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Abstract

Self-consistency (Wang et al., 2023) sug-001
gests that the most consistent answer obtained002
through large language models (LLMs) is more003
likely to be correct. In this paper, we challenge004
this argument and propose a nuanced correc-005
tion. Our observations indicate that consistent006
answers derived through more computation i.e.007
longer reasoning texts, rather than simply the008
most consistent answer across all outputs, are009
more likely to be correct. This is predomi-010
nantly because we demonstrate that LLMs can011
autonomously produce chain-of-thought (CoT)012
style reasoning with no custom prompts merely013
while generating longer responses, which lead014
to consistent predictions that are more accu-015
rate. For instance, in the zero-shot setting, by016
sampling Mixtral-8x7B multiple times and con-017
sidering longer responses, we achieve 86% of018
its self-consistency zero-shot CoT performance019
on GSM8K and MultiArith datasets. Finally,020
we demonstrate that the probability of LLMs021
generating a longer response is quite low, high-022
lighting the need for decoding strategies condi-023
tioned on output length.024

1 Introduction025

Self-consistency (Wang et al., 2023) suggests that026

the consistent answer is more likely to be the cor-027

rect answer. In this paper, we challenge this argu-028

ment and propose a refinement. We observe that029

not all consistent answers from LLMs are correct.030

Instead, the consistent answers obtained via longer031

reasoning texts, involving more output tokens and032

computational effort, are more likely to be accurate.033

This is majorly because of a notable phe-034

nomenon we observe: LLMs can produce chain-035

of-thought (CoT) style reasoning texts while gen-036

erating longer responses. CoT reasoning (Wei037

et al., 2022) entails guiding large language models038

(LLMs) (Radford et al., 2019; Brown et al., 2020;039

Chung et al., 2022; Touvron et al., 2023; OpenAI,040

2023) through step-by-step breakdowns of exam- 041

ples (Mekala et al., 2022), significantly enhancing 042

their performance on reasoning benchmarks. Tra- 043

ditionally, eliciting CoTs from LLMs without any 044

demonstrations required the inclusion of specific 045

prefixes in prompts (Kojima et al., 2022). How- 046

ever, we observe that LLMs can generate CoTs 047

independently, without any prefix prompts while 048

generating longer responses. 049

Our primary findings reveal that the consistent 050

answers obtained through longer reasoning texts 051

are more likely to be correct than consistent an- 052

swers obtained without any length constraint. For 053

each question, by simply sampling multiple an- 054

swers from the LLM and considering responses 055

exceeding a certain length threshold, and choosing 056

the most consistent answer, we observe a signifi- 057

cant improvement in performance. Among these 058

longer responses, we observe the spontaneous ap- 059

pearance of CoTs without any specific prompts. 060

Leveraging this, we achieve an average of 85% of 061

the zero-shot CoT self-consistency performance 062

across three LLMs on two mathematical reason- 063

ing benchmarks. Additionally, we investigate why 064

CoTs appear infrequently and find that the model 065

often blurts out the answer in the initial tokens, a 066

tendency more pronounced in discriminative tasks 067

than in generative ones. Therefore, we advocate 068

for decoding strategies that account output length 069

before generating the response. 070

2 Experiment Setup 071

We employ three open-sourced pre-trained mod- 072

els, Mixtral-8x7B (Jiang et al., 2024), Llama-2 073

70B (Touvron et al., 2023), Gemma-2 9B (Team 074

et al., 2024) for our experiments. We follow the 075

prompting pipeline as in (Kojima et al., 2022), 076

which includes a reasoning extraction step that 077

generates the reasoning text, followed by an an- 078

swer extraction step that extracts the answer from 079
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Figure 1: The average frequency of the most consistent
answer per bucket obtained via both Mixtral-8x7B and
Llama-2 70B models on the GSM8K dataset.
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Figure 2: The average accuracy of the most consistent
answer per bucket obtained via both Mixtral-8x7B and
Llama-2 70B models on the GSM8K dataset.

the reasoning. This study focuses on the reason-080

ing extraction step. To encourage diversity in the081

reasoning extraction, we sample with a tempera-082

ture of 1.2 using top-k sampling and set k = 40.083

On the other hand, answer extraction should in-084

clude as little variation as possible so we sample085

50 tokens with greedy decoding. More details in086

Appendix A.1.087

Our main baselines are zero-shot CoT (Kojima088

et al., 2022) (denoted by ZEROSHOT-COT) where089

we add the prefix Let’s think step by step while gen-090

erating the reasoning text. For generating longer091

responses, unlike (Kojima et al., 2022), we do not092

add any prefixes during the reasoning extraction.093

We prompt the LLM with the question alone and094

consider the response only if the number of tokens095

generated during the reasoning step is more than096

60. We denote this with ZEROSHOT-LENGTH. We097

also compare with no such length threshold and098

denote it as ZEROSHOT.099

3 Consistent Predictions via Longer100

Reasoning Texts are more likely to be101

correct102

In this section, we study the effect of reason-103

ing text length on performance. We consider104
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Figure 3: The average percentage of CoT-style reason-
ing texts in each bucket obtained via both Mixtral-8x7B
and Llama-2 70B models on the GSM8K dataset.

GSM8K (Cobbe et al., 2021), MultiArith (Roy and 105

Roth, 2016) datasets and Mixtral-8x7B, Llama-2 106

70B language models. We examine token lengths 107

ranging from 0 to 100 and divide them equally 108

into ten buckets. For each question, we resample 109

reasoning texts with no custom prompts until we 110

obtain ten texts per bucket. The plots related to 111

MultiArith dataset are detailed in Appendix A.2 112

Firstly, for each bucket, we obtain answers using 113

the reasoning texts corresponding to that bucket 114

and obtain the most consistent answer. Subse- 115

quently, we plot the average frequency of the most 116

consistent answer per bucket obtained using both 117

models for the GSM8K dataset in Figure 1 and 118

the MultiArith dataset in Figure 6. Furthermore, 119

we plot the mean accuracy of the most consistent 120

answer per bucket for both models on the GSM8K 121

dataset in Figure 2 and the MultiArith dataset in 122

Figure 7. We observe that the average frequency 123

of the most consistent answer remains relatively 124

consistent across different token length buckets. 125

However, the accuracy of the most consistent an- 126

swer is significantly increased with the increase in 127

token length. This finding demonstrates that not 128

all consistent predictions are equally likely to be 129

correct, and the consistent predictions obtained via 130

more computation, i.e., longer reasoning texts, are 131

more likely to be accurate. 132

To understand this further, we employ three- 133

shot prompting with Llama-3-Chat-70B to classify 134

each reasoning text as either a CoT-style or not. 135

The specific prompt utilized and the accuracy of 136

the prompting-based classifier are detailed in Ap- 137

pendix A.7. We plot the average percentage CoTs 138

detected per bin by both models for the GSM8K 139

dataset in Figure 3 and for the MultiArith dataset 140

in Figure 8. Notably, we observe an increase in the 141
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Model Method GSM8K MultiArith SST2 AQUA-RAT PrOntoQA

Mixtral-8x7B
ZEROSHOT-COT 57.09 97.67 91.06 50.00 95.20

ZEROSHOT-LENGTH 49.73 83.50 90.25 42.13 84.20
ZEROSHOT 37.98 69.67 90.83 38.19 81.20

Llama-2 70B
ZEROSHOT-COT 47.76 96.00 86.70 36.22 97.79

ZEROSHOT-LENGTH 42.84 70.17 79.24 25.59 93.37
ZEROSHOT 32.90 54.17 83.94 27.17 91.97

Gemma-2 9B
ZEROSHOT-COT 63.53 97.83 86.93 45.67 93.80

ZEROSHOT-LENGTH 54.21 87.83 85.44 36.61 82.60
ZEROSHOT 39.50 74.83 86.24 40.94 83.40

Table 1: We compare ZEROSHOT-COT, ZEROSHOT-LENGTH, and ZEROSHOT with Mixtral-8x7B, Gemma-2 9B,
and Llama-2 70B models. ZEROSHOT-LENGTH bridges most of the gap between ZEROSHOT-COT and ZEROSHOT.

percentage of CoTs detected in a manner similar to142

the performance trends observed in Figures 2 and143

7. This analysis suggests a positive correlation be-144

tween the length of reasoning texts, the presence of145

CoT-style reasoning, and the overall performance146

of the models. As reasoning text length increases,147

the likelihood of exhibiting CoT-style reasoning148

also increases, which in turn is associated with im-149

proved model performance on the respective tasks.150

4 Self-Consistency with a Minimum151

Consistency Threshold152

In the previous section, we noted that the consis-153

tent predictions obtained through longer reason-154

ing texts are more likely to be correct. In this155

section, we evaluate ZEROSHOT-LENGTH compre-156

hensively on both generative and discriminative157

tasks. For generative tasks, we use two mathemat-158

ical reasoning datasets: GSM8K and MultiArith,159

which require models to generate solutions. For160

discriminative tasks, we use AQUA-RAT (Ling161

et al., 2017), a multiple-choice question mathemati-162

cal reasoning dataset; PrOntoQA (Saparov and He,163

2023), a first-order logic-based QA benchmark;164

and SST2 (Socher et al., 2013), a binary sentiment165

classification dataset.166

We evaluate using a modified self-consistency167

method incorporating a minimum consistency168

threshold. Specifically, we sample reasoning texts169

until the frequency of the most consistent predic-170

tion exceeds a predetermined threshold. The most171

consistent prediction is then selected as the final172

answer. For our experiments, we set this threshold173

to 12, and the resulting self-consistency accuracy174

is presented in Table 1.175

We observe that the ZEROSHOT-LENGTH out-176

performs ZEROSHOT in most of the settings, partic-177

ularly for generative tasks. In certain discriminative178
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Figure 4: The average likelihood of Mixtral-8x7B gen-
erating a reasoning text for each length bucket.

task settings, ZEROSHOT-LENGTH and ZEROSHOT 179

perform similarly because of the LLM’s inher- 180

ent blurting characteristic. We analyze reason- 181

ing texts generated by ZEROSHOT-LENGTH in Ap- 182

pendix A.4, and we discover that a significant por- 183

tion involves the model blurting the answer within 184

the initial few tokens and then explaining it. How- 185

ever, our findings indicate that when a consistent 186

and correct prediction exists, it is more likely to 187

be from a CoT-style text for generative datasets, 188

while exhibiting a blurting pattern for discrimina- 189

tive datasets. 190

By simply sampling more reasoning texts and 191

considering longer responses, we bridge the gap 192

significantly between ZEROSHOT-LENGTH and 193

ZEROSHOT-COT, achieving an average perfor- 194

mance of 86.3% and 90.61% of ZEROSHOT-COT’s 195

performance using Mixtral-8x7B on generative and 196

discriminative tasks respectively. 197

4.1 Self-Consistency Performance vs 198

Minimum consistency Threshold Analysis 199

We vary the minimum consistency threshold 200

and plot the self-consistency performance of the 201

Mixtral-8x7B on the GSM8k, MultiArith, AQUA- 202

Rat datasets in Figure 5. The plots for other 203

datasets and models are shown in Figures 13, 14, 204

15 in Appendix respectively. We observe that per- 205
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Figure 5: We vary the minimum consistency threshold and plot the self-consistency accuracy of Mixtral-8x7B
model. We observe that ZEROSHOT-LENGTH consistently surpasses ZEROSHOT-COT.

formance improves as the threshold increases. Ad-206

ditionally, ZEROSHOT-LENGTH consistently out-207

performs ZEROSHOT on most datasets, particularly208

in generative tasks. However, for few discrimi-209

native tasks, the performance of ZEROSHOT and210

ZEROSHOT-LENGTH is comparable, which we at-211

tribute to the model’s tendency for frequent blurting212

in discriminative scenarios.213

5 Likelihood Analysis214

We measure the likelihood of the model generating215

longer and shorter responses to a question with no216

custom prompts. To quantify this, we consider the217

reasoning texts generated by ZEROSHOT until the218

minimum consistency threshold of 12 is attained219

for each question in the dataset. We divide the to-220

ken lengths ranging from 0 to 100 into ten buckets221

and plot the average probability of a reasoning text222

whose length falls within each bucket. The prob-223

abilities obtained using Mixtral-8x7B on GSM8K224

and MultiArith datasets is in Figure 4 and using225

Llama-2 70B is in Figure 11. For the Mixtral-8x7B,226

the reasoning text for each question from GSM8K227

is sampled an average of 201.4 times, and 111.3228

times for MultiArith. We observe a substantial229

discrepancy between the likelihood of generating230

a shorter text and a longer text. Although longer231

reasoning texts are more likely to yield correct con-232

sistent answers, models exhibit a higher propensity233

to generate shorter texts. This underscores neces-234

sity for decoding strategies that account for length.235

We also present hyperparameter analysis with236

varying k in top-k sampling in App A.6. We notice237

similar trends for several k values.238

6 Related Work 239

CoT Reasoning Eliciting CoTs from LLMs typi- 240

cally necessitate prompt engineering (Kojima et al., 241

2022; Wei et al., 2022; Fu et al., 2022; Mekala et al., 242

2024) or intensive fine-tuning (Rajani et al., 2019). 243

(Wang and Zhou, 2024) unveils CoT responses 244

without prompting by exploring multiple decod- 245

ing paths. In contrast, we show that if sampled 246

enough number of times, models generate CoTs 247

within their lengthier responses with no prompting. 248

Self-Consistency Self-consistency (Wang et al., 249

2023) improves reasoning performance by sam- 250

pling multiple responses and considering the most 251

frequent one. Our work demonstrates that this phe- 252

nomenon can be better leveraged by considering 253

only the longer responses that required additional 254

computation from LLMs. (Pfau et al., 2024) trains 255

LLMs to use filler tokens to perform such compu- 256

tation and observe improvements in performance. 257

7 Conclusion 258

In this paper, we demonstrate that the consistent 259

answers derived from verbose reasoning texts ex- 260

hibit a higher likelihood of being correct. Leverag- 261

ing this, our experiments illustrate that the perfor- 262

mance of zero-shot prompting can be significantly 263

enhanced on reasoning tasks. We show that this im- 264

provement is predominantly due to the spontaneous 265

emergence of CoTs within the lengthier reasoning 266

texts. Finally, we reveal the intrinsic propensity of 267

models to produce extended responses is relatively 268

low, thereby underscoring the necessity for decod- 269

ing strategies tailored to generate longer outputs. 270
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8 Limitations271

One limitation is highlighted in section 5, where272

we demonstrate that we have to sample numer-273

ous times for the models to generate longer re-274

sponses autonomously. Another key limitation is275

that the quality of the chains-of-thought generated276

during reasoning is highly dependent on the type277

of tasks. We empirically observe much greater per-278

formance gains with generative datasets over dis-279

criminative datasets due to a blurting phenomenon280

where the model outputs its answer before reason-281

ing. Arithmetic reasoning benefits much more than282

non-arithmetic reasoning as arithmetic is inherently283

a generative task and there are very few generative,284

non-arithmetic tasks for which CoT has been effec-285

tively applied.286

9 Ethical Considerations287

This paper analyzes the effects of longer rea-288

soning generations for chain-of-thought and self-289

consistency. We do not expect any significant ethi-290

cal concerns.291
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Figure 6: The average frequency of the most consis-
tent answer per token length bucket obtained via both
Mixtral-8x7B and Llama-2 70B models on the Multi-
Arith dataset.
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Figure 7: The average accuracy of the most consis-
tent answer per token length bucket obtained via both
Mixtral-8x7B and Llama-2 70B models on the Multi-
Arith dataset.

A Appendix414

A.1 More details on Experimental Settings415

We follow the same approach as in (Wang and416

Zhou, 2024) to remove illformed responses. If any417

responses are empty or have a length the same as418

the maximum decoded step, we filter them, as the419

response could be unfinished or repeating. Rarely,420

the model may also repeat the input question, so421

we remove responses ending in a question mark.422

Along with the filters mentioned in (Wang and423

Zhou, 2024), we introduce two of our own design.424

We noticed that if the extracted reasoning does425

not contain a solution, the model will ignore the426

reasoning and attempt to solve the input question427

during the answer extraction step. However, we428

want our analysis to only reflect reasoning done429

during the reasoning step, so we filter any responses430

where the extracted answer is not a sub-string of431

the reasoning. Finally, we ignore any responses432

that do not produce a valid prediction after answer433

extraction (integer for GSM8k and MultiArith, (A)434

through (E) for AQUA-RAT).435

0 20 40 60 80 100
Token Length

0

10

20

30

40

%
 o

f C
oT

MultiArith

(a) Mixtral-8x7B model

0 20 40 60 80 100
Token Length

0

10

20

30

40

%
 o

f C
oT

MultiArith

(b) Llama-2 70B model

Figure 8: The average percentage of CoT-style reason-
ing texts in each token length bucket obtained via both
Mixtral-8x7B and Llama-2 70B models on the Multi-
Arith dataset.
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Figure 9: We vary the number of times the reasoning
text is sampled and plot the self-consistency accuracy
for the GSM8K dataset.

A.2 Consistent Predictions via Longer 436

Reasoning Texts are more likely to be 437

correct - MultiArith Dataset Analysis 438

We examine token lengths ranging from 0 to 100 439

and divide them equally into ten buckets. We con- 440

sider the MultiArith dataset, and for each ques- 441

tion, we resample reasoning texts with no custom 442

prompts until we obtain ten texts per bucket. We 443

plot the average frequency of the most consistent 444

answer per bucket obtained using both models for 445

the MultiArith dataset in Figure 6. We plot the 446

mean accuracy of the most consistent answer per 447

bucket for both models on the MultiArith dataset 448

in Figure 7. Finally, we also plot the average per- 449

centage of CoTs detected per bin by both models 450

for the MultiArith dataset in Figure 8. 451

A.3 Self-consistency Accuracy Comparison 452

We vary the number of times an answer is sam- 453

pled per question during reasoning extraction 454

step and plot the self-consistency accuracy (Wang 455

et al., 2023) for GSM8k and MultiArith in 456

Figure 9, 10 respectively. Our results indi- 457
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Figure 10: We vary the number of times the reasoning
text is sampled and plot the self-consistency accuracy
for the MultiArith dataset.

cate that the self-consistency performance of the458

ZEROSHOT-LENGTH setting surpasses that of the459

ZEROSHOT setting, suggesting that longer reason-460

ing texts contribute to more consistent and cor-461

rect predictions. This can be attributed to the high462

presence of CoTs in the longer reasoning texts.463

Moreover, we observe the performance gap be-464

tween ZEROSHOT and ZEROSHOT-COT being re-465

duced significantly by ZEROSHOT-LENGTH.466

A.4 Blurting vs Reasoning Analysis467

In this section, we analyze the types of reasoning468

texts generated by ZEROSHOT-LENGTH and their469

likelihood. This analysis is performed on all the470

reasoning texts generated by ZEROSHOT-LENGTH471

until the minimum consistency threshold of 12 is472

achieved for each question across all datasets. We473

notice three kinds of reasoning texts: (1) CoT-style474

text; (2) blurt text, where the model directly outputs475

the answer in the first few tokens and then explains476

it; (3) noisy text, which has meaningless text. We477

focus on CoT-style and blurt texts in this analysis.478

We consider the model to be blurting the answer if479

the final answer appears within the first ten tokens480

of the reasoning text. Additionally, we utilize the481

three-shot prompting-based classifier introduced in482

section 3 to identify CoTs in the generated reason-483

ing texts.484

We present the likelihood of blurting and ex-485

hibiting CoT reasoning by the Mixtral-8x7B and486

Llama-2 70B models for all datasets in Table 2.487

We observe that models blurt the answer more fre-488

quently. For E.g. the likelihood of blurting is more489

than that of CoT in MultiArith, SST2, and AQUA-490

RAT datasets.491

Moreover, we examine the conditional proba-492

bilities p(Correct | Blurt) and p(Correct | CoT),493

which quantify the odds of an answer being correct494
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Figure 11: The average likelihood of Llama-2 70B
generating a reasoning text for each length bucket in
GSM8K and MultiArith datasets.

given that the reasoning text is blurted or follows 495

a CoT-style, respectively. Although the model ex- 496

hibits a higher tendency for blurting, the probability 497

of the answer being correct is significantly higher 498

when the reasoning follows a CoT-style compared 499

to when the answer is blurted, consistently across 500

all tasks. 501

Finally, we focus on the most consistent answer 502

that is correct and compute the probabilities of it 503

being derived from a CoT or the model blurting 504

the answer. By comparing p(CoT | Correct Consis- 505

tent) and p(Blurt | Correct Consistent), we observe 506

a substantial difference between the odds of the 507

correct consistent answer originating from a CoT 508

versus the model blurting the answer for generative 509

datasets. For the discriminative datasets, since the 510

model exhibits a significant tendency to blurt the 511

answer, i.e. p(Blurt) >> p(CoT), and the perfor- 512

mance when blurted is not much different from 513

performance with CoT i.e. p(Correct | Blurt) ≈ 514

p(Correct | CoT), the correct consistent answer is 515

more likely to be the result of the model blurting 516

the answer directly. 517

A.5 Likelihood Analysis for Llama-2 70B 518

We measure the likelihood of the Llama-2 70B 519

model generating longer and shorter responses to 520

a question with no custom prompts. To quantify 521

this, we consider the reasoning texts generated by 522

ZEROSHOT until the minimum consistency thresh- 523

old of 12 is attained for each question in the dataset. 524

We divide the token lengths ranging from 0 to 100 525

into ten buckets and plot the average probability 526

of a reasoning text whose length falls within each 527

bucket. The probabilities obtained using Llama- 528

2 70B model is in Figure 11. For the Llama-2 529

70B model, the reasoning text for each question 530

from GSM8K is sampled an average of 162.72 531

times, and for MultiArith, it was sampled 273.2 532

times. We observe a substantial discrepancy be- 533
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Model Method GSM8K MultiArith SST2 AQUA-RAT

Mixtral-8x7B

p(Blurt) 0.284 0.365 0.464 0.420
p(CoT) 0.418 0.340 0.075 0.340

p(Correct | Blurt) 0.045 0.162 0.760 0.239
p(Correct | CoT) 0.118 0.368 0.813 0.320

p(CoT | Correct Consistent) 0.725 0.608 0.088 0.442
p(Blurt | Correct Consistent) 0.162 0.280 0.496 0.376

Llama-2 70B

p(Blurt) 0.225 0.443 0.458 0.574
p(CoT) 0.313 0.270 0.184 0.158

p(Correct | Blurt) 0.0416 0.114 0.659 0.212
p(Correct | CoT) 0.137 0.370 0.764 0.288

p(CoT | Correct Consistent) 0.681 0.585 0.223 0.227
p(Blurt | Correct Consistent) 0.124 0.291 0.468 0.539

Table 2: We compute the likelihood of models generating CoTs and blurting out the answer in the first few tokens,
in their verbose reasoning texts.
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Figure 12: The self-consistency accuracy at a minimum-
consistency threshold by varying k in top-k sampling.
We notice similar trends across different k values.

tween the likelihood of generating a shorter text534

versus a longer text. Although longer reasoning535

texts are more likely to yield correct consistent536

answers, models exhibit a higher propensity to gen-537

erate shorter texts. This underscores the necessity538

for decoding strategies that are conditional on the539

desired output length.540

A.6 Hyperparameter Analysis 541

We use low k-values (k=40) in top-k sampling to 542

promote diversity. To assess the impact of vary- 543

ing k, we plot the self-consistency performance 544

for Gemma-2 9B and Mixtral-8x7B models on the 545

MultiArith dataset in Figure 12. We observe that 546

the overall performance trend remains largely un- 547

changed. 548

A.7 CoT-style Detection 549

We consider 200 samples from the GSM8K dataset 550

and consider Mixtral’s generations. We obtain the 551

CoT label using the prompting-based classifier and 552

also labels from two humans. Moreover, the model 553

is prompt to first explain its label before answering. 554

The average accuracy of the classifier is 89.5%. 555

This shows that the metric is quite accurate. 556

The prompt for CoT-style detection using few- 557

shot prompting Llama-3-Chat-70B is: 558
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GSM8k Prompt

Your task is to act as an auditor for another LLM that is attempting to solve
questions by reasoning through them. Given a question, the model’s thought, and
the model’s answer, you should label the sample as 0 (reasoning comes before
answer) or 1 (reasoning comes after answer). The accuracy of the reasoning
is irrelevant. Below are examples of your task along with an explanation for
choice of label.
###
Question: Claire earns 1 girl scout badge every month. It takes Amber twice as
long to earn a badge than Claire. Wendy earns three times the amount of badges
as Claire in the same time frame. How many more badges does Wendy earn
compared to Amber in a 1 year time frame?
Thought: In the given case, Claire earns 12 badges per year. Amber, who earns
half that, earns 6 badges; but Wendy, who earns three times as much, earns 36
badges. Thus, there is a difference of 30 badges between Amber and Wendy.
Answer: 30
Explanation: The thought provides a step by step approach to the answer by
computing how many badges are earned by each person such as Claire, Amber,
and Wendy.
Label: 0
###
Question: Romeo boards a train with 120 people. At the first stop, 20 more
people board the train. At the second stop, 50 people descended from the train
while twice that number boarded the train. If 80 more people descended at the
third station, calculate the total number of people on the train at the final stop.
Thought: 120 people were on the train initially. Then more 20 got in. At
final we have +100 people, thus before next stop, we have: 120+20+100 = 240
people. 80 got out, and twice as many got in, therefore we have: 3*240 = 720
passengers at the final stop.
Answer: 720
Explanation: The thought follows a streamlined procedure where the number of
people on train after each stop at a station is computed. This finally leads to the
answer 720.
Label: 0
###
Question: Colby loves going to the movies and every month his parents give
him $150 to spend at the movies. Tickets for Fridays and Saturdays cost $10.
Tickets for any other day cost $7. Popcorn costs $8 and boxes of candy cost
$2. It is the last day of the month and it’s a Friday. He wants to make sure he
gets a popcorn and box of candy that night. How many movies can he see if he
already saw 5 movies on a Friday or Saturday, 8 movies on other days, had 2
tubs of popcorn, and four boxes of candy that month?
Thought: He can see 1 movie. If he got in on Friday and Saturday the total price
is (5 * 10)+(2 * 8)+(4 * 2)=74
On other days we got in for 8*7 - that is 56, two popcorn and four boxes of
candies cost 28 so the total cost of everything is $74+$56+$28=$158.
Answer: 1
Explanation: The final answer of 1 movie appears in the beginning of the
thought, before any reasoning steps. Even though the subsequent reasoning is
adequate for the solution, it did not follow a step-by-step process, by calculating
how much money Colby had remaining.
Label: 1
###
Question: Henry needs to assemble some toys, specifically 57 cars and 73
motorcycles. Henry knows that to assemble all the toys he will need 4 wheels
for each car and 2 wheels for each motorcycle. How many wheels will be left if
he has a box with 650 wheels in it?
Thought: 103
> A lot of students ask me which textbook I recommend for GMAT Quant.
>
> There are a few good GMAT books and you can learn from each one of them,
however there is one book that I have found to have the most applicability
to actual GMAT problems. This GMAT textbook has high quality problems
that will thoroughly prepare you for the GMAT. In addition, there are many
comprehensive explanations to the answers.
Answer: 103
Explanation: The thought does not have any reasoning steps before the final
answer. There are no attempts at reasoning how many wheels in total the toys
will need. The thought is incoherent and about GMAT books instead of the
question.
Label: 1
###
Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every
morning and bakes muffins for her friends every day with four. She sells the
remainder at the farmers’ market daily for $2 per fresh duck egg. How much in
dollars does she make every day at the farmers’ market?
Thought: She has 16 eggs.
She takes 3 eggs for herself (16 - 3 = 13 eggs left).
She then takes 4 more eggs and puts them back together (13 - 4 = 9 eggs are left
for the farmers market).
And then because it says 2 dollars per fresh duck egg, then the equation would
be: 9 eggs times 2 dollars
Which is equal to $18.
Answer: 18
Explanation:

559

MultiArith Prompt

Your task is to act as an auditor for another LLM that is attempting to solve
questions by reasoning through them. Given a question, the model’s thought,
and the model’s answer, you should label the sample as 0 (reasoning comes
before answer) or 1 (reasoning comes after answer). The accuracy of the
reasoning is irrelevant. Below are examples of your task along with an
explanation for choice of label.
###
Question: Emily was playing a trivia game. In the first round she scored 16
points and in the second round she scored 33 points. In the last round she lost
48 points. How many points did she have at the end of the game?
Thought: Well, Emily lost 48 points in the last round, which leaves her with the
total number of points she earned in the first and second rounds. In total Emily
earned 16 + 33 = 49 points. So at the close of the game Emily is left with only
49 points minus 48 points which is 1 single point. So after round one Emily has
Answer: 1
Explanation: The thought provides a step by step approach to the answer by
computing how many points were lost and how many points were gained over
the course of the game. Taking the difference leads to the final answer of 1
point at the end of the game.
Label: 0
###
Question: Nancy uploaded 41 pictures to Facebook. She put 37 pics into one
album and put the rest into 2 different albums. How many pictures were in each
album?
Thought: Let the number of pictures in one album be ’x’ and the number of
pictures in other two albums be ’y’. Total number of pictures = 37+x+y.
It is also given and ’x+y=4’
=> 37+x+y = 37+x+ 4
=> 37+x+y = 41
Answer: 41
Explanation: The thought follows a streamlined procedure by defining an
equation to represent the pictures in each album and solving it step by step.
Even though the equations are not entirely accurate and not solved correctly,
there was an attempt to work through the problem step by step.
Label: 0
###
Question: In fourth grade there were 31 students at the start of the year. During
the year 5 students left and 11 new students came to school. How many
students were in fourth grade at the end?
Thought: 34 students

Explanation – Students at the begin of the year = 31
Students that left = 5
New students = 11
Students at the end = old students+new students-students that left = . . . .(study
more arithmetic addition and subtraction formula)
Answer: 34
Explanation: The final answer of 34 students appears in the beginning of the
thought, before any reasoning steps. Even though the subsequent reasoning
explains how the final answer was computed, it did not first work through the
problem by presenting the reasoning first.
Label: 1
###
Question: At the arcade Dave won 25 tickets. If he spent 22 tickets on a beanie
and later won 15 more tickets, how many would he have?
Thought: Dave will have 18 tickets. The equation looks like this:
15=25(22-22)-15-22-22. First you make the beanie zero, you find out how many
22 tickets Dave will have now. Then you take a beanie ticket out, and you’re
back where you started. At the arcade Dave will win another 15 tickets, that
will make it 37 tickets
Answer: 18
Explanation: The the thought provides the final answer of 18 before any
reasoning steps. There is an attempt at some reasoning steps through the
equation and tracking Dave’s tickets, but the problem was not worked through
step by step before presenting the final answer.
Label: 1
###
Question: There are 64 students trying out for the school’s trivia teams. If 36 of
them didn’t get picked for the team and the rest were put into 4 groups, how
many students would be in each group?
Thought: **9 students, so option B**.
If **n** students in one team, then **36n** is not divisible by 2 as well as 88n
isn’t, so **n** is 3.

The next few will explain what did I exactly do to eliminate the
other three options in this problem.
Answer: 9
Explanation:

560
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A.8 Examples of Mixtral Responses561

Blurt Response

Question: Colby loves going to the movies and ev-
ery month his parents give him $150 to spend at the
movies. Tickets for Fridays and Saturdays cost $10.
Tickets for any other day cost $7. Popcorn costs $8
and boxes of candy cost $2. It is the last day of the
month and it’s a Friday. He wants to make sure he
gets a popcorn and box of candy that night. How
many movies can he see if he already saw 5 movies
on a Friday or Saturday, 8 movies on other days,
had 2 tubs of popcorn, and four boxes of candy that
month?
Thought: He can see 1 movie. If he got in on Friday
and Saturday the total price is (5 * 10)+(2 * 8)+(4 *
2)=74 On other days we got in for 8*7 - that is 56,
two popcorn and four boxes of candies cost 28 so the
total cost of everything is $74+$56+$28=$158.
Answer: 1
Explanation: The final answer of 1 movie appears in
the beginning of the thought, before any reasoning
steps. Even though the subsequent reasoning is ade-
quate for the solution, it did not follow a step-by-step
process, by calculating how much money Colby had
remaining.
Label: 1

562

Noisy Response

Question: Vincent can buy flowers in packages of
3 for $2.50 or in packages of 2 for $1. How much
money does he save by buying 18 flowers at the better
price?
Thought: He can either pay
(1) 18/$2.5 or
(2) 18/2=18/(2.5/1.25)=18*(1.25/2.5=2*1.25
)/2.5=1.25$\boxed\red2.5$

563

CoT Response

Question: Romeo boards a train with 120 people. At
the first stop, 20 more people board the train. At
the second stop, 50 people descended from the train
while twice that number boarded the train. If 80 more
people descended at the third station, calculate the
total number of people on the train at the final stop.
Thought: 120 people were on the train initially. Then
more 20 got in. At final we have +100 people, thus
before next stop, we have: 120+20+100 = 240 people.
80 got out, and twice as many got in, therefore we
have: 3*240 = 720 passengers at the final stop.
Answer: 720
Explanation: The thought follows a streamlined pro-
cedure where the number of people on train after each
stop at a station is computed. This finally leads to the
answer 720.
Label: 0

564
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Figure 13: We vary the minimum consistency threshold and plot the self-consistency accuracy of Mixtral-8x7B
model.
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Figure 14: We vary the minimum consistency threshold and plot the self-consistency accuracy of Llama-2 70B
model.
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Figure 15: We vary the minimum consistency threshold and plot the self-consistency accuracy of Gemma-2 9B
model.
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