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Abstract

Due to the high cost and time-consuming nature of collecting labeled data, having insufficient
labeled data is a common challenge that can negatively impact the performance of deep
learning models when applied to real-world applications. Active learning (AL) aims to
reduce the cost and time required for obtaining labeled data by selecting valuable samples
during model training. However, recent works have pointed out the performance unreliability
of existing AL algorithms for deep learning (DL) architectures under different scenarios,
which manifests as their performance being comparable (or worse) to that of basic random
selection. This behavior compromises the applicability of these approaches. We address this
problem by proposing a theoretically motivated AL framework for DL architectures. We
demonstrate that the most valuable samples for the model are those that, unsurprisingly,
improve its performance on the entire dataset, most of which is unlabeled, and present a
framework to efficiently estimate such performance (or loss) via influence functions, pseudo
labels and diversity selection. Experimental results show that the proposed reliable active
learning via influence functions (RALIF) can consistently outperform the random selection
baseline as well as other existing and state-of-the art active learning approaches.

1 Introduction

In the last decade, deep learning (DL) models have achieved record-breaking performance on datasets with
millions or even billions of samples (Chen et al., 2022; 2023; Jain et al., 2022). However, their broad practical
applicability in scenarios where data is scarce has been limited mainly due to the lack of sufficient (and high-
quality) labeled data for training. This is often due to the high cost or time-consuming nature of manual
labeling (or sample annotation) often requiring subject-matter expertise. Aiming to address this gap in the
field, active learning (AL), which has been historically applied to traditional machine learning approaches,
emerged as a means to improve the applicability of deep learning models in such scenarios. The main
objective of AL is to design strategies to selectively annotate (label) small subsets of a large (unlabeled)
dataset so that model performance can be maximized while controlling the cost associated with annotations
(Settles, 2009; Sener & Savarese, 2017). It is worth noting that there are also situations where both data
(e.g., images) and labels are scarce, however, such scenario is outside of the scope of this work.

Early AL algorithms (Lewis & Gale, 1994; Dagan & Engelson, 1995; McCallum et al., 1998; Tong & Koller,
2001; Freytag et al., 2014) were originally developed for traditional machine learning models, such as logistic
regression (Kleinbaum et al., 2002), support vector machines (SVMs) (Hearst et al., 1998), or naive Bayes
classifiers (Rish et al., 2001). Unfortunately, applying these algorithms directly to deep neural networks
is challenging because they rely on unique characteristics of traditional machine learning models (e.g., the
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Figure 1: The basic reliable active learning via influence functions (RALIF) framework. Starting with a
small labeled dataset and a much larger unlabeled dataset, at each selection cycle, we first train the target
DL model with the labeled dataset and generate pseudo labels for the entire unlabeled dataset using the
trained target DL model. We then use the selection mechanism based on influence functions to rank the
most likely useful samples from the unlabeled dataset, query the oracle to obtain the true labels for the top
K ranked samples, and update the labeled and unlabeled datasets accordingly. This process is repeated for a
fixed number of cycles or until the labeling budget has been spent or performance target has been achieved.

convexity of their learning objective), and the widely known, but incompatible, need for large datasets when
training DL models. As an example of the former, Tong & Koller (2001) leveraged the version space duality
in SVMs consisting in that each training sample corresponds to a hyperplane in the version (solution) space
of SVMs (Vapnik, 1999; Herbrich et al., 2001), and aimed to select and label samples that have the most
significant impact on shrinking such solution space, which is a sensible approach considering that SVMs
are known to have a unique optimum classification hyperplane. Unfortunately, there is no theoretical basis
or direct evidence to support the assumption that each sample in a deep neural network corresponds to
a hyperplane in their solution space. In fact, neural networks have in general non-convex optimization
objectives known for not yielding a unique global optimum, and instead being overwhelmed by local optima.

In contrast, numerous DL-based AL algorithms have been proposed specifically for deep learning models
(Gal et al., 2017; Beluch et al., 2018; Sinha et al., 2019; Yoo & Kweon, 2019; Liu et al., 2021; Wang et al.,
2022; Yi et al., 2022; Vo et al., 2022). While DL-based AL algorithms have demonstrated strong performance
in some scenarios, recent work by Ash et al. (2019); Munjal et al. (2022); Wang et al. (2022) revealed the
performance unreliability of many DL-based AL methods across different scenarios. Specifically and quite
often, existing DL-based AL algorithms (Wang & Shang, 2014; Sener & Savarese, 2017; Gal et al., 2017; Sinha
et al., 2019) fail to consistently outperform the most basic (no skill) random AL selection mechanism, which
assumes that all (unlabeled) samples are equally likely to improve the performance of the model if labeled
and added to the training set. This unreliability undermines their applicability and adoption, particularly
in situations when labeling costs are high.

Motivated by such findings, we propose a more reliable AL algorithm for DL architectures we call reliable
active learning via influence functions (RALIF), which benefits from a theoretically grounded selection
mechanism that increases the likelihood of selecting samples that will yield performance improvements when
labeled and included in dataset used for model training. The RALIF framework illustrated in Figure 1
introduces a new objective for AL that leverages the concept of influence function (Hampel, 1974) to make the
sample selection process more efficient. Specifically, Koh & Liang (2017) showed that influence functions can
approximate the changes in model parameters caused by incorporating new samples into the training dataset,
but without the need for explicitly retraining the deep neural network. This enables RALIF, in principle, to
efficiently quantify the generalization ability of a model by estimating the influence of new samples on the
complete-dataset performance, thus enabling informed decisions during the AL sample selection process. Our
contribution consists on leveraging pseudo labels to repurpose these influence functions for the AL case where
labels are not available for most of the dataset. Experimental results on three datasets (CIFAR10, FICAR100
and iNaturalist) demonstrate that RALIF achieves consistent and superior performance compared to random
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selection (as a no-skill baseline), as well as existing AL approaches across various practical scenarios, thus
providing strong empirical evidence of the reliability and effectiveness of RALIF.

The rest of this paper is organized as follows, in Section 2 we discuss the related work in the context
of the RALIF framework. In Section 3, we provide a detailed description of the notation used in this
paper and define the standard setting for a (sequential) AL algorithms. In Section 4, we introduce the
proposed AL objective and describe the strategies we employ to implement RALIF with deep learning
neural networks. Subsequently, in Section 5, we present the results of our experiments, which highlight the
performance reliability of the proposed AL framework across different scenarios, and conclude in Section 6
with a discussion and directions for future work.

2 Related Work

AL for traditional machine learning models Among the early AL algorithms, uncertainty sampling
stands out as one of the most commonly used. This strategy aims to selecting samples for which predictions
with the model trained on the current labeled dataset exhibit the highest uncertainty. The rationale behind
this approach is that selecting samples with uncertain predictions is believed to provide additional information
to the model that can likely improve its performance relative to the current version of the trained model.
For example, Lewis & Gale (1994) introduced a probabilistic binary classifier that utilized a bag-of-words
representation for text data and proposed selecting samples with posterior predictive probabilities close to
the decision boundary. In another example involving multi-class text classification tasks, Settles & Craven
(2008) suggested selecting samples for which the entropy of the predicted outputs of a conditional random
field (Lafferty et al., 2001) is high, as a proxy for uncertainty.

Another popular early introduced AL strategy is query-by-committee (Seung et al., 1992). This approach
consists of constructing a committee of models trained on a labeled dataset. The selection process typically
involves choosing samples that elicit the most diverse or heterogeneous predictions among the committee
members. Importantly, constructing the committee is a key aspect of this approach. For instance, McCallum
et al. (1998) constructed the committee by training a naive Bayes classifier with a labeled text dataset and
sampled multiple naive Bayes classifier instances from the posterior distribution of the trained parameters.
Alternatively, Dagan & Engelson (1995) trained a hidden Markov model (HMM) (Rabiner, 1989) with a
labeled text dataset and constructed the committee by sampling a collection of HMMs based on the posterior
distribution of the trained HMM parameters. Moreover, there are several other early AL strategies, such
as Variance Reduction (Cohn et al., 1996) or Fisher Information Ratio (Zhang & Oles, 2000), which aim to
minimize the expected generalization error of the model by selecting unlabeled samples that minimize the
variance or the Fisher information ratio estimated for the model including such samples. See Settles (2009)
for a comprehensive overview of these methods.

AL for deep neural networks Over the past few years, an abundance of DL-based AL algorithms have
been proposed, most of which can be categorized into three main strategies, namely, i) based on uncertainty
(Wang & Shang, 2014; Beluch et al., 2018), ii) based on diversity (Sener & Savarese, 2017; Geifman &
El-Yaniv, 2017), and iii) hybrid approaches (Lughofer, 2012; Ash et al., 2019; Wu et al., 2021).

Uncertainty-based AL algorithms for DL architectures built upon the ideas of the early uncertainty sampling
strategies for AL (Hwa, 2004; Settles & Craven, 2008), where uncertainty is typically estimated by calculating
the entropy of the model predictions for each unlabeled sample (Wang & Shang, 2014). In addition to directly
using the model’s predictions to estimate uncertainty, several other methods have been proposed to estimate
the uncertainty of deep neural networks for unlabeled samples. One of such methods, proposed by Gal
& Ghahramani (2016), involved applying dropout (Srivastava et al., 2014) before each layer of the neural
network. By sampling from the dropout masks, multiple predictions could be obtained for each unlabeled
sample. These predictions were then averaged to obtain the final prediction for the sample, and the entropy
of the expected prediction could be calculated as a measure of uncertainty. Another approach, presented
by Beluch et al. (2018), followed a similar framework to Gal & Ghahramani (2016), but used a different
method to obtain multiple predictions for unlabeled samples. Instead of using dropout, Beluch et al. (2018)
trained multiple models with identical architecture but different random initialization seeds using the same
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labeled dataset. By obtaining predictions from these independently trained models, multiple predictions
for unlabeled samples could be obtained, which could then be used to estimate uncertainty. Note that this
approach is more computationally expensive than simply using dropout like in Gal & Ghahramani (2016).

In diversity-based AL algorithms, samples that are representative of the entire dataset distribution are
preferred. For instance, in Sener & Savarese (2017), features extracted from the model trained on the
labeled dataset were used as representations for the unlabeled samples. Then, their goal was to select a
subset (batch) of samples that minimized the maximum distance of any arbitrary sample from the dataset
to its nearest selected sample. Similarly, Geifman & El-Yaniv (2017) also used features extracted from the
model trained on the labeled dataset as representations for the unlabeled samples. They focused on selecting
samples that were farthest away from the labeled dataset. By selecting samples that were farthest from the
labeled dataset, they aimed to capture the most diverse and informative samples that are distinct from those
already labeled.

Hybrid strategies typically combine uncertainty and diversity approaches to select samples that are both
uncertain and highly representative of the entire unlabeled dataset. For instance, Lughofer (2012) proposed a
two-stage hybrid active learning algorithm. In the first stage, they employed the evolving vector quantization
approach (Lughofer, 2008) to cluster the data. In the second stage, they selected samples that were either
close to the cluster centers (highly representative) or near the boundaries of clusters (highly uncertain). In
Ash et al. (2019), a similar approach to the diversity strategy presented in Sener & Savarese (2017) was
employed, but with a consideration of the trade-off between uncertainty and diversity. Pseudo labels were
generated for the unlabeled samples using the model trained on the labeled dataset, and the gradients of the
loss function with respect to the model parameters were computed. The gradients of the unlabeled samples
were then used as representations for a clustering algorithm. The first cluster center was selected as the
unlabeled sample with the largest norm of gradients (uncertainty), and subsequent centers were selected
based on their distance to the nearest center (diversity). Another study by Wu et al. (2021) introduced a
hybrid active learning approach using two deep neural networks. One network was trained to estimate the
diversity of the unlabeled samples, while the other network estimated the loss for each unlabeled sample.
Samples with high diversity (representativeness) and high loss (uncertainty) were then selected for labeling.

There are also AL algorithms specifically designed based on the understanding or techniques specific to deep
neural networks. For example, Sinha et al. (2019) leveraged adversarial training to select unlabeled samples
that were most dissimilar from labeled samples. Yoo & Kweon (2019) posited that samples with the largest
loss indicated the largest informativeness, thus they trained a module to estimate loss for unlabeled samples,
then selected samples with the largest predicted loss. Furthermore, in their study, Liu et al. (2021) aimed
to select samples capable of reducing the loss of a labeled reference set. More recently, Wang et al. (2022)
proved that samples that mostly change the DNN weights were most useful, and accordingly, they selected
samples that generated the largest approximate gradients.

It is important to highlight that while our work shares similarities with some existing AL algorithms for
DNNs, there significant differences exist between our approach and others. For example, though both the
approaches introduced by Ash et al. (2019) and Wang et al. (2022), as well as the proposed RALIF, involve
the utilization of sample gradients, our motivations for sample selection differ significantly. In Ash et al.
(2019), the authors argue that samples for which the current model produce uncertain predictions will yield
larger gradients. Thus, they prefer to select samples with larger gradients. On the other hand, Wang et al.
(2022) adopts a different perspective. They propose that the magnitude of gradients introduced by samples,
i.e., the extent to which samples influence the DNN weights, can serve as an upper bound for the loss within
unobserved test data. As such, they consider that lowering the amount of samples with large gradients will
result in a higher upper bound for the loss of the unobserved test dataset, implying they too favor selecting
samples with larger gradient magnitudes. In contrast, the proposed RALIF leverages sample gradients and
influence functions to assess the impact of samples on the entire dataset. To further enhance the estimation
of the influence of unlabeled samples on the entire dataset, we introduce the use of using pseudo labels to
approximate the true dataset distribution.

When comparing our approach to Liu et al. (2021), the most significant distinction lies in the objective they
use to select samples that reduce the task loss on a labeled reference set, whereas our approach prioritizes
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selecting samples that reduce the task loss of the entire dataset. It is crucial to note that their algorithm
(ISAL: influence selection for active learning) necessitates a labeled reference set in addition to the initial
labeled dataset, resulting in the need for annotations not only for the initial labeled dataset but also for this
additional reference set at the outset of the active learning selection process. In contrast, RALIF only requires
annotations for the initial labeled dataset, thus underscoring that in principle, we need fewer annotations
overall. Instead of constructing a reference set with labels, we rely on pseudo-labels to effectively approximate
the true dataset distributions, and we provide theoretical results in the following sections to substantiate
this approximation. Another notable difference is the incorporation of a diversity selection operation in our
methodology. As demonstrated by the results in Table 1, this diversity operation ensures the selection of
samples that are not only valuable but also diverse, resulting in an enhanced overall performance for our
approach. We also provide experimental comparisons between RALIF and their approach under a specific
active learning setting in Appendix A.6. The results indicate the superior performance of RALIF compared
to their proposed ISAL method.

Reliability in active learning While most AL algorithms for traditional machine learning models with
convex objectives enjoy theoretical guarantees for their performance (Tong & Koller, 2001; Brinker, 2003; He
et al., 2004), this is in general not the case for DL-based AL algorithms. For instance, uncertainty- and DL-
based AL algorithms (Wang & Shang, 2014; Gal et al., 2017) have been shown to perform comparably to basic
random selection in several scenarios (Sener & Savarese, 2017), whereas the performance of Wang & Shang
(2014) was even slightly worse than random selection in the early stages of the AL selection process (Ash
et al., 2019). Studies by Yoo & Kweon (2019) and Wang et al. (2022) revealed that DL-based AL algorithms
with theoretical support, such as Sener & Savarese (2017) and Gal et al. (2017), also failed to consistently
outperform random selection. Further, experiments conducted by Munjal et al. (2022) demonstrated that
many DL-based AL algorithms, including Wang & Shang (2014); Sener & Savarese (2017); Gal et al. (2017);
Sinha et al. (2019), exhibited inconsistent performance when compared to random selection under the same
experimental conditions. In their experiments, the conditions referred to applying these algorithms on the
same datasets, using the same classification model, and employing the same sample selection size at each
active learning selection cycle; all of this to make comparisons easier and fairer.

This reported inconsistency in performance undermines the applicability and adoption of AL algorithms in
real-world scenarios. Therefore, we are motivated to propose a DL-based AL algorithm that is not only
theoretically grounded, but also demonstrates reliable performance across various AL selection scenarios,
e.g., different datasets, model architectures and selected sample size (batch size) in each AL selection cycle.

3 Problem Definition (Active Learning)

We consider a hypothetical multi-class classification dataset D = {(xi, yi)}n
i=1, where n is the total number

of samples, xi ∈ X represents an input sample (e.g., images in our experiments), and yi ∈ Y = {1, ...K}
represents its corresponding class label, which is not available for the majority of the dataset D. In active
learning, we begin with a small labeled subset L0 = {(xi, yi)}m0

i=1 containing m0 ≪ n labeled samples. The
remaining samples, which are unlabeled, are denoted as the set U0 = {xj}n

j=m0+1. Importantly, in active
learning (AL), we do not have access to the true labels of the samples in U0, denoted as UY

0 = {yj |xj ∼
U0}n

j=m0+1. Let M denote a classification learner, e.g., a deep neural network, and let ML0 denote the
learner M trained with labeled dataset L0. Further, l(·, ·; M) : X × Y → R denotes the loss function used
during the training process, e.g., the standard cross-entropy loss for classification tasks.

In each AL selection cycle c (full model training iteration), a sequential AL algorithm selects a single sample
xs ∼ Uc−1 from the unlabeled set Uc−1 at cycle c − 1, and queries its true label ys with an oracle function1,
resulting in a new labeled dataset Lc = Lc−1 ∪ (xs, ys). The most basic (no skill) strategy for AL is random
selection, where a sample xs is randomly chosen from Uc−1 and its true label is queried; this is denoted
as the Random strategy. Arguably the most common baseline strategy is the Uncertainty strategy, which
selects the sample xs from Uc−1 with the largest predictive uncertainty under the current model MLc−1 .

1In practice, this is replaced by a human or expert observing the sample and producing the label of interest.
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Such uncertainty is quantified in terms of the entropy (Shannon, 1948). A more detailed information about
these two strategies can be found in Section 5.

4 Reliable Sample Selection for Active Learning

We propose a selection strategy that aims to pick samples from the unlabeled set Uc−1, denoted as xs ∼ Uc−1,
such that the loss of MLc

on the entire set D is minimized. This objective reflects the goal of improving the
generalization performance of MLc

on the entire dataset D, which in turn is a proxy for its generalization
ability. Formally then, the objective of the sequential AL algorithm in each cycle c can be formulated as

arg min
xs∼Uc−1

E(xi,yi)∼D[l(xi, yi; MLc
)] = 1

n

n∑
i=1

l(xi, yi; MLc
). (1)

There are two key barriers preventing us from using (1) directly, namely, i) at cycle c we do not have access
to the label for xs to be able to obtain MLc

via labeled set Lc = Lc−1 ∪ (xs, ys), and ii) we do not have
access to most of the labels in D, but only to those in Lc−1.

Below, we describe how we propose approximating (1) to use it as a means to select samples that are likely
to improve the generalization performance of the model MLc on D. Specifically, we will introduce a variant
objective based on (1) as a modification to the original AL objective, which underscores the issue concerning
lacking most of the labels in D. Then, we will propose strategies to address the practical implementation
challenges that arise when applying such an objective variant in practice. More precisely, we will address
the challenges associated with lacking labels for most samples and the expensive selection process resulting
due to the time-consuming nature of DL model training. Finally, we motivate the need for selecting multiple
samples (a batch) in each cycle in the context of deep learning. Taken together, the objective, implementation
strategies and batch selection constitute the proposed RALIF which is conceptually summarized in Figure 1.

4.1 AL Objective Revisited

We can readily derive the following upper bound for (1):

E(xi,yi)∼D[l(xi, yi; MLc
)] = 1

n

n∑
i=mc+1

l(xi, yi; MLc) + 1
n

mc∑
i=1

l(xi, yi; MLc)

≤ 1
n − mc

n∑
i=mc+1

l(xi, yi; MLc
) + 1

mc

mc∑
i=1

l(xi, yi; MLc
)

= E(xi∼Uc,yi∼UY
c )[l(xi, yi; MLc)]︸ ︷︷ ︸

Unlabeled subset loss

+E(xi,yi)∼Lc
[l(xi, yi; MLc)]︸ ︷︷ ︸

Training loss

,

(2)

in which we made explicit that the labels for Uc denoted as UY
c are not available in practice. From (2) we see

that for the purpose of selecting xs ∼ Uc−1 via E(xi,yi)∼D[l(xi, yi; MLc
)], the training loss becomes irrelevant

(a constant), so it can be safely ignored. Therefore, we can use the following objective in place of (1):

arg min
xs∼Uc−1

E(xi∼Uc,yi∼UY
c )[l(xi, yi; MLc

)], (3)

however, akin to that in (1), the label ys and label set UY
c are not available. In order to tackle this problem,

below we present Theorem 1 that bridges the gap between a practical but estimated loss and the inaccessible
but actual loss.
Theorem 1. Given the true data joint distribution pXpY |X , where X is the input space and Y is the label
space, and an estimated data joint distribution pX p̃Y |X (assuming we can access the input distribution pX

but not the true label conditional pY |X), any positive and bounded loss function l(·, ·; M) : X × Y 7→ [0, L]
for model M must satisfy

E(x,y)∼pX pY |X
l(x, y; M) ≤ E(x,ỹ)∼pX p̃Y |X

l(x, ỹ; M) + 2L · δT V (pXpY |X , pX p̃Y |X), (4)

where δT V (·, ·) denotes the total variation difference between two distributions.
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The detailed proof for Theorem 1 can be found in Appendix A.1. Conceptually, Theorem 1 shows that
the difference between the estimated and true loss in (4), obtained via p̃Y |X and pY |X , respectively, is
bounded by two terms: i) the magnitude, L, of the loss function, and ii) the difference between the real
and estimated joint distributions via δT V (pXpY |X , pX p̃Y |X). In most cases, for instance when using the
standard cross-entropy loss for classification, the total variation is bounded by some power r of the norm of
the parameters ∥W∥r

2, where W denotes all the parameters of the model, which itself is bounded via the use
of a regularization term during the training process (Figueiredo, 2001; Figueiredo & Jain, 2001; Figueiredo,
2003). We provide a detailed proof for the cross-entropy loss in Appendix A.1.

With regard to the second term involving δT V (·, ·), we propose to generate pseudo labels from MLc−1 as a
means to intrinsically and effectively sample from the estimated label conditional distribution p̃Y |X implied
by MLc−1 . Conveniently, for the purpose of sample selection, the second term in (4) becomes approximately
a constant by assuming that δT V (pX∪xs

p̃Y |X∪xs
, pX∪xs′ p̃Y |X∪xs′ ) → 0, where X ∪xs and X ∪xs′ for xs ̸= xs′

are used (in a slight abuse of notation) to denote the estimated conditionals with Lc = Lc−1 ∪ (xs, ys) and
Lc = Lc−1 ∪ (xs′ , ys′), respectively, which is reasonable as long as mc−1 is not too small. Consequently,
combining (4) with (3) results in

arg min
xs∼Uc−1

E(xi∼Uc,ỹi∼p̃Y |X=xi
)[l(xi, ỹi; MLc

)]. (5)

Unlike (3), we can readily evaluate the loss l(xi, yi; MLc
) on Uc for every sample in Uc−1. Below, we will

describe how to implement (5) provided that MLc
is not available when selecting xs ∼ Uc−1.

4.2 Estimating Loss without Retraining

Though the AL selection objective introduced in (5) is theoretically justified, its practical application to
deep neural network architectures raises two key issues that need to be addressed. The first issue has to
do with efficiency in that implementing equation (5) necessitates training MLc

for each data candidate
(xs ∼ Uc−1, ys ∼ UY

c−1), resulting in the training of n − mc−1 distinct models. Unfortunately, the time-
consuming nature of training deep neural networks makes this process highly impractical or even prohibitive
in some cases. The second problem associated with labeling is that obtaining MLc for each candidate data
requires access to the true label ys ∼ UY

c−1, which is unavailable during AL selection cycles. To address these
two issues, we propose the following strategies.

To tackle the efficiency problem due to the need of explicitly training n − mc−1 models in each AL selection
cycle, we leverage influence functions (IL) (Hampel, 1974). The influence function serves as a proxy to
quantify how the parameters of a model change when a training point, denoted as (xs, ys), is weighted by
an infinitesimal amount. To provide a fundamental understanding of the influence function, we present a
simple example. Let us consider a model, denoted as M , trained with a labeled dataset L = (xi, yi)n

i=1,
whose parameters θ̂ ∈ Θ are obtained via θ̂ = argminθ∈Θ

∑n
i=1 l(xi, yi; θ). Now, if we incrementally increase

the weight of a specific sample (xs, ys) by a small value ϵ, the resulting parameters, denoted as θ̂ϵ,(xs,ys), can
be expressed as: θ̂ϵ,(xs,ys) = argminθ∈Θ

∑n
i=1 l(xi, yi; θ) + ϵl(xs, ys; θ). The influence function, introduced

by Hampel (1974), gives insight into the impact of this incremental weighting of (xs, ys), which results in
θ̂ϵ,(xs,ys). Formally, the influence function IL(xs, θ̂) can be defined as:

IL(xs, θ̂) =
dθ̂ϵ,(xs,ys)

dϵ

∣∣∣∣∣
ϵ=0

= −H−1
θ̂

∇l(xs, ys; θ̂)), (6)

where Hθ̂

def= 1
n

∑n
i=1 ∇2l(xi, yi; θ̂) is the Hessian of model M . The detailed proof of (6) can be found in Koh

& Liang (2017).

In the context of active learning, we aim to obtain model MLc
in (5) by incorporating a sample (xs, ys) ∼ Uc−1

into the training dataset Lc−1. Assuming that we already have the parameters of the model trained with
Lc−1, denoted as θMLc−1

, which were obtained via θMLc−1
= argminθ∈Θ

1
mc

∑mc

i=1 l(xi, yi; θ). The parameters
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of MLc
can be approximated as

θMLc
≈ argminθ∈Θ

1
mc

mc∑
i=1

l(xi, yi; θ) + 1
mc

l(xs, ys; θ).

This approximation suggests that incorporating a sample (xs, ys) ∼ Uc−1 into the training dataset Lc−1 can
be thought as to incrementally weighting the sample (xs, ys) by m−1

c . Leveraging the influence function as
in (6), we can estimate the parameters of MLc , denoted as θMLc

, efficiently, that is via θMLc
≈ θMLc−1

+
IL(xs, θMLc−1

). Conveniently, this allows us to efficiently obtain the parameters for MLc in (5) without the
need to explicitly train MLc

with Lc−1 ∪ (xs, ys) for each data candidate (xs ∼ Uc−1, ys ∼ UY
c−1). Additional

details about the theory and efficient implementation of the IL can be found in Koh & Liang (2017).

To address the labeling problem associated with lacking access to ys ∼ UY
c−1, we consider three approaches.

The first one, which we refer to as single-IL, uses pseudo labels generated by MLc−1 , i.e., by simply replacing
ys with the (most likely) pseudo label ŷs = arg max MLc−1(xs). This can be formulated as

E(xi∼Uc,ỹi∼p̃Y |X )[l(xi, ỹi; MLc
)] ≈ E(xi∼Uc,ỹi∼p̃Y |X )[l(xi, ỹi; MLc−1 ∪ (xs, ŷs))]. (7)

Though conceptually simple, this method may introduce severe approximation bias if ys ̸= ŷs. Alternatively,
to obtain a relaxed approximation of E(xi∼Uc,ỹi∼p̃Y |X )[l(xi, yi; MLc

)] for each xs, we account for all class
labels for each xs, rather than relying solely on the single most probable (maximum likelihood) class ŷs in
(7). One straightforward approach is to weight all possible classes for xs using the probabilistic predictions
from MLc−1(xs). We refer to this approach as expectation-IL and formulate it as

E(xi∼Uc,ỹi∼p̃Y |X )[l(xi, ỹi; MLc
)] ≈

K∑
k=1

pk(xs) · E(xi∼Uc,ỹi∼p̃Y |X )[l(xi, ỹi; MLc−1∪(xs,ỹk
s ))], (8)

where ỹk
s denotes setting the label for xs as class k, pk(xs) is the predicted probability (weight) that xs is

of class k, which is obtained from MLc−1 , and K is the number of classes. Note that this is conceptually
equivalent to considering all possible outcomes for xs, but weighting them according to how likely they are
under the current version of the model, i.e., MLc−1 .

In practice, we found that (8) has the potentially significant problem that for unlikely classes, pk(xs) is likely
to be nonzero, thus introducing estimation noise. Moreover, we are mostly interested in classes for which
pk(xs) is large or at least comparable to max MLc−1(xs). With this in mind, we propose an alternative
solution we call truncated-IL, which involves considering several high-probability class labels for each xs

instead of all classes. More formally we write

E(xi∼Uc,ỹi∼p̃Y |X )[l(xi, ỹi; MLc
)] ≈

K∑
k=1

π(pk(xs)) · pk(xs) · E(xi∼Uc,ỹi∼p̃Y |X )[l(xi, ỹi; MLc−1∪(xs,ỹk
s ))], (9)

from which we see that compared with (8), (9) has a indicator function π(·) defined as

π(pk(xs)) =
{

1 if pk(xs) > τ

0 otherwise
, (10)

where τ is a threshold value set to filter out highly unlikely class assignments for xs. For all experiments, we
set τ = 4

K , which we found empirically gives the best overall performance. Nevertheless and for illustration,
we provide a comparison of the results obtained by using different values of τ in one specific active learning
scenario in Appendix A.3.

Having addressed the challenges involved in implementing (5) that are associated with efficiency and label-
ing, we have developed a single-sample sequential DL-based AL algorithm. Conceptually, we will rank all
unlabeled samples based on their ability to minimize the model loss on the current unlabeled dataset using
single-IL in (7), expectation-IL in (8) or truncated-IL in (9), and then select the top-ranked sample at each
AL selection cycle, however, as discussed below, this approach may not be practical for DL models.
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Algorithm 1 RALIF: Reliable active learning via influence functions with truncated-IL selection.
Input: L0: Initial labeled dataset, U0: initial unlabeled dataset, M : model, C: AL cycles, B: query set, P :

candidate set, ϕMLc−1
(·): convolutional encoder, and τ : truncation hyperparameter.

1: for c = 1, . . . , C do
2: Train model MLc−1 with labels set Lc−1
3: |P | = 0.1|Uc−1|
4: ∀xi ∼ Uc generate pseudo-labels ỹi = arg max MLc−1(xi)
5: for xs ∈ Uc−1 do
6: Generate probabilistic predictions {pk(xs)}K

k=1 from MLc−1(xs)
7: Calculate E(xi∼Uc,ỹi∼p̃Y |X )[l(xi, ỹi; MLc

)] via (9)
8: end for
9: Select top-|P | samples {xi}|P | with minimum E(xi∼Uc,ỹi∼p̃Y |X )[l(xi, ỹi; MLc)]

10: Run k-MEANS++ on {ϕMLc−1
(xi)}|P | to select |B| diverse samples

11: Lc = Lc−1 ∪ {(xs, ys)}s∈B

12: end for
Return: Final labeled dataset LC (of size L0 + C|B|)

4.3 Batch Selection AL for DL

In the previous subsection we introduced a practical single-sample sequential deep learning active learning
algorithm. However, when dealing with deep neural networks, adding only one sample at the time to the
training dataset is not likely to meaningfully affect performance between AL cycles2, but will definitely
increase computational requirements to a point that in some scenarios it may render AL prohibitive. There-
fore, we opt for batch selection in each AL cycle, which is a common practice in active learning selection
mechanisms for deep neural networks (Kirsch et al., 2019; Sener & Savarese, 2017; Wang et al., 2022).

From (5) we can conceptualize that given a sample xs that minimizes the loss, there are likely other samples
in Uc−1 that being very similar to xs also have comparably small losses. However, by virtue of being similar
they are also likely to be redundant in their ability to improve model M . Though such redundancy is
not likely to negatively impact performance, it certainly affects efficiency, by requiring unnecessary labeling
efforts. This phenomenon of batch AL approaches has been described before (Beluch et al., 2018; Ash
et al., 2019; Wang et al., 2022), and several approaches have been proposed to mitigate this problem. For
example, Beluch et al. (2018) suggested selecting samples from a subset of the unlabeled dataset rather than
considering the entire dataset to avoid including highly similar samples in a selected batch.

To alleviate such issue, we propose a two-step approach. First, we utilize single-IL in (7), expectation-IL in (8)
or truncated-IL in (9) to select a pool of candidate samples with the smallest expected losses on the unlabeled
dataset. In practice, we set the size of the candidate pool P to be 10% of the size of the unlabeled set, i.e.,
P = 0.1 × |Uc|. Second, to ensure the diversity of the final selected samples, we cluster the P candidates
into B clusters, where B refers to the budget size for each AL selection cycle, and then select from P the
centroids of these clusters as the samples selected for labeling. In order to ensure that selected samples are
representative of the entire pool of candidates, we use the features extracted from the convolutional encoder
as the representation space for clustering. Specifically, we use the k-MEANS++ (Arthur & Vassilvitskii,
2007) algorithm, a variant of the popular K -means (MacQueen, 1967) algorithm. This particular clustering
algorithm was chosen because work by Arthur & Vassilvitskii (2007); Ash et al. (2019) demonstrated that
k-MEANS++ has a fast convergence speed while generating relatively diverse clustering centroids, which
encourages the diversity of the set of selected samples.

In practice, one cycle of the RALIF framework consists on selecting a diverse set of samples with the smallest
loss on the unlabeled data given in (7), (8) or (9), while using pseudo labels from the current trained model as
a proxy for the true, but the unavailable, labels. The complete process for truncated-IL in (9) is summarized
in Algorithm 1. Further, we provide a more complete algorithm in Appendix A.2, which includes all selection
approaches, i.e., single-IL in (7), expectation-IL in (8), and truncated-IL in (9).

2In fact, it may be detrimental in some cases due to the use of stochastic gradient learning approaches.
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5 Experiments

Our experiments aim to demonstrate the reliability of RALIF on various selection scenarios. Below, we
first introduce the baseline algorithms with which we compare. Then, we describe the different AL selection
scenarios that we consider in our experiments, along with the model training details. Finally, we will present
the results of our experiments, highlighting the performance of the proposed RALIF framework.

Baselines We consider the following baselines in our experiments: i) Random: selecting a random batch
of unlabeled samples at each selection cycle, which serves as the naive, no skill, baseline for active learning;
ii) Uncertainty: we leverage the most commonly used uncertainty-based selection method introduced in
Beluch et al. (2018), which involves selecting unlabeled samples with the highest entropy based on the
classification probabilities produced by the model trained with the labeled dataset; iii) CoreSet (Sener &
Savarese, 2017): utilizing the model trained with the labeled dataset to extract features for all unlabeled
samples, then applying the K-Center-Greedy (Wolf, 2011) algorithm on such feature space to select a diverse
batch of unlabeled samples; iv) BADGE (Ash et al., 2019): selecting unlabeled samples by applying the
K-MEANS++ algorithm on the gradient norms calculated for all unlabeled samples based on the pseudo
labels predicted by the model trained with the labeled data; and v) GradNorm (Wang et al., 2022): selecting
unlabeled samples with the largest gradient norms by using their entropy as loss for backpropagation. Note
that this is the same entropy used in Uncertainty.

The five baselines we consider in our experiments cover the most common types of active learning algorithms,
namely, Random selection (as a naive baseline for AL), uncertainty-based selection (Uncertainty), diversity-
based selection (Coreset), hybrid strategies (BADGE, which combines uncertainty and diversity), and DL-
specific selection (GradNorm). In comparison to these baselines, RALIF can be considered a hybrid DL-
specific AL algorithm as it combines the DL-specific selection (utilizing influence functions), but encouraging
the selection of a set of diverse samples that are likely to minimize the loss incurred by the model on the
unlabeled dataset. By comparing RALIF with these baselines, we will also demonstrate how it fares with
the state-of-the-art methods, i.e., Ash et al. (2019); Wang et al. (2022).

AL Scenarios To simulate various selection scenarios, we consider three main determinants in the active
learning selection process, namely, dataset, model architecture, and budget size at each selection cycle. In our
experiments, we use three datasets: Cifar10 (Krizhevsky et al., 2009), Cifar100 (Krizhevsky et al., 2009),
and iNaturalist (14 super classes) (Van Horn et al., 2018), representing simple, medium complexity, and
imbalanced datasets, respectively. In terms of model architectures, we consider three options: ResNet18
from scratch denoted as ResNet18 (scratch), ResNet18 with pretrained weights from ImageNet (Deng et al.,
2009) denoted, and a simple linear classifier (a fully connected layer) with a fixed but powerful encoder
(Clip-Vit-patch16) denoted as CLIP. We use the standard ResNet18 (He et al., 2016) architecture for the
pretrained ResNet18, the standard Clip-Vit-patch16 (Radford et al., 2021) for CLIP, and a customized
version of ResNet18 for ResNet18 (scratch)3, where the kernel size of the first convolution layer is modified
from 7 to 3 and the max pooling layer is removed. Moreover, we also consider two different budget sizes: 1000
or 2000 samples at each selection cycle. In Appendix A.5, we included additional active learning scenarios
considering other datasets and models for a more comprehensive evaluation.

Training Details We set different initial labeled dataset sizes for each selection scenario based on model
capacity and the complexity of the dataset. For the CLIP model, which has shown excellent performance
with a smaller training dataset size compared to other models, we set the initial labeled dataset size to
100 samples. This choice is made to ensure that the initial accuracy is not excessively high, allowing us to
observe the effectiveness of the AL algorithms. For all other models, we set the initial labeled dataset size
to 1000 samples for Cifar10 and 6000 samples for Cifar100 and iNaturalist. This decision takes into account
the higher complexity of the iNaturalist and Cifar100 datasets relative to Cifar10. We trained our models
using stochastic gradient descent (Sutskever et al., 2013) with a weight decay of 10−4 and a momentum
of 0.9. The initial learning rate, learning rate scheduler, and training epochs were set based on the model
capacity. For pretrained ResNet18 and CLIP, we employed CosineAnnealingLR (Loshchilov & Hutter, 2016)

3Source code available at https://github.com/kuangliu/pytorch-cifar.
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Table 1: Ablation study results. We present the mean and standard deviation of the performance metrics
for all algorithms (different selection strategies and diversity selection) over three trials. Best results are
highlighted in green.

Candidate Selection Diversity Cycle AUCA Ratiok-MEANS++ First (1st) Last (9th)
Random 85.31 ± 0.29 92.29 ± 0.09 1.000 ± 0.000
single-IL 85.60 ± 0.60 93.86 ± 0.04 1.014 ± 0.000
expectation-IL 85.62 ± 0.38 93.00 ± 0.09 1.004 ± 0.001
truncated-IL 86.15 ± 0.20 94.10 ± 0.09 1.017 ± 0.002
single-IL ✓ 86.23 ± 0.49 94.05 ± 0.04 1.017 ± 0.001
expectation-IL ✓ 85.66 ± 0.18 92.92 ± 0.16 1.006 ± 0.001
truncated-IL ✓ 86.92 ± 0.15 94.35 ± 0.05 1.020 ± 0.002

as the learning rate scheduler and set the initial learning rate to 0.01. The pretrained ResNet18 and CLIP
models were trained for 200 and 100 epochs, respectively, the latter accounting for the excellent performance
of the CLIP model. For ResNet18 (scratch), following the suggestions in He et al. (2016), we set the initial
learning rate to 0.1 and decrease it by a factor of 10 at the 160-th epoch, for a total of 200 training epochs.
In our experiments, we consider basic data augmentations, including random horizontal flip, random crop,
and normalization. For the input images, if the model is ResNet18 (scratch), we resize the inputs to 32 × 32,
otherwise, we resize the inputs to 224×224. This choice is based on the different architectures of the models
and their specific requirements for input sizes. For each selection scenario, we run each algorithm three times
over 9 AL selection cycles and report the mean and standard deviation of the results as the final performance
of the algorithms. Source code is available at https://github.com/mx41-m/Active-Learning.git

Evaluation Metrics In our experiments, we use classification accuracy, denoted as ACC, as the primary
evaluation metric for comparing the performance of the AL algorithms. Specifically, we train a model with
the labeled dataset selected by each AL algorithm at each selection cycle and evaluate the classification
accuracy of the model on the corresponding test dataset. To provide a more comprehensive metric of
the performance of each AL algorithm over the entire selection process (9 selection cycles), we introduce
a summary performance metric we call AUCA Ratio representing the ratio between the area under the
classification accuracy curve over all selection cycles for a model and the random selection approach. The
AUCA Ratio is calculated using the trapezoidal rule (Yeh et al., 2002). Note that an AUCA Ratio larger
than 1 indicates that the corresponding AL algorithm achieves a consistent improvement over the random
selection baseline throughout the entire selection process.

5.1 Ablation Study

The proposed RALIF consists of mainly two components. We first utilize results from Theorem 1 and the
influence function formulation in (6) via (5) to select the most likely informative and useful sample candidates
for labeling. We then use the k-MEANS++ algorithm on the features of the selected pool of candidates to
down-select a batch encouraging sample diversity. We consider three options for the first component of
RALIF: single-IL in (7), truncated-IL in (9), and truncated-IL in (8). For the second component, we can
choose (or not) to favor diversity by applying the k-MEANS++. If we choose not to apply k-MEANS++, we
simply select a batch of the top-ranked B samples obtained using the ranked loss from the first component.

To investigate the contribution of different choices, we conduct an ablation study on a general selection
scenario: using the Cifar10 dataset, the pretrained ResNet18 model architecture, and a budget size of
1000. We compare performance metrics, ACC and AUCA Ratio, after the first and last selection cycles,
first and ninth, respectively. Table 1 underscores that each component of our algorithm contributes to
the selection process by prioritizing more useful samples compared to the random selection baseline. From
Table 1, we also observe that, compared with single-IL and truncated-IL, expectation-IL is less successful
at selecting useful samples. This is likely to be caused by samples with small but nonzero probabilities
assigned during predictions that negatively bias their influence estimation, thus undermining the selection
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process. Complementary, the results suggest that applying the k-MEANS++ algorithm in general improves
the performance of the the AL algorithm by alleviating information redundancy during the selection process.
Overall, the combination of truncated-IL and k-MEANS++ achieved the best performance, so we will use this
combination, simply referred to as truncated-IL for further comparisons with all AL baselines. Additionally,
we have included the results of using different diversity operations in Appendix A.4, providing further insights
into the impact of these on the performance of our approach.

5.2 Performance Comparison with Baselines

We conduct a comprehensive comparison of the proposed truncated-IL algorithm (with diversity selection)
with other baselines in six simulated benchmark scenarios with different datasets (Cifar10, Cifar100 and
iNaturalist), batch size (100, 1000 and 2000) and DL model (pretrained RestNet18, ResNet18 from scratch
and pretrained CLIP). Table 2 provides a summary of the results, focusing on ACC and AUCA Ratio
comparisons for the first and last AL selection cycles. For more detailed ACC comparisons across all selection
cycles and boxplots summarizing the AUCA Ratio for different trials see Appendix A.8. In summary, the
results presented in Table 2 clearly demonstrate that RALIF with truncated-IL selection consistently achieved
the best performance across all scenarios, highlighting its reliability and effectiveness.

More specifically, among all the baselines considered, BADGE fared as the second-best approach in three
scenarios, followed by Grad-Norm in two scenarios, and Uncertainty in one scenario. However, it is impor-
tant to note that all baselines performed worse than the Random baseline in at least one selection cycle
(highlighted in red in Table 2). In contrast, RALIF with truncated-IL selection always outperformed Ran-
dom. For instance, when considering the Cifar10 dataset with a budget size of 1000 and the ResNet18
(scratch) model, all baselines performed worse than Random in the first selection cycle. Notably, the Core-
set algorithm exhibited worse performance than the Random baseline in two scenarios, while Uncertainty
performed worse than Random in one scenario. As a summary of the experiments across different settings,
we also present average metrics, from which we can see the consistency of RALIF relative to the competing
approaches. These results highlight the reliability of RALIF compared to baselines including state-of-the art
methods. Further, to stress out the significance of the performance differences between RALIF and other
approaches, we have included detailed results of statistical significance tests in Appendix A.7. Moreover,
these significance results have been summarized in the bottom row of Table 2, which indicates the proportion
of times that the proposed RALIF achieves statistically significant performance differences relative to other
approaches across all AL scenarios, including the additional AL scenarios presented in Appendix A.5.

5.3 Qualitative results

To gain further insights into the samples selected by different AL approaches, we present visualizations of
selected samples using UMAP embeddings for the iNaturalist dataset with AL approaches with a budget of
100 and a fixed CLIP encoder. Figure 2 shows UMAP visualizations of unlabeled and selected samples (in
red) for Uncertainty, BADGE, and RALIF. We chose Uncertainty and BADGE for visualization because
the former is the most commonly used AL algorithm, and the latter is the second-best AL algorithm among
the baselines based on the experimental results in Table 2. In the figure, each point represents a sample,
different colors indicate true classes (first two rows) or entropy (third row). Note that true labels are not
available to the AL methods.

From Figure 2, several observations can be made. First, compared to the other two AL algorithms, the
samples selected by Uncertainty appear to cluster in a smaller area consistent with high uncertainty (entropy),
and with most of them closely packed together. This suggests that the Uncertainty algorithm tends to select
similar samples in each iteration, leading to redundancy in the selected data and potentially undermining its
performance, thus underscoring the benefits of diversity sampling. However, results for Coreset in Table 2
indicate that solely relying diversity during active learning selection cycles can lead to worse performance.
Alternatively, BADGE combines uncertainty and diversity in its strategy. Examining Figure 2, we observe
that the samples selected by BADGE are more diverse compared to those selected by Uncertainty. This
indicates that BADGE effectively avoids selecting samples that are clustered together and rather focuses on
selecting more diverse samples. From Figure 2, we also see that RALIF, similar to BADGE, successfully
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Table 2: Comparison with baselines in different scenarios. B: budget size at each selection cycle. Note
that for RALIF we use truncated-IL for candidate selection and K-MEANS++ for diversity down-selection.
We present the mean and standard deviation of the results for all algorithms over three trials. The best
and worse than Random results are highlighted in green and red, respectively. Underlined values indicate
instances where the performance difference between RALIF and other approaches is not statistically signif-
icant, i.e., the p-value for the significance test exceeds the 0.05 threshold. The Average row summary the
overall performance averaged of different algorithms across all active learning (AL) scenarios, including the
additional AL scenarios presented in Appendix A.5.

Setting Methods Cycles AUCA RatioDatasets B models First(1st) Last (9th)

Cifar10 1000 ResNet18
(scratch)

Random 61.33 ± 1.20 87.04 ± 0.11 1.000 ± 0.000
Uncertainty 60.27 ± 3.06 90.39 ± 0.08 1.025 ± 0.008
Coreset 54.07 ± 2.68 84.80 ± 0.68 0.948 ± 0.006
BADGE 60.21 ± 0.88 89.79 ± 0.12 1.024 ± 0.006
Grad-Norm 57.90 ± 3.78 90.08 ± 0.25 1.027 ± 0.002
RALIF 62.05 ± 0.75 90.53 ± 0.13 1.041 ± 0.003

Cifar10 1000 ResNet18

Random 85.31 ± 0.29 92.29 ± 0.09 1.000 ± 0.000
Uncertainty 85.55 ± 0.28 94.29 ± 0.24 1.016 ± 0.003
Coreset 85.59 ± 0.11 93.04 ± 0.12 1.008 ± 0.002
BADGE 86.66 ± 0.16 94.32 ± 0.06 1.019 ± 0.001
Grad-Norm 86.60 ± 0.07 94.19 ± 0.07 1.019 ± 0.003
RALIF 86.92 ± 0.15 94.35 ± 0.05 1.021 ± 0.002

Cifar10 2000 ResNet18

Random 87.56 ± 0.25 94.06 ± 0.04 1.000 ± 0.000
Uncertainty 88.64 ± 0.29 95.57 ± 0.03 1.019 ± 0.001
Coreset 87.58 ± 0.17 94.68 ± 0.20 1.007 ± 0.001
BADGE 88.88 ± 0.19 95.69 ± 0.16 1.018 ± 0.001
Grad-Norm 88.46 ± 0.11 95.70 ± 0.03 1.018 ± 0.001
RALIF 88.96 ± 0.05 95.72 ± 0.07 1.020 ± 0.001

Cifar100 1000 ResNet18

Random 64.50 ± 0.55 71.64 ± 0.13 1.000 ± 0.000
Uncertainty 64.81 ± 0.13 72.41 ± 0.25 1.011 ± 0.003
Coreset 64.86 ± 0.10 71.67 ± 0.37 1.003 ± 0.001
BADGE 65.26 ± 0.16 73.21 ± 0.19 1.013 ± 0.001
Grad-Norm 65.27 ± 0.34 73.11 ± 0.31 1.010 ± 0.003
RALIF 65.17 ± 0.08 73.26 ± 0.08 1.015 ± 0.002

iNaturalist 1000 ResNet18

Random 85.17 ± 0.07 87.10 ± 0.07 1.000 ± 0.000
Uncertainty 85.14 ± 0.08 87.45 ± 0.08 1.002 ± 0.000
Coreset 85.43 ± 0.03 87.45 ± 0.07 1.003 ± 0.000
BADGE 85.53 ± 0.14 88.40 ± 0.01 1.010 ± 0.001
Grad-Norm 85.56 ± 0.05 88.47 ± 0.08 1.010 ± 0.001
RALIF 85.66 ± 0.05 88.63 ± 0.12 1.012 ± 0.001

iNaturalist 100 CLIP

Random 90.85 ± 0.90 93.98 ± 0.18 1.000 ± 0.000
Uncertainty 89.13 ± 1.00 93.72 ± 0.20 0.994 ± 0.007
Coreset 89.64 ± 0.90 93.44 ± 0.18 0.990 ± 0.004
BADGE 92.66 ± 0.32 95.17 ± 0.08 1.015 ± 0.004
Grad-Norm 92.71 ± 0.38 95.05 ± 0.02 1.015 ± 0.004
RALIF 92.82 ± 0.26 95.17 ± 0.01 1.015 ± 0.002

Average

Random 81.67 ± 10.29 89.58 ± 6.92 1.000 ± 0.000
Uncertainty 81.71 ± 10.58 91.02 ± 7.11 1.012 ± 0.010
Coreset 80.76 ± 11.93 89.67 ± 7.29 0.996 ± 0.020
BADGE 82.62 ± 10.94 91.30 ± 6.90 1.016 ± 0.005
Grad-Norm 82.26 ± 11.50 91.30 ± 6.92 1.016 ± 0.005
RALIF 83.05 ± 10.66 91.53 ± 6.93 1.020 ± 0.008

RALIF is statistically significant 33/45(73.33%) 34/45(75.56%) 19/45(42.22%)
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Figure 2: UMAP embeddings for the first and last selection cycles of different active learning approaches
with a fixed CLIP encoder on the iNaturalist data. The first and second rows correspond to the first and
last selection cycle, respectively, and with colors indicating true classes for each data point. The bottom row
corresponds to the last cycle with colors denoting the normalized entropy for each data point. From left to
right, the visualizations are for Uncertainty, BADGE, and RALIF. Red dots highlight samples selected for
labeling by each approach.

avoids selecting samples that cluster together and selects more diverse samples than Uncertainty. Notably,
RALIF seems to select samples more sparsely distributed relative to BADGE, underscoring the effectiveness
of the truncated-IL selection approach, by minding that both BADGE and RALIF use the same diversity
strategy. Further, comparing sample selections for the first and last cycle, we see that Uncertainty naturally
favors tightly packed samples with high entropy, BADGE consistently selects sparsely distributed samples,
whereas RALIF initially favors more tightly packed samples and then (as the model improves) starts favoring
more diverse samples, thus differentiating itself from both Uncertainty and BADGE.

6 Conclusion

In this paper, we proposed a new AL framework for DL architectures called RALIF, which is motivated by
theoretical observations on the complete-data loss of a classification model. We established that samples
minimizing the model loss on the unlabeled dataset with generated pseudo labels bound from above the loss
on the entire dataset with true labels. To address the challenges associated with evaluating the impact of
candidate samples on the loss of the model on the unlabeled dataset, we introduce three efficient selection
strategies, namely, single-IL, expectation-IL and truncated-IL. These strategies allow the quantification of
the contribution of candidate samples to the loss on the entire dataset without the need for explicit model
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retraining. Further, we incorporated a diversity prioritization based on K-MEANS++ similar to BADGE
(Ash et al., 2019), to improve the diversity of selected samples when performing batch selection.

We evaluated the reliability and effectiveness of RALIF through comprehensive experiments across various
scenarios. The experimental results clearly demonstrated that RALIF consistently outperformed the random
baseline and other DL-based AL algorithms in terms of classification performance. Moreover, we provided
qualitative results that highlighted RALIF’s ability to trade-off high-uncertainty and diversity during the
active selection process.

One limitation of RALIF is that the quality of the pseudo labels generated from the model M can affect
its performance. There are two main reasons for this behavior. First, RALIF utilizes the model and its
predictions as an approximation to the conditional distribution p̃Y |X in Theorem A.1. If the quality of
the model and thus its pseudo labels is poor, the total variation difference δT V (·, ·) between the estimated
label conditional distribution p̃Y |X and the true label conditional distribution pY |X will be large. This can
result in a loose bound in Theorem A.1, rendering it less effective for AL. Second, RALIF uses pseudo labels
to approximate the influence function in (7). If the quality of the pseudo labels is low, the approximated
influence loss for each candidate will be inaccurate. This can affect the selection process and potentially
lead to suboptimal results. However, it is important to note that this limitation is not exclusive to RALIF
but also applies to other AL baselines since they also dependent on the quality and performance of the
model at each selection cycle. For example, when considering Cifar10 with a budget size of 1000 and the
ResNet18 model trained from scratch, the results in Table 2 demonstrate that all other AL baselines perform
worse than the Random baseline in the first cycle, when the initial model has poor performance. Another
limitation of RALIF is that it is currently designed specifically for classification tasks, thus it may not be
directly applicable to other types of tasks, such as object detection or natural language processing problems.
Consequently, further research and adaptation would be needed to extend RALIF to such tasks.

In future work, we plan to extend RALIF to real-world datasets that exhibit specific label structures, such
as datasets with hierarchically organized labels. These datasets pose unique challenges for AL algorithms,
as the label hierarchy introduces additional dependencies and relationships among the samples. Moreover,
it will be interesting to explore how RALIF can be used to address related tasks such as few-shot learning
and test-time domain generalization.
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A Appendix

A.1 Proof and explanation of Theorem 1

Proof. Let pX,Y = pXpY |X , p̃X,Y = pX p̃Y |X ,∣∣∣E(x,y)∼pX pY |X
l(x, y) − E(x,ỹ)∼pX p̃Y |X

l(x, ỹ)
∣∣∣ =

∣∣∣∣∫
X×Y

(pX,Y (x, y) − p̃X,Y (x, y)) l(x, y)dxdy

∣∣∣∣
≤

∫
X×Y

|pX,Y (x, y) − p̃X,Y (x, y)| · |l(x, y)| dxdy

≤ L ·
∫

X×Y

|pX,Y (x, y) − p̃X,Y (x, y)| dxdy

= 2L · δT V (pXpY |X , pX p̃Y |X).

(11)

In practice, the upper bound L of the loss functions can usually be established given that the network
inputs are usually bounded and the network weights are regularized during training. An example is the
cross-entropy loss function used for classification. Denote the (before softmax activation) network output
as x ∈ RK with elements xk, i.e., x = (xk)1≤k≤K and the ground truth label vector as y ∈ [0, 1]K with
elements yk, i.e. y = (yk)1≤k≤K , and

∑K
k=1 yk = 1. The cross-entropy loss is defined as:

LCE(x, y) = −
K∑

k=1
yk log pk, (12)

where pk is the post-softmax prediction score for class k, i.e.,

pk = exp(xk)∑K
j=1 exp(xj)

. (13)

We can show that

LCE(x, y)
∥x∥2

= 1
∥x∥2

−
K∑

k=1
yk log exp(xk)∑K

j=1 exp(xj)
= 1

∥x∥2

K∑
k=1

yk log
∑K

j=1 exp(xj)
exp(xk)

≤ 1
∥x∥2

K∑
i=1

yk log
K · exp

(
max

1≤j≤K
xj

)
exp(xk) ≤ 1

∥x∥2

K∑
i=1

yk log
K · exp

(
max

1≤j≤K
xj

)
exp

(
− max

1≤j≤K
xj

)

= 1
∥x∥2

log K + log
exp

(
max

1≤j≤K
xj

)
exp

(
− max

1≤j≤K
xj

)


= 1
∥x∥2

(
log K + 2 max

1≤j≤K
xj

)
≤ log K

∥x∥2
+ 2,

(14)

from which we can see that the magnitude of LCE is bounded by a constant multiple of the 2-norm of x.
When ∥x∥2 → +∞, although the exact form of how the norm of x is bounded by the model weights depend
on many network details, e.g., network architecture, activation functions.
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Algorithm 2 Ralif Framework including all selecting approaches.
Input: L0: Initial labeled dataset, U0: initial unlabeled dataset, M : model, C: AL cycles, B: query set, P :

candidate set, ϕMLc−1
(·): convolutional encoder, and τ : truncation hyperparameter.

1: for c = 1, . . . , C do
2: Train model MLc−1 with labels set Lc−1
3: |P | = 0.1|Uc−1|
4: ∀xi ∼ Uc generate pseudo-labels ỹi = arg max MLc−1(xi)
5: if single-IL then
6: for xs ∈ Uc−1 do
7: Generate pseudo-label ỹs = arg max MLc−1(xs)
8: Calculate E(xi∼Uc,ỹi∼p̃Y |X )[l(xi, ỹi; MLc

)] via (7)
9: end for

10: end if
11: if expectation-IL then
12: for xs ∈ Uc−1 do
13: Generate probabilistic predictions {pk(xs)}K

k=1 from MLc−1(xs)
14: Calculate E(xi∼Uc,ỹi∼p̃Y |X )[l(xi, ỹi; MLc

)] via (8)
15: end for
16: end if
17: if truncated-IL then
18: for xs ∈ Uc−1 do
19: Generate probabilistic predictions {pk(xs)}K

k=1 from MLc−1(xs)
20: Calculate E(xi∼Uc,ỹi∼p̃Y |X )[l(xi, ỹi; MLc

)] via (9)
21: end for
22: end if
23: Select top-|P | samples {xi}|P | with minimum E(xi∼Uc,ỹi∼p̃Y |X )[l(xi, ỹi; MLc

)]
24: Run k-MEANS++ on {ϕMLc−1

(xi)}|P | to select |B| diverse samples
25: Lc = Lc−1 ∪ {(xs, ys)}s∈B

26: end for
Return: Final labeled dataset LC (of size L0 + C|B|)

A.2 Complete RALIF Algorithm

The complete Algorithm 2 including all three selecting approaches, i.e., single-IL in (7), expectation-IL in
(8) and truncated-IL in (9).

A.3 Different thresholds

To investigate the impact of different values of τ on the performance of RALIF, we conducted experiments
on a specific selection scenario. The experiments were performed using the Cifar10 dataset, a pretrained
ResNet18 model architecture, and a budget size of 1000. We varied the value of τ across five different values:
0
K = 0, 2

K = 0.2, 4
K = 0.4, 6

K = 0.6, and 8
K = 0.8. We then compared the resulting ACC and AUCA Ratio

at the first and last selection cycle. The results are summarized in Table 3. It is interesting to note that
regardless of the specific value of τ , RALIF consistently outperforms the random baseline. Further, based on
the results shown in Table 3, we observe that τ = 4

K yields the best performance among the tested values.

A.4 Diversity operation

Below we consider the same AL scenario as previously detailed in Section 5.1, i.e., using the Cifar10 dataset,
the pretrained ResNet18 model architecture, and a budget size of 1000. In the experiments, we replace the
k-MEANS++ algorithm in RALIF with the mean shift algorithm Fukunaga & Hostetler (1975). Notably,
the mean shift algorithm circumvents the need for an explicit specification of the number of clusters. Thus,
we first apply the mean shift algorithm to the selected candidate pool and then select the samples closest
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Table 3: Comparison with different thresholds for the indicator function π(·) in (9). We show means and
standard deviations of the results for all algorithms over three trials. The first row provides results for the
random baseline, which serves as a reference for comparisons. The best results are highlighted in green.

τ
Cycle AUCA RatioFirst (1st) Last (9th)

Random 85.31 ± 0.29 92.29 ± 0.09 1.000 ± 0.000
0.0 85.66 ± 0.18 92.92 ± 0.16 1.007 ± 0.001
0.2 86.60 ± 0.10 94.24 ± 0.04 1.019 ± 0.002
0.4 86.92 ± 0.15 94.35 ± 0.05 1.021 ± 0.002
0.6 86.59 ± 0.16 94.18 ± 0.03 1.019 ± 0.002
0.8 86.63 ± 0.26 94.03 ± 0.05 1.018 ± 0.002

Table 4: Diversity operations comparison results. We present the mean and standard deviation of the
performance metrics for different diversity selection over three trials. Best results are highlighted in green.

Candidate Selection Diversity Cycle AUCA Ratiomean shift k-MEANS++ First (1st) Last (9th)
Random 85.31 ± 0.29 92.29 ± 0.09 1.000 ± 0.000
truncated-IL ✓ 86.41 ± 0.23 94.16 ± 0.16 1.019 ± 0.002
truncated-IL ✓ 86.92 ± 0.15 94.35 ± 0.05 1.020 ± 0.002

to the centroid of each cluster, where the number of samples chosen from each cluster is determined by the
proportion of samples in that cluster to the total number of candidate samples. Results presented in Table 4
demonstrate that both the mean shift algorithm and the k-MEANS++ algorithm can enhance RALIF as a
diversity operation. However, it is worth noting that the k-MEANS++ algorithm yields better performance.

A.5 Additional AL scenarios

In Table 5, we present the results of additional experiments conducted under different active learning scenarios
relative to those in Table 2. In these experiments, we consider ResNet18 (scratch), identical to the one
introduced in Sec 5, alongside two other model architectures: VGG16 Simonyan & Zisserman (2014) and
EfficientNet-B0 Tan & Le (2019), both of which are initialized with pretrained weights from ImageNet Deng
et al. (2009). Additionally, we use a different dataset, SVHN Netzer et al. (2011). For a more detailed
analysis, we also provide a comprehensive view of the performance comparisons across all selection cycles
and present boxplots summarizing the AUCA Ratio in Figure 3.

A.6 Additional Comparison with Influence Selection for Active Learning (ISAL)

To compare the proposed RALIF with ISAL, as presented in Liu et al. (2021), we consider the active
learning scenario described in Table 3 of Liu et al. (2021). In this scenario, the dataset is Cifar10, the initial
labeled dataset size is 1000, and the active learning budget is set at 1000 samples. The model used here
and the training details follow the Target Model specifications outlined in Liu et al. (2021). The results of
the comparison between the proposed RALIF and ISAL are presented in Table 6. More details about the
difference between ISAL, ISAL_v2 and ISAL_v3 can be found in The Selection of Reference Set Section in
Liu et al. (2021). From the results, we see that in the same active learning scenario, the proposed RALIF
performs better than ISAL, regardless of the selection of reference set used in ISAL.

A.7 Significance Tests

To quantify the significance of the performance differences between RALIF and other approaches, we employ
a two-sided permutation test (Greenwood, 2014). Specifically, we start with predictions for the test dataset
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Table 5: Comparison with baselines in different scenarios. B: budget size at each selection cycle. Note that
for RALIF we use truncated-IL for candidate selection and K-MEANS++ for diversity down-selection. We
present the mean and standard deviation of the results for all algorithms over three trials. The best and worse
than Random results are highlighted in green and red, respectively. Underlined values indicate instances
where the performance differences between RALIF and other approaches is not statistically significant, i.e.,
the p-value for the significance test exceeds the 0.05 threshold.

Setting Methods Cycles AUCA RatioDatasets B models First(1st) Last (9th)

SVHN 1000 ResNet18
(scratch)

Random 86.02 ± 0.311 93.74 ± 0.263 1.000 ± 0.000
Uncertainty 85.47 ± 2.049 95.58 ± 0.138 1.015 ± 0.004
Coreset 86.29 ± 1.245 95.24 ± 0.110 1.014 ± 0.003
BADGE 87.55 ± 0.701 95.38 ± 0.148 1.018 ± 0.003
Grad-Norm 87.31 ± 0.965 95.55 ± 0.172 1.018 ± 0.004
RALIF 88.14 ± 0.679 95.77 ± 0.143 1.023 ± 0.003

Cifar10 1000 VGG16

Random 84.26 ± 0.665 91.33 ± 0.248 1.000 ± 0.000
Uncertainty 85.22 ± 0.335 93.15 ± 0.219 1.014 ± 0.001
Coreset 82.58 ± 1.016 90.49 ± 0.194 0.984 ± 0.001
BADGE 85.61 ± 0.311 93.15 ± 0.143 1.016 ± 0.002
Grad-Norm 85.19 ± 0.120 92.98 ± 0.255 1.015 ± 0.002
RALIF 86.16 ± 0.162 93.47 ± 0.167 1.020 ± 0.002

Cifar10 1000 EfficientNet-B0

Random 90.06 ± 0.238 95.02 ± 0.236 1.000 ± 0.000
Uncertainty 91.20 ± 0.127 96.58 ± 0.039 1.015 ± 0.001
Coreset 90.78 ± 0.210 96.18 ± 0.101 1.010 ± 0.002
BADGE 91.23 ± 0.074 96.56 ± 0.014 1.015 ± 0.003
Grad-Norm 91.31 ± 0.047 96.52 ± 0.105 1.015 ± 0.002
RALIF 91.61 ± 0.172 96.88 ± 0.019 1.018 ± 0.003

Table 6: We compared RALIF and ISAL on the Cifar10 dataset, utilizing the results for ISAL obtained
from Table 3 in Liu et al. (2021). For RALIF, we conducted the experiments three times for robustness and
reported the performance mean, following Liu et al. (2021).

Method 1000 3000 5000 7000 9000
ISAL 45.52 67.72 81.24 85.96 89.26

ISAL_v2 45.52 67.06 80.57 85.71 88.92
ISAL_v3 45.52 67.12 80.11 84.88 88.71
RALIF 45.25 74.62 82.77 87.32 89.89

generated by different approaches. The test statistic, denoted as Tobs, represents the accuracy or AUCA
Ratio differences between RALIF and other approaches, calculated using true test dataset labels. To obtain
permuted results, denoted as T ∗, we perform random permutations of the true labels of the test dataset
10, 000 times. Each time, we calculate the accuracy or AUCA Ratio differences between RALIF and other
approaches using the generated permuted test dataset labels. Subsequently, we define the p-value as the
proportion of times the absolute value of T ∗ is greater than or equal to the absolute value of Tobs. A smaller
p-value indicates a reduced likelihood that the observed accuracy or AUCA Ratio differences between RALIF
and other approaches are due to random chance. In each active learning scenario, we conducted permutation
tests three times (one per trial) and to be conservative, we only report the largest p-value (worst case) for each
scenario in Table 7. The p-values in Table 7 demonstrate that RALIF’s performance is statistically superior
to that of other methods, further emphasizing the uniqueness of RALIF as an active learning algorithm with
a strong emphasis on reliability. Additionally, for a concise overview of the frequency with which RALIF’s
performance is statistically significant, i.e., p-values are smaller than 0.05 (the significance level threshold),
compared to other methods, we provide a summary in Table 2.
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Table 7: We conducted permutation test three times (one per trial) for each setting and only report the largest
p-value observed for each setting. To improve readability, we have highlighted cases where the difference
between RALIF and other approaches is statistically significant in green, i.e., where the p-value is less than
the 0.05 threshold.

Setting Methods First(1st) Last (9th) AUCA RatioDatasets B models

Cifar10 1000 ResNet18
(scratch)

Random 0.000 0.000 0.000
Uncertainty 0.000 0.858 0.965
Coreset 0.000 0.000 0.000
BADGE 0.000 0.003 0.022
Grad-Norm 0.000 0.000 0.000

Cifar10 1000 ResNet18

Random 0.000 0.000 0.003
Uncertainty 0.000 0.099 0.611
Coreset 0.000 0.000 0.032
BADGE 0.434 0.692 0.987
Grad-Norm 0.664 0.756 0.645

Cifar10 2000 ResNet18

Random 0.000 0.000 0.001
Uncertainty 0.695 0.000 0.667
Coreset 0.000 0.000 0.000
BADGE 1.000 0.783 0.843
Grad-Norm 0.009 0.189 0.763

Cifar100 1000 ResNet18

Random 0.020 0.000 0.608
Uncertainty 0.051 0.000 0.842
Coreset 0.000 0.000 0.673
BADGE 0.127 0.740 0.907
Grad-Norm 0.948 0.000 0.838

iNaturalist 1000 ResNet18

Random 0.000 0.000 0.000
Uncertainty 0.000 0.000 0.000
Coreset 0.000 0.000 0.000
BADGE 0.000 0.001 1.000
Grad-Norm 0.053 0.000 0.366

iNaturalist 100 CLIP

Random 0.000 0.000 0.000
Uncertainty 0.000 0.000 0.000
Coreset 0.000 0.000 0.000
BADGE 0.000 0.216 1.000
Grad-Norm 0.000 0.013 0.362

SVHN 100 ResNet18

Random 0.000 0.000 0.000
Uncertainty 0.000 0.924 0.050
Coreset 0.000 0.000 0.011
BADGE 0.178 0.000 0.271
Grad-Norm 0.000 0.002 0.352

Cifar10 100 VGG16

Random 0.000 0.000 0.009
Uncertainty 0.000 0.105 0.388
Coreset 0.000 0.000 0.000
BADGE 0.022 0.064 0.657
Grad-Norm 0.000 0.000 0.673

Cifar10 100 EfficientNet-B0

Random 0.000 0.000 0.010
Uncertainty 0.096 0.002 0.648
Coreset 0.000 0.000 0.091
BADGE 0.152 0.000 0.495
Grad-Norm 0.328 0.001 0.537
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A.8 Detail results comparison

For a more detailed comparison between the baselines and RALIF, we present the ACC across all AL selection
cycles and AUCA Ratio boxplots for all baselines and RALIF under all six AL scenarios in Figure 3.
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Figure 3: Detailed AL results. Each row corresponds to an AL scenario, following the same order as in
Table 2. The title for each row provides a description of the AL scenario, including the Dataset, B (budget
size at each selection cycle), and the model used. Standard deviations are omitted in the ACC plots for
clarity, and AUCA Ratio boxplots summarize results over the three trials.
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Figure 3: Detailed AL results. Each row corresponds to an AL scenario, following the same order as in
Table 2. The title for each row provides a description of the AL scenario, including the Dataset, B (budget
size at each selection cycle), and the model used. Standard deviations are omitted in the ACC plots for
clarity, and AUCA Ratio boxplots summarize results over the three trials.

25



Published in Transactions on Machine Learning Research (11/2023)

0 2 4 6 8
Cycles

64

66

68

70

72
AC

C

Random
Uncertainty
Coreset
BADGE
Grad-Norm
RALIF

Uncertainty Coreset BADGE Grad-Norm RALIF
1.000

1.002

1.004

1.006

1.008

1.010

1.012

1.014

1.016

AU
CA

 R
at

io

Datasets: Cifar100; B: 1000; models: ResNet18

0 2 4 6 8
Cycles

85.0

85.5

86.0

86.5

87.0

87.5

88.0

88.5

AC
C

Random
Uncertainty
Coreset
BADGE
Grad-Norm
RALIF

Uncertainty Coreset BADGE Grad-Norm RALIF

1.002

1.004

1.006

1.008

1.010

1.012
AU

CA
 R

at
io

Datasets: iNaturalist; B: 1000; models: ResNet18

0 2 4 6 8
Cycles

87

88

89

90

91

92

93

94

95

AC
C

Random
Uncertainty
Coreset
BADGE
Grad-Norm
RALIF

Uncertainty Coreset BADGE Grad-Norm RALIF

0.985

0.990

0.995

1.000

1.005

1.010

1.015

1.020

AU
CA

 R
at

io

Datasets: iNaturalist; B: 1000; models: CLIP

Figure 3: Detailed AL results. Each row corresponds to an AL scenario, following the same order as in
Table 2. The title for each row provides a description of the AL scenario, including the Dataset, B (budget
size at each selection cycle), and the model used. Standard deviations are omitted in the ACC plots for
clarity, and AUCA Ratio boxplots summarize results over the three trials.
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