
nerblackbox:
A High-level Library for Named Entity Recognition in Python

Felix Stollenwerk
AI Sweden

felix.stollenwerk@ai.se

Abstract

We present nerblackbox, a python library to
facilitate the use of state-of-the-art transformer-
based models for named entity recognition. It
provides simple-to-use yet powerful methods
to access data and models from a wide range of
sources, for fully automated model training and
evaluation as well as versatile model inference.
While many technical challenges are solved
and hidden from the user by default, nerblack-
box also offers fine-grained control and a rich
set of customizable features. It is thus targeted
both at application-oriented developers as well
as machine learning experts and researchers.

1 Introduction

Named Entity Recognition (NER) is an important
natural language processing task with a multitude
of applications (Lorica and Nathan, 2021). While
generative AI is currently ubiquitous in the scien-
tific literature and public debate, it has not (yet)
replaced discriminative AI for information extrac-
tion tasks like NER. Fine-tuned, transformer-based
encoder models are both SOTA in research1 and
commonly used by developers to solve real-world
problems, see e.g. (Raza et al., 2022; Stollenwerk
et al., 2022). Popular open source frameworks, like
the ones provided by HuggingFace (Wolf et al.,
2020; Lhoest et al., 2021; Von Werra et al., 2022),
greatly facilitate the use of such models. They
cover the whole workflow consisting of dataset in-
tegration, model training, evaluation and inference,
see Fig. 1.

Figure 1: Essential stages in the life cycle of a machine
learning model.

1http://nlpprogress.com/english/named_entity_
recognition.html

However, they do require a certain degree of
expertise and often some significant, use-case spe-
cific effort. Some of the (general and NER-specific)
challenges are:

(i) There exist various sources for datasets. Re-
garding public datasets, HuggingFace and GitHub
repositories are important sources. Private datasets
may be stored on local filesystems or be created
using annotation tools. Additional complexity is
introduced by the circumstance that datasets often
come in different formats. This may be true even
for datasets from the same source. These issues typ-
ically require customized data preprocessing code
for every new use case.

(ii) Data for NER is processed on three differ-
ent levels: tokens, words and entities. Different
parts of the workflow may operate on different
levels, as shown in Tab. 1. Datasets may be pre-

stage token word entity
dataset ✕ ✕
training ✕ ✕
evaluation ✕
inference ✕ ✕

Table 1: Overview of the data levels that the different
parts of a NER model workflow can operate on.

tokenized (word level) or not (entity level). At
training time, labels for tokens that are not the first
token of a word may be ignored (word level) or
included (token level) in the computation of the
loss. Model evaluation takes place primarily on
the entity level (although it is labels on the token
or word level that are employed for the computa-
tion). Finally, while model predictions are often
made on the entity level, some use cases may re-
quire predictions on the word level, for instance if
the associated probabilities are to be used for ac-
tive learning. Handling these technical intricacies
requires expert knowledge.

http://nlpprogress.com/english/named_entity_recognition.html
http://nlpprogress.com/english/named_entity_recognition.html


(iii) There exists a multitude of NER-specific an-
notation schemes and variants and it is important
to be aware of the differences. For instance, during
data preprocessing, existing word or entity labels
need to be mapped to token labels, which is an an-
notation scheme dependent process. At evaluation
time, there are different ways to cope with predic-
tions that do not obey the rules of the given annota-
tion scheme (we will get back to this in Sec. 4.6).

(iv) Training hyperparameters which lead to
reasonable performance may depend on the
employed model and dataset. For instance, while a
small dataset often requires more training epochs,
larger datasets can usually be trained for fewer
epochs.

The aim of nerblackbox is to provide a high-level
framework which makes the usage of SOTA NER
models as simple as possible. As we will see in de-
tail in Sec. 3, it offers easy access to datasets from
various sources, automated training and evaluation
as well as simple but versatile model inference. It
does so by hiding all technical complications from
the user2 and is targeted at developers as well as
people who are not necessarily experts in machine
learning or NLP. However, nerblackbox also al-
lows fine-grained control over all sorts of low-level
parameters and provides many advanced features,
some of which we will cover in Sec. 4. This might
make the library appealing also for researchers and
experts.

2 Related Work

The most commonly used framework for
transformer-based NLP is arguably the Hugging-
Face ecosystem, in particular the open source
libraries transformers (Wolf et al., 2020), datasets
(Lhoest et al., 2021) and evaluate (Von Werra
et al., 2022). Another popular alternative is spacy
(Honnibal et al., 2020).

High-level libraries that are build on top of trans-
formers exist in the form of Simple Transformers
(Rajapakse, 2019) and T-NER (Ushio and Camacho-
Collados, 2021). Simple Transformers is a high-
level library that covers a broad range of NLP tasks
with basic support for NER. T-NER is specific to

2This is where the name nerblackbox stems from: The
framework does not require any knowledge about internal
processes and can be used as a black box by only specify-
ing inputs (pretrained model, dataset) and using the outputs
(fine-tuned model). Note that there is no direct relation to
explainability.

NER with an emphasis on cross-domain and cross-
lingual model evaluation. Of all the mentioned
libraries, it is arguably the most similar to nerblack-
box. However, as will be discussed in the following
sections, nerblackbox offers many unique and pow-
erful features that—to the best of our knowledge—
make it distinct from any existing frameworks.

3 Basic Usage

nerblackbox provides a simple API to automate
each step in the life cycle of a NER model
(cf. Fig. 1) using very few lines of code. It does so
in terms of the following classes:

1 >> from nerblackbox import Dataset ,
Training , Model

A high-level overview of the involved compo-
nents is shown in Fig. 2.

3.1 Dataset Integration

nerblackbox allows seamless access to datasets
from the following sources: HuggingFace (HF),
the local filesystem (LF), built-in datasets (BI) and
annotation tools (AT)3.

Basically, a dataset can be set up for training and
evaluation like in the following example:

1 >> dataset = Dataset(
2 "conll2003",
3 source ="HF",
4 )
5 >> dataset.set_up ()

While this works out-of-the-box for the sources
HF and BI, some additional information needs to
be provided for the sources LF and AT in order for
nerblackbox to be able to find the data. Integrating
different datasets can be challenging as they may
have different formatting (even on HuggingFace)
and annotation schemes. Some datasets are pretok-
enized and split into training/validation/test subsets,
while others are not. The set_up() method auto-
matically deals with these challenges and makes
sure that every dataset, irrespective of the source,
is transformed into a standard format4. Apart from
downloading, reformatting, and dataset splitting (if
needed), it also includes an analysis of the data.
For details, we refer to the library’s documentation.

3Currently, the two commonly used (open source) annota-
tion tools LabelStudio (Tkachenko et al., 2020) and Doccano
(Nakayama et al., 2018) are supported.

4Datasets may still have different annotation schemes (IO,
BIO, BILOU), and be pretokenized or not.



Figure 2: High-level overview of the nerblackbox library. It allows to easily fine-tune, evaluate and apply models
for named entity recognition. The symbols to the left and right represent the sources that nerblackbox provides
seamless access to. These are the Local Filesystem (LF), HuggingFace (HF), Annotation Tools (AT) as well as
Built-in (BI) datasets that are fetched from GitHub.

3.2 Training

In order to train a model, one only needs to choose
a name for the training run (for later reference) and
specify the model and dataset names, like so:

1 >> training = Training(
2 "my_training",
3 model="bert -base -cased",
4 dataset =" conll2003",
5 )
6 >> training.run()

In order to ensure stable results irrespective of
the dataset, the training employs well-established
hyperparameters by default (Mosbach et al., 2021).
In particular, a specific learning rate schedule (Stol-
lenwerk, 2022) based on early stopping and warm
restarts (Loshchilov and Hutter, 2017) is used to
accommodate different dataset sizes.

3.3 Evaluation

Any NER model, whether it was trained using
nerblackbox or is taken directly from Hugging-
Face (HF), can be evaluated on any dataset that
is accessible via nerblackbox (see Sec. 3.1)

1 >> model = Model.from_training(
2 "my_training"
3 )
4 >> results = model.evaluate_on_dataset(
5 "conll2003",
6 phase="test",
7 )
8 >> results ["micro "][" entity "]["f1"]
9 ## 0.9045

The standard metrics for NER are used, i.e. pre-
cision, recall and the f1 score. Each metric is com-
puted as a micro- and macro-average as well as for
the individual classes. All metrics are determined
both on the entity and word level.

3.4 Inference

Similar to evaluation, both NER models trained
using nerblackbox and models taken directly from
HuggingFace (HF) can be used for inference.

1 >> model = Model.from_training(
2 "my_training"
3 )
4 >> model.predict ("The United Nations ")
5 ## [[{
6 ## 'char_start ': '4',
7 ## 'char_end ': '18',
8 ## 'token ': 'United Nations ',
9 ## 'tag ': 'ORG '

10 ## }]]

Apart from the predictions on the entity level for
a single document shown above, nerblackbox also
supports predictions on the word level (with or
without probabilities) and batch inference. In ad-
dition, a model can be applied directly to a file
containing raw data, which may be useful for infer-
ence at large scale (e.g. in production).

4 Advanced Usage

The nerblackbox workflow and the API are de-
signed to be as simple as possible and to con-
ceal technical complications from the user. How-
ever, they are also highly customizable in terms
of optional function arguments, which may be par-
ticularly interesting for machine learning experts
and researchers. In this section, we are going to
cover a non-exhaustive selection of nerblackbox’s
advanced features, with a slight emphasis on the
training part. For further information, the reader is
referred to the library’s documentation.

4.1 Training Hyperparameters and Presets

While nerblackbox uses sensible default values for
the training hyperparameters (see Sec. 3.2), one
may also opt to specify them manually. In par-



ticular, all aspects of the learning rate schedule
(e.g. maximum learning rate, epochs, early stop-
ping parameters etc.) can be chosen at one’s own
discretion. In addition, the Training class offers
several popular hyperparameter presets via the in-
stantiation argument from_preset . Among them
are the learning rate schedules from (Devlin et al.,
2019) and (Mosbach et al., 2021), which may work
well for larger and smaller datasets, respectively.
Hyperparameters search is also supported.

4.2 Dataset Pruning

nerblackbox provides the option to only use a sub-
set of the training, validation or test data by spec-
ifying parameters like train_fraction . This may
be useful to accelerate the training (for instance
in the development phase of a product) or if one
wants to investigate the effect of the dataset size
(for instance to see if the model has saturated, or
for research).

4.3 Annotation Schemes

While every dataset is associated with a certain an-
notation scheme, nerblackbox provides the option
to translate between schemes at training time. The
desired annotation scheme can simply be specified
via the training parameter annotation_scheme . This
may be interesting for users who aim to optimize
their model’s performance as well as researchers
who systematically want to investigate the impact
of the annotation scheme.

4.4 Multiple Runs

Since the training of a neural network includes
stochastic processes, the performance of the result-
ing model depends on the employed random seed.
In order to gain control over the associated statis-
tical uncertainties, one may train multiple models
using different random seeds. With nerblackbox,
this can trivially be done by setting the training
parameter multiple_runs to an integer greater than
1. In that case, the evaluation metrics will be given
in terms of the mean and its associated uncertainty.
For inference, the best model is automatically used.

4.5 Detailed Results

nerblackbox saves detailed training and evaluation
results (e.g. loss curves, confusion matrices) using
MLflow5 and TensorBoard. This is useful in order
to keep an overview of trained models, inspect their

5https://pypi.org/project/mlflow/

detailed properties as well as optimize and cross-
check the training process.

4.6 Careful Evaluation
A model may predict labels for a sequence of to-
kens that are inconsistent with the employed anno-
tation scheme. For instance, if the BIO annotation
scheme is used, the combination O I-PER is in-
correct6. When translated to entity predictions,
nerblackbox ignores incorrect labels by default,
both at evaluation and inference time. However,
the popular evaluate (Von Werra et al., 2022) and
seqeval (Nakayama, 2018) libraries do take incon-
sistent predictions into account during evaluation.
For this reason, the evaluate_on_dataset() method
(see Sec. 3.3) returns results for both approaches.

4.7 Compatibility with transformers

nerblackbox is heavily based on transformers (Wolf
et al., 2020) such that compatibility is guaranteed.
In particular, the Model class has the attributes
tokenizer and model , which are ordinary trans-

formers classes and can be used as such. GPU
support (i.e. automatic detection and use) is also
provided through transformers.

5 Resources and Code Quality

nerblackbox is available as a package on PyPI7.
The associated GitHub repository is public at
https://github.com/flxst/nerblackbox and
contains the source code as well as multiple ex-
ample notebooks. A detailed documentation is
provided8. It includes a pedagogical introduction
to the library, an in-depth discussion of its fea-
tures as well as docs for the python API. Consis-
tent code syntax and typing are ensured by usage
of black9 and mypy10, respectively. We employ
unit and end-to-end testing. As an additional cross-
check, numerical results from the literature are re-
produced using nerblackbox (details can be found
in the documentation).

Acknowledgements

This work was supported by Vinnova through the
grants 2019-02996 and 2021-03630.

6The variant of the BIO scheme which we assume here is
also known as IOB2

7https://pypi.org/project/nerblackbox/
8https://flxst.github.io/nerblackbox/
9https://pypi.org/project/black/

10https://pypi.org/project/mypy/

https://pypi.org/project/mlflow/
https://github.com/flxst/nerblackbox
https://pypi.org/project/nerblackbox/
https://flxst.github.io/nerblackbox/
https://pypi.org/project/black/
https://pypi.org/project/mypy/


References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A Community Library for Natural Lan-
guage Processing. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 175–184,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Ben Lorica and Paco Nathan. 2021. 2021 NLP Survey
Report.

Ilya Loshchilov and Frank Hutter. 2017. SGDR:
Stochastic Gradient Descent with Warm Restarts.
ArXiv:1608.03983 [cs, math].

Marius Mosbach, Maksym Andriushchenko, and Diet-
rich Klakow. 2021. On the Stability of Fine-tuning
BERT: Misconceptions, Explanations, and Strong
Baselines. ArXiv:2006.04884 [cs, stat].

Hiroki Nakayama. 2018. seqeval: A Python framework
for sequence labeling evaluation.

Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Yasu-
fumi Taniguchi, and Xu Liang. 2018. doccano: Text
Annotation Tool for Human.

T. C. Rajapakse. 2019. Simple Transformers.

Shaina Raza, Deepak John Reji, Femi Shajan, and
Syed Raza Bashir. 2022. Large-Scale Application
of Named Entity Recognition to Biomedicine and
Epidemiology. Pages: 2022.09.22.22280246.

Felix Stollenwerk. 2022. Adaptive Fine-Tuning of
Transformer-Based Language Models for Named En-
tity Recognition. ArXiv:2202.02617 [cs].

Felix Stollenwerk, Niklas Fastlund, Anna Nyqvist, and
Joey Öhman. 2022. Annotated Job Ads with Named
Entity Recognition. SLTC.

Maxim Tkachenko, Mikhail Malyuk, Andrey Hol-
manyuk, and Nikolai Liubimov. 2020. Label Studio:
Data labeling software.

Asahi Ushio and Jose Camacho-Collados. 2021. T-
NER: An All-Round Python Library for Transformer-
based Named Entity Recognition. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: System
Demonstrations, pages 53–62, Online. Association
for Computational Linguistics.

Leandro Von Werra, Lewis Tunstall, Abhishek Thakur,
Sasha Luccioni, Tristan Thrush, Aleksandra Piktus,
Felix Marty, Nazneen Rajani, Victor Mustar, and He-
len Ngo. 2022. Evaluate & Evaluation on the Hub:
Better Best Practices for Data and Model Measure-
ments. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 128–136, Abu Dhabi,
UAE. Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander Rush. 2020. Transformers:
State-of-the-Art Natural Language Processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://gradientflow.com/2021nlpsurvey/
https://gradientflow.com/2021nlpsurvey/
https://doi.org/10.48550/arXiv.1608.03983
https://doi.org/10.48550/arXiv.1608.03983
https://doi.org/10.48550/arXiv.2006.04884
https://doi.org/10.48550/arXiv.2006.04884
https://doi.org/10.48550/arXiv.2006.04884
https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
https://github.com/doccano/doccano
https://github.com/doccano/doccano
https://github.com/ThilinaRajapakse/simpletransformers
https://doi.org/10.1101/2022.09.22.22280246
https://doi.org/10.1101/2022.09.22.22280246
https://doi.org/10.1101/2022.09.22.22280246
https://doi.org/10.48550/arXiv.2202.02617
https://doi.org/10.48550/arXiv.2202.02617
https://doi.org/10.48550/arXiv.2202.02617
https://2022.sltc.se/papers/SLTC22_paper_3062.pdf
https://2022.sltc.se/papers/SLTC22_paper_3062.pdf
https://github.com/heartexlabs/label-studio
https://github.com/heartexlabs/label-studio
https://doi.org/10.18653/v1/2021.eacl-demos.7
https://doi.org/10.18653/v1/2021.eacl-demos.7
https://doi.org/10.18653/v1/2021.eacl-demos.7
https://aclanthology.org/2022.emnlp-demos.13
https://aclanthology.org/2022.emnlp-demos.13
https://aclanthology.org/2022.emnlp-demos.13
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

