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ABSTRACT

Ordinal regression is a supervised machine learning technique aimed at predicting
the value of a discrete dependent variable with an ordered set of possible outcomes.
Many of the algorithms that have been developed to address this issue rely on maxi-
mum likelihood for training. However, the standard maximum likelihood approach
often fails to adequately capture the inherent order of classes, even though it tends
to produce well-calibrated probabilities. Alternatively, some methods use Optimal
Transport (OT) divergence as their training objective. Unlike maximum likelihood,
OT accounts for the ordering of classes; however, in this manuscript, we show that
it doesn’t always yield well-calibrated probabilities. To overcome these limitations,
we introduce UNICORNN, an approach inspired by the well-known Proportional
Odds Model, which offers three key guarantees: (i) it ensures unimodal output prob-
abilities, a valuable feature for many real-world applications; (ii) it employs OT loss
during training to accurately capture the natural order of classes; (iii) it provides
well-calibrated probability estimates through a post-training accuracy-preserving
calibration step. Experimental results on six real-world datasets demonstrate that
UNICORNN consistently either outperforms or performs as well as recently pro-
posed deep learning approaches for ordinal regression. It excels in both accuracy
and probability calibration, while also guaranteeing output unimodality. The code
will be publicly available upon acceptance.

1 INTRODUCTION

Ordinal regression is an area of supervised machine learning, where the goal is to predict the value of
a discrete dependent variable, whose set of (symbolic) possible values is ordered. Despite often being
overshadowed by more common tasks like classification and regression, ordinal regression covers a
wide range of important applications, such as medical severity grading, credit rating, age estimation,
and many more (De Vente et al., 2020; Wienholt et al., 2024; Niu et al., 2016; Kim and Ahn, 2012).

Many practitioners often treat ordinal regression problems as classification or regression problems
(for example, this was the case with many submissions to Kaggle’s Diabetic Retinopathy competition1

in 2015). While having common characteristics with both classification and regression, ordinal
regression can arguably be viewed as a mid-point between the two. An ordinal model is of course
similar to a classification model, in that both predict a discrete value (“label”) out of a finite set of
possible ones. However, the existence of an order on the set of labels, when available, can potentially
lead to improved performance compared to a standard classifier, which does not assume such order
exists. This typically occurs via distinguishing between the severity of prediction mistakes: while
in classification typically ”all mistakes are created equal", in ordinal regression different mistakes
may be associated with different severity (for example, in the context of tumor grade prediction,
predicting "3" when the ground truth value is "4" may be less severe than a "1" prediction). In
regression problems, the dependent variable naturally does take values from an ordered set, however,
this set is typically a continuum and is treated numerically, while in ordinal regression it lacks any
numerical relation beyond merely order. Therefore, regression performance may be sensitive to
monotonic transformations of the dependent variable, while such sensitivity does not take place in
ordinal regression problems, as the order is invariant to monotonic transformations. Hence one may

1https://www.kaggle.com/c/diabetic-retinopathy-detection/
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expect that typical ordinal regression algorithms have the potential to outperform classification or
regression approaches when the range of the dependent variable is finite and ordered.

A fundamental ordinal regression model is the Proportional Odds Model (POM) (McCullagh, 1980),
a generalized linear model similar in spirit to logistic regression, however the logits are defined
for their cumulative probabilities. One potential source of sub-optimality of POM and of several
recently-proposed approaches for deep ordinal regression, is the often-reasonable requirement that a
probabilistic model for ordinal regression will output unimodal probabilities. A k-level multinomial
distribution is called unimodal if there exists j ∈ {1, . . . , k} such that Pr(Y = 1) ≤ . . . ≤ Pr(Y =
j) ≥ . . . ≥ Pr(Y = k). Although there are domains in which unimodality is not necessarily a
desirable property, such as tasks where the most common targets tend to fall at the extremes, in many
other real-world domains it is a natural requirement, for example, when predicting a grade of a tumor,
it may be counter-intuitive to trust a model prediction which says that a predicted tumor’s grade
is either "1" or "4", but not "2" or "3". However, unimodality is unfortunately not always fulfilled
despite often being a desired characteristic. While this was identified by several recent works for deep
ordinal regression (Gao et al., 2017; Diaz and Marathe, 2019; Liu et al., 2019a; 2020), unimodality is
often encouraged (but not enforced) via soft targets. However, as we show in Section 2, using soft
targets is suboptimal for achieving unimodality.

Another essential feature of an ordinal regression model is its ability to effectively capture the ordered
relationship among classes within its training objective, while still reflecting the certainty of the
model in its predictions. POM is typically trained via maximum likelihood, similar to several recently
proposed deep ordinal regression approaches (Belharbi et al., 2019; Vargas et al., 2020; Fu et al., 2018;
Beckham and Pal, 2017; Berg et al., 2020; Vishnu et al., 2019). We argue that maximum likelihood
is a sub-optimal measure of quality for ordinal regression setup, as it only considers the probability
mass the model assigns to the true class, ignoring the remaining mass. This implicitly assumes that
“all mistakes are equal”, which, as discussed above, is not the case for ordinal regression. However, a
benefit of maximum likelihood is that it tends to yield well-calibrated probabilities. A well-calibrated
model ensures that, for example, a 90% predicted probability corresponds to events that actually
occur 90% of the time. However, many models, including recent deep ordinal regression approaches,
struggle with this. These models often exhibit overconfidence or underconfidence, meaning their
probability outputs are unreliable indicators of their true prediction certainty. Another commonly
used loss function for ordinal regression tasks is Optimal Transport (OT) divergence. OT excels at
capturing the inherent order between labels, potentially making it a better fit. However, as we explain
in Section 3.3, OT might lead to peaked output distribution that lacks calibration.

In this manuscript, we therefore focus on two main contributions. First, We present UNICORNN, a
novel approach for ordinal regression, based on deep learning machinery, which tackles the three
issues pointed out above (i) it contains a mechanism to enforce unimodality of the output distribution,
implemented via architectural design, (ii) it effectively captures the ordered relationship among
classes using OT as a training objective (iii) it undergoes a post-training calibration process to output
well-calibrated probability estimates that reflect the model’s confidence in its predictions while still
preserving the model’s accuracy. Second, as discussed in Section 3.3, we identify a trade-off between
certain requirements, noting that OT may prioritize peaked distributions over calibrated ones, which,
to the best of our knowledge, was not pointed out in the literature in the context of deep ordinal
regression. Importantly, this bonds the requirements together, as other methods that utilize OT as
a training objective, end up being uncalibrated. We present experimental results on six real-world
image benchmark datasets which demonstrate that UNICORNN consistently performs on par with
and often better than several recently proposed approaches for deep ordinal regression in terms of
both prediction accuracy and probability calibration while having an unimodality guarantee.

2 RELATED WORK

Being a traditional area of machine learning and statistics, there exists a large corpus of literature on
ordinal regression. In this section, we focus on approaches based on recent deep-learning architectures.
Several such approaches have been proposed in recent years. One common approach is to turn the
ordinal regression problem into a multi-label classification problem (Fu et al., 2018; Liu et al., 2017;
2018b; Vishnu et al., 2019; Berg et al., 2020; Cheng et al., 2008; Li et al., 2021). We argue that the
multi-label approach has two major problematic aspects: first, the output probabilities are not always
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guaranteed to be consistent, in the sense of increasing cumulative distribution (i.e., we would like
to predict Pr(y ≤ 1) ≤ Pr(y ≤ 2) ≤ . . . ≤ Pr(y ≤ k). Second, even if the output probabilities
are consistent, as is the case in Liu et al. (2018a); Shi et al. (2023); Cao et al. (2020), the predicted
class probabilities are not necessarily unimodal. This is the case in several recent works (Liu et al.,
2019b; Vargas et al., 2020; Pan et al., 2018; Kook et al., 2020). Another line of research focuses on
addressing ordinal regression by developing unbiased estimator-based approaches that are robust to
label noise, as proposed by Garg and Manwani (2020).

One elegant mechanism is to obtain unimodal output probabilities, based on either the Poisson or
the Binomial distributions (Beckham and Pal, 2017), which are both unimodal. In both cases, the
model outputs a scalar (λ in the case of the Poisson, p in the case of the binomial) for each prediction,
which is then mapped to a probability mass function that is used (after normalization) as the model
output probabilities. Moreover, this method also learns a dataset-wide τ parameter which controls the
shape of the output distribution. While being a convenient architectural-based solution for handling
unimodality, this approach is inherently limited in its ability to express the level of uncertainty of the
model’s prediction. To see why, note that since a single parameter determines both the location of
the mode and the decay of the probabilities, the model cannot output a highly flat or highly peaked
probability vector, for example.

A different approach to unimodality has been to train the model with soft targets (Gao et al., 2017;
Diaz and Marathe, 2019; Liu et al., 2019a; 2020). However, we argue that the utilization of soft targets
suffers from two important disadvantages. First, unimodality is only encouraged, but not enforced.
In Section 5 we will show cases where models trained with soft targets yield large amounts of
non-unimodal predictions. Second, soft targets have a pre-defined decay pattern, which is determined
a-priori and hence does not reflect any level of uncertainty with respect to the prediction. Therefore,
they are equivalent (in the sense of a 1:1 map) to Dirac predictions (i.e., “one-hot”), and are devoid
of any probabilistic insight whatsoever. As we show in this paper, our approach attends to both
issues: we guarantee unimodal outputs, by design, and yield well-calibrated probabilities outputs that
reflect the model’s uncertainty. Other approaches for handling unimodality include Li et al. (2022);
Cardoso et al. (2023), where unimodality is encouraged through a dedicated loss term (although
not guaranteed), and Belharbi et al. (2019), which employs constrained optimization to achieve
unimodality on the training data, but with no guarantees on the predictions on test data.

Several works use cross entropy as a training objective while using one-hot (or binary) targets (Bel-
harbi et al., 2019; Vargas et al., 2020; Fu et al., 2018; Beckham and Pal, 2017; Berg et al., 2020;
Vishnu et al., 2019; Cardoso et al., 2023). Also, an accuracy-preserving calibration on a cross-entropy
trained model was proposed in (Esaki et al., 2024). However, in the case of one-hot targets, the
cross entropy term equals the negative logarithm of the probability assigned by the model to the true
class, making it invariant to the distribution of the remaining probability mass. While reasonable
in a standard classification setting, this ignores the order of the classes, making it sub-optimal for
an ordinal regression setting. Nonetheless, as cross-entropy is a proper-scoring rule, it tends to
yield calibrated probability estimates (Lakshminarayanan et al., 2017). To address cross-entropy’s
limitation in handling the order of classes, some approaches use OT loss (Hou et al., 2016; Beckham
and Pal, 2017; Liu et al., 2019a), which is a natural way to incorporate the order of the classes into
the loss term. However, OT tends to favor peaked output distributions instead of calibrated ones
(see Section 3.3). UNICORNN aims to benefit from both the ability to capture the order of classes
using OT as a training objective, and the generation of calibrated probability estimates through
accuracy-preserving calibration.

In summary, to the best of our knowledge, no existing work has successfully met all three fundamental
requirements for an effective ordinal regression model: (i) Ensuring unimodality in the output
distribution, ideally through architectural design; (ii) Aligning the training objective function with
the ordinal nature of the label space; (iii) Reflecting the model’s uncertainty in the decay of the
output probabilities, preferably with well-calibrated probabilities. These requirements led to the
development of UNICORNN, presented in this paper.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: The proportional odds model. xi

is a realization of X . The standard logistic
density is shifted by βTxi. The thresholds αj

define the bins which determine the probabil-
ity predicted by the model to each class. For
example, the green area defines the probabil-
ity Pr(Y = 3) for given α1, . . . , α5 and β.

Figure 2: POM deficiencies. The plots illus-
trate two instances of POM, which highlight
its two deficiencies: (1) POM does not always
output unimodal probabilities: the first plot
shows an example where the output proba-
bilities are such that Pr(Y = 1) > Pr(Y =
2) < Pr(Y = 3) > Pr(Y = 4). (2) The
likelihood function of POM is invariant to the
way the predicted probability mass of the in-
correct classes is assigned: if the correct class
is 3, both instances have the same likelihood,
even though in the second instance, the prob-
ability mass assigned to neighboring class 2
is larger.

3 PRELIMINARIES

3.1 THE PROPORTIONAL ODDS MODEL

Let (X,Y ) ∈ X × Y be random variables, having joint probability PXY , where X = Rd, Y =
{1, . . . , k}, and 1, . . . , k are considered as symbols. Let ⪯ be an order relation defined on Y such
that 1 ⪯ . . . ⪯ k. The proportional odds model is parametrized by α ∈ R|Y|−1, β ∈ Rd and applies
to data {(xi, yi)}ni=1, sampled i.i.d from PXY . Let ϵ be a logistic random variable (thus having a
sigmoid cumulative distribution function F (x) = 1

1+exp(−x) ), and let Z be a random variable defined
as Z = βTX + ϵ. The entries of α are used to define the cumulative conditional probabilities via

P(Y ⪯ j|X = x) = Pr(Z ≤ αj) = F (αj − βTx) (1)

Similarly to logistic regression, this yields linear log-odds (logits), however, defined with respect to
cumulative terms

γj ≡ log
P(Y ⪯ j|X = x)

P(Y ≻ j|X = x)
= αj − βTx

It is convenient to interpret equation 1 by viewing βTx as a factor that shifts the standard logistic
density function, while the αj terms are thresholds, with respect to which the cumulative probabilities
are defined. This is depicted in Figure 1.

Let (x, y) be a realization of (X,Y ). The likelihood assigned by the model to (x, y) is

L(α, β; (x, y)) = P(Y = y|X = x;α, β) = F(αy − βTx)− F(αy−1 − βTx), (2)

considering α0 = −∞ and αk = ∞. The model is typically trained in a standard fashion by
maximizing the log-likelihood function on the training data.

Despite its popularity, POM has two key limitations: First, the model’s output probabilities are not
necessarily unimodal (see Figure 2). Second, the likelihood function in equation 2 depends only on
the probability the model assigns to the correct class y and is invariant to the way the remaining
probability mass is assigned by the model. This ignores the order on the label set, and hence does not
use important information that might be used to improve prediction quality, as depicted in Figure 2.
This is also true of ordinal likelihood proposed in Chu et al. (2005). In addition, it is important to
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mention that as the cross-entropy term is essentially equivalent to the model’s negative log-likelihood
function, this invariance to the partition of the remaining mass over the incorrect classes is common
to all models trained via cross-entropy minimization, as long as the target labels are one-hot. In
Section 4 we will show how UNICORNN overcomes these two limitations of POM.

3.2 PROBABILITY CALIBRATION

Probability Calibration refers to the alignment between the predicted probabilities generated by a
classification model and the true, empirical probabilities observed in the data. For instance, it is
anticipated that when a classification model assigns a probability of 0.8 to class i for a certain sample,
approximately 80% of those samples would indeed belong to class i based on their ground truth
labels. Formally, the concept of calibration can be defined as:

P[y = i|pi(x) = q] = q, ∀q ∈ [0, 1], i ∈ [k] (3)

Here, k denotes the number of classes, x and y represent the model input and the ground truth
class, respectively, and pi(x) signifies the model’s output probability for class i given input x. The
probability is taken over the joint distribution of x, y.

Alternatively, if we denote y as a one-hot vector indicating the ground truth label, we can express an
equivalent definition to equation 3: A classification model is calibrated when Ex,y[y|p(x)] = p(x). In
practice, p(x) is a one-to-one function, hence we can refine the definition further: Ex,y[y|x] = p(x).

To achieve calibration, minimizing the squared L2 norm on the difference between the two terms
is desirable. However, given the unknown real joint distribution x, y, we can only approximate
Ex,y[y|x]. One approach is to use a Monte Carlo approximation with one sample, yielding the
approximation y, i.e., minimize the following:

BS(y, p(x)) = ∥y − p(x)∥22 (4)

This term is known as the Brier Score (BS) (Brier, 1950). BS is a well-known Proper Scoring Rule
(Dawid and Musio, 2014), which evaluates the accuracy of probabilistic predictions. Proper scoring
rules are maximized when the probabilistic forecast matches the true probability distribution of
outcomes. Therefore, we will use BS as a training objective to calibrate the model predictions.

Accuracy-Preserving Calibration An accuracy-preserving calibration method is a technique that
adjusts the probability outputs of a pre-trained model to improve their calibration, without affecting
the model’s accuracy. A popular method is Temperature Scaling (TS) (Guo et al., 2017), which learns
a single temperature parameter that is used to rescale the model’s logits before applying the softmax
activation, adjusting the confidence predictions. Adaptive Temperature Scaling (ATS) (Balanya
et al., 2024) extends TS such that instead of a single temperature parameter, it learns a mapping
x 7→ T (x) that adaptively scales the logits based on the input x. As part of UNICORNN we define
an accuracy-preserving calibration method with similarity to TS and ATS which is trained via Brier
Score (Section 4.3).

3.3 OPTIMAL TRANSPORT

Let M be a finite metric space with moving cost metric c(x, y) between elements x, y ∈ M , and
let p, q be probability mass functions on M . The optimal transport (OT) or 1-Wasserstein distance
between q and p is defined as:

OT (p, q) = inf
γ∈Γ

∫
M×M

c(x, y)dγ(x, y), (5)

Where Γ is the set of joint probabilities on M ×M with marginals q and p, and c specifies moving
costs between elements of M . This computes the optimal way to transport q into p. When q is a
Dirac (one-hot), OT simplifies to:

OT (p, q) =

k∑
i=1

pic(i, j), (6)

5
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Where j is the correct class and k is the number of classes. With model outputs p and one-hot target
q, this loss is differentiable w.r.t p. The cost metric c can encode domain knowledge. For ordered
classes M = 1, ..., k, a natural cost is c(i, j) = |i− j|m for some m ≥ 1.

Importantly, one drawback of OT as a loss function, is its tendency to prioritize peaked distributions
over the actual probabilities. For instance, Let x represent a sample data point, y denote the class
label associated with x, and q be the one-hot encoded vector representation of y. Consider the
conditional probabilities P[y = 1|x] = 0.25,P[y = 2|x] = 0.5,P[y = 3|x] = 0.25. Now, suppose
there are two model outputs: p1 = [0.25, 0.5, 0.25] and p2 = [0, 1, 0]. To achieve calibration, the
model should ideally output p1 as it equals the conditional probability distribution y|x. However,
it is notable that for the cost metric c(i, j) = |i− j|, we find that OT (p1, q) = 1 with a combined
probability of 0.25 + 0.25 = 0.5, and OT (p1, q) = 0.5 with a probability of 0.5. Consequently,
Ey|x[OT (p1, q)] = 0.75, and similarly, Ey|x[OT (p2, q)] = 0.5. This observation indicates that OT
tends to favor peaked distributions over calibrated ones. UNICORNN addresses this challenge, as
described in Section 4.3.

4 UNICORNN

In this section we describe our novel mechanism for UNImodal Calibrated Ordinal Regression Neural
Network, UNICORNN an approach for architectural-based generation of unimodal output probability
distributions, as well as accuracy-preserving probability calibration.

4.1 RATIONAL

Achieving unimodality directly via architectural design has a major advantage since the output
probabilities are guaranteed to be unimodal for every input instance, as is also the case for the
mechanism proposed in Beckham and Pal (2017). However, UNICORNN employs the truncated
normal distribution, depending on two parameters (µ, σ), which influence the location of the mode
and the decay of the probability mass. This adds flexibility to the shape of the output probability
vector, compared to the mechanism in Beckham and Pal (2017) where a single parameter determines
both the mode and the decay. For determining the mode of the distribution, a map x 7→ µ is learned
via OT using equation 6. However, as mentioned in Section 3.3, OT tends to favor peaked distributions
over calibrated ones. To address this issue, we adopt an accuracy-preserving calibration strategy
where, subsequent to learning a map x 7→ µ, the model further learns a map x 7→ σ by optimizing
the Brier Score using equation 4, while maintaining the previously learned map x 7→ µ fixed.

4.2 UNIMODAL OUTPUT PROBABILITIES GENERATION

Inspired by POM, we utilize thresholds to define bins, so that the total mass inside each bin is the
output probability of the corresponding class. However, we observe that the lack of unimodality of
POM can be fixed by letting the bins be of equal length and remain fixed during training.

Therefore, instead of learning the thresholds, during training two maps x 7→ µ, x 7→ σ are learned,
where µ is a location parameter, and σ is a scale parameter. Both define a truncated normal distribution
Ntrunc(µ, σ

2,−1, 1) (a normal distribution which having the same density as the normal density on
[-1,1], normalized to have a unit integral, and is zero outside this interval), from which the output
probabilities are derived.

Formally, we divide the range [−1, 1] to k equal bins similarly to da Costa et al. (2008), where k is
the number of classes, defined by −1 = α0, α1, ..., αk = 1, so that αi−αi−1 = 2

k . The probabilities
are given by

pi(x) = P(Y = i|X = x) = Fµ(x),σ(x)(αi)− Fµ(x),σ(x)(αi−1), (7)

where Fµ,σ(·) is the Ntrunc(µ, σ
2,−1, 1) cumulative distribution function, and note that µ, σ are in

fact functions of the input instance x.

To compensate for the fact that the probability-generating mechanism depends on fewer parameters
than POM (2 for the former, d+ k − 1 for the latter), the maps x 7→ µ, x 7→ σ are expressed via two
deep neural networks (DNNs) which share a common backbone model, hence can represent a complex

6
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Figure 3: Generation of unimodal output probabilities for k = 3 classes. An input x is mapped to a
(µ, σ) pair, which defines a truncated normal distribution Ntrunc(µ, σ

2,−1, 1) over the real line. The
output probabilities are proportional to the mass in the bins, which are of equal length. The green
area equals to probability p2(x), corresponding to P(Y = 2|X = x).

nonlinear relation. Our proposed mechanism for the generation of unimodal output probabilities is
depicted in Figure 3.

The following lemma, proved in Appendix A , establishes that the model output probabilities are
indeed unimodal.
Lemma 1. Let x ∈ Rd be an input to the model, which is mapped to µ = µ(x), σ = σ(x). Let
p1, . . . pk be the model output probabilities, generated via equation 7. Then p1, . . . pk define a
unimodal multinomial random variable.

4.3 ACCURACY-PRESERVING CALIBRATION IN UNICORNN

UNICORNN introduces a re-training procedure for x 7→ σ mapping while preserving the already
trained mapping x 7→ µ. The learning of x 7→ σ is done by minimizing the Brier Score loss
in equation 4, which ensures well-calibrated probabilities and preserves the model accuracy. Since
the mapping x 7→ σ controls the decay of the generated probabilities and the mapping x 7→ µ which
controls the mode remains unchanged, the accuracy is not affected by the calibration, resulting in an
accuracy-preserving calibration. We state it in the following lemma (proved in Appendix B).
Lemma 2. Let x ∈ Rd be an input to the model, mapped to µ = µ(x), σ1 = σ1(x). Let σ2 = σ2(x)
be a re-trained mapping via minimization of loss using equation 4. Let pσ1

1 , . . . , pσ1

k and pσ2
1 , . . . , pσ2

k
be the model output probabilities generated using (µ, σ1) and (µ, σ2), respectively, via equation 7.
Then:

argmax1≤i≤k p
σ1
i = argmax1≤i≤k p

σ2
i .

4.4 TRAINING PROCEDURE

To summarize, UNICORNN’s training process consists of two distinct phases, as detailed in Algo-
rithms 1, 2. In the first phase, described in Algorithm 1, the parameters θµ and θσ of µ(·) and σ(·),
respectively, along with the backbone parameters ϕ, are jointly optimized using Gradient Descent to
minimize the OT loss defined in Eq. 6.

In the second phase, outlined in Algorithm 2, the parameters θµ and ϕ are kept fixed, while θσ is
further optimized via Gradient Descent to minimize the Brier Score (BS) defined in Eq. 4.

Algorithm 1 Optimal Transport-based Training
Input: Training data D = {(xi, yi)}Ni=1, number of classes k, batch size b, number of epochs T
Output: Parameters θµ, θσ of µ(·) and σ(·), respectively, and backbone parameters ϕ

1: Initialize parameters θµ, θσ , ϕ
2: for epoch t = 1 to T do
3: for each batch B ⊆ D of size b do
4: Compute µϕ,θµ(xi) and σϕ,θσ (xi) for all xi ∈ B and calculate p(xi) using Eq. 7
5: Compute the loss LOT(B) = 1

b

∑
(xi,yi)∈B OT(p(xi), yi) using Eq. 6

6: Update θµ, θσ , ϕ via Gradient Descent
7: end for
8: end for
9: return θµ, θσ , ϕ

7
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Algorithm 2 Accuracy Preserving Calibration
Input: Training data D = {(xi, yi)}Ni=1, number of classes k, batch size b, number of epochs T ,

parameters θµ of µ(·) and backbone parameters ϕ
Output: Parameters θσ of σ(·)

1: for epoch t = 1 to T do
2: for each batch B ⊆ D of size b do
3: Compute µϕ,θµ(xi) and σϕ,θσ (xi) for all xi ∈ B and calculate p(xi) using Eq. 7
4: Compute the loss LBS(B) = 1

b

∑
(xi,yi)∈B BS(p(xi), yi) using Eq. 4

5: Update only θσ via Gradient Descent
6: end for
7: end for
8: return θσ

5 EXPERIMENTAL RESULTS

5.1 DATASETS

We evaluate UNICORNN on six real-world benchmark image datasets, involving various ordinal
regression tasks: age-detection (Adience Eidinger et al. (2014), FG-Net Fu et al. (2014), AAF Cheng
et al. (2019)), facial beauty prediction (SCUT-FBP5500 Liang et al. (2018)), bio-medical image
classification (Retina-MNIST Yang et al. (2021)) and image aesthetics estimation (EVA Kang et al.
(2020)). A more detailed description of the datasets appears in Appendix D . Some examples from
the Adience and Retina-MNIST datasets are shown in Figure 4.

5.2 BENCHMARK

We compare UNICORNN to five recently presented approaches for deep ordinal regression, with
unimodal output probabilities and to a deep learning approach of POM:

DLDL (Gao et al., 2017), an approach utilizing soft labels, generated using squared exponentially
decaying distributions, trained using Kullback-Leibler divergence minimization (equivalent to cross-
entropy minimization).

SORD (Diaz and Marathe, 2019), an approach utilizing soft labels, generated using linear exponen-
tially decaying distributions, trained using Kullback-Leibler divergence minimization.

Beckham and Pal (2017), an architectural-based approach in which unimodal output probabilities are
generated using the binomial distribution (single-learned parameter), trained using optimal transport
loss.

Liu et al. (2019a), an approach utilizing soft labels, created as a mixture of Dirac, uniform, and
linear exponentially decaying distributions, trained using optimal transport loss.

POM (McCullagh, 1980), a variant of the POM, incorporating a deep learning model with a POM
layer integrated on top, trained using cross-entropy loss.

UnimodalNet (Cardoso et al., 2023), a non-parametric architectural-based approach for unimodality,
trained using cross-entropy loss.

To perform a fair comparison, we implemented all methods, using the same image transformations,
backbone CNN and training procedures, so that the methods differ only in their output layer archi-
tectures and loss functions. We performed 5 independent trials, using the same train-validation-test
splits for all methods. Additional technical details can be found in Appendix E. For reproducibility,
the supplementary material contains code reproducing the results reported in this section.

5.3 EVALUATION METRICS

We report several commonly-used evaluation metrics for ordinal regression tasks: Mean Absolute
Error (MAE), One-Off Accuracy (OOA), Spearman correlation, Quadratic Weighted Kappa (QWK),
as well as the percentage of test examples with unimodal predicted output probabilities.

8
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Figure 4: Left: Examples from the Adience dataset. The age category is indicated above each image.
Right: Examples from the Retina mnist dataset. Diabetic Retinopathy classes are indicated above.

In addition, following the discussion in section 3.2, we evaluate the model’s probability calibration
using the well known Expected Calibration Error (ECE). ECE quantifies the discrepancy between
predicted probabilities and actual outcomes, measuring how well the predicted probabilities of a
model align with the true likelihood of the predicted events. To compute ECE, the [0, 1] interval is
first divided into a set of b equal-length bins. ECE is defined as:

ECE =

b∑
i=1

|Bi|
|X|

|Acc(Bi)− Conf(Bi)|,

where b is the number of probability bins (in all of our experiments b = 10), Acc(Bi) is the empirical
accuracy in bin Bi and Conf(Bi) is the average predicted probability in bin Bi. An ECE of 0 indicates
perfect calibration, while higher values signify miscalibration, with the model being over-confident
or under-confident.

5.4 RESULTS ON REAL WORLD DATASETS

Table 1 shows the test results of each method on the six benchmark datasets. As can be seen,
UNICORNN performs at least on par and often better than the compared baselines, in a fairly
consistent manner, across the various datasets and evaluation metrics, specifically with respect
to the MAE, where UNICORNN outperforms on all the six datasets. In addition, observe that
only UNICORNN, UnimodalNet and Beckham and Pal (2017) output unimodal probabilities, via
architectural design, while the other baselines, trained using soft targets, do not always output
unimodal probabilities. Yet, unlike UnimodalNet and Beckham and Pal (2017) which tend to produce
poorly calibrated probability estimates, UNICORNN outperforms all baselines in terms of probability
calibration across five datasets, while on the EVA dataset, the difference from SORD is negligible.

5.5 ABLATION STUDY

In this section, we analyzed the impact of the calibration phase introduced in Section 4.3 on the
ECE values of UNICORNN. Table 2 shows the ECE with and without the calibration phase on the
Adience, EVA, AAF, and Retina MNIST datasets. Without calibration, the ECE is higher, indicating
that the model’s outputs are not well-calibrated due to the OT properties discussed in Section 3.3.
This highlights the importance of incorporating the calibration step to accurately reflect the model’s
confidence in its predictions.

6 CONCLUSION

In this manuscript, we identify several issues with current deep ordinal regression methods, including
the potential for OT to result in poor probability calibration. We therefore presented UNICORNN,
an approach for deep ordinal regression, inspired by the proportional odds model. UNICORNN
utilizes an architectural mechanism for the generation of unimodal output probabilities, trained using
OT objective and calibrated using an accuracy-preserving calibration process which encourages
uncertainty awareness. We demonstrated that while performing on par with and often better than
other recently proposed approaches for ordinal regression, the presented method enjoys the benefits
of guaranteed unimodal and well-calibrated output probabilities.

9
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Table 1: Performance of various methods on real world datasets, in a mean ± std format

Dataset Method MAE ↓ OOA ↑ Spearman ↑ QWK ↑ % Unimodal ↑ ECE (b = 10) ↓

Adience

Beckham and Pal .5 ± .06 .93 ± .01 .9 ± .01 .91 ± .02 1 ± 0 .23 ± .05
Liu et al. .47 ± .05 .94 ± .01 .89 ± .02 .9 ± .02 .47 ± .04 .21 ± .03
DLDL .49 ± .06 .93 ± .01 .88 ± .02 .89 ± .03 .62 ± .08 .42 ± .04
SORD .47 ± .06 .94 ± .01 .89 ± .02 .9 ± .02 .99 ± .003 .14 ± .03
POM .48 ± .06 .94 ± .01 .89 ± .03 .91 ± .03 .81 ± .04 .32 ± .04

UnimodalNet .49 ± .06 .93 ± .01 .88 ± .02 .90 ± .03 1 ± 0 .34 ± .04
UNICORNN .46 ± .05 .95 ± .01 .9 ± .02 .91 ± .02 1 ± 0 .07 ± .03

Retina MNIST

Beckham and Pal .8 ± .02 .79 ± .01 .58 ± .02 .55 ± .02 1 ± 0 .17 ± .01
Liu et al. .68 ± .02 .82 ± .01 .61 ± .02 .58 ± .02 .72 ± .03 .27 ± .01
DLDL .72 ± .02 .81 ± .01 .59 ± .02 .58 ± .01 .98 ± .01 .29 ± .01
SORD .75 ± .02 .78 ± .01 .58 ± .007 .57 ± .007 .87 ± .03 .11 ± .01
POM .83 ± .02 .76 ± .01 .53 ± .02 .53 ± .02 .43 ± .03 .17 ± .01

UnimodalNet .74 ± .02 .8 ± .01 .59 ± .01 .58 ± .01 1 ± 0 .14 ± .01
UNICORNN .67 ± .009 .82 ± .007 .61 ± .01 .59 ± .01 1 ± 0 .06 ± .01

FG-NET

Beckham and Pal .44 ± .06 .95 ± .03 .80 ± .04 .79 ± .03 1 ± 0 .16 ± .02
Liu et al. .32 ± .08 .96 ± .02 .86 ± .03 .84 ± .04 .01 ± .01 .08 ± .02
DLDL .4 ± .09 .96 ± .02 .81 ± .03 .81 ± .03 .12 ± .04 .49 ± .06
SORD .36 ± .08 .97 ± .02 .84 ± .05 .82 ± .04 .99 ± .01 .26 ± .05
POM .33 ± .06 .97 ± .02 .84 ± .04 .85 ± .04 .41 ± .06 .21 ± .03

UnimodalNet .36 ± .07 .97 ± .01 .84 ± .02 .84 ± .03 1 ± 0 .25 ± .04
UNICORNN .31 ± .08 .99 ± .02 .87 ± .03 .88 ± .01 1 ± 0 .07 ± .02

AAF

Beckham and Pal .61 ± .13 .91 ± .05 .81 ± .03 .8 ± .05 1 ± 0 .16 ± .04
Liu et al. .43 ± .01 .97 ± .005 .82 ± .01 .85 ± .01 .7 ± .17 .22 ± .01
DLDL .54 ± .02 .95 ± .01 .77 ± .01 .77 ± .02 .95 ± .02 .32 ± .02
SORD .44 ± .02 .96 ± .01 .82 ± .01 .84 ± .01 1 ± 0 .14 ± .02
POM .45 ± .01 .96 ± .01 .80 ± .01 .83 ± .01 .48 ± .07 .28 ± .02

UnimodalNet .45 ± .01 .96 ± .01 .80 ± .01 .83 ± .01 1 ± 0 .30 ± .01
UNICORNN .42 ± .01 .97 ± .005 .83 ± .01 .85 ± .005 1 ± 0 .03 ± .01

SCUT-FBP5500

Beckham and Pal .62 ± .12 .92 ± .04 .84 ± .02 .81 ± .05 1 ± 0 .19 ± .08
Liu et al. .54 ± .03 .95 ± .01 .83 ± .01 .82 ± .01 .18 ± .14 .27 ± .02
DLDL .68 ± .05 .9 ± .01 .79 ± .02 .73 ± .02 .86 ± .08 .28 ± .04
SORD .57 ± .03 .94 ± .01 .83 ± .01 .81 ± .01 .99 ± .005 .09 ± .02
POM .53 ± .03 .95 ± .01 .83 ± .01 .83 ± .01 .28 ± .04 .33 ± .03

UnimodalNet .52 ± .02 .95 ± .01 .82 ± .01 .83 ± .01 1 ± 0 .35 ± .01
UNICORNN .47 ± .02 .96 ± .01 .85 ± .01 .85 ± .01 1 ± 0 .06 ± .02

EVA

Beckham and Pal .61 ± .03 .93 ± .01 .6 ± .01 .6 ± .02 1 ± 0 .11 ± .01
Liu et al. .65 ± .02 .91 ± .02 .53 ± .01 .52 ± .02 .72 ± .05 .31 ± .01
DLDL .66 ± .03 .91 ± .01 .53 ± .02 .52 ± .02 .98 ± .01 .2 ± .01
SORD .6 ± .02 .93 ± .01 .58 ± .02 .57 ± .02 1 ± 0 .07 ± .02
POM .65 ± .03 .91 ± .01 .53 ± .02 .53 ± .03 .89 ± .02 .45 ± .02

UnimodalNet .66 ± .03 .91 ± .01 .52 ± .02 .52 ± .02 1 ± 0 .45 ± .02
UNICORNN .57 ± .01 .94 ± .005 .6 ± .01 .58 ± .01 1 ± 0 .08 ± .02

Table 2: The effect of UNICORNN’s calibration phase on the ECE for the Adience and Retina
MNIST datasets.

Dataset Post-hoc Calibration ECE (b = 10) ↓

Retina MNIST yes .06 ± .01
no .38 ± .007

Adience yes .07 ± .03
no .18 ± .03

AAF yes .03 ± .01
no .28 ± .01

EVA yes .08 ± .02
no .32 ± .02

Reproducibility Statement All technical details of the experiments are provided in Section E, also
the code will be made publicly available upon acceptance of this work.
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A PROOF OF LEMMA 1

Proof. Let pi, pi+1 be the output probabilities of two adjacent classes, and let −1 = α0, . . . , αk = 1
be the thresholds. We will show that (i) if µ ≤ αi−1 then pi ≥ pi+1. Symmetrical argument will
then imply that if µ ≥ αi+1 then pi+1 ≥ pi (ii) if µ ∈ (αi−1, αi) then pi > pi+1, whenever the latter
exists. Similarly, this would imply that pi > pi−1. Together, (i) and (ii) will prove the statement of
the lemma.

Denote by f the density of the Ntrunc(µ, σ
2,−1, 1) distribution. To prove (i) observe that pi >

2f(αi)
k > pi+1.

To prove (ii), divide the i’th bin to two sub-bins Bi,1, Bi,2, of lengths a = µ− αi−1 and b = αi − µ,
respectively. Similarly, divide the i+ 1’th bin to two bins Bi+1,1, Bi+1,2 length b and a, respectively.
Then from (i) ∫

Bi,2

f(x)dx >

∫
Bi+1,1

f(x)dx. (8)

In addition, observe that ∫
Bi,1

f(x)dx =

∫ a

0

f(µ+ x)dx

>

∫ a

0

f(µ+ 2b+ x)dx

=

∫
Bi+1,2

f(x)dx. (9)

Adding up equation 8 and equation 9, we obtain pi > pi+1. Apart from just being unimodal, we also
proved that if µ ∈ (αi−1, αi) then class i is the predicted class by the model.

B PROOF OF LEMMA 2

Proof. Let −1 = α0 < α1 < . . . < αk = 1 be the thresholds. In the proof of Lemma 1 (Appendix
A), we demonstrated that for any i ∈ {1, . . . , k}, if µ ∈ (αi−1, αi), then class i is the predicted class
by the model.

Given that the two sets of parameters of the truncated normal distribution, (µ, σ2
1) and (µ, σ2

2) share
the same mean µ and the thresholds α0, . . . , αk are constant, the predicted class i remains the same
for both sets of parameters regardless of the variances σ2

1 and σ2
2 .

C ADDITIONAL EXPERIMENTS

C.1 COMPARING UNICORNN AGAINST CORN

Table C.1 describes the results of two experiments of UNICORNN against CORN2 (Shi et al., 2023)
on the Adience and EVA datasets. The technical details of the experiments are the same as the ones
that appear in Appendix E. As can be seen, UNICORNN outperforms CORN on both datasets with
lower MAE scores..

C.2 COMPARING UNICORNN AGAINST CORN ON NEW DATASETS

In Table C.2 we provide the MAE results of our method trained on AFAD and Fireman dataset
additionally to the results from Shi et al. (2021) for CE-NN, OR-NN, CORAL and CORN. The
results for these baselines were borrowed from Shi et al. (2021). We train our model with the same

2https://github.com/Raschka-research-group/corn-ordinal-neuralnet/blob/main/model-code/simple-scripts/mlp_corn.py
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Table 3: UNICORNN vs CORN.
Method Dataset MAE ↓

Adience CORN .52 ± .07
UNICORNN .46 ± .05

EVA CORN .67 ± .02
UNICORNN .57 ± .01

backbone as in Shi et al. (2021), Resnet-34 for AFAD dataset, and with two-layer MLP with hidden
dimension of size 300 for Fireman dataset. Both datasets are balanced and the train, validation and
test splits are the same as in Shi et al. (2021). We train our method 5 times with different random
intialization seeds. Our method ourperforms the baselines on both datasets.

Table 4: Test MAE of methods trained on AFAD and Fireman Datasets
Method AFAD Fireman
CE-NN 3.28 ± 0.04 0.8 ± 0.01
OR-NN 2.85 ± 0.03 0.76 ± 0.01
CORAL 2.99 ± 0.03 0.82 ± 0.01
CORN 2.81 ± 0.02 0.76 ± 0.01
UNICORNN 2.645 ± 0.02 0.755 ± 0.003

C.3 COMPARING UNICORNN AGAINST SIMPLE CONSTRAINT-UNIMODAL BASELINE

We conduct an additional experiment to compare our method with a simple baseline classifier
trained using cross-entropy loss and a unimodality constraint. In this baseline, the model predicts
a K-dimensional probability vector for each sample, and the unimodality constraint is enforced by
minimizing pairwise distances between the predicted probability values. Specifically, the distances
are set to be negative for probabilities at indices lower than the target label and positive for indices
higher than the target label. Further implementation details are available in the project repository.

The results, shown in Table C.3, indicate that the baseline achieves near-unimodal distributions ( 80%
unimodality) on the Fireman dataset but does not guarantee perfect unimodality. Additionally, the
Mean Absolute Error (MAE) of this baseline is higher compared to UNICORNN. Notably, when
applied to the AFAD dataset with the same training parameters, the baseline fails to produce unimodal
predictions, highlighting its limitations in maintaining unimodality across different datasets.

Table 5: Performance Comparison on Balanced Datasets (AFAD and Fireman)
Method AFAD (balanced) Fireman (balanced)

MAE ↓ Unimodality ↑ MAE ↓ Unimodality ↑
UNICORNN 2.64± 0.02 1.0± 0.0 0.755± 0.003 1.0± 0.0
Classifier with Unimodality 2.846± 0.04 0.11± 0.04 0.808± 0.003 0.865± 0.05

D DATASETS

Tabel 6 contains information on the benchmark datasets used for our experiments.

Adience: During the training the images are resized to (256,256). Additionally, random crop of size
224 and random horizontal flip are applied as augmentations.

FG-Net: We partitioned the dataset to 8 classes, corresponding to decades. Augmentations are the
same as in the Adience experiment.

RetinaMNIST dataset has 5 classes, and we apply random affine, horizontal and vertical flips as
augmentations during the training. The size of the images is (28,28) as provided by the dataset
contributors. The train/test splits are proved by the contributors and were used as-is.
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Figure 5: Examples from the FG-Net dataset. Age classes are indicated above each image.

Figure 6: Examples from the EVA dataset. Aesthetics classes are indicated above each image.

SCUT-FBP5500 dataset contains 5500 face images beautifully ranked from 1 to 5 continuously. we
partition the data into 8 classes in accordance with the rank. Augmentations are the same as in the
Adience experiment.

EVA (Explainable Visual Aesthetics) dataset contains 5101 images aesthetically ranked from 0 to 10
by multiple voters. We calculate the average score for each image and partition the data into 5 classes
in accordance with the average score. Augmentations are the same as in the Adience experiment.

AAF (All-Age-Faces) dataset is already pre-processed and contains 13,322 face images (mostly
Asian), distributed across all ages (from 2 to 80). We partitioned the dataset into 6 classes. Augmen-
tations are the same as in the Adience experiment.

AFAD (The Asian Face data)3 dataset (Niu et al., 2016) contains 165,501 faces in the age range
of 15-40 years. No additional preprocessing was applied to this dataset since the faces were already
centered. Following Shi et al. (2021), we use a balanced version of the AFAD dataest4 with 13 age
labels in the age range of 18-30 years, resulting in total 60K samples.

Fireman 5 dataset is a tabular dataset that contains 40,768 instances, 10 numeric features, and an
ordinal response variable with 16 categories. We use a balanced version of this dataset6 consisting of
2,543 instances per class and 40,688 from the 16 ordinal classes in total.

Figures 5, 6, 7, 8 show examples from the FG-Net, EVA, AAF and SCUT-FBP5500 datasets,
respectively.

E TECHNICAL DETAILS

Table 7 shows the technical details for the experiments on the real world benchmark datasets reported
in this manuscript.

The Adam optimizer was used in all experiments, with the default β = (0.9, 0.999). The means
and standard deviations reported in table 1 are based on 5 repetitions of each experiment, differing
in weights initialization and random train-test splits, except for Adience, for which we repeated
the experiment five times, using the same train-test splits as the creators of the dataset7. For the

3https://github.com/afad-dataset/tarball
4https://github.com/Raschka-research-group/corn-ordinal-neuralnet/tree/main/datasets/afad
5https://github.com/gagolews/ordinal_regression_data
6https://github.com/Raschka-research-group/corn-ordinal-neuralnet/tree/main/datasets/firemen
7https://github.com/GilLevi/AgeGenderDeepLearning/tree/master/Folds/

train_val_txt_files_per_fold
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Figure 7: Examples from the AAF dataset. Age classes are indicated above each image.

Figure 8: Examples from the SCUT-FBP5500 dataset. Beauty classes are indicated above each image.

accuracy-preserving calibration phase (Section 4.3), we used early stopping and the number of epochs
and learned parameters were changed for each dataset, as shown in Table 8.

F COMPUTATION DETAILS

We implement our model in Pytorch and run experiments on a Linux server with NVIDIA GeForce
GTX 1080 Ti, A100 80GB PCIe GPUs and Intel(R) Core(TM) i7-8700 CPU 3.20GHz CPU.
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Table 6: Benchmark datasets characteristics

Dataset Task Train Images Val Images Test Images Classes
Adience age estimation pre-defined splits 8
FG-Net age estimation 802 100 100 8
RetinaMNIST DR classification 1080 120 400 5
AAF age estimation 9058 1599 2665 6
EVA aesthetics estimation 3684 651 766 6
SCUT-FBP5500 facial beauty prediction 4250 350 900 8

Table 7: Technical details of the experiments

Dataset Backbone Epochs Batch Size Initial LR Decay LR After (epochs) Weight Decay

Adience ResNet-101 100 64 10−4 40 10−5

FG-Net ResNet-18 100 32 10−4 40 10−4

RetinaMNIST ResNet-18 100 16 10−4 80, 90 10−4

AAF ResNet-18 100 64 10−4 - 10−3

EVA ResNet-18 145 64 10−4 - 10−5

SCUT-FBP5500 ResNet-18 100 64 10−4 - 10−3

Table 8: Post-hoc calibration technical details

Dataset Epochs Learned Parameters
Adience 100 250
FG-Net 100 250
RetinaMNIST 100 1000
AAF 100 150
EVA 100 50
SCUT-FBP5500 100 100
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