
Efficient Machine Translation Domain Adaptation

Anonymous ACL submission

Abstract

Machine translation models struggle when001
translating out-of-domain text, which makes do-002
main adaptation a topic of critical importance.003
However, most domain adaptation methods fo-004
cus on fine-tuning or training the entire or part005
of the model on every new domain, which can006
be costly. On the other hand, semi-parametric007
models have been shown to successfully per-008
form domain adaptation by retrieving exam-009
ples from an in-domain datastore (Khandelwal010
et al., 2021). A drawback of these retrieval-011
augmented models, however, is that they tend012
to be substantially slower. In this paper, we013
explore several approaches to speed up nearest014
neighbors machine translation. We adapt the015
methods recently proposed by He et al. (2021)016
for language modeling, and introduce a simple017
but effective caching strategy that avoids per-018
forming retrieval when similar contexts have019
been seen before. Translation quality and run-020
times for several domains show the effective-021
ness of the proposed solutions.022

1 Introduction023

Modern neural machine translation models are024

mostly parametric (Bahdanau et al., 2015; Vaswani025

et al., 2017), meaning that, for each input, the out-026

put depends only on a fixed number of model pa-027

rameters, obtained using some training data, hope-028

fully in the same domain. However, when running029

machine translation systems in the wild, it is often030

the case that the model is given input sentences031

or documents from domains that were not part of032

the training data, which frequently leads to subpar033

translations. One solution is training or fine-tuning034

the entire model or just part of it for each domain,035

but this can be expensive and may lead to catas-036

trophic forgetting (Saunders, 2021).037

Recently, an approach that has achieved promis-038

ing results is augmenting parametric models with039

a retrieval component, leading to semi-parametric040

models (Gu et al., 2018; Zhang et al., 2018; Bapna041

and Firat, 2019; Khandelwal et al., 2021; Meng 042

et al., 2021; Zheng et al., 2021; Jiang et al., 2021). 043

These models construct a datastore based on a set 044

of source / target sentences or word-level contexts 045

(translation memories) and retrieve similar exam- 046

ples from this datastore, using this information in 047

the generation process. This allows having only 048

one model that can be used for every domain. How- 049

ever, the model’s runtime increases with the size 050

of the domain’s datastore and searching for related 051

examples on large datastores can be computation- 052

ally very expensive: for example, when retrieving 053

64 neighbors from the datastore, the model may 054

become two orders of magnitude slower (Khandel- 055

wal et al., 2021). Due to this, some recent works 056

have proposed methods that aim to make this pro- 057

cess more efficient. Meng et al. (2021) proposed 058

constructing a different datastore for each source 059

sentence, by first searching for the neighbors of 060

the source tokens; and He et al. (2021) proposed 061

several techniques – datastore pruning, adaptive re- 062

trieval, dimension reduction – for nearest neighbor 063

language modeling. 064

In this paper, we adapt several methods proposed 065

by He et al. (2021) to machine translation, and we 066

further propose a new approach that increases the 067

model’s efficiency: the use of a retrieval distri- 068

butions cache. By caching the kNN probability 069

distributions, together with the corresponding de- 070

coder representations, for the previous steps of the 071

generation of the current translation(s), the model 072

can quickly retrieve the retrieval distribution when 073

the current representation is similar to a cached 074

one, instead of having to search for neighbors in 075

the datastore at every single step. 076

We perform a thorough analysis of the model’s 077

efficiency on a controlled setting, which shows that 078

the combination of our proposed techniques results 079

in a model, the efficient kNN-MT, which is approx- 080

imately twice as fast as the vanilla kNN-MT. This 081

comes without harming translation performance, 082

1

which is, on average, more than 8 BLEU points and083

5 COMET points better than the base MT model.084

In sum, this paper presents the following contri-085

butions:1086

• We adapt the methods proposed by He et al.087

(2021) for efficient nearest neighbors lan-088

guage modeling to machine translation.089

• We propose a caching strategy to store the090

retrieval probability distributions, improving091

the translation speed.092

• We compare the efficiency and translation093

quality of the different methods, which show094

the benefits of the proposed and adapted tech-095

niques.096

2 Background097

When performing machine translation, the model098

is given a source sentence or document, x =099

[x1, . . . , xL], on one language, and the goal is to100

output a translation of the sentence in the desired101

language, y = [y1, . . . , yN]. This is usually done102

using a parametric sequence-to-sequence model103

(Bahdanau et al., 2015; Vaswani et al., 2017), in104

which the encoder receives the source sentence as105

input and outputs a set of hidden states. Then,106

at each step t, the decoder attends to these hid-107

den states and outputs a probability distribution108

pNMT(yt|y<t,x) over the vocabulary. Finally,109

these probability distributions are used to predict110

the output tokens, typically with beam search.111

2.1 Nearest Neighbor Machine Translation112

Khandelwal et al. (2021) introduced a nearest113

neighbor machine translation model, kNN-MT,114

which is a semi-parametric model. This means115

that besides having a parametric component that116

outputs a probability distribution over the vocabu-117

lary, pNMT(yt|y<t,x), the model also has a nearest118

neighbor retrieval mechanism, which allows direct119

access to a datastore of examples.120

More specifically, we build a datastore D which121

consists of a key-value memory, where each en-122

try key is the decoder’s output representation,123

f(x,y<t), and the value is the target token yt:124

D={(f(x,y<t) , yt) ∀yt∈ y | (x,y)∈(X ,Y)},
(1)125

where (X ,Y) corresponds to a set of parallel126

source and target sequences. Then, at inference127

1We will release all code upon acceptance.

time, the model searches the datastore to retrieve 128

the set of k nearest neighbors N . Using their dis- 129

tances d(·) to the current decoder’s output repre- 130

sentation, we can compute the retrieval distribution 131

pkNN(yt|y<t,x) as: 132

pkNN(yt|y<t,x) = (2) 133∑
(kj ,vj)∈N 1yt=vj exp (−d (kj ,f(x,y<t)) /T)∑

(kj ,vj)∈N exp (−d (kj ,f(x,y<t)) /T)
, 134

where T is the softmax temperature, kj denotes 135

the key of the jth neighbor and vj its value. Fi- 136

nally, pNMT(yt|y<t,x) and pkNN(yt|y<t,x) are 137

combined to obtain the final distribution, which 138

is used to generate the translation through beam 139

search, by performing interpolation: 140

p(yt|y<t,x) =(1− λ) pNMT(yt|y<t,x) (3) 141

+ λ pkNN(yt|y<t,x), 142

where λ is a hyper-parameter that controls the 143

weights given to the two distributions. 144

3 Efficient kNN-MT 145

In this section, we describe the approaches intro- 146

duced by He et al. (2021) to speed-up the infer- 147

ence time for nearest neighbors language modeling, 148

such as pruning the datastore (§3.1) and reducing 149

the representations dimension (§3.2), which we 150

adapt to machine translation. We further describe 151

a novel method that allows the model to have ac- 152

cess to examples without having to search them in 153

the datastore at every step, by maintaining a cache 154

of the past retrieval distributions, for the current 155

translation(s) (§3.3). 156

3.1 Datastore Pruning 157

The goal of datastore pruning is to reduce the size 158

of the datastore, so that the model is able to search 159

for the nearest neighbors faster. To do so, we follow 160

He et al. (2021), and use greedy merging. In greedy 161

merging, we aim to merge datastore entries that 162

share the same value (target token) while their keys 163

are close to each other in vector space. To do this, 164

we first need to find the k nearest neighbors of every 165

entry of the datastore, where k is a hyper-parameter. 166

Then, if in the set of neighbors, retrieved for a given 167

entry, there is an entry which has not been merged 168

before and has the same value, we merge the two 169

entries, by simply removing the neighboring one. 170

2

3.2 Dimension Reduction171

The decoder’s output representations, f(x,y<t)172

are, usually, high-dimensional (1024, in our case).173

This leads to a high computational cost when com-174

puting vector distances, which are needed for re-175

trieving neighbors from the datastore. To alleviate176

this, we follow He et al. (2021), and use principal177

component analysis (PCA), an efficient dimension178

reduction method, to reduce the dimension of the179

decoder’s output representation to a pre-defined180

dimension, d, and generate a compressed datastore.181

3.3 Cache182

The model does not need to search the datastore183

at every step of the translation generation in order184

to do it correctly. Here, we aim to predict when it185

needs to retrieve neighbors from the datastore, so186

that, by only searching the datastore in the neces-187

sary steps, we can increase the generation speed.188

Adaptive retrieval. To do so, first we follow He189

et al. (2021), and use a simple MLP to predict the190

value of the interpolation coefficient λ at each step.191

Then, we define a threshold, α, so that the model192

only performs retrieval when λ > α. However, we193

observed that this leads to results (§A.3) similar to194

randomly selecting when to search the datastore.195

We posit this occurs because it is difficult to predict196

when the model should perform retrieval, for do-197

main adaptation (He et al., 2021), and because in198

machine translation error propagation occurs more199

prominently than in language modeling.200

Cache. Because it is common to have similar201

contexts along the generation process, when us-202

ing beam search, the model can be often retrieving203

similar neighbors at different steps, which is not204

efficient. To avoid repeating searches on the data-205

store for similar context vectors, f(x,y<t), we206

propose keeping a cache of the previous retrieval207

distributions, of the current translation(s). More208

specifically, at each step of the generation of y,209

we add the decoder’s representation vector along210

with the retrieval distribution pkNN(yt|y<t,x), cor-211

responding to all beams, B, to the cache C:212

C={(f(x,y<t), pkNN(yt|y<t,x))∀yt∈ y |y∈B}.
(4)213

Then, at each step of the generation, we com-214

pute the Euclidean distance between the current215

decoder’s representation and the keys on the cache.216

If all distances are bigger than a threshold τ , the217

model searches the datastore to find the nearest218

neighbors. Otherwise, the model retrieves, from 219

the cache, the retrieval distribution that corresponds 220

to the closest key. 221

4 Experiments 222

Dataset and metrics. We perform experiments 223

on the Medical, Law, IT, and Koran domain data 224

of the multi-domains dataset (Koehn and Knowles, 225

2017) re-splitted by Aharoni and Goldberg (2020). 226

To build the datastores we use the in-domain train- 227

ing sets which have from 17,982 to 467,309 sen- 228

tences. The validation and test sets have 2,000 229

sentences. To evaluate the models we use BLEU 230

(Papineni et al., 2002; Post, 2018) and COMET 231

(Rei et al., 2020). 232

Settings. We use the WMT’19 German-English 233

news translation task winner (Ng et al., 2019) (with 234

269 M parameters), available on the Fairseq library 235

(Ott et al., 2019), as the base MT model. As base- 236

lines, we consider the base MT model, the vanilla 237

kNN-MT model (Khandelwal et al., 2021), and 238

the Fast kNN-MT model (Meng et al., 2021). For 239

all models, which perform retrieval, we select the 240

hyper-parameters by performing grid search on 241

k ∈ {8, 16, 32, 64} and λ ∈ {0.5, 0.6, 0.7, 0.8}. 242

For the vanilla kNN-MT model and the efficient 243

kNN-MT we follow Khandelwal et al. (2021) and 244

use the Euclidean distance to perform retrieval and 245

the proposed softmax temperature. For the Fast 246

kNN-MT, we use the cosine distance and the soft- 247

max temperature proposed by Meng et al. (2021). 248

For the efficient kNN-MT we select k = 2 for data- 249

store pruning, d = 256 for PCA, and τ = 6 as 250

the cache threshold. Additional results and hyper- 251

parameters are reported in Apps. A and B. 252

4.1 Results 253

The translation scores are reported on Table 1. We 254

can clearly see that both Fast kNN-MT and the effi- 255

cient kNN-MT (combining the different methods) 256

do not hurt the translation performance substan- 257

tially, still having, on average, 8 BLEU points and 258

5 COMET points more than the base MT model. 259

4.2 Generation speed 260

Computational infrastructure. All experiments 261

were performed on a server with 3 RTX 2080 Ti (11 262

GB), 12 AMD Ryzen 2920X CPUs (24 cores), and 263

128 Gb of RAM. For the speed measurements, we 264

ran each model on a single GPU while no other pro- 265

cess was running on the server, to have a controlled 266

3

BLEU COMET
Medical Law IT Koran Average Medical Law IT Koran Average

Base MT 40.01 45.64 37.91 16.35 34.98 .4702 .5770 .3942 -.0097 .3579
kNN-MT 54.47 61.23 45.96 21.02 45.67 .5760 .6781 .5163 .0480 .4546
Fast kNN-MT 52.90 55.71 44.73 21.29 43.66 .5293 .5944 .5445 -.0455 .4057

cache 53.30 59.12 45.39 20.67 44.62 .5625 .6403 .5085 .0346 .4365
PCA + cache 53.58 58.57 46.29 20.67 44.78 .5457 .6379 .5311 -.0021 .4282
PCA + pruning 53.23 60.38 45.16 20.52 44.82 .5658 .6639 .4981 .0298 .4394
PCA + cache + pruning 51.90 57.82 44.44 20.11 43.57 .5513 .6260 .4909 -.0052 .4158

Table 1: BLEU and COMET scores on the multi-domains test set, for a batch size of 8.

1 8 16
Batch size

102

103

Ge
ne

ra
tio

n
sp

ee
d

Medical
base
efficient kNN-MT
fast kNN-MT
kNN-MT

1 8 16
Batch size

102

103

Law

1 8 16
Batch size

102

103

IT

1 8 16
Batch size

102

103

Koran

Figure 1: Plots of the generation speed (tokens/s) for the different models on the medical, law, IT, and Koran
domains, for different batch sizes (1,8,16). The generation speed (y-axis) is in log scale. When using the Fast
kNN-MT model, the maximum batch size that we are able to use is 2, due to out of memory errors.

environment. To search the datastore, we used the267

FAISS library (Johnson et al., 2019). When using268

the vanilla kNN-MT and efficient kNN-MT, the269

nearest neighbor search is performed on the CPUs,270

since not all datastores fit into memory, while when271

using the Fast kNN-MT this is done on the GPU.272

Analysis. As can be seen on the plots of Fig-273

ure 1, for a batch size of 1 Fast kNN-MT leads274

to a generation speed higher than our proposed275

method and vanilla kNN-MT. However, because of276

its high memory requirements, we are not able to277

run Fast kNN-MT for batch sizes larger than 2, on278

the computational infrastructure stated above. On279

the contrary, when using the proposed methods (ef-280

ficient kNN-MT) we are able to run the model with281

higher batch sizes, achieving superior generation282

speeds to Fast kNN-MT and vanilla kNN-MT, and283

reducing the difference to the base MT model.284

Ablation. We plot the generation speed for dif-285

ferent combinations of the proposed methods, for286

several batch sizes, on Figure 2. On this plot, we287

can clearly see that every method contributes to288

the speed-up achieved by the model that combines289

all approaches. Moreover, we can observe that the290

method which leads to the largest speed-up is the291

use of a cache of retrieval distributions, by saving,292

on average 57% of the retrieval searches.293

1 8 16
Batch size

50

75

100

125

150

175

200

225

Ge
ne

ra
tio

n
sp

ee
d

PCA + pruning + cache
PCA + cache
cache
PCA + pruning
kNN-MT

Figure 2: Plot of the generation speed (tokens/s) for
combinations of the proposed methods.

5 Conclusion 294

In this paper we propose the efficient kNN-MT, in 295

which we combine several methods to improve the 296

kNN-MT generation speed. First, we adapted to 297

machine translation methods that improve retrieval 298

efficiency in language modeling (He et al., 2021). 299

Then we proposed a new method which consists 300

on keeping in cache the previous retrieval distribu- 301

tions so that the model does not need to search for 302

neighbors in the datastore at every step. Through 303

experiments on domain adaptation, we show that 304

the combination of the proposed methods leads to a 305

considerable speed-up (up to 2x) without harming 306

the translation performance substantially. 307

4

References308

Roee Aharoni and Yoav Goldberg. 2020. Unsupervised309
domain clusters in pretrained language models. In310
Proc. ACL.311

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Ben-312
gio. 2015. Neural machine translation by jointly313
learning to align and translate. In Proc. ICLR.314

Ankur Bapna and Orhan Firat. 2019. Non-Parametric315
Adaptation for Neural Machine Translation. In Proc.316
NAACL.317

Jiatao Gu, Yong Wang, Kyunghyun Cho, and Victor OK318
Li. 2018. Search engine guided neural machine trans-319
lation. In Proc. AAAI.320

Junxian He, Graham Neubig, and Taylor Berg-321
Kirkpatrick. 2021. Efficient Nearest Neighbor Lan-322
guage Models. In Proc. EMNLP.323

Qingnan Jiang, Mingxuan Wang, Jun Cao, Shanbo324
Cheng, Shujian Huang, and Lei Li. 2021. Learn-325
ing Kernel-Smoothed Machine Translation with Re-326
trieved Examples. In Proc. EMNLP.327

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.328
Billion-scale similarity search with gpus. IEEE329
Transactions on Big Data.330

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke331
Zettlemoyer, and Mike Lewis. 2021. Nearest neigh-332
bor machine translation. In Proc. ICLR.333

Philipp Koehn and Rebecca Knowles. 2017. Six Chal-334
lenges for Neural Machine Translation. In Proceed-335
ings of the First Workshop on Neural Machine Trans-336
lation.337

Yuxian Meng, Xiaoya Li, Xiayu Zheng, Fei Wu, Xi-338
aofei Sun, Tianwei Zhang, and Jiwei Li. 2021. Fast339
Nearest Neighbor Machine Translation.340

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott,341
Michael Auli, and Sergey Edunov. 2019. Facebook342
FAIR’s WMT19 News Translation Task Submission.343
In Proc. of the Fourth Conference on Machine Trans-344
lation.345

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,346
Sam Gross, Nathan Ng, David Grangier, and Michael347
Auli. 2019. fairseq: A Fast, Extensible Toolkit for348
Sequence Modeling. In Proc. NAACL (Demonstra-349
tions).350

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-351
Jing Zhu. 2002. Bleu: a method for automatic evalu-352
ation of machine translation. In Proc. ACL.353

Matt Post. 2018. A Call for Clarity in Reporting BLEU354
Scores. In Proc. Third Conference on Machine Trans-355
lation.356

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon357
Lavie. 2020. COMET: A Neural Framework for MT358
Evaluation. In Proc. EMNLP.359

Danielle Saunders. 2021. Domain Adaptation and 360
Multi-Domain Adaptation for Neural Machine Trans- 361
lation: A Survey. 362

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 363
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 364
Kaiser, and Illia Polosukhin. 2017. Attention is all 365
you need. In Proc. NeurIPS. 366

Jingyi Zhang, Masao Utiyama, Eiichiro Sumita, Gra- 367
ham Neubig, and Satoshi Nakamura. 2018. Guiding 368
Neural Machine Translation with Retrieved Transla- 369
tion Pieces. In Proc. NAACL. 370

Xin Zheng, Zhirui Zhang, Junliang Guo, Shujian Huang, 371
Boxing Chen, Weihua Luo, and Jiajun Chen. 2021. 372
Adaptive Nearest Neighbor Machine Translation. 373

5

https://arxiv.org/abs/2004.02105
https://arxiv.org/abs/2004.02105
https://arxiv.org/abs/2004.02105
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1903.00058
https://arxiv.org/abs/1903.00058
https://arxiv.org/abs/1903.00058
https://arxiv.org/abs/1705.07267
https://arxiv.org/abs/1705.07267
https://arxiv.org/abs/1705.07267
https://arxiv.org/abs/2109.04212
https://arxiv.org/abs/2109.04212
https://arxiv.org/abs/2109.04212
https://arxiv.org/abs/2109.09991
https://arxiv.org/abs/2109.09991
https://arxiv.org/abs/2109.09991
https://arxiv.org/abs/2109.09991
https://arxiv.org/abs/2109.09991
https://arxiv.org/abs/1702.08734
https://arxiv.org/abs/2010.00710
https://arxiv.org/abs/2010.00710
https://arxiv.org/abs/2010.00710
https://arxiv.org/abs/1706.03872
https://arxiv.org/abs/1706.03872
https://arxiv.org/abs/1706.03872
https://arxiv.org/abs/2105.14528
https://arxiv.org/abs/2105.14528
https://arxiv.org/abs/2105.14528
https://arxiv.org/abs/1907.06616
https://arxiv.org/abs/1907.06616
https://arxiv.org/abs/1907.06616
https://arxiv.org/abs/1904.01038
https://arxiv.org/abs/1904.01038
https://arxiv.org/abs/1904.01038
https://aclanthology.org/P02-1040.pdf
https://aclanthology.org/P02-1040.pdf
https://aclanthology.org/P02-1040.pdf
https://arxiv.org/abs/1804.08771
https://arxiv.org/abs/1804.08771
https://arxiv.org/abs/1804.08771
https://aclanthology.org/2020.emnlp-main.213/
https://aclanthology.org/2020.emnlp-main.213/
https://aclanthology.org/2020.emnlp-main.213/
https://arxiv.org/abs/2104.06951
https://arxiv.org/abs/2104.06951
https://arxiv.org/abs/2104.06951
https://arxiv.org/abs/2104.06951
https://arxiv.org/abs/2104.06951
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/1804.02559
https://arxiv.org/abs/1804.02559
https://arxiv.org/abs/1804.02559
https://arxiv.org/abs/1804.02559
https://arxiv.org/abs/1804.02559
https://arxiv.org/abs/2105.13022

A Additional results374

In this section we report the BLEU scores as well375

as additional statistics for the different methods,376

when varying their hyper-parameters.377

A.1 Datastore pruning378

We report on Table 2 the BLEU scores for datastore379

pruning, when varying the number of neighbors380

used for greedy merging, k. The resulting datastore381

sizes are presented on Table 3.382

Medical Law IT Koran Average

kNN-MT 54.47 61.23 45.96 21.02 45.67

k = 1 53.60 60.23 45.03 20.81 44.92
k = 2 52.95 59.40 44.76 20.12 44.31
k = 5 51.63 57.55 44.07 19.29 43.14

Table 2: BLEU scores on the multi-domains test set
when performing datastore pruning with several values
of k, for a batch size of 8.

Medical Law IT Koran

kNN-MT 6,903,141 19,062,738 3,613,334 524,374

k = 1 4,780,514 13,130,326 2,641,709 400,385
k = 2 4,039,432 11,103,775 2,303,808 353,007
k = 5 3,084,106 8,486,551 1,852,191 290,192

Table 3: Sizes of the in-domain datastores when per-
forming datastore pruning with several values of k, for
a batch size of 8.

A.2 Dimension reduction383

We report on Table 4 the BLEU scores for dimen-384

sion reduction, when varying the output dimension385

d.386

Medical Law IT Koran Average

kNN-MT 54.47 61.23 45.96 21.02 45.67

d = 512 55.06 62.04 46.98 21.24 46.33
d = 256 54.52 61.84 46.68 21.57 46.15
d = 128 53.94 61.17 45.46 21.35 45.48

Table 4: BLEU scores on the multi-domains test set
when performing PCA with different dimension, d, val-
ues, for a batch size of 8.

A.3 Adaptive retrieval387

We report on Table 5 the BLEU scores for adap-388

tive retrieval, when varying the threshold α. The389

percentage of times the model performs retrieval is390

stated on Table 6.391

Medical Law IT Koran Average

kNN-MT 54.47 61.23 45.96 21.02 45.67

α = 0.25 45.52 49.91 37.97 16.36 37.44
α = 0.5 52.84 59.36 38.58 18.08 42.22
α = 0.75 53.90 60.87 43.05 19.91 44.43

Table 5: BLEU scores on the multi-domains test set
when performing adaptive retrieval for different values
of the threshold α, for a batch size of 8.

Medical Law IT Koran

kNN-MT 100% 100% 100% 100%

α = 0.25 78% 73% 38% 4%
α = 0.5 96% 96% 60% 61%
α = 0.75 98% 99% 92% 91%

Table 6: Percentage of times the model searches for
neighbors on the datastore when performing adaptive
retrieval for different values of the threshold α, for a
batch size of 8.

A.4 Cache 392

We report on Table 7 the BLEU scores for a model 393

using a cache of the retrieval distributions, when 394

varying the threshold τ . The percentage of times 395

the model performs retrieval is stated on Table 8. 396

Medical Law IT Koran Average

kNN-MT 54.47 61.23 45.96 21.02 45.67

τ = 2 54.47 61.23 45.93 20.98 45.65
τ = 4 54.17 61.10 46.07 21.00 45.58
τ = 6 53.30 59.12 45.39 20.67 44.62
τ = 8 30.06 23.01 25.53 16.08 23.67

Table 7: BLEU scores on the multi-domains test set
when using a retrieval distributions’ cache for different
values of the threshold τ , for a batch size of 8.

Medical Law IT Koran

kNN-MT 100% 100% 100% 100%

τ = 2 59% 51% 67% 64%
τ = 4 50% 42% 57% 53%
τ = 6 43% 35% 49% 45%
τ = 8 26% 16% 29% 31%

Table 8: Percentage of times the model searches for
neighbors on the datastore when using a retrieval dis-
tributions’ cache for different values of the threshold τ ,
for a batch size of 8.

B Hyper-parameters 397

On Table 9 we report the values for the hyper- 398

parameters: number of neighbors to be retrieved 399

6

Medical Law IT Koran
k λ T k λ T k λ T k λ T

kNN-MT 8 0.7 10 8 0.8 10 8 0.7 10 8 0.6 100
Fast kNN-MT 16 0.7 .015 32 0.6 .015 8 0.6 .02 16 0.6 .05

cache 8 0.7 10 8 0.8 10 8 0.7 10 8 0.6 100
PCA + cache 8 0.8 10 8 0.8 10 8 0.7 10 8 0.7 100
PCA + pruning 8 0.7 10 8 0.8 10 8 0.7 10 8 0.7 100
PCA + cache + pruning 8 0.7 10 8 0.8 10 8 0.7 10 8 0.7 100

Table 9: Values of the hyper-parameters: number of neighbors to be retrieved k, interpolation coefficient λ, and
retrieval softmax temperature T .

k ∈ {8, 16, 32, 64}, the interpolation coefficient400

λ ∈ {0.5, 0.6, 0.7, 0.8}, and retrieval softmax tem-401

perature T . For decoding we use beam search with402

a beam size of 5.403

7

