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Abstract
Wasserstein Gradient Flow (WGF) describes the
gradient dynamics of probability density within
the Wasserstein space. WGF provides a promis-
ing approach for conducting optimization over
the probability distributions. Numerically ap-
proximating the continuous WGF requires the
time discretization method. The most well-known
method for this is the JKO scheme. In this regard,
previous WGF models employ the JKO scheme
and parametrize transport map for each JKO step.
However, this approach results in quadratic train-
ing complexity O(K2) with the number of JKO
step K. This severely limits the scalability of
WGF models. In this paper, we introduce a scal-
able WGF-based generative model, called Semi-
dual JKO (S-JKO). Our model is based on the
semi-dual form of the JKO step, derived from the
equivalence between the JKO step and the Unbal-
anced Optimal Transport. Our approach reduces
the training complexity toO(K). We demonstrate
that our model significantly outperforms existing
WGF-based generative models, achieving FID
scores of 2.62 on CIFAR-10 and 5.46 on CelebA-
HQ-256, which are comparable to state-of-the-art
image generative models.

1. Introduction
Generative models are a class of Deep Learning models
that learn the underlying distribution of training data. There
are diverse approaches for generative modeling, such as
Energy-based models (Zhao et al., 2016; Du & Mordatch,
2019), Diffusion models (Ho et al., 2020; Song et al., 2021b),
Variational Autoencoders (Kingma & Welling, 2014), Flow
models (Dinh et al., 2017; Kingma & Dhariwal, 2018), Gen-
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erative Adversarial Networks (Goodfellow et al., 2020),
Optimal Transport Maps (Rout et al., 2022; Choi et al.,
2023a), and Wasserstein Gradient Flows. Recently, genera-
tive models achieved impressive progress, demonstrating the
ability to produce high-quality samples on high-resolution
image datasets. Despite these advancements, Wasserstein
Gradient Flow models still face challenges in scalability to
high-dimensional image datasets.

Wasserstein Gradient Flow (WGF) investigates the minimiz-
ing dynamics of probability density following the steepest
descent direction of a given functional. WGF plays an
important role across various areas involving optimization
over probability densities, e.g. Optimal Transport (OT)
(Santambrogio, 2017; Carlier et al., 2017), Physics (Carrillo
et al., 2022; Adams et al., 2011), Machine learning (Lin
et al., 2021; Gao et al., 2019), and Sampling (Bernton, 2018;
Frogner & Poggio, 1806; Liu & Wang, 2016; Chewi et al.,
2020; Glaser et al., 2021; Cheng et al., 2023b). The Jordan-
Kinderlehrer-Otto (JKO) scheme is a prominent method
for numerically approximating WGF (Jordan et al., 1998).
The JKO scheme corresponds to the time discretization of
WGF. The previous works utilized the JKO scheme and
conducted optimization for every transport map at each JKO
step (Gao et al., 2019; Mokrov et al., 2021; Alvarez-Melis
et al., 2022; Bunne et al., 2022; Fan et al., 2022). However,
this approach incurs quadratic training complexity O(K2)
with the number of JKO step K. This quadratic complexity
arises from the necessity to simulate the entire trajectory of
the JKO scheme. This complexity significantly limited the
scalability of WGF models through the prolonged training
time and the limited model size for parametrization.

To overcome these challenges, we suggest a new genera-
tive algorithm by utilizing the semi-dual form of the JKO
step. We refer to our model as the Semi-dual JKO (S-JKO).
Our model consists of two components. First, we introduce
the semi-dual form of the JKO step from the equivalence
between the JKO step and the Unbalanced Optimal Trans-
port problem (Chizat et al., 2018; Liero et al., 2018) (Sec
4.1). Second, we introduce the reparametrization trick to
handle the complexity challenges of existing JKO models
(Sec 4.2). Our model reduces the training complexity from
quadratic to linear O(K). Our model achieves significantly
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improved scalability compared to existing WGF-based mod-
els. Specifically, our S-JKO achieves FID scores of 2.62 on
CIFAR-10 and 5.46 on CelebA-HQ, outperforming existing
WGF-based methods by a significant margin and approach-
ing state-of-the-art performance. Our contributions can be
summarized as follows:

• We propose a WGF-based generative model based on
the semi-dual form of the JKO step.

• We show that the JKO step is equivalent to the Unbal-
anced Optimal Transport problem. This insight leads
to the semi-dual form of the JKO step.

• Our model greatly improves the scalability of WGF
models until high-dimensional image datasets. To the
best of our knowledge, S-JKO is the first JKO-based
generative model that presents decent performance on
CelebA-HQ (256× 256).

• To the best of our knowledge, S-JKO is the first JKO-
based generative model that achieves near state-of-the-
art performance on real-world image datasets.

Notations and Assumptions Let P(Rd) be the set of
probability distributions on Rd that are absolutely contin-
uous with respect to the Lebesgue measure. Throughout
this paper, we denote the source distribution as µ = ρ0

and denote the target distributions as ν. Since our scope
is on generative modeling, µ and ν correspond to the d-
dimensional Gaussian distribution and the data distribution
on Rd, respectively. For a measurable map T , T#µ repre-
sents the pushforward distribution of µ. For convenience, we
set ch(x, y) := 1

2h∥x− y∥
2
2. Moreover, the 2-Wasserstein

distanceW2(·, ·) is defined as follows:

W2(ρ, ξ) :=

(
min

π∈Π(ρ,ξ)

∫
Rd×Rd

∥x− y∥22dπ(x, y)
) 1

2

,

(1)
where Π(ρ, ξ) denotes the set of joint probability distribu-
tions on Rd × Rd whose marginals are ρ and ξ. More-
over, f∗ indicates the convex conjugate of a function f , i.e.,
f∗(y) = supx∈R{⟨x, y⟩ − f(x)} for f : R→ [−∞,∞].

2. Background
2.1. Wasserstein Gradient Flow and JKO scheme

Wasserstein Gradient Flow Given a functional F(ρ) on
ρ ∈ P(Rd), the Wasserstein Gradient Flow (WGF) (Am-
brosio et al., 2005) describes the dynamics of probability
density {ρt}t≥0, following the steepest descent direction
of F(ρ). Here, the metric on P(Rd) is defined as the 2-
Wasserstein distanceW2 (Eq 1). The WGF can be explicitly

written by the PDE as follows:

∂ρ

∂t
= ∇ ·

(
ρ∇δF

δρ

)
, (2)

where δF
δρ denotes the first variation of F with respect to

standard L2 metric (Villani et al., 2009).

When F(ρ) is given as the f -divergence Df with respect to
the target distribution ν, WGF describes the trajectories
of probability density {ρt}t≥0 evolving from µ = ρ0
towards ν by minimizing F(ρ):

F(ρ) := Df (ρ|ν) =
∫
f

(
dρ

dν

)
dν. (3)

Specifically, when utilizing the KL divergence as the func-
tional F(ρ) := DKL(ρ|ν), Eq 2 becomes the Fokker-
Plank equation with the score∇ log ν (Jordan et al., 1998):

∂ρ

∂t
= ∇ · (ρ∇ log ν) + ∆ρ, ρ(0, ·) = ρ0, (4)

Then, the solution ρt converges to ν as t→∞.

JKO scheme Computing the continuous WGF is a chal-
lenging problem. To address this, Jordan et al. (1998) pro-
posed a time discretization scheme to approximate WGF,
called the JKO scheme (Fig 1a). In this scheme, when
given the current JKO step µk, the next JKO step µk+1 is
formally defined as follows:

µk+1 = argmin
ρ∈P(Rd)

[
1

2h
W2

2 (ρ, µk) + F(ρ)
]
. (5)

where µ0 = µ is the initial condition. Intuitively, h can be
understood as the step size of time discretization. When the
functional is set to the KL divergence F(ρ) = DKL(ρ|ν),
the JKO scheme converges to the solution of the Fokker-
Plank equation. In other words, {µk} converges to {ρkh}
in Eq 4 as the step size h→ 0.

JKO-based Models In this paragraph, we provide a brief
summary of previous works based on the JKO scheme
(Mokrov et al., 2021; Alvarez-Melis et al., 2022; Bunne
et al., 2022; Fan et al., 2022; Vidal et al., 2023; Park et al.,
2023; Lee et al., 2023; Cheng et al., 2023a; Altekrüger et al.,
2023). The primary challenge in implementing the JKO
scheme lies in optimizing over the probability distributions
ρ ∈ P(Rd). The previous works addressed this challenge
by transforming it into an optimization over the transport
map T from µk to µk+1, i.e., T#µk = µk+1. Note that

W2
2 (µk, µk+1) = min

T#µk=µk+1

∫
Rd

∥x− T (x)∥22dµk(x),

(6)
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(a) Training Process of Existing JKO Models (b) UOTM variants

Figure 1. (a) Visualization of the Training Process of Existing JKO Models. For each training iteration, sampling from µk involves
sequential inference through k-networks, i.e., Tk ◦ · · · ◦ T0(x) with x ∼ µ. This iterative network evaluation considerably slows down
the training process. Formally, the training complexity becomes O(K2) where K denotes the number of JKO steps. (b) Two Variants of
the UOTMs. Left: Source-fixed UOTM. Right: Both-relaxed-UOTM. For brevity, we simply call the Both-relaxed-UOTM as UOTM.
UOTMs allow flexibility in marginal densities and therefore have inherent distribution errors (Blue: Source and Target distributions µ, ν.
Orange: Marginal distributions of Optimal Coupling π0, π1.)

where T is a measurable map. The transport map T that min-
imizes Eq 6 is referred to as the optimal transport map from
µk to µk+1. Using this fact, Fan et al. (2022) reparametrizes
the JKO step (Eq 5) as follows:

µk+1 = Tk#µk,

Tk = argmin
T

1

2h

∫
Rd

∥x− T (x)∥22dµk(x) + F (T#µk) .

(7)

Moreover, Brenier’s theorem states that there exists a convex
function ψ such that the optimal transport map Tk is a gradi-
ent of ψ, i.e., Tk = ∇ψ. Leveraging this fact, several works
(Mokrov et al., 2021; Alvarez-Melis et al., 2022; Bunne
et al., 2022) parameterizes T as the gradient of input convex
neural network (ICNN) (Amos et al., 2017). However, these
JKO-based models suffered from the quadratic complexity
O(K2), where K denotes the number of JKO steps. In this
regard, Bonet et al. (2022) suggested the Sliced-Wasserstein
Gradient Flow to mitigate this complexity to O(K).

2.2. Optimal Transport-based Generative Modeling

Unbalanced Optimal Transport (UOT) The classical
OT problem investigates the cost-minimizing transport map
that satisfies an exact matching between two distributions
(Villani et al., 2009). Recently, a new variation of the OT
problem has been introduced, which is called Unbalanced
Optimal Transport (UOT) (Chizat et al., 2018; Liero et al.,
2018). Formally, the UOT problem between the source
distribution µ and the target distribution ν is defined as
follows:

inf
π∈M+

∫
X×Y

c(x, y)dπ(x, y) +Dφ1
(π0|µ) +Dφ2

(π1|ν),

(8)
where M+ denotes a set of positive Radon measures on
X × Y = Rd × Rd and c(·, ·) represents the transportation

cost. Dφ1
, Dφ2

are two f -divergence1 terms that penalize
the dissimilarity between the marginal distributions π0, π1
and µ, ν, respectively. Note that, in the UOT problem,
both marginals of π are not explicitly fixed. Instead, these
marginals are softly regularized by the divergence terms.
This flexibility in the marginals provides outlier robustness
(Balaji et al., 2020).

Furthermore, the UOT problem is a generalization of the
classical OT problem. When we choose φ1 or φ2 to be a

convex indicator function ι(x) =

{
0 if x = 1,

∞ otherwise
, then

Dφ takes the following form:

Dι(πi|ρ) =

{
0 if πi = ρ almost-surely.
∞ otherwise.

(9)

Therefore, setting φ1 = ι or φ2 = ι means fixing the source
distribution, i.e., π0 = µ, or the target distribution, i.e.,
π1 = ν. When we fix both distributions, the UOT problem
is simplified to the OT problem. Throughout this paper, we
refer to the UOT problem when φ1 = ι as the Source-fixed
UOT problem. This problem serves an important role in
our work in Sec 4.

UOT-based generative models Recently, Choi et al.
(2023a) proposed a class of generative models by lever-
aging the semi-dual form of the UOT problem. Formally,

1In the general case, Dφ is defined as the Csiszàr divergence
(Séjourné et al., 2019) Dc

φ for the UOT problem. Note that when
µ is absolutely continuous with respect to ν, the f -divergence and
the Csiszàr divergence are equivalent, i.e., Dc

φ(µ|ν) = Dφ(µ|ν).
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Figure 2. Conceptual Diagram of Our Model. During the training k-th JKO step in our model, sampling from µk involves only one
network inference Tk−1, i.e., µk = Tk−1#µ0. This reparametrization strategy significantly reduces the overall training time. Formally,
the training time complexity reduces to O(K) from the O(K2) of other JKO models. Moreover, by initializing the parameters of Tk with
Tk−1, we can further decrease the number of iterations required for training.

the semi-dual form of Eq 8 is defined as follows:

sup
v∈C

∫
φ◦
1

(
inf
T

[c (x, T (x))− v(T (x))]
)
dµ(x)

+

∫
φ◦
2(v(y))dν(y), (10)

where C denotes a set of continuous functions over Rd and
φ◦
i (x) := −φ∗

i (−x). By parametrizing v = vϕ and T = Tθ
in Eq 10 by neural networks, Choi et al. (2023a) suggested
the max-min adversarial learning objective, called UOTM.
In this framework, Tθ represents the (unbalanced) transport
map from µ to ν, and vϕ serves as the potential function
for discriminating between T#µ and ν. Choi et al. (2023b)
demonstrated that the flexibility in distribution matching
enhances the stability of the training process. However, this
flexibility also introduces inherent distribution errors to
UOTM (Choi et al., 2023a). Throughout this paper, we call
the UOTM variant corresponding to the Source-fixed UOT
problem as the Source-fixed-UOTM. Specifically, this is
equivalent to choosing Dφ1

= Dι and, thereby, φ◦
i (x) = x.

On the contrary, when both φ1 and φ2 in Eq 8 are not convex
indicators, we denote it as UOTM or Both-relaxed-UOTM
(Fig 1b).

3. Limited Scalability of WGF Models
Quadratic Complexity of JKO models The primary
challenge for WGF models lies in their limited scalabil-
ity when dealing with complex high-dimensional image
datasets. This limitation stems from the iterative multi-
step approximation of intermediate distributions ρt in WGF.
This iterative approximation considerably slows down
the training process quadratically, i.e., O(K2), with re-
spect to the total number of approximation steps K (Ta-
ble 1). Consequently, the scalability of WGF models is
significantly constrained. Specifically, as described in Sec 2,
most WGF models employ the JKO scheme to numerically
approximate WGF (Mokrov et al., 2021; Alvarez-Melis

Table 1. Scalability Comparison for Various JKO Schemes on
CIFAR-10. Time denotes a wall-clock training time. Complexity
indicates the training complexity with respect to K and d. Here, we
only consider the complexity of algorithms, not the complexity of
backbone network inference. NFE refers to the number of function
evaluations required to produce a sample. Note that training time
is measured on 1 GPU (RTX 3090 Ti).

Model Time Complexity NFE (↓) FID (↓)
Mokrov et al. (2021) - O(K2d3) - -

Fan et al. (2022) ≥ 50h O(K2) 160 23.1
Xu et al. (2023) ≥ 30h O(K2) ≥ 150 29.1

Source-fixed-UOTM (Small) 6h O(1) 1 14.4
Ours (Small) 6h O(K) 1 8.78

Source-fixed-UOTM (Large) 50h O(1) 1 7.53
Ours (Large) 50h O(K) 1 2.65

et al., 2022; Bunne et al., 2022; Fan et al., 2022; Vidal et al.,
2023; Park et al., 2023; Lee et al., 2023; Cheng et al., 2023a;
Altekrüger et al., 2023). Hence, these models involve the
iterative estimation of (k+1)-th distribution µk+1, based on
the k-th distribution µk (Eq 5). Each estimation requires
a neural network training for learning each transport
map Tk from µk to µk+1, i.e., (Tk)#µk = µk+1 (Fig 1a).
Note that, for each Tk, the source data sampling from µk

requires inference from all {Ti}0≤i≤k−1 with x ∼ µ:

xk ∼ ρk ⇔ (Tk−1 ◦ Tk−2 ◦ · · · ◦ T0) (x). (11)

Comparison to Ours Table 1 presents a comparison of
the scalability (in terms of training time and complexity)
of various JKO models on CIFAR-10. We compared the
complexity of previous works, our JKO-based model, and
the UOTM-based counterpart of our model (Source-fixed-
UOTM). Note that the Small backbone network for our
model presents a comparable size to previous JKO models
(See the Appendix B for details). Therefore, in terms of
scalability, this section focuses on the comparison be-
tween the prior JKO models and our models with the
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Small backbone.2

The prior JKO models typically utilizedK ≥ 150 JKO steps
for approximating WGF on CIFAR-10 (Fan et al., 2022;
Xu et al., 2023), and K = 50 ∼ 150 JKO steps on low-
dimensional (∼ 100 dimensions) datasets (Fan et al., 2022;
Mokrov et al., 2021). In other words, each WGF model
consisted of 50-150 small neural networks, with each neural
network dedicated to approximating Tk. In this respect, the
quadratic training complexity O(K2) considerably limited
the scalability of WGF models, by restricting the size of
each neural network. As a result, when extended to high-
dimensional image datasets of CIFAR-10, WFG models
are typically adapted to op3erate on the latent space of
encoder-decoder architectures (Fan et al., 2022; Xu et al.,
2023). Nevertheless, these models suffer from long training
time (≥ 30h) and non-competitive generation results of
FID score (≥ 20) (Table 1). In this paper, we significantly
improve the scalability of WGF models by discovering that
the JKO step can be interpreted as the Unbalanced Optimal
Transport problem (Sec 4.1). Compared to existing WFG
models of similar size, our model outperforms them with
a lower FID score of 8.78 on CIFAR-10, while requiring a
much less training time of 6 hours.

4. Method
In this section, we propose a novel WGF-based generative
model, called the Semi-dual JKO scheme (S-JKO). Our
model is based on the equivalence between the JKO step
and the Unbalanced Optimal Transport problem (Sec 4.1).
Building upon this insight, we introduce a generative model
based on the semi-dual form of the JKO step (Sec 4.2).

4.1. Equivalence between JKO step and UOT problem

In this subsection, we establish the equivalence between the
JKO step (Eq 5) and the Source-fixed variant of the Unbal-
anced Optimal Transport problem (Eq 8). Here, we begin
with the JKO step. Let µ = µ0 and ν denote the source
and target distributions, respectively. As a reminder, our
primary focus is generative modeling. Hence, µ represents
the prior distribution (Gaussian), and ν corresponds to the
target data distribution. We define the energy functional
F (ρ) associated with the JKO step as F(ρ) = Df (ρ|ν).
Then, the JKO step (Eq 5) can be expressed as follows:

µk+1 = argmin
ρ∈P(Rd)

1

2h
W2

2 (µk, ρ) +Df (ρ|ν)︸ ︷︷ ︸
Lρ

. (12)

2The experimental results using a Large backbone demonstrate
that our model is scalable to the competitive backbone network
(NCSN++), which is widely employed by state-of-the-art genera-
tive models, and can provide comparable performance with it. A
more comprehensive discussion will be provided in Sec 5.

If we expand W2
2 (µk, ρ) using its definition (Eq 1), then

Lρ can be rewritten as the follows (See the appendix for
details):

Lρ = min
π∈Π(µk,ρ)

∫
1

2h
∥x−y∥22dπ(x, y)+Df (π1|ν). (13)

Note that π1 = ρ in the above equation. Therefore, when
combined with the minimization over ρ in Eq 12, the JKO
step is equivalent to the Source-fixed UOT problem, i.e.,
convex indicator φ1 = ι and φ2 = f in Eq 8:

π⋆ = argmin
π0=µk

∫
ch(x, y)dπ(x, y) +Df (π1|ν). (14)

µk+1 = π⋆
1 . (15)

with ch(x, y) = 1
2h∥x − y∥

2
2. Note that in the UOT prob-

lem, when µ, ν are probability distributions (i.e., positive
measures with a total mass of 1), then the optimal π⋆ also
has the same total mass (Gallouët et al., 2021). Therefore,
performing the optimization over the positive Radon mea-
sure in Eq 8 is equivalent to performing the optimization
over the joint probability distribution in Eq 14.

4.2. Generative Modeling with the Semi-dual Form of
JKO step

In this subsection, we propose a generative model based on
the JKO scheme for the WGF. Our model is derived through
two steps: (1) Semi-dual form of the JKO scheme from the
equivalence with the UOT problem and (2) Reparametriza-
tion trick for enhancing the scalability of the JKO scheme.

Semi-dual form of JKO step The semi-dual form of JKO
step is obtained from its UOT interpretation (Eq 14). By
setting φ1 = ι and φ2 = f in Eq 8, we can derive the
semi-dual form of JKO step from the semi-dual form of
UOT (Choi et al., 2023a) as follows (See the appendix for
detail):

sup
v∈C

∫
vc(x)dµk(x) +

∫
f◦(v(y))dν(y). (16)

where the c-transform of v is defined as vc(x) :=
infy(c(x, y)− v(y)). Here, we parametrize ∆Tk as follows
(Rout et al., 2022):

∆Tk : x 7→ argmin
y

(c(x, y)− v(y)) . (17)

Then, ∆Tk satisfies the following:

vc(x) := c(x,∆Tk(x))− v(∆Tk(x)). (18)

5
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Algorithm 1 Training algorithm

Require: Transport network Tθ and the discriminator net-
work vϕ.

1: Told = Id
2: for k = 0, 1, 2, . . . ,K do
3: for i = 0, 1, 2, . . . , N do
4: Sample a batch x ∼ µ and y ∼ ν.
5: ŷ = Tθ(x).
6: Update ϕ by minimizing the objective Lv .

Lv = vϕ(ŷ)− f◦ (vϕ(y))
7: Sample a batch x ∼ µ.
8: ŷ = Tθ(x), ŷold = Told(x).
9: Update θ by minimizing the objective LT .

LT = c (ŷold, ŷ)− vϕ(ŷ)
10: end for
11: Told ← Tθ
12: end for

Therefore, the semi-dual form of the JKO step can be repre-
sented as the following adversarial learning objective:

sup
v∈C

∫
inf
∆Tk

[c (x,∆Tk(x))− v(∆Tk(x))] dµk(x)

+

∫
f◦(v(y))dν(y). (19)

Note that this objective for a single JKO step is equivalent
to Source-fixed-UOTM (Choi et al., 2023a) between µk and
µk+1 = (∆Tk)#µk.

Reparametrization trick The quadratic training complex-
ity of the JKO models (Table 1) stems from the necessity
to simulate the entire trajectory of the JKO scheme {µk}k
(Fig 1a). To manage this challenge, we introduce a straight-
forward reparametrization trick. Suppose Tk : Rd → Rd be
a measurable map such that

Tk = ∆Tk ◦ · · · ◦∆T1 ◦∆T0. (20)

Tk satisfies Tk := ∆Tk ◦ Tk−1 and (Tk)#µ = µk+1. Now,
we introduce the reparametrization trick to µk in Eq 19:

Lk = sup
v∈C

∫
inf
Tk

[c (Tk−1(x), Tk(x))− v(Tk(x))]dµ(x)

+

∫
f◦(v(y))dν(y). (21)

Note that this reparametrized learning objective Lk is for
the k-th JKO step. The comprehensive training procedure
repeats this step for k = 0, · · · ,K. Our reparametrization
trick transforms the learning objective from ∆Tk-training
to Tk-training. Therefore, for each phase k, we possess a
direct transport map Tk−1 that connects µ to µk. In other

words, for each phase, sampling from µk does not require
simulating the entire trajectory. Instead, we can efficiently
generate µk using a one-step inference. In this regard, this
reparametrization trick significantly contributes to man-
aging the training complexity (Table 1). Furthermore,
there is an additional advantage in terms of training effi-
ciency. For each phase transition, we initialize Tk using the
previous Tk−1. We hypothesize that this contributes to sta-
ble training during the entire training process This training
efficiency is empirically demonstrated in Sec 5.

Algorithm Finally, we present our training algorithm (Al-
gorithm 1), called the Semi-dual JKO scheme (S-JKO). The
adversarial learning objectiveLk is updated through alternat-
ing gradient descent, as in GAN (Goodfellow et al., 2020).
We simplified Algorithm 1 by excluding non-dependent
terms for each vϕ and Tθ (See the appendix for the more
detailed Algorithm). Additionally, note that when we con-
duct training for only one phase, i.e., K = 1, our S-JKO
is equivalent to the Source-fixed-UOTM (Choi et al.,
2023a). In Sec 5, we will provide further clarification re-
garding the advantages over Source-fixed-UOTM.

5. Experiments
In this section, we conduct experiments on the various
datasets to evaluate the following aspects of our model:

• In Sec. 5.1, we compare S-JKO with UOTMs regarding
the distribution error between the generated and target
distributions on synthetic datasets.

• In Sec. 5.2, we compare S-JKO with other JKO mod-
els regarding scalability on large-scale image datasets.
Moreover, we demonstrate that S-JKO achieves com-
petitive performance compared to state-of-the-art gen-
erative models.

• In Sec. 5.3, we assess the robustness of S-JKO re-
garding JKO hyperparameters through ablation studies,
such as the step size h, the number of JKO steps K,
and the functional F(·).

Throughout this paper, we considered two functionals for
F(·): KL divergence (KLD) F(·) = DKL(·|ν) and Jensen-
Shannon divergence (JSD) F(·) = DJSD(·|ν). Unless
otherwise stated, F(·) is KLD. For further implementation
details, please refer to Appendix B.

5.1. Distribution Matching on Synthetic Datasets

As described in Sec 4.1, Source-fixed-UOTM is equivalent
to our S-JKO with only one phase training (K = 1). UOTM
variants exhibit prominent scalability (Choi et al., 2023a).
However, the limitation of UOTM variants is that they in-
duce inherent distribution errors (Sec 2.2). Therefore, we
evaluate whether our S-JKO can mitigate this distribu-
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(a) Two Circles (b) 25-Gaussian Mixture

Figure 3. Generation Results for UOTM, Source-fixed UOTM, and S-JKO on Synthetic Datasets. Each column shows the generated
distribution at training iterations {5, 20, 40, 60, 100}K. k denotes the index of JKO steps corresponding to that particular iteration.

tion error through multi-phase training. We conducted
experiments on two synthetic datasets: Two Circles and 25-
Gaussian Mixture. To observe the clear difference, we chose
multi-modal datasets as the target datasets, with densities
that are spread extensively away from the origin.

Fig 3 illustrates the generated densities for every 5k training
iterations. Note that k on the bottom of the figure indi-
cates the number of JKO steps completed at that training
iteration. The generated samples from UOTMs (UOTM
and Source-fixed UOTM) tend to be confined to a subset of
modes near the origin. In contrast, our model successfully
captures and covers all modes present in complex multi-
modal distributions. We interpret this phenomenon hap-
pens due to the inherent distribution errors of the UOTMs.
UOTMs aim to minimize the transport cost between the
source and generated distributions. Consequently, the gen-
erated distribution from UOTMs tends to cluster around
the origin, because the source distribution is a Gaussian dis-
tribution centered at the origin. This mode collapse problem
of UOTMs can be exacerbated when the target distribu-
tion is spread out far from the origin. Meanwhile, the JKO
scheme gradually transforms the source distribution into
the target distribution, by approximating the Wasserstein
Gradient Flow towards the target distribution. As we iterate
through the JKO steps, the discrepancy between the gener-
ated and the target distributions gradually decreases (Fig 3).
Therefore, our S-JKO mitigates the distribution error of
its one-step variant (Source-fixed UOTM) and UOTM.

5.2. Scalability on Image Datasets

Training Time In this paragraph, we compare the training
times of existing JKO-based algorithms with our model. As
aforementioned in Sec. 3, recent JKO-based approaches
(Fan et al., 2022; Xu et al., 2023) parametrize the trans-
port map for each JKO step with a separate neural network.
This parametrization substantially slows down the train-
ing process. On the contrary, as discussed in Sec. 4, our
model effectively reduces training time complexity through
the reparametrization trick. To verify whether our model

reduces the training time in practice, we measured the wall-
clock training time on the single GPU of RTX 3090Ti.

As illustrated in Table 1, training our model with a Small
backbone only requires 6 hours, which is more than 5 times
faster than other comparable JKO-based models. Surpris-
ingly, our model with Small backbone not only reduces
training time but also significantly outperforms other
JKO-based methods, achieving an FID score of 8.78. In
contrast, other JKO-based models show FID scores over 20.

Furthermore, when compared with the Source-fixed UOTM
(K = 1), our model exhibits a comparable wall-clock
training time to UOTMs. Specifically, we maintain train-
ing time by decreasing the number of iterations per each
JKO step (N ) (See the Appendix B for the detail). As a re-
sult, our model only requires a similar number of iterations
to UOTMs, which is approximately 10K iterations. This ef-
ficiency comes from our reparametrization trick that enables
convergence within this decreased training iterations.

Image Generation We assessed our model on two bench-
mark datasets: CIFAR-10 (32 × 32) (Krizhevsky et al.,
2009) and CelebA-HQ (256× 256) (Liu et al., 2015). For
the quantitative evaluation, we employed the FID (Heusel
et al., 2017) score. Table 2 shows that our model with
Large backbone demonstrates state-of-the-art results on
CIFAR-10 among existing WGF-based models, with an
FID of 2.62. (See Table 2 for a more extensive comparison
with various generative models.) Our model outperforms
the second-best-performing WGF-based model, NSGF (Zhu
et al., 2024a), which shows an FID of 5.55, by a significant
margin. Note that NSGF employs the same Large backbone
of NCSN++ (Song et al., 2021b). Furthermore, our model
achieves a competitive FID score of 5.46 on CelebA-HQ
(256× 256). To the best of our knowledge, our model is the
first WGF-based generative model that has achieved compa-
rable results with state-of-the-art models on image genera-
tion tasks, especially on high-resolution image datasets like
CelebA-HQ.

Moreover, to validate the necessity of multiple JKO steps,
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Table 2. Image Generation on CIFAR-10. † indicates the results
conducted by ourselves.

Class Model FID (↓)

GAN

SNGAN+DGflow (Ansari et al., 2020) 9.62
StyleGAN2 w/o ADA (Karras et al., 2020) 8.32
StyleGAN2 w/ ADA (Karras et al., 2020) 2.92

DDGAN (T=1)(Xiao et al., 2021) 16.68
DDGAN (Xiao et al., 2021) 3.75
RGM (Choi et al., 2023c) 2.47

Diffusion

NCSN (Song & Ermon, 2019) 25.3
DDPM (Ho et al., 2020) 3.21

Score SDE (VE) (Song et al., 2021b) 2.20
Score SDE (VP) (Song et al., 2021b) 2.41
DDIM (50 steps) (Song et al., 2021a) 4.67

CLD (Dockhorn et al., 2022) 2.25
Subspace Diffusion (Jing et al., 2022) 2.17

LSGM (Vahdat et al., 2021) 2.10

Flow Matching FM (Lipman et al., 2023) 6.35
OT-CFM (Tong et al., 2024) 3.74

OT-based

WGAN (Arjovsky et al., 2017) 55.20
WGAN-GP(Gulrajani et al., 2017) 39.40
OTM* (Small) (Rout et al., 2022) 21.78

OTM (Large)† 7.68
UOTM (Small) (Choi et al., 2023a) 12.86
UOTM (Large) (Choi et al., 2023a) 2.97±0.07

Source-fixed UOTM (Small)† 14.4
Source-fixed UOTM (Large) 7.53

WGF-based

JKO-Flow (Fan et al., 2022) 23.1
JKO-iFlow (Xu et al., 2023) 29.1

NSGF (Zhu et al., 2024a) (Large) 5.55
S-JKO (Small)† 8.78

S-JKO (JSD) (Small)† 8.24
S-JKO (Large)† 2.62 ±0.04

S-JKO (JSD) (Large)† 2.66±0.05

Table 3. Image Generation on CelebA-HQ.

Class Model FID (↓)

Diffusion

Score SDE (VP) (Song et al., 2021b) 7.23
Probability Flow (Song et al., 2021b) 128.13

LSGM (Vahdat et al., 2021) 7.22
UDM (Kim et al., 2021) 7.16

DDGAN (Xiao et al., 2021) 7.64
RGM (Choi et al., 2023c) 7.15

GAN

PGGAN (Karras et al., 2017) 8.03
Adv. LAE (Pidhorskyi et al., 2020) 19.2

VQ-GAN (Esser et al., 2021) 10.2
DC-AE (Parmar et al., 2021) 15.8

StyleSwin (Zhang et al., 2022) 3.25

VAE
NVAE (Vahdat & Kautz, 2020) 29.7
NCP-VAE (Aneja et al., 2021) 24.8

VAEBM (Xiao et al., 2020) 20.4

OT-based UOTM 6.36
Source-fixed UOTM† 7.36

WGF-based S-JKO† 6.40
S-JKO (JSD)† 5.46

Table 4. Ablation Study on Phase Number K.

K 10 25 50 100 200

S-JKO (KLD) 2.77 2.83 2.62 2.73 2.67
S-JKO (JSD) 3.15 3.23 2.86 2.83 2.66

Table 5. Ablation Study on Step Size h.

h 0.01 0.05 0.1 0.2

S-JKO (KLD) 2.91 2.71 2.62 6.11
S-JKO (JSD) 3.82 3.03 2.83 2.75

we compare our model with the Source-fixed UOTM, which
is equivalent to a single-JKO step model (K = 1). Table 2
demonstrates that our model outperforms the Source-fixed
UOTM in both architectures on CIFAR-10. Furthermore,
our model surpasses the Source-fixed UOTM on CelebA-
HQ (256× 256) by a large margin. Combining this with the
result from Sec. 5.1, we conclude that leveraging multiple
JKO steps helps make the generated distribution closer to
the target distribution.

5.3. Ablation Studies

In this section, we conduct ablation studies to assess the
robustness of our model on the main hyperparameters
for the JKO scheme. These parameters include the number
of JKO step K, the step size h, and the functional F(·).

Ablation on Phase Number K We conducted an ab-
lation study on the number of JKO steps K. To main-
tain the total training iterations, we adjusted the num-
ber of iterations N per JKO step accordingly. We tested
K ∈ {10, 25, 50, 100, 200} for two functionals (KLD and
JSD). For each KLD and JSD experiment, we fixed the total
number of iterations to 10K and 8K, respectively (See the

appendix for details). Table 4 shows that our model with
both KLD and JSD shows similar performance across di-
verse K, which demonstrates that our model is robust to
K. Moreover, we observed a marginal improvement in per-
formance as the number of steps increased, achieving FID
scores of 2.60 and 2.66 in the KLD and JSD experiments,
respectively. We interpret this phenomenon through WGF.
A sufficient number of steps are required to converge to the
complex data distribution.

Ablation on Step Size h We performed an ablation
study on step size h (Table 5). We experimented h ∈
{0.01, 0.05, 0.1, 0.2} while fixing K = 50. Both S-JKOs
employing KLD and JSD showed the best results around
h = 0.1 and comparable performance at h = 0.05. How-
ever, the performance on a too-small h = 0.01 slightly
declines. We hypothesize that this is because too small h is
insufficient to transport the source distribution to the target
distribution, within the fixed number of JKO steps. More-
over, S-JKO-KLD exhibited sharp degradation at h = 0.2.
We interpret this is because of the discretization error of
the JKO step. Interestingly, this error is much smaller for
JSD. Investigating this difference is beyond the scope of
this work. However, we believe this would be an interesting
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Table 6. logSymKL(↓) between Ground-Truth WGF and Each
method at t = 0.5 for dimensions d = 2, · · · , 10.

Model Dual JKO EM 50K EM PR 10K ICNN JKO Ours

d = 2 −1.4 −2.1 −2.0 −2.6 −2.3
d = 4 −0.3 −1.0 −0.8 −2.1 −0.9
d = 6 0.1 −0.4 −0.2 −1.8 −1.8
d = 10 0.6 0.4 0.6 −1.8 −0.1

Table 7. logSymKL(↓) between Ground-Truth WGF and Each
method at t = 0.9 for dimensions d = 2, · · · , 10.

Model Dual JKO EM 50K EM PR 10K ICNN JKO Ours

d = 2 −1.1 −2.3 −1.9 −2.4 −2.4
d = 4 −0.7 −1.0 −0.8 −2.1 −1.2
d = 6 −0.5 −0.3 −0.1 −2.2 −0.8
d = 10 0.1 0.4 0.4 −1.8 −0.1

future research.

Ablation on f -divergence During our ablation study on
other hyperparameters, we also examined the impact of f -
divergence: KLD and JSD. In summary, both f -divergences
significantly outperform other JKO models and the Source-
fixed UOTM on CIFAR-10 (Table 2), and outperform the
Source-fixed UOTM on CelebA-HQ (Table 3). S-JKO-KLD
achieves slightly better results than S-JKO-JSD on both
datasets. However, S-JKO-JSD is more robust to larger h.

5.4. Numerical Comparison to Ground-Truth WGF

We numerically compared our model to the ground truth
solution of WGF to assess its accuracy. We followed the
experimental settings of the Ornstein-Uhlenbeck process
experiments in Mokrov et al. (2021). Specifically, we mea-
sured the symmetric KL divergence between the ground-
truth solution and the approximate WGF recovered by each
method. (See Mokrov et al. (2021) for the details of each
method). Table 6 and 7 present the results. ICNN JKO
Mokrov et al. (2021) presents the best symmetric KL di-
vergence to the ground truth solution, while our approach
demonstrates the second-best results. However, ICNN JKO
requires additional cubic complexity of O(K2d3) for ap-
proximating functional F(ρ) (Table 1), where K denotes
the number of JKO steps and d refers to the data dimen-
sion. Hence, it is challenging to apply ICNN JKO to high-
dimensional data, such as image datasets in our paper. In
this respect, our method provides competitive scalability to
high-dimensional datasets, demonstrating a favorable trade-
off between scalability and accuracy.

6. Conclusion
In this paper, we introduce S-JKO, a generative model based
on the semi-dual form of the JKO scheme. Our work ad-
dresses the scalability challenges in previous JKO-based

approaches by leveraging (i) the semi-dual form of the JKO
scheme, and (ii) by reparametrizing the transport map. Ad-
ditionally, we explore the relationship with UOTM and en-
hance the distributional matching between the generated
distribution and the target distribution. Through comprehen-
sive experiments on 2D synthetic datasets and large-scale
benchmark datasets like CIFAR-10 and CelebA-HQ, we
demonstrate that our proposed model generates high-quality
samples in large-scale data while faithfully capturing the
underlying distribution.
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On the other hand, the potential negative societal impact
of our work is that generative models tend to learn depen-
dencies on the semantics of data, potentially amplifying
existing biases. Thus, deploying such models in real-world
applications necessitates vigilant monitoring to prevent the
reinforcement of societal biases present in the data. It is cru-
cial to meticulously control the training data and modeling
process of generative models to mitigate potential negative
societal impacts.

References
Adams, S., Dirr, N., Peletier, M. A., and Zimmer, J. From

a large-deviations principle to the wasserstein gradient
flow: a new micro-macro passage. Communications in
Mathematical Physics, 307:791–815, 2011.
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A. Derivation & Algorithm
In this section, we provide a derivation of our optimization problem (Eq 21) and provide the precise algorithms for our
model.

Notations and Asssumptions Assume that all the distributions including µ, µk and ν be absolutely continuous with
respect to the Lebesgue measure. Throughout the paper, we assume that every function f under the subscript of divergence
D, i.e. Df , is a convex, differentiable, and nonnegative function defined on R+. f∗ is a convex conjugate of f , i.e.
f∗(y) := supx (⟨x, y⟩ − f(x)). For convenience, we define f◦(x) := −f∗(−x). Moreover, we set ch(x, y) := 1

2h∥x−y∥
2
2.

Derivation of the Optimization Problem Before the derivation, we start with the following Lemma:
Lemma A.1. (Chizat et al., 2018; Vacher & Vialard, 2023; Gallouët et al., 2021; Choi et al., 2023a) Consider the following
optimization problem:

inf
π∈M+

∫
X×Y

ch(x, y)dπ(x, y) +Dφ1(π0|µk) +Dφ2(π1|ν). (22)

Then, the semi-dual formulation of Eq 22 is given as

sup
v∈C

∫
φ◦
1 (v

c(x)) dµk(x) +

∫
φ◦
2(v(y))dν(y), (23)

where vc(x) = infy [c (x, y)− v(y)]. Moreover, the strong duality holds.

Proof. See Choi et al. (2023a) for the proof.

This Lemma enables us to reformulate the JKO optimization problem into the semi-dual formulation of UOT. Suppose
µ = µ0 and ν are source and target distributions, respectively, and let F(ρ) := Df (ρ|ν). Then, our optimization problem
Eq 5 is as the follows:

µk+1 = argmin
ρ∈P(Rd)

1

2h
W2

2 (µk, ρ) +Df (ρ|ν)︸ ︷︷ ︸
Lρ

. (24)

Recall the definition of 2-Wasserstein distanceW2:

W2
2 (ρ, ξ) := min

π∈Π(ρ,ξ)

∫
Rd×Rd

∥x− y∥22dπ(x, y). (25)

By the definition ofW2, the objective function Lρ of Eq 12 can be rewritten as the follows:

Lρ = min
π∈Π(µk,ρ)

∫
Rd×Rd

ch(x, y)dπ +Df (π1|ν). (26)

Then, by combining Eq 12 and Eq 26, we obtain the following optimization problem:

inf
π0=µk

[∫
Rd×Rd

ch(x, y)dπ(x, y) +Df (π1|ν)
]
. (27)

By configuring φ1 = ι and φ2 = f in Eq 22, it boils down to Eq 27. Thus, by applying Lemma A.1, the semi-dual of Eq 27
is written as follows:

sup
v∈C

∫
vc(x)dµk(x) +

∫
f◦(v(y))dν(y). (28)

Note that vc(x) := infy(c(x, y)− v(y)). Equivalently, we can define vc(x) := inf∆T (c(x,∆T (x))− v(∆T (x))). Thus,
Eq 28 can be rewritten as follows:

sup
v∈C

∫
inf
∆T

[c (x,∆T (x))− v(∆T (x))] dµk(x) +

∫
f◦(v(y))dν(y). (29)

Now, suppose Tk : Rd → Rd be a measurable map such that Tk#µ = µk. Then, by reparametrizing T := ∆T ◦ Tk, Eq 29
is equivalent to

sup
v∈C

∫
inf
T

[c (Tk(x), T (x))− v(T (x))] dµ(x) +
∫
f◦(v(y))dν(y). (30)
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Algorithm 2 Training algorithm of S-JKO with KLD

Require: Transport network Tθ and the discriminator network vϕ.
1: Told = Id
2: for k = 0, 1, 2, . . . ,K do
3: for i = 0, 1, 2, . . . , N do
4: Sample a batch x ∼ µ, y ∼ ν, and z ∼ N (0, I).
5: ŷ = Tθ(x, z).
6: Update ϕ by using the loss Lv .

Lv = vϕ(ŷ) + f∗ (−vϕ(y)) + λ∥∇vϕ(y)∥22.
7: Sample a batch x ∼ µ, and z1, z2 ∼ N (0, I).
8: ŷ = Tθ(x, z1), ŷold = Told(x, z2).
9: Update θ by using the loss LT .

LT = c (ŷold, ŷ)− vϕ(ŷ)
10: end for
11: Told ← Tθ
12: end for

Algorithm 3 Training algorithm of S-JKO with JSD

Require: Transport network Tθ and the discriminator network wϕ.
1: Told = Id
2: for k = 0, 1, 2, . . . ,K do
3: for i = 0, 1, 2, . . . , N do
4: Sample a batch x ∼ µ, y ∼ ν, and z ∼ N (0, I).
5: ŷ = Tθ(x, z).
6: Update ϕ by using the loss Lv .

Lv = S (wϕ(ŷ)) + S (−wϕ(y)) + λ∥∇wϕ(y)∥22.
7: Sample a batch x ∼ µ, and z1, z2 ∼ N (0, I).
8: ŷ = Tθ(x, z1), ŷold = Told(x, z2).
9: Update θ by using the loss LT .

LT = c (ŷold, ŷ) + S (−wϕ(ŷ))

10: end for
11: Told ← Tθ
12: end for

Algorithm In image generation tasks, we slightly modify Algorithm 1 by following implementations in Choi et al.
(2023a;b). We demonstrate the precise training algorithm with KLD in Algorithm 2. As shown in lines 4-5 and lines 7-8, we
additionally plugged auxiliary variable z into the network Tθ. This strategy is known to yield additional improvements in
performance (Xiao et al., 2021; Choi et al., 2023c;a;b). Moreover, we incorporate R1 regularizer (Roth et al., 2017), i.e.
λ∥∇vϕ(y)∥22 in line 5, which is a popular regularization employed in various studies (Mescheder et al., 2018; Xiao et al.,
2021; Choi et al., 2023c;a;b). Furthermore, note that the cost function in line 9 is c(x, y) = 1

2dh∥x− y∥
2
2.

Algorithm 3 demonstrates the exact algorithm for our model with JSD. In image generation tasks on JSD, we also employ
additional auxiliary variables and R1 regularizer. Suppose Df is JSD, then the convex conjugate of f is

f∗(x) =

{
− log(2− ex), if x < log 2,

∞, if x ≥ log 2.

Since the f∗(vϕ(y)) is infinite whenever vϕ(y) ≥ log 2, the reparametrization for vϕ is inevitable. Thus, we introduce wϕ,
which is a reparametrization of vϕ as defined as follows:

wϕ(y) = (σ−1 ◦ exp) (vϕ(y)− log 2) , (31)
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where σ is a sigmoid function. Then, the objective Lv and LT in lines 5 and 9 in Algorithm 1 can be written as the follows:

Lv = S (wϕ(ŷ)) + S (−wϕ(y))

LT = c(ŷold, ŷ)− S (wϕ(ŷ)) ,
(32)

where S(x) is a softplus function, i.e. S(x) := log(1 + ex). However, technically, it is well-known that the gradient of
the generator T saturates when trained with LT (Goodfellow et al., 2020). Thus, by following the technical modification
introduced in Goodfellow et al. (2020), we modify the object as follows:

Lv = S (wϕ(ŷ)) + S (−wϕ(y))

LT = c(ŷold, ŷ) + S (−wϕ(ŷ)) .
(33)

Finally, we obtain the training algorithm of S-JKO with JSD as the Algorithm 3.

B. Implementation Details
Unless otherwise stated, the source distribution µ is a d-dimensional standard Gaussian distribution and the target distribution
ν is a data distribution.

B.1. Synthetic data

Two Circles Suppose P is a uniform distribution on the circles of radius 4 and 8. Then, we generate 2D “Two Circle” data
as follows:

x+ 0.2z x ∼ P z ∼ N (0, I).

25-Gaussian Mixture Let P be a uniform distribution on {(3i, 3j) : i, j ∈ {−2,−1, 0, 1, 2}}. Then, we generate 2D
“25-Gaussian Mixture” data as follows:

x+ 0.005z x ∼ P z ∼ N (0, I).

Implementation Details For all synthetic experiments, we used the same architectures for the transport map Tθ and the
potential network vϕ. We followed the architectures and hyperparameters of Choi et al. (2023b) unless otherwise stated.
We used a batch size of 400 and a learning rate of 10−4 and 10−5 for the transport and potential networks, respectively.
We trained the networks for 100K iterations for UOTMs. For our model, we trained for 20 JKO steps (K = 20), and 5K
iterations for each JKO step (N = 5000). Thus, our models are also trained for 100K iterations. Moreover, we set h = 5 for
the 25-Gaussian Mixture, and h = 2 for the Two Circles data. We do not use any regularizations.

B.2. Image Generation

Otherwise stated, all the implementation details including preprocessing, hyperparameters, and architectures follow the
implementation of Choi et al. (2023b). The DCGAN model, which is written as Small throughout the manuscript, follows
the architecture employed in Rout et al. (2022). For Large model, we follow the implementation of Choi et al. (2023a). For
all implementations, We employ a batch size of 256, Adam optimizer with (β1, β2) = (0.5, 0.9), and the learning rate of
2× 10−4 and 10−4 for the Tθ and vϕ networks, respectively. Moreover, we used R1 regularization of λ = 0.2 for CIFAR-10
experiments, and λ = 20 for CelebA-256 experiments. For the implementation of our model with KL divergence, we trained
for 50 JKO steps (K = 50), 10K iterations for the first JKO step, and 2K iterations for other JKO steps (N = 2000). In
total, we train for 110K iterations. For the implementation of our model with Jensen-Shannon divergence, we trained for 35
JKO steps (K = 50), 10K iterations for the first JKO step, and 2K iterations for other JKO steps (N = 2000). In total, we
train for 80K iterations. For the implementation of ablation on K, we adjusted the number of iterations for each JKO step,
i.e. N , to fix the total number of training iterations.

Number of network parameters In this paragraph, we compare the number of network parameters between comparison
models ((Fan et al., 2022; Xu et al., 2023)) to our S-JKO on the CIFAR-10 experiments. For Small and Large architecture,
we use approximately 0.4M and 48M number of parameters for Tθ, respectively. Fan et al. (2022) employs more than 30M
parameters. Moreover, since Xu et al. (2023) use encoder-decoder networks, they can save the number of parameters to
approximately 2-3M.
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Figure 4. CIFAR-10 trajectories from S-JKO (KLD) for K = 5j + 1 (0 ≤ j ≤ 9).

Evaluation Metric We used 50,000 generated samples to measure FID (Heusel et al., 2017) scores.

C. Additional Results
C.1. Training dynamics

Through Fig 4 and 5, we visualize the trajectories of S-JKO trained on CIFAR-10. We sampled a batch x ∼ µ and visualized
{T5j+1(x)} for a non-negative integer j.

C.2. Additional Qualitative Results

Through Fig 6-11, we present generated samples for S-JKO trained on CIFAR-10 and CelebA-HQ (256× 256).
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Figure 5. CIFAR-10 trajectories from S-JKO (JSD) for K = 5j + 1 (0 ≤ j ≤ 7).
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Figure 6. Generated samples from S-JKO (KLD) trained on CIFAR-10 (32× 32) with Large model.

Figure 7. Generated samples from S-JKO (JSD) trained on CIFAR-10 (32× 32) with Large model.
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Figure 8. Generated samples from S-JKO (KLD) trained on CIFAR-10 (32× 32) with Small model.

Figure 9. Generated samples from S-JKO (JSD) trained on CIFAR-10 (32× 32) with Small model.
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Figure 10. Generated samples from S-JKO (KLD) trained on CelebA-HQ (256× 256).
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Figure 11. Generated samples from S-JKO (JSD) trained on CelebA-HQ (256× 256).
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Table 2. Extensive Comparison with Diverse Generative Models on Image Generation on CIFAR-10. †
indicates the results conducted by ourselves.

Class Model FID (↓)

GAN

SNGAN+DGflow (Ansari et al., 2020) 9.62
AutoGAN (Gong et al., 2019) 12.4
TransGAN (Jiang et al., 2021) 9.26

StyleGAN2 w/o ADA (Karras et al., 2020) 8.32
StyleGAN2 w/ ADA (Karras et al., 2020) 2.92

DDGAN (T=1)(Xiao et al., 2021) 16.68
DDGAN (Xiao et al., 2021) 3.75
RGM (Choi et al., 2023c) 2.47

Diffusion

NCSN (Song & Ermon, 2019) 25.3
DDPM (Ho et al., 2020) 3.21

Score SDE (VE) (Song et al., 2021b) 2.20
Score SDE (VP) (Song et al., 2021b) 2.41
DDIM (50 steps) (Song et al., 2021a) 4.67

CLD (Dockhorn et al., 2022) 2.25
Subspace Diffusion (Jing et al., 2022) 2.17

LSGM (Vahdat et al., 2021) 2.10

Flow Matching FM (Lipman et al., 2023) 6.35
OT-CFM (Tong et al., 2024) 3.74

VAE&EBM

NVAE (Vahdat & Kautz, 2020) 23.5
Glow (Kingma & Dhariwal, 2018) 48.9
PixelCNN (Van Oord et al., 2016) 65.9

VAEBM (Xiao et al., 2020) 12.2
Recovery EBM (Gao et al., 2021) 9.58
CDRL-large (Zhu et al., 2024b) 3.68

OT-based

WGAN (Arjovsky et al., 2017) 55.20
WGAN-GP(Gulrajani et al., 2017) 39.40

OTM (Large)† 7.68
Source-fixed UOTM (Large) 7.53

UOTM (Large) (Choi et al., 2023a) 2.97

WGF-based

JKO-Flow (Fan et al., 2022) 23.1
JKO-iFlow (Xu et al., 2023) 29.1

NSGF (Zhu et al., 2024a) (Large) 5.55
S-JKO (Large)† 2.62

S-JKO (JSD) (Large)† 2.66
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