
Under review as a conference paper at ICLR 2023

PARETO RANK-PRESERVING SUPERNETWORK FOR
HW-NAS

Anonymous authors
Paper under double-blind review

ABSTRACT

In neural architecture search (NAS), training every sampled architecture is very
time-consuming and should be avoided. Weight-sharing is a promising solution
to speed up the evaluation process. However, a sampled subnetwork is not guar-
anteed to be estimated precisely unless a complete individual training process is
done. Additionally, practical deep learning engineering processes require incor-
porating realistic hardware-performance metrics into the NAS evaluation process,
also known as hardware-aware NAS (HW-NAS). HW-NAS results in a Pareto
front, a set of all architectures that optimize conflicting objectives, i.e. task-
specific performance and hardware efficiency. This paper proposes a supernet-
work training methodology that preserves the Pareto ranking between its different
subnetworks resulting in more efficient and accurate neural networks for a variety
of hardware platforms. The results show a 97% near Pareto front approximation
in less than 2 GPU days of search, which provides x2 speed up compared to state-
of-the-art methods. We validate our methodology on NAS-Bench-201, DARTS
and ImageNet. Our optimal model achieves 77.2% accuracy (+1.7% compared to
baseline) with an inference time of 3.68ms on Edge GPU for ImageNet.

1 INTRODUCTION

A key element in solving real-world deep learning (DL) problems is the optimal selection of the se-
quence of operations and their hyperparameters, called DL architecture. Neural architecture search
(NAS) (Santra et al. (2021)) automates the design of DL architectures by searching for the best ar-
chitecture within a set of possible architectures, called search space. When considering hardware
constraints, hardware-aware neural architecture search (Benmeziane et al. (2021); Sekanina (2021))
(HW-NAS) simultaneously optimizes the task-specific performance, such as accuracy, and the hard-
ware efficiency computed by the latency, energy consumption, memory occupancy, and chip area.
HW-NAS works (Cai et al. (2019); Lin et al. (2021); Wang et al. (2022)) showed the usefulness and
discovered state-of-the-art architectures for Image Classification (Lin et al. (2021)), Object detec-
tion (Chen et al. (2019)), and Keyword spotting (Busia et al. (2022)).

HW-NAS is cast as a multi-objective optimization problem. Techniques for HW-NAS span evolu-
tionary search, Bayesian optimization, reinforcement learning and gradient-based methods. These
require evaluating each sampled architecture on the targeted task and hardware platform. How-
ever, the evaluation is extremely time-consuming, especially for task-specific performance, which
requires training in the architecture. Many estimation strategies (White et al. (2021)) are used to
alleviate this problem, such as neural predictor methods (Benmeziane et al. (2022a); Ning et al.
(2020)), zero-cost learning (Lopes et al. (2021); Abdelfattah et al. (2021)), and weight sharing (Chu
et al. (2021); Chen et al. (2021)). These strategies are evaluated on how well they respect the ground
truth ranking between the architectures in the search space.

Weight sharing is an estimation strategy that formulates the search space into a supernetwork. A
supernetwork is an over-parameterized architecture where each path can be sampled. At the end of
this sampling, a sub-network of the supernetwork is obtained. In each layer, all possible operations
are trained. With this definition, we can classify weight-sharing NAS in two categories: (1)a two-
stage NAS in which we first train the supernetwork on the targeted task. Then, using the pre-trained
supernetwork, each sampled sub-network’s performance can be estimated using a search strategy,
such as an evolutionary algorithm. (2) a one-stage NAS in which we simultaneously search and
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train the supernetwork. Additional parameters are assigned to each possible operation per layer.
These parameters are trained to select which operation is appropriate for each layer.

Both Weight-sharing categories assume that the rank between different sub-networks is preserved.
Two architectures with the same rank imply that they have the same accuracy. State-of-the-art
works (Zhang et al. (2020); Peng et al. (2021); Zhao et al. (2021)) have highlighted the training
inefficiency in this approach by computing the ranking correlation between the architectures’ actual
rankings and the estimated rankings. Some solutions have been proposed to train the supernetwork
with strict constraints on fairness to preserve the ranking for accuracy, such as FairNAS (Chu et al.
(2021)). Others train a graph convolutional network in parallel to fit the performance of sampled
sub-networks Chen et al. (2021). However, current solutions have two main drawbacks:

1. In the multi-objective context of HW-NAS, different objectives such as accuracy and la-
tency have to be estimated. The result is a Pareto front, a set of architectures that better
respects the trade-off between the conflicting objectives. The ranking following one ob-
jective is no longer a good metric for the estimator. In this setting, we need to take into
account the dominance concept in the ranking. Both estimations hinder the final Pareto
front approximation and affect the search exploration when considering the accuracy and
latency as objectives.

2. Many works (Chen et al. (2021); Zhao et al. (2021); Guo et al. (2020)) attempt to fix the
supernetwork sampling after its training. We believe that this strategy is inefficient due to
the pre-training of supernetwork. Its accuracy-based ranking correlation is bad. In Dong
& Yang (2020), a reduced Kendall’s tau-b rank correlation coefficient of 0.47 has been
obtained on NAS-Bench-201 when using this approach. The accuracy estimation is thus
non-conclusive and will mislead any NAS search strategy.

To overcome the aforementioned issues, we propose a new training methodology for supernetworks
to preserve the Pareto ranking of sub-networks in HW-NAS and avoid additional ranking correction
steps. The contributions of this paper are summarized as follows:

• We define the Pareto ranking as a novel metric to compare HW-NAS evaluator in the
multi-objective context. Our study shows that optimizing this metric while training the
supernetwork increases the Kendall rank correlation coefficient from 0.47 to 0.97 for a
Vanilla Weight-sharing NAS.

• We introduce a novel one-stage weight-sharing supernetwork training methodology.
The training optimizes the task-specific loss function (e.g. cross-entropy loss) and a Pareto
ranking listwise loss function to select the adequate operation per layer accurately.

• During training, we prune the operations that are the least likely to be in the architec-
ture of the optimal Pareto front. The pruning is done by overlapping the worst Pareto-
ranked sub-networks and removing the operations that are only used in these sub-networks.

We demonstrate that using our methodology on three different search spaces, namely NAS-Bench-
201 (Dong & Yang (2020)), DARTS (Liu et al. (2019)) and ProxylessNAS search space (Cai et al.
(2019)), we achieve a higher Pareto front approximation compared to current state-of-the-art meth-
ods. For example, we obtained 97% Pareto front approximation when One-Shot- NAS-GCN (Chen
et al. (2021)) depicts only 87% on NAS-Bench-201.

2 BACKGROUND & RELATED WORK

This section summarizes the state-of-the-art in accelerating multi-objective optimization HW-NAS.

2.1 ACCELERATING HARDWARE-AWARE NAS

Given a target hardware platform and a DL task, Hardware-aware Neural Architecture Search
(HW-NAS) (Benmeziane et al. (2021)) automates the design of efficient DL architectures. HW-
NAS is a multi-objective optimization problem where different and contradictory objectives, such
as accuracy, latency, energy consumption, memory occupancy, and chip area, have to be optimized.
HW-NAS has three main components: (1) the search space ,(2) the evaluation method and (3) the
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Figure 1: Our Pareto Rank-Preserving Training methodology for Supernetwork. The strongest
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to the parameter alpha associated with layer l, operation o.

search strategy The main time-consuming component in HW-NAS is the evaluation method. Several
state-of-the-art works (White et al. (2021)) have been proposed to alleviate this problem.

Predictor-based methods (Ning et al. (2020); Lomurno et al. (2021)) are the most popular strategies
where machine learning models are used to predict the accuracy or latency from the architecture
features (e.g. number of convolutions, widening factor, etc.) or its representation using Graph
Neural Networks (GNN) (Ning et al. (2020)) and Recurrent Neural Networks (RNN) (Lomurno
et al. (2021)). However, these methods are not flexible to different search spaces as they require
training a sampled dataset and then training the predictor.

Weight-sharing approaches (Chu et al. (2021); Chen et al. (2021); Zhao et al. (2021); Guo et al.
(2020)), on the other hand, define the search space as a supernetwork. In each layer, the supernet-
work combines the results of possible operations. A sequence of operations from the input to the
output is called a sub-network and constitutes a possible architecture. Training the supernetwork
consists of training several paths at once. The input is forwarded through a series of parallel op-
erations whose outputs are summed after each layer. There are two main issues when training a
supernetwork:

1. The order of the sampled sub-networks matters: Assume we have two sub-networks
A and B. Both A and B start with the same operation op1 in layer 1. During the first
training iteration, A is sampled and op1 weights are adjusted. The second iteration samples
B and adjusts op1 weights again. If we want to evaluate A, we would use the new adjusted
weights of op1 which degrades the estimation.

2. Unfair Bias: Sub-networks with an initial better task-specific performance are more likely
to be sampled next and maintain a higher coefficient in one-stage supernetwork. Fair-
nas (Chu et al. (2021)) defines strict fairness constraints that ensure that each operation’s
weights are updated the same amount of times at each stage.

2.2 MULTI-OBJECTIVE OPTIMIZATION IN HW-NAS

Optimizing conflicting objectives simultaneously requires the definition of a decision metric. In
multi-objective optimization Batista et al. (2011), this metric is the dominance criteria. In a two-
objectives minimization problem, dominance is defined as: If s1 and s2 denote two solutions, s1
dominates s2 (s1 ≻ s2) if and only if ∀i fi(s1) ≤ fi(s2) AND ∃j fj(s1) < fj(s2). fi and fj are
conflicting objective functions such as latency and accuracy.

Using the dominance, there is no single solution that dominates all the others. We instead build
the Pareto front; the set of all dominant solutions. The Pareto front approximation is evaluated
using the hypervolume metric. The hypervolume measures the area dominated by a Pareto front
approximation P and a reference point. The reference point is defined as an architecture with a high
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latency and low accuracy (furthest from the optimal points). The maximization of hypervolume
leads to a high-qualified and diverse Pareto front approximation set.

In HW-NAS, computing the hardware efficiency is expensive due to the time-consuming deployment
and measurements on the hardware. Using multiple performance estimators is thus popular Hu
et al. (2019); Elsken et al. (2019); Lu et al. (2020); Huang & Chu (2021). Current multi-objective
HW-NAS approaches focus on optimizing the search algorithm at the expense of poor performance
estimators. However, using a performance estimator per objective is not optimal Benmeziane et al.
(2022b). In this paper, we present an original weight-sharing technique that directly predicts a
multi-objective metric, called Pareto ranking.

3 METHODS

The core motivation for a novel training methodology is to achieve an efficient sub-networks evalu-
ation for HW-NAS. The proposed training methodology must preserve the Pareto ranking between
different sub-networks while reducing the overall search time.
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Figure 2: Illustration of the Pareto rank and
Fi

Figure 3: Supernetwork definition when cou-
pling task-specific weights W and operation’s
score parameters α. Conv 3x3 is the operation
with the highest selection score.

3.1 PARETO RANKING

In this section, we define the Pareto ranking metric used to train and evaluate the supernetwork.

Pareto Ranking Solving the multi-objective optimization problem on a set of sub-networks results
in a Pareto front. This set of architectures in this front is denoted as F1, i.e., all the architectures
have a rank of 1. We achieve the lower ranks by successfully solving the problem on the set of sub-
networks pruned from the previous solutions. The lowest rank is assigned to the sub-networks that
do not dominate any sub-network. We formally define the Pareto ranking in equation 1, where S is
the entire supernetwork, Fk′ is a set of sub-networks ranked k′, and ≻ is the dominance operation.

Using this ranking, multiple architectures may have the same rank. This happens when none of them
can dominate the others.

a is ranked k ⇐⇒ ∀â ∈ S −
⋃

si∈Fk′∧k′<k

, â ≻ a (1)

Pareto Ranking Correlation. We evaluate the quality of an estimator using ranking correlations
such as Kendall’s tau-b Correlation or Spearman Correlation. Kendall’s tau-b determines whether
there is a monotonic relationship between two variables and is suitable when variables contain many
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tied ranks Benmeziane et al. (2021), which is our case. In the rest of the paper, we compute Kendall’s
Tau-b correlation between the ground truth ranks (i.e. the Pareto ranks obtained from independently
training the sub-networks), and the Pareto ranks obtained by evaluating each architecture with the
supernetwork shared weights.

3.2 PARETO RANK-PRESERVING TRAINING

Our training methodology aims at preserving the Pareto ranking obtained by the weight-sharing
evaluation.

Figure 3 shows a representation of the supernetwork definition and the different parameters we aim
to learn. A sub-network is a path from the input to the output. All extracted sub-networks are of the
same depth. We train the supernetwork with two goals: 1) enhance the task-specific loss function
by adjusting W , the task-specific weights of the original model associated with the neural network
operations such as the kernels in convolution, and 2) improve the Pareto ranking loss between its
different paths by adjusting α, the weights associated with the operation selection. α measures
which operation is critical and which one is selected.

Algorithm 1 and figure 1 summarize the training procedure.

• Step 1: Train with Strict Fairness We train our supernetwork using FairNAS (Chu et al.
(2021)) strict fairness constraint. This step adjusts the weights of all the sub-networks W
and gives a good starting point for the Pareto ranking training. Additionally, the accuracy
estimation on the task-specific loss at this point is well estimated. We use these estimations
to compute the true Pareto ranks in case no accuracy was provided by the benchmark.

• Step 2: Pareto ranking training For each iteration, we apply:
- Training to solve the task: A mini-batch is sampled from the training set, and a sub-
network is chosen according to each operation’s highest α. The operation’s weights are
updated using the task-specific loss, e.g., cross-entropy loss for image classification.
- Pareto rank training: In this phase, we purposefully bias the training towards better
Pareto-ranked architectures using the α parameters. α parameters are trained using the loss
function provided in equation 2. During the forward pass, we Pareto rank the sampled
sub-networks. We compute the number of times an operation opi appears in layer lj on
N top-ranked sub-networks, denoted as g(opi, lj). N is a hyperparameter defined before
training. We denote by ĝ(opi, lj), the ground truth. Equation 2 computes the hinge loss
over all layers in the sampled sub-networks and compares the number of times the operation
with the highest α appears in the predicted Pareto front and the ground truth one.

L =

L∑
j=1

∑
i,g(opi,lj)>ĝ(opi,lj),i̸=argmax(α)

max[0,m− g(argmax(α), lj)− ĝ(opi, lj)] (2)

We adjust each operation’s α parameters and compute each sampled sub-network’s latency
using a lookup table. We define the predicted Pareto score according to Ps =

∑
op∈a αop,

i.e., the sum of selected operations’ alpha values. Next, we compute the listwise ranking
loss defined by the cross entropy between the ranking scores and the Pareto ranks (ground
truth).

• Step 3: Pruning by Pareto Ranking Sub-networks We drop sub-networks furthest from
the optimal Pareto front to accelerate the training. First, we select the sub-networks be-
longing to the two first Pareto ranks. Then, based on the hypervolume improvement
(HVI) (Emmerich et al. (2011)), we select n sub-networks. The operations never used
by any sub-network in this selection are removed for each layer. Equation 3 illustrates
how the hypervolume improvement is computed in this context. oij denotes operation i
in layer j. HV denotes the hypervolume function and {Soij} denotes the set of sampled
sub-networks using operation i in layer j.

HV I(oij , P ) = HV (P
⋃

{Soij})−HV (P − {Soij}) (3)
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Figure 4: Training performance computed with
the Kendall’s Tau Correlation between the inde-
pendently trained Pareto ranks and the estimated
Pareto ranks obtained by training the supernet-
work.

Finally, going over all the layers to select the
operations with the highest α would suffice to
find the most efficient DNN within the search
space.

Figure 4 shows the training results. We com-
pare our methodology to FairNAS (Chu et al.
(2021)) strict fairness training. During training,
the Pareto ranking correlation increases with
the quality of the estimations. When using our
training methodology without considering the
alpha parameters, the ranking correlation sat-
urates at 0.7. FairNAS achieves the same be-
haviour with reduced variance among the dif-
ferent training runs. However, if we consider
the alpha parameters, the selection is more ef-
ficient and the architectures’ rankings are well
represented with 0.94.

Algorithm 1 Supernetwork Training Algorithm
Input: Search space S, number of epochs for fairness training Nf , number of epochs for Pareto
training Np, Supernetwork parameters (W,α), training dataloader D, task-specific loss Loss, Pareto
raking loss LossPR, number of sampled sub-network n

procedure TRAIN

Initialize W and α for each operation in Supernetwork
Strict fairness training for Nf epochs
for i=1 to Np do

for data, labels in D do
Build model with argmax(α) following step 2
Reset gradients to zero for all W parameters
Calculate gradients based on Loss, data, labels and update W by gradients

end for
Sample n sub-networks, models

Compute: Pareto rank of models, LossPR between scores and Pareto rank.
Update α by gradients
end for

end procedure

4 EXPERIMENTS

In this section, we evaluate our training methodology on three search spaces: NAS-Bench-
201 (Dong & Yang (2020)), DARTS (Liu et al. (2019)) and ProxylessNAS Search space (Cai et al.
(2019)).

4.1 SETUP

Search Spaces: Several search spaces have been used to evaluate our method’s performance. NAS-
Bench-201 (Dong & Yang (2020)) is a tabular benchmark that contains 15k convolutional neural
networks. Each architecture is trained on CIFAR-10, CIFAR-100 and ImageNet-16-120 (Chrabaszcz
et al. (2017)). We use the latency values obtained from HW-NAS-Bench (Li et al. (2021)).
DARTS Liu et al. (2019) is a supernetwork benchmark that contains 1018 architectures. Each archi-
tecture is trained on CIFAR-10 and is transferable to ImageNet. We also validate our methodology
on ImageNet using ProxylessNAS search space Cai et al. (2019) whose size goes to 619. All training
hyperparameters are listed in Table 5 in Appendix F.
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Architecture Edge GPU Mobile Phone : Pixel 3 HW
Aware

GPU
DaysTop-1

Test Acc.
Params

(M)
Latency

(ms)
Top-1

Test Acc.
Params

(M)
Latency

(ms)
DARTS Liu et al.
(2019)

68.3 ± 0.08 3.4 5.36 68.3 ± 0.08 3.4 11.4 No 4

ENAS Pham
et al. (2018)

53.89 ± 0.16 4.6 6.32 53.89 ± 0.16 4.6 19.8 No 0.16

GDAS Dong &
Yang (2019)

90.89 ± 0.08 3.4 5.21 90.89 ± 0.08 3.4 10.36 No 0.21

FairNAS Chu
et al. (2021)

93.23±0.18 3.2 4.68 92.4 ± 0.15 3.6 8.65 Yes 10

PRP-NAS-BL
(Ours)

92.34 ± 0.05 3.0 2.3 89.54 ± 0.07 2.8 3.6 Yes 2

PRP-NAS-BA
(Ours)

94.37 ± 0.02 4.5 4.35 94.2 ± 0.03 4.3 5.6 Yes 2

PRP-NAS-O
(Ours)

93.65 ± 0.01 4.3 3.64 93.74 ± 0.00 3.4 4.61 Yes 2

Table 1: Comparison on NAS-Bench-201 CIFAR-10 on Edge GPU (Jetson Nano) and Mobile phone
(Pixel 3).

4.2 SEARCH RESULTS

In these experiments, we consider two objectives: accuracy and latency (inference time). The latency
is either given by HW-NAS-Bench (Li et al. (2021)), or computed using a lookup table as explained
in section 3.

Figure 5: Pareto front approximation comparison on CIFAR-10 and ImageNet.

Figure 5 shows the Pareto front approximations obtained using different methods on NAS-Bench-
201 for CIFAR-10 and ProxylessNAS Search space for ImageNet. We obtain a 10% hypervolume
increase on NAS-Bench-201 and a 43% hypervolume increase on ImageNet compared to the best
baselines: One-Shot-NAS-GCN and FairNAS, respectively.

4.2.1 SEARCH ON NAS-BENCH-201

Table 1 shows the results of our methodology on NAS-Bench-201 compared to state-of-the-art meth-
ods. PRP-NAS-BL, PRP-NAS-BA and PRP-NAS-O are three sampled architectures from our final
Pareto front. BL stands for ”Best Latency”. BA stands for ”Best Accuracy”, and O stands for ”Op-
timal”. Notably, our architecture obtains highly competitive results. The optimal architecture, PRP-
NAS-O, outperforms current state-of-the-art methods in accuracy and latency. Including hardware
awareness during the search allows us to obtain flexible results according to the targeted hardware
platform. Besides, multiple training runs show the stability of our method compared to other base-
lines. The acceleration in the search cost is mainly due to applying the pruning while training. This
cost can vary according to the used GPU. We used GPU V100 to train the supernetwork. Results on
other targeted platforms, can be found in Appendix B.
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4.2.2 SEARCH ON IMAGENET

Similar conclusions can be extracted when searching on ImageNet. Table 2 summarizes the results.
Our optimal model surpasses FairNAS-A (+1.9%) and One-Shot-NAS-GCN (+1.7%) while running
faster. Training on Imagenet is time-consuming due to the difference in image resolution, which
explains the increase in the search cost. We still surpass most of the methods in terms of search time.
We compare two ProxylessNAS architectures; ProxylessNAS-R is specific to Mobile inference.

When using data augmentation and architecture tricks, namely Squeeze-and-excitation and Au-
toAugment, in the optimal architecture, we achieve 78.6% accuracy on Imagenet. However, this
may affect the latency badly. On FPGA ZCU102, the latency increases from 4.63ms to 7.9ms.

4.3 RANKING QUALITY

The ranking preservation measures the quality of the evaluation component in NAS. In HW-NAS,
we argue that this measure should consider the Pareto ranking instead of the independent ranks of
each objective. We compare different estimators used in HW-NAS using Kendall’s Tau Correlation
between the predicted Pareto ranks and the Pareto ranks obtained from independently training the
architectures. These latter are extracted from NAS-Bench-201. Figure 6 shows the correlation
results. In general, it is more complex to train a supernetwork to respect the Pareto ranks because
of the impact of the sub-networks on each other, i.e., the outputs of each layer are summed together.
The increase in Kendall’s tau correlation of previous weight-sharing methodology is due to the
improvement in the accuracy estimation provided by the supernetwork.

Predictor-based evaluators use the learning-to-rank theory and train their predictors only to predict
the ranking. Methods such as GATES (Ning et al. (2020)) or BRP-NAS (Dudziak et al. (2020)) train
many independent predictors, one for each objective. HW-PR-NAS (Benmeziane et al. (2022a))
trains a single predictor to fit the Pareto ranks. However, their methodology is not flexible for
supernetwork training.

Predictor-based HW-NAS Weight-sharing HW-NAS

Figure 6: Kendall’s Tau-b correlation and hypervolume comparison using different estimators on
DARTS.

4.3.1 ANALYSIS OF α PARAMETER

Figure 7 illustrates the evolution of alpha parameters for each operation in layer 1 and 2 during
the training. It clearly shows how alpha favors one operation over the others during training. At
the end of the training, we take the operations with the highest alpha that represents the operations
constructing architectures in the final Pareto front. If one layer has a clear candidate such as layer 1,
with conv3x3 that exceeds 60%, this operation is then chosen. If a layer contains multiple operations
with similar alpha values, we constructs all the path of that layer.

4.4 BATTERY USAGE PRESERVATION

The amount of energy consumed by each model can be different. It is mainly attributed to the number
of multi-adds computed. We take supernetwork usage to another level by adequately scheduling the
run of different sub-networks according to the system’s battery life. In this experiment, the training
is done with two objectives: accuracy and energy consumption. Once the training is done, only the
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Figure 7: Analysis of trained alpha values for layer 1 and 2

Pareto front solutions are kept in the supernetwork, thanks to the pruning. We further select, from
the final Pareto front, s architectures. In this experiment s = 5. The total size of the supernetwork is
then reduced to 20.5MB, comparable to MobileNet-V3 Large with 21.11MB. We deploy the model
on a smartphone application that is always on. The application repeats the inference classification
of one image. The application initially uses the sub-network with the highest accuracy. We switch
to a lower accurate model every five hours for a better energy preserving. Figure 8 shows the results
of the system’s battery life while running the application for 24 hours. We use three scenarios:

1. Worst Battery Usage: From the Pareto front, we select the most accurate architecture.
This is the only architecture the application runs and is the only one loaded in memory.

2. Best Battery Usage: Similar to the worst battery usage, we select the most energy-efficient.
3. Adequate Battery Usage: We load the complete supernetwork and switch the sub-network

every 5 hours.

0 5 10 15 20
Hour

0

20

40

60

80

100

Ba
tte

ry
 C

ap
ac

ity
 (%

)

34.19%

Worse Capacity Usage
Best Capacity Usage
Adequate Capacity Usage

Figure 8: Battery life management.

Using this strategy helps save up to 34% of the
battery life while using highly accurate models
most of the time. The average accuracy of the
five selected sub-networks is 75.2%.

5 CONCLUSION

This work analyzes Hardware-aware weight-
sharing NAS where the multi-objective con-
text requires the estimator to preserve the
Pareto rankings between sub-networks accu-
rately. Contrary to standard baselines that inde-
pendently estimate each objective, we propose
a supernetwork training methodology able to
preserve the Pareto rankings during the search.
Using our methodology, we achieve 97% near
Pareto front approximation on NAS-Bench-
201, DARTS, and ProxylessNAS Search Spaces. We find a 77.2% accuracy model on ImageNet
while only training the supernetwork for 3.8 days. Using the supernetwork capabilities, we saved
up to 34% of the battery capacity with an average accuracy of 75.2%.
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A RESULTS ON IMAGENET

Architecture Edge GPU Mobile Phone : Pixel 3 HW
Aware

GPU
DaysTop-1

Test Acc.
Params

(M)
Latency

(ms)
Top-1

Test Acc.
Params

(M)
Latency

(ms)
DARTS Liu et al.
(2019)

73.3 ± 0.03 4.7 5.36 73.3 ± 0.03 4.7 11.5 No 4

ProxylessNAS Cai
et al. (2019)

75.1 ± 0.00 7.1 5.1 - - - Yes 8.3

ProxylessNAS-
R Cai et al.
(2019)

- - - 74.6 4.0 6.8 Yes 8.3

FairNAS-A Chu
et al. (2021)

75.3 ± 0.05 4.6 5.32 75.1 ± 0.06 4.3 6.84 Yes 12

One-Shot-NAS-
GCN Chen et al.
(2021)

75.5 ± 0.09 4.4 5.23 75.5 ± 0.09 4.4 9.4 No 4.7

PRP-NAS-BL
(Ours)

68.95 ± 0.01 3.7 3.2 67.56 ± 0.05 3.1 4.8 Yes 3.8

PRP-NAS-BA
(Ours)

77.5 ± 0.02 4.8 4.68 76.94 ± 0.02 4.4 6.13 Yes 3.8

PRP-NAS-O
(Ours)

77.2 ± 0.03 4.6 3.68 75.6 ± 0.02 3.8 5.68 Yes 3.8

Table 2: Comparison on ImageNet on Edge GPU (Jetson Nano) and Mobile Phone (Pixel 3).

B ADDITIONAL RESULTS

Table 3 shows the results of our training methodology on FPGA ZCU 102 and Raspberry Pi3. Our
methodology consistently outperforms state-of-the-art methods on different hardware platforms.

Architecture FPGA ZCU102 Raspberry Pi 3 HW
Aware

GPU
DaysTop-1

Test Acc.
Params

(M)
Latency

(ms)
Top-1

Test Acc.
Params

(M)
Latency

(ms)
DARTS 68.3 ± 0.08 3.4 7.32 68.3 ± 0.08 3.4 45.36 No 4
ENAS 53.89 ± 0.16 4.6 8.91 53.89 ± 0.16 4.6 35.8 No 0.16
GDAS 90.89 ± 0.08 3.4 4.98 90.89 ± 0.08 3.4 41.8 No 0.21
FairNAS 92.9±0.23 3.4 5.12 92.51 ± 0.9 3.3 34.15 Yes 10
PRP-NAS-BL (Ours) 91.35 ± 0.04 3.2 3.6 88.7 ± 0.03 2.4 7.6 Yes 2
PRP-NAS-BA (Ours) 94.37 ± 0.01 4.9 6.8 93.68 ± 0.05 4.68 40.7 Yes 2
PRP-NAS-O (Ours) 93.55 ± 0.04 4.2 4.23 92.54 ± 0.02 3.6 18.5 Yes 2

Table 3: Comparison to baselines on CIFAR-10 on FPGA ZCU-102 and Raspberry Pi3

C NUMBER OF SAMPLED SUB-NETWORKS

Figure 9 shows the effect of increasing the number of sampled sub-networks on the search results.
Generally, increasing the number of samples, increases the hypervolume. The hypervolume is used
to evaluate Pareto front approximations. It computes the area contained by the Pareto front points
found by the search and a reference point. Our reference point is set as a pre-sampled architecture
from the supernetwork, with a low accuracy and high latency. When the number of sampled sub-
networks is too high, each layer’s output is the sum of multiple operations that can or cannot be
within the final Pareto front which induces a bias when adjusting the alpha parameters.
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Figure 9: Hypervolume analysis with increasing number of sampled sub-networks for the final
Pareto front throughout the search (higher is better) on NAS-Bench-201.

D PRUNING ALGORITHM

We validate the results of our pruning algorithm by comparing the results of our algorithm with
and without it in table 4. Obviously without the pruning, the search time exponentially increases
from 3.8 GPU days to 8.1. However, the hypervolume improves slightly. The final most accurate
architecture is in both Pareto front obtained with and without pruning. The optimal architecture
using pruning is better in terms of accuracy and latency. The latency is computed on Jetson Nano
Edge GPU.

Model Test Acc (%) Latency (ms) Search Hypervolume GPU days
PRP-NAS-O 93.65 3.64 423.45 3.8
PRP-NAS-O-no pruning 92.1 3.26 433.09 15.1

Table 4: Ablation results of Pruning of Pareto ranking.

E LATENCY ESTIMATION

In this section, we compare different latency estimators to validate the use of LUT during the search.
We randomly extract 1000 architectures from NAS-Bench-201 and 1000 from DARTS. We measure
the exact latency on Jetson Nano for each architecture. We train two predictor-based models, namely
XGBoost and MLP with 3 layers. The training dataset contains 700 architectures and 300 were used
for testing. On NAS-Bench-201, the architectures have a sequential execution which made LUT
the most accurate in terms of latency ranking the architectures. On DARTS, XGBoost prediction
was the most suitable methods. But, LUT was not far with 0.915 against 0.942. Computing the
LUT in our algorithm is simple. Using a hook during the forward function on a PyTorch model is
sufficient and much more direct than calling a surrogate model. We thus use this strategy to estimate
the latency in our method.
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Figure 10: Comparison of latency estimators on Jetson Nano.

Benchmark Hyperparameter Value

NAS-Bench-201

Nf 20
Np 50
n 50
batch size 128
lr 0.01
optim SGD
momentum 0.9

DARTS

Nf 30
Np 150
n 100
batch size 256
lr 0.025
optim SGD
momentum 0.9

ProxylessNAS
Search Space

Nf 30
Np 150
n 100
batch size 256
lr 0.025
optim SGD
momentum 0.9

Table 5: Training Hyperparameters

F TRAINING HYPERPARAMETERS

The training hyperparameters are listed in Table 5.
It takes 2, 3.8, 3.8 GPU-days for NAS-Bench-201,
DARTS and ProxylessNAS search space to train
each supernetwork to fullness. Our training is 5x
faster than previous works due to the pruning strat-
egy. To be consistent with previous works, we do
not employ data augmentation tricks such as cutout
or mixup. We also do not employ any special op-
erations such as squeeze-and-excitation. All these
methods can further improve the scores on the test
set.
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