863	13.12	8.127
ResGCN	0.5965	9.323	5.41	0.4387	12.2	7.519	0.3917	12.92	7.883
ResGAT	0.6089	8.723	4.847	0.4062	12.92	8.299	0.3721	13.52	8.591
AGCLSTM	0.5966	7.918	4.101	0.4408	11.36	5.966	0.3458	13.09	7.252
DMCT	0.6503	8.002	4.389	0.4876	11.34	6.723	0.406	12.73	7.613
FlowNet	0.6598	7.792	4.385	0.4928	11.25	6.514	0.4067	12.7	7.536

C.3 FULL RESULTS OF LAMAH

Table 9 reports the forecasting performance on the LamaH dataset, which is more challenging due to its complex hydrological dynamics and diverse catchment characteristics. Several important trends can be observed.

First, our backbone model DMCT provides a consistently strong benchmark across horizons. It secures the second-best NSE at all horizons (0.6503, 0.4876, 0.406 for $H = 1, 3, 5$), and also ranks among the top models in terms of RMSE and MAE. These results confirm DMCT’s ability to effectively capture temporal dependencies and spatial heterogeneity in river basins.

Second, our proposed FlowNet achieves state-of-the-art performance across the majority of metrics. Specifically, FlowNet attains the best NSE at all horizons (0.6598, 0.4928, 0.4067), highlighting its ability to capture flow dynamics more accurately than all competitors. In terms of error-based metrics, FlowNet also secures the best RMSE at horizon 3 (11.25) and horizon 5 (12.7), while maintaining second-best performance at several other positions (e.g., RMSE 7.792 at horizon 1, MAE 6.514 at horizon 3, and MAE 7.536 at horizon 5). Notably, FlowNet consistently outperforms DMCT across all metrics and horizons, confirming robustness and superior generalization ability of the local-global framework of FlowNet.

In summary, FlowNet demonstrates clear dominance on LamaH, achieving the best results in 5 out of 9 categories and ranking second-best in another 3. This consistent advantage over both DMCT and advanced baselines highlights FlowNet’s effectiveness in tackling the challenges posed by large-scale and heterogeneous hydrological forecasting tasks.

C.4 FULL RESULTS OF MEKONG

Table 10 reports the forecasting results on the Mekong Water Level dataset. The results consistently highlight the superiority of our proposed FlowNet across different prediction horizons. FlowNet attains the best performance in 6 out of 9 evaluation categories and ranks second in an additional 2 cases, demonstrating both robustness and generalization across metrics.

Table 10: Forecasting performance on the Mekong Water Level dataset. The results clearly demonstrate the dominance of our proposed model, FlowNet. It achieves the best performance in a remarkable 6 out of 9 categories and secures a second-best position in 2 other categories. Furthermore, FlowNet consistently outperforms the baseline model, DMCT, across all metrics and prediction horizons, establishing a new state-of-the-art on this dataset. The best results are highlighted in **red** and the second-best in **blue**.

Method	Horizon 1			Horizon 3			Horizon 5		
	Metric	NSE \uparrow	RMSE \downarrow	MAE \downarrow	NSE \uparrow	RMSE \downarrow	MAE \downarrow	NSE \uparrow	RMSE \downarrow
CycleNet	0.9268	0.1916	0.1245	0.8818	0.3052	0.1937	0.8476	0.384	0.2429
TQNet	0.9309	0.1831	0.1168	0.8862	0.2952	0.1848	0.853	0.3786	0.2378
DLinear	0.9315	0.1821	0.1153	0.8889	0.2965	0.1839	0.8545	0.3776	0.2345
RLinear	0.9269	0.1837	0.118	0.8825	0.2991	0.1876	0.8472	0.3817	0.2389
FilterNet	0.9248	0.1886	0.1225	0.8815	0.2988	0.1894	0.8483	0.3812	0.2414
iTransformer	0.9217	0.1955	0.1314	0.8822	0.3009	0.1948	0.8431	0.3783	0.2456
PatchTST	0.9322	0.1876	0.1222	0.8884	0.3003	0.191	0.8427	0.3858	0.2465
CATS	0.9206	0.1962	0.1301	0.8773	0.3045	0.1932	0.8359	0.3911	0.2498
LSTM	0.8708	0.2612	0.1775	0.8401	0.3541	0.2337	0.813	0.4224	0.2778
GRU	0.8862	0.2416	0.1631	0.8479	0.3498	0.231	0.823	0.4156	0.2725
MICN	0.9111	0.2236	0.1505	0.8766	0.3188	0.2063	0.8431	0.3953	0.2547
SOFTS	0.9198	0.1938	0.1311	0.8774	0.3056	0.1977	0.842	0.3814	0.247
TSMixer	0.9287	0.1836	0.1185	0.8838	0.3007	0.1908	0.8487	0.3835	0.2418
GCN	0.8151	0.3134	0.4656	0.7815	0.384	0.562	0.7577	0.3862	0.5778
GCNII	0.8813	0.2407	0.3633	0.832	0.3126	0.4667	0.8029	0.3493	0.5257
ResGCN	0.8829	0.2211	0.3285	0.8284	0.291	0.4388	0.7979	0.3287	0.4999
ResGAT	0.8776	0.2566	0.3836	0.8207	0.3289	0.489	0.7891	0.3701	0.5499
AGCLSTM	0.8876	0.2315	0.1318	0.8585	0.3276	0.2024	0.7727	0.4253	0.2591
DMCT	0.9309	0.1853	0.1198	0.8889	0.2985	0.1868	0.853	0.3802	0.2391
FlowNet	0.9323	0.1796	0.1144	0.8908	0.2945	0.1835	0.8555	0.3757	0.2354

At the short-term horizon (Horizon 1), FlowNet achieves the highest NSE (0.9323), the lowest RMSE (0.1796), and the lowest MAE (0.1144), surpassing all competing methods and setting a new benchmark for near-future water level forecasting. For medium-term prediction (Horizon 3), FlowNet continues to lead with the best NSE (0.8908) and MAE (0.1835), while also securing the second-best RMSE (0.2945). Even at the long-term horizon (Horizon 5), which poses greater forecasting challenges, FlowNet maintains its advantage with the best NSE (0.8555) and competitive error values (RMSE: 0.3757, MAE: 0.2354).

Importantly, FlowNet consistently outperforms the backbone model DMCT across all horizons, underscoring its robustness and adaptability. While other models occasionally attain competitive results in isolated metrics (e.g., DLinear in MAE at Horizon 5 or ResGCN in RMSE at longer horizons), they fail to exhibit the same level of stability across horizons. In contrast, FlowNet’s dominance across both accuracy (NSE) and error-based metrics (RMSE, MAE) highlights its capacity to provide reliable predictions under varying forecasting horizon settings.

Overall, these results establish FlowNet as the state of the art for hydrological forecasting on the Mekong Water Level dataset, combining short-term precision with long-term stability.

C.5 RESULTS COMPARISON WITH EALSTM

Table 11 reports the forecasting results of EALSTM Kratzert et al. (2019) and FlowNet on CAMELS dataset. The results show the superior performance of FlowNet compared to EALSTM over most of cases 7/9. At the horizon 1, FlowNet achieves better results over all the metrics of NSE, RMSE and MAE. At horizon 3 and horizon 5, FlowNet attains best performance of NSE and RMSE.

1296 Table 11: Mean results of FlowNet compared to EALSTM on CAMELS with 3 different prediction
 1297 horizon settings $H \in \{1, 3, 5\}$. Best results are highlighted in bold.
 1298

Method	Horizon 1			Horizon 3			Horizon 5		
	Metric	NSE \uparrow	RMSE \downarrow	MAE \downarrow	NSE \uparrow	RMSE \downarrow	MAE \downarrow	NSE \uparrow	RMSE \downarrow
EALSTM	0.564	256.6	64.18	0.4199	316.6	93.2	0.3531	342.8	109.14
FlowNet	0.5784	250.7	64.01	0.4228	316.2	93.97	0.354	342.8	109.9

1304 Table 12: Mean results of FlowNet compared to TimesFM on CAMELS with 3 different prediction
 1305 horizon settings $H \in \{1, 3, 5\}$. Best results are highlighted in bold.
 1306

Method	Horizon 1			Horizon 3			Horizon 5		
	Metric	NSE \uparrow	RMSE \downarrow	MAE \downarrow	NSE \uparrow	RMSE \downarrow	MAE \downarrow	NSE \uparrow	RMSE \downarrow
TimesFM	0.5577	255.7	61.77	0.3746	327.2	91.99	0.2952	358.5	109.5
FlowNet	0.5784	250.7	64.01	0.4228	316.2	93.97	0.354	342.8	109.9

1314 C.6 RESULTS COMPARISON WITH TIMESFM

1315
 1316 Tables 12 and 13 report the forecasting performance of TimesFM Das et al. (2024) and FlowNet on
 1317 CAMELS and LamaH datasets. These tables show that FlowNet achieves better performance across
 1318 the majority of metrics on NSE and RMSE.

1321 C.7 ABLATION RESULTS OF LOCAL GLOBAL

1323
 1324 Table 14 reports the comparison results of local, global phases and FlowNet on Mekong dataset.
 1325 FlowNet using both local and global phases shows the better performance compared to using local or
 1326 global phases only.

1329 C.8 ABLATION RESULTS OF BACKBONE MODELS

1331 Table 15 reports the ablation results of 3 different backbone models LSTM, GRU and DMCT with and
 1332 without FlowNet on Mekong dataset. The results show that using FlowNet consistently improves the
 1333 performance compared with the original models, which demonstrate the generalization of FlowNet.

1336 C.9 ABLATION RESULTS OF GRAPHS

1339 Table 16 reports the ablation results of DMCT, with Original graph and with PearCorr VLR graph.
 1340 The results show that the model learns the incorrect relationships from the original graph and the
 1341 performance decreased, however, when apply the PearCorr VLR graph, the performance boosted,
 1342 which demonstrates that the model can get benefit from a good graph.

1345 C.10 ABLATION RESULTS OF CAMELS KNN SETTINGS

1347 We conduct experiments for the ablation of KNN settings on CAMELS dataset. Table 17 shows that
 1348 the best performance is using KNN=2 case.
 1349

1350 Table 13: Mean results of FlowNet compare to TimesFM on LamaH with 3 different prediction
 1351 horizon settings $H \in \{1, 3, 5\}$. Best results are highlighted in bold.

Method	Horizon 1			Horizon 3			Horizon 5			
	Metric	NSE \uparrow	RMSE \downarrow	MAE \downarrow	NSE \uparrow	RMSE \downarrow	MAE \downarrow	NSE \uparrow	RMSE \downarrow	MAE \downarrow
TimesFM		0.63	8.304	4.002	0.4376	11.97	6.266	0.3517	13.5	7.491
FlowNet		0.6598	7.792	4.385	0.4928	11.25	6.514	0.4067	12.7	7.536

1358
 1359 Table 14: Mean ablation results of local and global phases compare to FlowNet on 3 datasets with
 1360 prediction horizon setting $H = 1$. Best results are highlighted in bold.

Dataset	CAMELS			LamaH			Mekong		
	Metric	NSE \uparrow	RMSE \downarrow	MAE \downarrow	NSE \uparrow	RMSE \downarrow	MAE \downarrow	NSE \uparrow	RMSE \downarrow
Local	0.5631	257.8	68.6	0.6503	8.002	4.389	0.9309	0.1853	0.1198
Global	0.517	285.8	86.68	0.5963	8.701	5.259	0.9296	0.1875	0.1214
FlowNet	0.5784	250.7	64.01	0.6598	7.792	4.385	0.9323	0.1796	0.1144

C.11 RUNTIMES OF FLOWNET

Runtimes of FlowNet depend on the number of edges in the flow graph due to its inflow and outflow models. The flow graphs in an area normally follow forest styles (i.e. a collection of tree-based components) due to the flow natures of rivers (circle connections may still happen but not very common) as we can see from Figure 4 for LamaH and Figure 5 for MRB data. Hence, the numbers of edges are typically smaller than the numbers of stations. For example, in LamaH, we have 452 stations but there are only 372 edges. For MRB data, we have 26 stations and 24 edges. Even for CAMEL-US, due to the absence of flow graphs, we use KNN graphs as a replacement, the number of edges is bounded by $K \cdot 671$ stations. Hence, in real-world settings, the number of edges is $O(N)$, where N is the number of stations. Hence the number of models is also $O(N)$ (actually around $3 \cdot N$).

As shown in Table 4, FlowNet (with DMCT backbone) is among the most expensive methods together with SOFT, iTransformer, PatchTST and MICN. However, its slower training time results in significantly better prediction accuracy than other methods as demonstrated in Table 2 and Figure 2 in the revised paper. And in our paper, we aim at enhancing prediction accuracy rather than training speeds. Moreover, in terms of inference times, FlowNet with DMCT is only slightly slower than ordinary approaches as we demonstrated in the below Table 18. FlowNet takes 7.208s for inference while DMCT and MICN take 5.358s and 4.102s, respectively. FlowNet uses an acceptable extra inference time to get a significant performance boost. When using the much faster backbone like RLinear, the runtime of FlowNet will be much smaller.

To reduce runtimes of FlowNet, rather than predicting a large area, we can divide it into smaller catchment areas and perform FlowNet on these sub-areas instead. For example, CAMEL-US covers the whole USA. In such an enormous area, the geographics, topography, and climate conditions will be significantly different for different locations, leading to significantly different flow characteristics in different stations at different subareas. For example, stations in mountain areas tend to have faster and unstable flows than in plain areas. Trying to jointly predict these stations can be ineffective. Hence, by focusing on smaller areas, we can reduce the number of graph links and models, thus significantly enhancing the overall performance.

Moreover, in terms of algorithmics, FlowNet is a highly parallelizable method. For example, during the local phase, per-station, inflow and outflow models can all be trained in parallel due to their independences. Similarly, the interaction during the global phase can also be parallelized quite straightforwardly.

1404
1405
1406
1407
1408 Table 15: Mean ablation results of 3 different backbone models LSTM, GRU and DMCT with
1409 and without FlowNet on Mekong dataset with prediction horizon setting $H = 1$. Best results are
1410 highlighted in bold.
1411
1412

Dataset	LSTM			GRU			DMCT			
	Metric	NSE \uparrow	RMSE \downarrow	MAE \downarrow	NSE \uparrow	RMSE \downarrow	MAE \downarrow	NSE \uparrow	RMSE \downarrow	MAE \downarrow
w/o FlowNet		0.8708	0.2612	0.1775	0.8862	0.2416	0.1631	0.9309	0.1853	0.1198
w/ FlowNet		0.899	0.2017	0.1344	0.894	0.1969	0.1285	0.9323	0.1796	0.1144

1413
1414 Table 16: Mean ablation results of DMCT, with Original graph and with PearCorr VLR on Mekong
1415 dataset with prediction horizon $H \in \{1, 3, 5\}$. Best results are highlighted in bold.
1416
1417
1418
1419
1420

Horizons	Horizon 1			Horizon 3			Horizon 5			
	Metric	NSE \uparrow	RMSE \downarrow	MAE \downarrow	NSE \uparrow	RMSE \downarrow	MAE \downarrow	NSE \uparrow	RMSE \downarrow	MAE \downarrow
DMCT		0.9309	0.1853	0.1198	0.8889	0.2985	0.1868	0.853	0.3802	0.2391
w/ Original		0.8583	0.1918	0.2772	0.8012	0.3966	0.2673	0.7607	0.4762	0.3174
w/ PearCorr VLR		0.9323	0.1796	0.1144	0.8908	0.2945	0.1835	0.8555	0.3757	0.2354

C.12 STATISTICAL SIGNIFICANCE COMPARISON

1425 Figure 6 shows the statistical significance comparison of methods across stations where FlowNet is
1426 significant better than all other methods (with p – value threshold $\alpha = 0.05$). Taking the comparison
1427 of FlowNet and PatchTST as an example, the p – value is $1.086e^{-25} \ll 0.05$, and looking deeper to
1428 each station, FlowNet has better NSE in 468/671 cases(69.7%) compared to PatchTST with max NSE
1429 differences of 0.5556, while PatchTST only has better NSE in 203/671 cases (30.2%). And taking
1430 the comparison of FlowNet and SOFTS as another example, the p – value is $3.132e^{-51} \ll 0.05$,
1431 and looking deeper to each station, FlowNet has better NSE in 533/671 cases(79.4%) compared to
1432 SOFTS with max NSE differences of 0.6618, while SOFTS only has better NSE in 138/671 cases
1433 (20.5%).
1434

D DETAILS OF THE HYPERPARAMETER SENSITIVITY

1435 We have conducted an extensive experiment for the hyperparameter sensitivity of FlowNet and
1436 DMCT, the results are shown in Figure 7. The hyperparameters of FlowNet, including the loss
1437 regulation factor α , the initial learning rate of the global phase, the global learning rate factor, and the
1438 number of global loops. The hyperparameters of DMCT including the lookback window length, the
1439 learning rate, the number of multiscale level, and the dimension of hidden layer.
1440

1441 **Loss Regulation Factor α .** The parameter α is used to regulate the loss function in local-global
1442 scheme, to balance the loss between the target node and the link node models. As the results of Figure
1443 7 (A) show, the performance of model on NSE increases with the increasing α until around 0.7 to 0.9.
1444 In addition, we performed another study on LamaH, which is much larger than MRB. The results
1445 are shown in Figure 8. For $H = 1$, $H = 3$ and $H = 5$, the best values for α are 0.9, 0.5 and 0.3,
1446 respectively. These show the effectiveness of the global interaction phase and the consistency loss.
1447

1448 **Global Phase Initial Learning Rate.** This hyperparameter is used to set the initial learning rate
1449 for the global phase. Due to the local-global scheme, after the local phase, we need to reset the
1450 initial learning rate to a small value to avoid the issue of learning. The result of this hyperparameter
1451 sensitivity is shown in Figure 7 (B). This shows that when the initial learning rate in global phase is
1452 too small, e.g., 1e-4, the performance is not good compared to a larger value of setting.
1453

1454 **Global Learning Rate Factor β .** This factor is used to regulate the learning rate in global phase with
1455 the number of global loops. As the results of Figure 7 (C) show, the model has stable performance
1456 with the different settings of this hyperparameter β .
1457

1458 **Number of Global Iterations.** In the local-global scheme, the global phase is iteratively repeated to
1459 converge the model. We evaluated the number of iterations in the global phase, which is shown in
1460

1458 Table 17: The results of different KNN settings on CAMELS of FlowNet with different horizon
 1459 length $H \in \{1, 3, 5\}$. Best results are highlighted in bold.
 1460

Horizons	Horizon 1			Horizon 3			Horizon 5		
Metric	NSE \uparrow	RMSE \downarrow	MAE \downarrow	NSE \uparrow	RMSE \downarrow	MAE \downarrow	NSE \uparrow	RMSE \downarrow	MAE \downarrow
KNN=2	0.5784	250.7	64.01	0.4228	316.2	93.97	0.354	342.8	109.9
KNN=5	0.5442	267.3	75.76	0.4106	323.2	101.2	0.3427	349	117.1
KNN=10	0.3784	323	102.4	0.3906	328.6	105.6	0.3333	352.2	121.5

1466 Table 18: Inference time for different methods on CAMELS dataset with horizon length $H = 1$.
 1467

Methods	Inference Time (s)
FlowNet (DMCT)	7.208
FlowNet (RLinear)	1.717
DMCT	5.358
DLinear	1.144
RLinear	1.234
CycleNet	3.018
TQNet	3.611
FilterNet	1.649
iTransformer	2.999
SOFTS	2.577
CATS	3.147
TSMixer	1.891
LSTM	1.134
GRU	1.001
PatchTST	3.2
MICN	4.102
GCN	0.325
GCNII	0.35
ResGCN	0.37
ResGAT	0.394
AGCLSTM	0.693

1488 Figure 7 (D). The results show that with the global phased repeated, the model will converge and
 1489 have stable performance.
 1490

1491 **Look-back Window Length L .** In Figure 7 (E), we evaluate the sensitivity of the look-back window
 1492 length for DMCT. We set 4 different lengths of the look-back window $L \in \{8, 16, 32, 64\}$ and
 1493 evaluate the performance. The results show that the model performs the best when the look-back
 1494 window length L is around 32.

1495 **Learning Rate.** We evaluate 4 different initial learning rate for DMCT and the results are shown in
 1496 Figure 7 (F), which demonstrates that the best initial learning rate for DMCT is around 0.01.

1497 **Number of Multiscale Levels.** We study the hyperparameter sensitivity of the number of multiscale
 1498 level for DMCT. As the results in Figure 7 (G) show, increasing the multiscale levels, the model
 1499 performs better. This shows that the model can extract more accurate temporal features from
 1500 multiscale information with higher multiscale levels.

1501 **Dimension of Hidden Layers.** As the results in Figure 7 (H) show, we have evaluated the sensitivity
 1502 of the dimension of the hidden layers. These results show that the performance of the model is stable
 1503 with different settings of the dimensions of the hidden layers.
 1504

1505 E GRAPHS

1506 We visualize the graphs in Figures 5, 9, and 10, including the original graph, the graph with Pearson
 1507 Correlation Analysis (PearCorr) and the graph with Validation-based Links Reconstruction (VLR).
 1508

Figure 6: Statistical significance comparison of methods across stations (Paired Wilcoxon Signed-Rank Test) on CAMELS dataset with horizon length $H = 1$. (A) Significance result with $p - value$ threshold $\alpha = 0.05$ and $h = 1$ means the reference method (row) significant better than the compared against method (column), (B) $p - value$ matrix.

F PSEUDO-CODE OF ALGORITHMS

F.1 LOCAL PHASE

Algorithm 1 Local Phase - Independent Learning

Input: Station $i \in V$, cross stations set $S := [1, \dots, n]$, train set $\mathbf{X} := [X_{:,1:t}^i, X_{:,1:t}^{i,1}, \dots, X_{:,1:t}^{i,n}]$, model list $M := [f_i, f_{i,1}, \dots, f_{i,n}]$.

Output: model list M .

```

1: for each model in  $M$  do
2:    $X \leftarrow select(\mathbf{X})$                                       $\triangleright$  Select the corresponding set
3:   for each epoch do
4:      $x, y \leftarrow batch(X)$ 
5:      $\{\hat{y}^i, \hat{y}^{i,1}, \dots, \hat{y}^{i,n}\} \leftarrow M(x)$ 
6:      $\hat{y}_{flow} = \sum_{j \in S} \hat{y}^{i,j}$                                  $\triangleright$  Inflow or outflow depends on the input
7:     if model is  $f_i$  then
8:        $loss \leftarrow \mathcal{L}^i(\hat{y}, y)$                                  $\triangleright$  Per-station loss
9:     else if otherwise then
10:       $loss \leftarrow \mathcal{L}_{Local}^i(\hat{y}_{flow}, y)$                        $\triangleright$  Cross-station loss
11:    end if
12:     $loss.backward()$ 
13:     $update(model.params)$ 
14:  end for
15: end for
16: return  $M$ 

```


Figure 7: The hyperparameter sensitivity of FlowNet and DMCT.

Figure 8: The Mean NSE results of the ablation study of alpha on LamaH dataset with $\alpha \in \{0.1, 0.3, 0.5, 0.7, 0.9, 1.0\}$, $Iter = 3$ and forecasting length $H \in \{1, 3, 5\}$.

Figure 9: The graph of Pearson Correlation Analysis(PearCorr). We build the links when the links in the original graph have a significant Pearson correlation coefficient.

Figure 10: The graph of Validation-based Links Reconstruction (VLR). We reconstruct the links in the original graph that satisfy the PearCorr and VLR requirement.

F.2 GLOBAL PHASE

F.3 LOCAL GLOBAL TRAINING SCHEME

We combine the Local Phase 1 and Global Phase 2 and design a multi-phase training strategy Local Global Scheme, which is in Algorithm 3.

F.4 VALIDATION-BASED LINKS RECONSTRUCTION

We provide the pseudo-code of Validation-based Links Reconstruction (VLR) in Algorithm 4.

1674

Algorithm 2 Global Phase - Interactive Learning

1675

Input: Station $i \in V$, cross stations set $S := [1, \dots, n]$, train set $\mathbf{X} := [X_{1:t,:}^i, X_{1:t,:}^{i,1}, \dots, X_{1:t,:}^{i,n}]$, model list $M := [f_i, f_{i,1}, \dots, f_{i,n}]$.

1677

Output: model list M .

1678

```

1: for each model in  $M$  do
2:    $X \leftarrow \text{select}(\mathbf{X})$                                       $\triangleright$  Select the corresponding set
3:   for each epoch do
4:      $x, y \leftarrow \text{batch}(X)$ 
5:      $\{\hat{y}^i, \hat{y}^{i,1}, \dots, \hat{y}^{i,n}\} \leftarrow M(x)$ 
6:      $\hat{y}_{\text{Global}}^i = \sum_{j \in S} \hat{y}^{i,j}$ 
7:      $loss \leftarrow \alpha \cdot Loss(\hat{y}^i, y) + (1 - \alpha) \cdot Loss(\hat{y}^i, \hat{y}_{\text{Global}}^i)$   $\triangleright$  Global loss from Eq. equation 2
8:      $loss.backward()$ 
9:      $update(model.params)$ 
10:   end for
11: end for
12: return  $M$ 

```

1690

1691

Algorithm 3 Local Global Training Scheme

1692

Input: Global iterations N , model list $M := [f_i, f_{i,1}, \dots, f_{i,n}]$, and all the other necessary inputs in Algorithms 1 and 2.

1693

Output: model list M .

1694

```

1:  $M \leftarrow \text{Algorithm 1}$                                       $\triangleright$  Local Phase
2: for each iteration do
3:    $M \leftarrow \text{Algorithm 2}$                                       $\triangleright$  Global Phase
4: end for
5: return  $M$ 

```

1700

1701

1702

1703

G LIMITATIONS

1704

1705

While our method FlowNet demonstrates promising results in streamflow forecasting, several limitations remains. First, our framework strongly relies on a relationship graph among hydrology stations (Section 2.2). In river networks exhibiting weak hydrological connectivity or fragmented monitoring systems, our method may revert to independent station-wise prediction. This could diminish the performance advantages observed. Future work could integrate physical hydrological models to enhance robustness under sparse correlation conditions. Second, we propose to evaluate our approach on a large-scale benchmark dataset: diverse climatic zones (tropical, temperate, polar), multi-scale gauge configurations (high-density vs. sparse networks), and multi-temporal resolutions (hourly to monthly scales). Notwithstanding these limitations, our experiments demonstrate FlowNet’s superiority over conventional GNN/RNN/Transformer baselines across three quantitative metrics (cf. Appendix C). Its flexibility on data and learning methods also permits future integration with advanced methods and can work with irregular datasets that are common in practice.

1717

1718

1719

H BROADER IMPACT

1720

1721

1722

The proposed method FlowNet provides an effective system to forecasting streamflow. It will be very useful for local authorities to provide water resource management and contingency plans for coping with climate change. In many vulnerable areas in developing countries, where the data collection system is not well-developed, the data is normally irregular with much missing data, different periods and different collected hydrology feature as in the case of the Mekong River Basin in our study. FlowNet, with its ability to deal with such kind of data effectively, will be extremely useful for these areas.

1728 **Algorithm 4** Validation-based Links Reconstruction.

1729 **Input:** Stations $i, j \in V$, directional link $A_{i,j} \in \mathbb{B}$, train set $X_{1:t,:}^i, X_{1:t,:}^{i,j}$ with all channels, validation
 1730 set $X_{t:t+\tau,c}^i, X_{t:t+\tau,c}^{i,j}$ with water flow channel c , regulation factor γ , PearCorr correlation value $\lambda_{i,j}$
 1731 and the PearCorr threshold value ϕ .

1732 **Output:** Directional flow link $A_{i,j}$.

1733 1: Initialize models $f_i, f_{i,j}$
 1734 2: **for** each epoch **do** ▷ Train $f_i, f_{i,j}$ on $X_{1:t,:}^i$ and $X_{1:t,:}^{i,j}$
 1735 3: $x^i, y^i \leftarrow \text{batch}(X^i); x^j, y^j \leftarrow \text{batch}(X^{i,j})$
 1736 4: $loss_i \leftarrow \mathcal{L}(f_i(x^i), y^i); loss_{i,j} \leftarrow \mathcal{L}(f_{i,j}(x^j), y^j)$
 1737 5: $loss_i.backward(); loss_{i,j}.backward()$
 1738 6: $update(f_i.params); update(f_{i,j}.params)$
 1739 7: **end for**
 1740 8: $loss_i \leftarrow f_i(X_{t:t+\tau,c}^i, c); loss_{i,j} \leftarrow f_{i,j}(X_{t:t+\tau,c}^{i,j})$ ▷ Validate $f_i, f_{i,j}$ on $X_{t:t+\tau,c}^i$ and $X_{t:t+\tau,c}^{i,j}$
 1741 9: **if** $loss_{i,j} < \gamma loss_i$ and $\lambda_{i,j} > \phi$ **then**
 1742 10: $A_{i,j} \leftarrow 1$
 1743 11: **else if** otherwise **then**
 1744 12: $A_{i,j} \leftarrow 0$
 1745 13: **end if**
 1746 14: **return** $A_{i,j}$

1748 **I LLM USAGE**

1749 This manuscript was slightly edited using LLMs for language polishing and writing improvements.
 1750 The authors retain full responsibility for the research content, including the concepts, analyses, and
 1751 conclusions.

1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781