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ABSTRACT

Most bankruptcy risk prediction models use numerical data such as financial state-
ments, financial ratios, or stock market variables to predict the risk of a company
going into bankruptcy. However, these models do not take advantage of the vast
amount of textual information available. The few projects that work with textual
information use short texts such as tweets and news or are limited to analyzing
data from public companies. Our research focuses on predicting the bankruptcy
risk using the long text sequences of the annexes from the Annual Accounts. We
propose a BERT-based model, which can predict the risk of a company going
bankrupt even if there is no explicit information about the risk in the long-textual
information. Here we showed that we can process parallel segments of a document
using BERT and then integrate them for a unified prediction. Using a dataset of
20,000 annexes from the Annual Accounts of non-financial companies from Lux-
embourg to train and validate our model. We tried different models and two of
them get a validation precision for predicting a risky company of approximately
73% and can be used depending on how long the documents are. The model can
clearly learn about risk information from unstructured and diverse long textual in-
formation with high precision. This is our first step towards an integrated learning
model that considers also numerical and non-financial data. Our proposed archi-
tecture can be used in other domains where long text needs to be processed for
different Natural Language Processing tasks.

1 INTRODUCTION

Forecasting bankruptcies plays a pivotal role in fostering economic growth, benefiting businesses,
creditors, investors, and even government entities. The presence of effective early warning systems
can substantially diminish bankruptcy risks and pinpoint vulnerable aspects that require a company’s
attention. Despite the increasing practice of governments and companies disclosing their financial
reports, there remains an underutilization of the vast publicly available textual data.

Most of the current financial models are focused on the use of numerical information as financial
ratios to make their predictions and only a few of them are using textual information. Most of these
text-based models use only short text for making predictions such as financial news and tweets (Qu
et al., 2019; Clement et al., 2020).

The study conducted by Mai et al. (2019) is one of few that uses financial disclosures to predict the
risk of bankruptcy. However, their dataset is limited in scope as they use the Annual Filings from
public U.S. corporations which requires including risk analysis in the first part of the document,
therefore they just need to process a short text. The primary constraint restricting the utilization
of extensive textual data sources, such as the complete Annual Reports, is the limitation imposed
by the maximum amount of input text that can be processed by state-of-the-art Natural Language
Processing (NLP) models like BERT (Devlin et al., 2018).

In contrast to Mai et al. (2019), we are using Annual Accounts from the Luxembourg Business
Registry LBR (2023) which correspond to companies from different industries and sizes and even
languages(French, German, and English). In these legal annexes the risk is not always explicitly
written, so the model should analyze the entire content to detect it.

LBR Annual Accounts consist of the Financial Statements (Balance Sheet and Profit and Loss State-
ments) and the Legal Annexes or Appendixes. These annexes provide additional information to the
Financial Statements using natural language. Although the Financial Statements must follow a spe-
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cific template, there is no set layout for the legal annexes 1. In this sense, our information is less
uniform and more variable. We can have annexes that are as short as a single page or as long as 15
pages or more. This requires having models that are capable of receiving long strings.

Our research contribution encompasses two primary objectives. Firstly, we endeavor to enhance our
capacity to efficiently process extensive textual data. Secondly, we aspire to build a model profi-
cient in evaluating the bankruptcy risk associated with any company, utilizing the substantial textual
content available within their Annual Accounts’ annexes. Our specific emphasis is on scenarios
where the risk description may not inherently reveal itself. Providing the model with the whole
information, it can learn by itself the features required for doing bankruptcy forecasting.

The model that we propose is based on the BERT model, which is one of the most important mod-
els in NLP. Our proposed model combines the power of BERT for analyzing short sequences of
texts with an Integration network, which can be a Long Short-Term Memory (LSTM) network or a
concatenation layer followed by dense layers, to analyze BERT’s outputs sequentially.

Our preliminary results show a precision risk prediction of approximately 73%. Although our results
may not surpass the performance of models based solely on numbers, we have very good infer that
the text provides us with certain information about the level of risk of a company, even if it is not
explicitly stated. Furthermore, this model can be applied to any domain where processing long text
is required.

2 RELATED WORK

Most of the studies in finance use numerical data as financial ratios to predict the risk of bankruptcy
(Qu et al., 2019; Clement et al., 2020). However, there are some studies that use textual information,
but most of them are related to short text as input such as tweets or financial news (Sawhney et al.,
2021; Sandy et al., 2022; Gao et al., 2018). In contrast, our objective is to analyze financial reports
to predict the risk of bankruptcy. This leads us to use long text as input for our model

The first work on using financial disclosures to predict bankruptcy risk was done by Mai et al.
(2019). They used financial disclosures of U.S. Corporations to predict the risk of bankruptcy using
their publicly available 10-K annual filings. the Security Exchange Commission (SEC) mandated
firms to include the risk information into a “risk factor” section in the 10-K form starting in 2005
(Campbell et al., 2014; Huang AAllen, 2020).

In contrast to Mai et al. (2019), our study uses a publicly available dataset of Annexes of Annual
Accounts from Luxembourg Business Registers (LBR). By law, not only public companies but also
SMEs are required to produce annual accounts. These filings can be presented in English, French, or
German. Those annexes can have one or many pages. There is no regulation about the content in the
annexes, therefore, the information in the notes or annexes can be very limited (OpenLux (2021)).

For processing textual information using Deep Neural Networks, the current leading technologies
are the models based on the Transformer Architecture (Vaswani et al., 2017). These models replaced
the Long Short-Term Memory Networks (LSTM) (Kang et al., 2020). Transformers use attention
mechanism to do parallel processing and avoid the vanishing gradient problem.

Based on Transformers, Devlin et al. (2018) presented the BERT model. BERT is composed of
one embedding layer and at least 12 attention layers (BERT Base). It is designed to deal with the
ambiguity of language using the surrounding text to define the context. BERT has become one
of the most important base models for researchers in NLP. This pre-trained model can understand
general language and can be easily trained to understand domain-specific terms without requiring
high computational resources or huge amounts of data. In HuggingFace (2023) there are more than
9,000 BERT-based models for NLP in different domains, languages, and downstream tasks such as
Text Classification, Translation, Question-Answering, etc.

Moreover, the primary limitation of BERT-based models is their maximum input size, which is 512
tokens. A token can be defined as a word or word piece that has a numerical representation and
meaning. The tokenizer is the component of the model which has a dictionary of known words or

1https://guichet.public.lu/en/entreprises/gestion-juridique-comptabilite/comptable/
enregistrement/methodes-etablissement-comptes-annuels.html
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word pieces and decomposes the input text into these known entries. Each entry has a vector of 768
features that represent the token’s embeddings.

Our research is focused on documents with several pages, which is different from most of the other
studies. With the same goal and same data as Mai et al. (2019), Kim & Yoon (2021) used a BERT-
base model, limiting the number of input tokens to 512 and merging the textual information with five
financial variables calculated from the stock market. Their BERT model is used to domain-adapt
the financial vocabulary and then they use the embeddings for three different classification models.
These models are (A) Hazard model, which uses logistic regression, (B) k-Nearest Neighbors (k-
NN) and (C) Support Vector Machine (SVM). These models are not DL models and use distance
similarity to make predictions.

In consequence, by default, a BERT instance can not be fed with long textual information like the
financial annexes. To solve this problem, likewise Zhang et al. (2020) we are using a Long Short-
Term Memory (LSTM) network. In contrast to them, instead of including an LSTM layer after each
attention layer, we include an LSTM layer after BERT or we concatenate BERT outputs, having
some dense layers in between. All the groups are processed in parallel by BERT and then analyzed
in sequence by the LSTM network or a concatenation layer. Hence, while BERT generates a general
understanding of each part of the document (summarizing), the LSTM or concatenation network
analyzes these parts and provides a single prediction for the whole document.

To have a basic idea of the performance of the financial ratios for predicting the risk of bankruptcy,
in 2022, (removed for bling review) analyzed the risk of bankruptcy using the Financial information
from the Financial Statements from the LBR. Using the most typical financial ratios for one-year
bankruptcy prediction they achieved an AUC of 75% for Logistic Regression, 79% for Random
Forest, and 87% for LightGBM.

3 DATASET

The dataset consists of the Annexes of 20,000 Annual Accounts from the Luxembourg Business
Registers (LBR), which are publicly available for download2. This dataset contains Small and
Medium Companies (SME’s) from 16 different industries (Excluding financial institutions, to avoid
bias in the reporting). Our dataset contains documents mainly in French (≈ 81%), but also in English
(≈ 11%) and German (≈ 8%). More information about the dataset can be found in Appendix A.

For analyzing the risk of bankruptcy in this dataset (”Risky” or ”Not Risky”), we labeled the doc-
uments based on the status of the company of the last filled report or published court order. As a
result, ≈ 20% of the data is Risky and the rest is Not Risky. The data is imbalanced as well at the
language level, keeping similar distributions Appendix A.

4 METHODOLOGY AND PROPOSITION

For working with long text we proposed two main architectures composed of a parallel BERT pro-
cessing and then an integration that can be implemented with an LSTM network or a set of dense
and concatenation layers.

Our proposed model consists of three phases: A) Text pre-processing, B) Segment Analysis, and C)
Integrated prediction. Both approaches share phase A and the first part of phase B Figure 1.

For Segment Analysis and Integrated Prediction, we have different approaches and with some com-
binations of these two phases, we create different models to test and select the best one.

4.1 TEXT PREPROCESSING

Figure 2 shows the process of our first phrase. This phase is composed of three steps: Cleaning,
Tokenization, and Segmentation.

At first, the data is cleaned. We remove e-mails and multiple blank spaces. Then, using regular
expressions, we remove dates, apostrophes, dashes, enumerators, and noisy characters. Enumerators

2https://www.lbr.lu/mjrcs/jsp/webapp/static/mjrcs/en/mjrcs/legal.html?pageTitle= footer.legalaspect
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Figure 1: The analyzed models are composed of three phases. A) Pre-processing, where the data is
prepared for parallel long processing of each document divided into segments. B) Segment Analysis,
where each segment is processed by BERT independently. C) Integrated prediction, where the
different segments are integrated to make a prediction using the whole data.

Figure 2: During the first phase, the data is cleaned, tokenized, and segmented. During segmenta-
tion, we create segments of 512 tokens. The last part of each segment is copied to the beginning of
the next segment to preserve context. Short segments are completed with [PAD] tokens.

are common in reports and can be found as Arabic numbers (1.,1.5., etc), Roman numbers (I., IV.,
etc), and letters (a., b., etc) or a combination of them. As shown in these examples, enumerators can
represent a hierarchy and can be delimited with dots, dashes, colons, parentheses, etc.).

After cleaning, we start the tokenization, where each word is divided into one more tokens. The
tokenization is done by the default BERT multilingual tokenizer (bert-base-multilingual-cased) 3.

Segmentation is the last step of this phase. Here, we adapt our tokenized data to the input restrictions
of the BERT model. The integrity of the document is preserved during the whole process, but
until this phase, we do not split the input into independent instances. For this reason, the shuffling
and selection of train, test, and validation data are done before the pre-processing. BERT model
only accepts 510 tokens for classification tasks (considering the special tokens [CLS] and [SEP]).
After we divide the whole text into segments, each segment is going to be processed by BERT
independently. In consequence, context outside the segment is lost. As the meaning of the words
depends on the context, we are copying the last δ tokens of each segment to the next one. The
number of segments per document can be estimated with Equation 1, where τ is the number of
tokens generated per document and BERTinput is the number of available input tokens (510).

≈ δdoci = ⌈(τdoci − δ)/(BERTinput − δ)⌉ (1)

To proceed with the pre-processing phase, we need to define the maximum number of segments
per document (κ), which is mandatory to uniform the BERT output. The value of κ is determined
according to our dataset. In our dataset, we defined κ = 10, which covers most of the 80% of the

3https://huggingface.co/bert-base-multilingual-cased
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Table 1: Different values for κ.
κ 5 10 15 20 25
Trimmed documents 129,532 (59.5%) 38,225 (82.4%) 19,092 (91.2%) 8,596 (96.1%) 3,703 (98.3%)

documents without being trimmed. Is important to remind that if the value of κ increases, the size
and the sparsity of the data also increase. Hence, it could affect the model’s performance.

For each document we create κ segments, if the number of required segments of the documents
is bigger than the maximum number of segments, we trim the first part of the text to fit into the
maximum number of segments: δdoci = min(≈ δdoci , κ).

If the number of tokens in the last segment of a document is less than BERTinput, we complete
it with [PAD] tokens (left padding). If the number of segments is less than κ, we complete with
segments full of [PAD] tokens (bottom padding).

4.2 SEGMENT ANALYSIS

In segment analysis, the segments are fed into parallel BERT instances. (a) To have a direct connec-
tion to the integration phase and (b) to include after BERT, dense layers to reduce the BERT’s output
dimension (768). The [CLS] output vector of BERT is directly fed to the next Integrated prediction
phase (first approach) or can be fed into two consecutive dense layers to reduce the dimensionality
before feeding into the next phase (second approach). Detailed graphs can be found in Appendix A

4.3 INTEGRATED PREDICTION

In this phase, we analyze together the different segments’ representations that belong to the same
document and then optionally have an intermediate dense layer to reduce the number of dimensions
of the integration layer and finally use a dense layer for the classification task. The size of the last
output layer of this part of the model is the number of our classes (2).

Similarly to the previous phase, in this phase, we propose three different approaches. The first ap-
proach consists of using the last classification layer just after the LSTM network. For the second
approach, we include two intermediate dense layers between the LSTM network and the last clas-
sification layer. Finally in the third approach, instead of having a LSTM layer, we concatenate the
outputs of the previous phase and then reduce the dimensionality with two intermediate dense layers
(similar to the second approach). Detailed graphs can be found in Appendix A

4.4 MODELS’ CONFIGURATIONS

Based on the different approaches, we designed six different integrated models to check which one
is the best performed. Each model has the associated parameters for the different dense layers. In
the case of the LSTM, we are reporting the different values of the corresponding number of hidden
layers (ϕ) in subsection 5.1. This parameter has a significant impact on the size and performance of
the model. The resulting model’s architecture is shown in Figure 3

5 EXPERIMENTS AND RESULTS

We defined the size of the dense layer according to its position and function in the network. Table 2
shows the formulas per each λx. Most of the values are the power of 2 or an even value, having the
second dense layer as half of the previous one. The value of λ1 is defined by the closest lower power
of two of the size of BERT’s output (768). λ2 is the half of the previous layer. We fixed the value of
λ3 big enough to then do the summarization. We defined this value as ≈ 2 ∗ ϕ. λ4 also is defined as
the half size of the previous dense layer.

For the last two models, which do not depend on LSTM, we use the size of the concatenated se-
quence as the reference. λ5 is half of that. λ3 also depends on the size of the concatenated sequence,
trying to get the number before the lower power of 2 of the sequence. Finally, λ4 is defined as half
of the previous dense layer.
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Figure 3: The resulting models are the mixture of the different approaches for each phase. The figure
shows the parameters of the dense layers λx, and it represents the output size of the corresponding
dense layer.

Table 2: Values for λ1, λ2, λ3, λ4, λ5 per model
Models Parameter Value Explanation
m2,m3 λ1 512 ⌊log2 768⌋
m2,m3 λ2 256 Half of the previous dense layer

m3,m4,m5,m6 λ3 512 ⌈log2(2 ∗ max(ϕ))⌉, having max(ϕ) = 200
m3,m4 λ4 256 Half of the previous dense layer

m5 λ5 variable 768*κ/2, half of the concatenated sequence
m6 λ5 variable 256*κ/2, half of the concatenated sequence
m5 λ3 variable 2(⌊log2(768∗κ)⌋−1)

m6 λ3 variable 2(⌊log2(256∗κ)⌋−1)

m5,m6 λ4 variable Half of the previous dense layer

5.1 TEST CASES

For the BERT models, we use the following hyperparameters: dropout : 20%, freezing the first ten
first encoder layers of BERT The general model parameters: learningrate = 1e−5, optimizer :
AdamW with weightdecay = 1e−2 and batch size = 5, epochs = 4. We freeze 10 out of 12
encoder layers to reduce the trainable model’s size.

The test cases are going to depend on the parameters already defined in Table 2 and the value of
the number of hidden layers for LSTM networks (ϕ). This parameter can have the following values
[30,50,80,120,200]. The codification of the test case for showing later in the results are following
the pattern: tc mω hϕ, having ω as the model number. For models 4 and 5, as there is no parameter
ϕ, the pattern is tc mω .

Additionally, with the best-performed model, we do a sequence length analysis, where we tried
sequence lengths from 5 to 20. We decided to remove the test of 25 because the size of some models
did not fit in the GPU. We are codifying these test cases like tc mω sκ.

For the analysis of the best model, we are going to show the Accuracy, F1 score, precision, and
recall. We are using Accuracy and F1 score calculated with the sklearn toolkit using weighted
methods. For comparing and choosing the best model, we are using precision, because we prefer to
have more Risky companies, predicted as Risky.

5.2 RESULTS

We conducted all experiments on a Tesla V100-SXM2-16GB GPU with 200GB RAM.
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Table 3: Results of Risk Precision of the models with respect to the different number of hidden
layers (h).

h30 h50 h80 h120 h200
m1 0.5187 0.5204 0.5126 0.4638 0.6427
m2 0.0139 0.0165 0.0652 0.6083 0.6510
m3 0.5892 0.6205 0.6171 0.5256 0.6405
m4 0.5839 0.5552 0.7330 0.4734 0.5230
m5 0.6021 0.6021 0.6021 0.6021 0.6021
m6 0.4856 0.4856 0.4856 0.4856 0.4856

Table 3 shows the summary Risk Precision metric for all the models with respect to a variable
number of hidden layers (h). A detailed report of other metrics can be found in Appendix B.

From the results, we can conclude that the model m1 is the simplest model with an LSTM network.
The maximum precision is given by an intermediate configuration of 200 hidden layers. Most of the
configurations perform similarly.

For the model m2, we reduce the BERT’s dimensionality with intermediate dense layers before the
LSTM network. Is clear that the precision is really poor for the first three configurations, and gets a
significant improvement from 120 hidden layers.

Model m3 reduces the dimensionality of the LSTM network before the classification layer. For most
of the configurations, the performance is similar. Having 200 hidden layers as the best-performed
model.

The model m4 is the most complex model, where we reduce the dimensionality for BERT’s output
and LSTM’s output with intermediate dense layers. Most of the configurations have performance
above 50%. The best-performed configuration reaches around 70% of precision for an intermediate
model with 80 hidden layers.

As previously mentioned, for models 5 and 6 we do not change the number of hidden layers, that is
why we execute these experiments once to compare with the rest of the models. Results show that a
direct concatenation from BERT’s output performs better than a previous dimensionality reduction.

Figure 4 shows the results of the precision performance for all the models and the number of config-
urations of hidden layers. The best-performed model of all is the m4 model with 80 LSTM hidden
layers. Is important to see that concatenation-based models do not have a bad performance. Even
model m5, which concatenates directly the BERT’s output, has very good precision, similar to most
of the other model’s configurations.

Figure 4: Comparison of Results of the different models with respect to the number of hidden layers.
Model 5 and model 6 do not use LSTM, therefore we are showing the same result for all the values
in the x-axis.
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Table 4: Results of Risk Precision of the models with respect to different sequence lengths (s).
s5 s10 s15 s20

m1 0.6706 0.5995 0.0007 0.0007
m2 0.5752 0.0007 0.0007 0.0007
m3 0.6244 0.2663 0.0007 0.0007
m4 0.4657 0.6402 0.5745 0.0007
m5 0.5991 0.5340 0.6624 0.7205
m6 0.8017 0.4682 0.6982 0.6661

Table 4 shows the summary Risk Precision metric for all the models with respect to a variable
number of input segments (s). A detailed report of other metrics can be found in Appendix B.

Executing the best-performed model with different sequence lengths, we can see the behavior of
each model with respect to the length of the input document. For this comparison, we only executed
each model one epoch, to see how difficult could be for the model to start predicting the unbalanced
class. As seen in Table 4 some models are just predicting only one class at the first epoch while
others have had good precision from the beginning.

Figure 5 shows the effect of the document length (κ: maximum number of sequences per document)
on the precision of each model. LSTM-based models tend to perform quite well with not-so-long
documents, but according we increase the input’s length, the performance falls down. In contrast,
concatenation-based models (5 and 6), perform better with long documents, even with sequences of
20, the performance increases.

Figure 5: Comparison of Results of the models with respect to the maximum sequence length. If we
increase the length, we will have models that can process longer documents.

6 DISCUSSION

As we showed in the results, even having an unbalanced dataset, model 4 demonstrates being the
best model having the highest precision (73.30%). This model uses the most complex network
configuration having a dense layer after the main components of the model. Compared with other
studies that use numerical information instead of text, the results are not outperforming but are not
far from those.

The different model’s combination is the method that we consider important to do ablation studies.
We can see that LSTM layers have a high impact on the model’s performance for not-so-long docu-
ments, but do not perform very well with very-long documents. For this kind of model, reducing the
dimensionality of BERT’s outputs before integrating them into an LSTM model, is more convenient.
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On the other hand, if we are working with a very long document, we should replace the LSTM net-
work with a sequence of dense layers. The best result for this approach is obtained if we concatenate
directly the BERT’s output to the concatenation layer.

These results are very promising in terms of the use of pre-trained models like BERT together with
an integration layer to process long sequences of texts. Even if the data is unbalanced, most of the
models can make predictions of both classes since the first epoch.

7 CONCLUSION AND NEXT STEPS

Even if the default BERT models can not be used for processing long text, we can divide the docu-
ment into segments and then process the document in parallel. For our case, this allows us to take
advantage of the text in the Annual Accounts to determine if is possible to predict the level of a
company going bankrupt based on unstructured data. The best precision of those models was ≈
73%.

The experiments demonstrate that for having not-so-long documents, LSTM-based model performs
better. On the other hand, if we need to process very-long documents, concatenation-based models
are preferred.

In this sense, the text in the Annual Accounts’ annexes has implicit risk information that can be
extracted by a Deep Learning model. Our proposed model can be used in other domains which
require processing long text.

We expect that our fine-tuned model has enough risk information that we are going to able to apply
to other sources of financial text to predict the risk of bankruptcy.

The next step in our research is to combine the results of text models with numerical financial
information. In addition, we are working on applying quantization and LORA methods to our BERT
proposition to increase the complexity and quality of multi-modal architectures.
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A APPENDIX DATASET

Figure 6 shows the distribution of the dataset with respect to the industries (obtained from the in-
dustry code of the company in LBR).

A detailed analysis of the number of documents and pages per language is contained in Table 5.
Most of the documents’ pages in the LBR dataset are in French (≈ 81%) and the rest are in German
(≈ 8%) and English (≈ 11%).

Table 5: Dataset distribution per language.
Language Σ documents (d) Σ pages (p) µ p

French 16,796 (83.98% ) 120,187 (80.79%) 7.15
German 1,815 (9.07% ) 12,215 (8.22%) 6.73
English 1,389 (6.95% ) 16,348 (10.99%) 11.76

Total 20,000 148,750 7.43

After analyzing the tokenization of each document, we place the results in Table 6.
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Figure 6: Distribution of companies per industries in the dataset

Table 6: Tokenization distribution per language.
Language Σ words (w) Σ tokens (t) µ t/w µ w/d µ t/d

French 26.6M (82.1%) 33.3M (82.6%) 1.25 1,585 1,984
German 2.0M (6.2%) 3.1M (7.8%) 1.55 1,104 1,731
English 3.8M (11.7%) 3.9M (9.6%) 1.02 2,756 2,819

Total 32.4M 40.3M 1.24 1,623 2,019

Is interesting to notice from Table 5, that there are more documents in German than in English. In
contrast, documents in German have fewer pages. Also, the language that generates fewer tokens
per word, as shown in Table 6 is English (1.02), which is almost one token per word on average. On
the contrary, German generates more tokens per word (1.55).

Table 5 also shows how many words and tokens per document on average there are. As we can see
if we have a model with a maximum input size of 512 tokens, we will need on average 4-5 BERT
instances per document. But using this average we will not be able to process longer documents
properly.

We consider a company as bankrupted and we label them as Risky if it has a bankruptcy court order
or a modification report that contains in the description the words faillite or if the company has a
deletion date in its LBR profile webpage. The documents which have a modification report with the
word Voluntary or a legal observation with the words insolvabilité or faillite, have been removed
from the scope because it can not be determined if the company is going to be closed because of
bankruptcy, voluntary liquidation or probable insolvency. The remaining companies are labeled as
Not Risky.

Table 7 shows the distribution of the labels with respect to each language. Is clear the dataset is
imbalanced with respect to the risk level, where around ≈ 20% of the data is Risky and the rest is
Not Risky. The data is imbalanced as well at the language level.

For training we are using 70% of the data, randomly selected but keeping the same imbalance ratio
per risk level(Table 8).
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Table 7: Distribution of Risk labels per language.
Language # Risky # Not Risky Total
French 3,371 (88.0%) 13,425 (83.0%) 16,796 (84.0%)
German 322 (8.5%) 1,493 (9.2%) 1,815 (9.1%)
English 136 (3.5%) 1,253 (7.8%) 1,389 (6.9%)
Total 3,829 (19.1%) 16,171(80.9%) 20,000(100%)

Table 8: Distribution of Risk labels in train and validation.
Dataset type # Risky # Not Risky Total
Train 2,680 (69.9%) 11,319 (69.9%) 13,999 (69.9%)
Validation 1,149 (30.1%) 4,852 (30.1%) 6,001 (30.1%)
Total 3,829 (19.1%) 16,171(80.9%) 20, 000 (100%)

A APPENDIX MODEL PROPOSITION

A.1 II. SEGMENT ANALYSIS

As explained before and shown in Figure 1, each segment is fed into the BERT model. The BERT
model by definition uses the first encoded layers to analyze the words in their context and then the
last layers and pooler layer to work in the downstream task. We analyzed two different approaches
for this phase. (a) To have a direct connection to the integration phase and (b) to include after BERT,
dense layers to reduce the BERT’s output dimension (768).

For the first approach (Figure 7), we just connect the last hidden state of the [CLS] token to the next
phase. The last hidden state of [CLS] represents the whole segment in a vector of 768 features.

Figure 7: First approach of the segment analysis phase, we just output the last hidden state of the
[CLS] token. This token represents the whole input segment in a vector of 768.

For the second approach, as shown by Figure 8, instead of delivering directly a summary vector of
768 features, we put two dense layers of size λ1 and λ2. We expect to reduce the dimensionality of
the BERT output layer with two summarization layers, where each dense layer is smaller than the
previous.

For this phase, we propose two different approaches. In the two first phases, we use an LSTM
network for segment integration, ending with the classification layer. For the second approach,
we reduce the LSTM’s output dimensionality with intermediate dense layers. The third approach
replaces the LSTM network with a concatenation layer and then a set of dense layers.
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Figure 8: Second approach of the segment analysis phase, we connect the last hidden state of the
[CLS] token with two consecutive dense layers. The main goal of this approach is to reduce the
dimensionality of the network summarizing the BERT output.

A.2 II. INTEGRATED PREDICTION

In the first approach of the integrated prediction phase (Figure 9), we use an LSTM to analyze the
different segments of the document as a sequence. We only select the last hidden state of the last
LSTM layer to feed the next dense layer. The input sequence length is determined by the maximum
number of segments per document (κ). The number of LSTM hidden layers is defined for ϕ. We are
going to try different values to fine-tune this parameter.

Figure 9: During the last phase we reconstruct the whole document integrating the different segments
from any of the previous approaches (Direct BERT output or summarized output).

The difference between the second approach with respect to the first one is that we add intermediate
dense layers to reduce the dimensions of the LSTM output, before the classification layer. We call
these summarization layers (Figure 10).

The third and last approach for the integration and prediction phase, we replace the LSTM network
with a dense layer that concatenates the outputs of the segment phase (Figure 11). We add sum-
marization dense layers to reduce the number of dimensions of the concatenation dense layer and
connect with the classification layer.
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Figure 10: During the last phase we reconstruct the whole document integrating the different seg-
ments from any of the previous approaches (Direct BERT output or summarized output).

Figure 11: During the last phase we reconstruct the whole document integrating the different seg-
ments from any of the previous approaches (Direct BERT output or summarized output).

B APPENDIX DETAILED RESULTS

Table 9 shows the results of the execution of the different models changing the number of hidden
layers of the LSTM network. In the case of the models m5 and m6, as these do not have an LSTM
network, we are reporting only the base execution.

Table 10 shows the results of the execution of the different models changing the number of segments
(maximum input text allowed).
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Table 9: Results of execution of the different test cases
Test Case Accuracy F1 score Precision Recall

tc m1 h30 0.8991 0.8876 0.5187 0.9197
tc m1 h50 0.8990 0.8875 0.5204 0.9157
tc m1 h80 0.9253 0.9217 0.5126 0.9089
tc m1 h120 0.8898 0.8747 0.4638 0.9221
tc m1 h200 0.9365 0.9327 0.6427 0.8496
tc m2 h30 0.8110 0.7291 0.0139 0.9411
tc m2 h50 0.8113 0.7302 0.0165 0.9047
tc m2 h80 0.8203 0.7510 0.0652 0.9493
tc m2 h120 0.9123 0.9054 0.6083 0.9019
tc m2 h200 0.919 0.9138 0.6510 0.8979
tc m3 h30 0.9091 0.9014 0.5892 0.9026
tc m3 h50 0.9145 0.9081 0.6205 0.9025
tc m3 h80 0.9113 0.9040 0.6171 0.9043
tc m3 h120 0.9191 0.9144 0.5256 0.9110
tc m3 h200 0.9168 0.9113 0.6405 0.8953
tc m4 h30 0.9073 0.8994 0.5839 0.8958
tc m4 h50 0.9020 0.8927 0.5552 0.8923
tc m4 h80 0.8085 0.7229 0.7330 0.8134
tc m4 h120 0.8901 0.8751 0.4734 0.9204
tc m4 h200 0.8715 0.8498 0.5230 0.9037

tc m5 0.9141 0.9071 0.6021 0.9044
tc m6 0.8931 0.8795 0.4856 0.9177

Table 10: Results of execution of different sequence lengths
Test Case Accuracy F1 score Precision Recall
tc m1 s5 0.9076 0.9027 0.6706 0.8893
tc m1 s10 0.9261 0.9215 0.5995 0.8029
tc m1 s15 0.7763 0.6786 0.0007 1.0000
tc m1 s20 0.7763 0.6786 0.0007 1.0000
tc m2 s5 0.8926 0.8832 0.5752 0.9125
tc m2 s10 0.7763 0.6786 0.0007 1.000
tc m2 s15 0.7763 0.6786 0.0007 1.000
tc m2 s20 0.7763 0.6786 0.0007 1.000
tc m3 s5 0.9036 0.8966 0.6244 0.9188
tc m3 s10 0.8543 0.8201 0.2663 0.9080
tc m3 s15 0.7763 0.6786 0.0007 1.000
tc m3 s20 0.7763 0.6786 0.0007 1.000
tc m4 s5 0.8713 0.8545 0.4657 0.9191
tc m4 s10 0.9295 0.9262 0.6402 0.7969
tc m4 s15 0.8901 0.8808 0.5745 0.8975
tc m4 s20 0.7763 0.6786 0.0007 1.0000
tc m5 s5 0.8983 0.8900 0.5991 0.9178
tc m5 s10 0.9038 0.8934 0.5340 0.9127
tc m5 s15 0.9083 0.9030 0.6624 0.9016
tc m5 s20 0.9150 0.9119 0.7205 0.8774
tc m6 s5 0.9308 0.9296 0.8017 0.8783
tc m6 s10 0.8901 0.8753 0.4682 0.9180
tc m6 s15 0.9141 0.9101 0.6982 0.8949
tc m6 s20 0.9090 0.9038 0.6661 0.9012
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