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ABSTRACT

Out-of-distribution (OOD) data poses serious challenges in deployed machine
learning models as even subtle changes could incur significant performance drops.
Being able to estimate a model’s performance on test data is important in practice
as it indicates when to trust a model’s decisions. We present a simple yet effective
method to predict a model’s performance on an unknown distribution without
additional annotation. Our approach is rooted in the Optimal Transport theory,
viewing test samples’ output softmax scores from deep neural networks as empirical
samples from an unknown distribution. We show that our method, Confidence
Optimal Transport (COT), provides robust estimates of a model’s performance
on a target domain. Despite its simplicity, our method achieves state-of-the-art
results on three benchmark datasets and outperforms existing methods by a large
margin. Our code can be found at https://github.com/luyuzhe111/
Confidence-Optimal-Transport.

1 INTRODUCTION

While most machine learning models are built with an i.i.d. assumption, they often have to deal with
out-of-distribution samples when deployed in the real world. This poses serious problems on the
trustworthiness of ML models as modern architectures often give overly confident signals even in the
face of distribution shifts that significantly hurt the model’s performance. Thus, a lot of work has
focused on OOD detection, whose goal is to tell if a test sample is from a different distribution than
the training data. To name a few, Hendrycks & Gimpel (2016) proposed to use a model’s confidence
based on softmax scores; Liang et al. (2017) found using temperature scaling Guo et al. (2017) and
small perturbations to inputs further improves OOD detection using softmax scores; more recently,
Liu et al. (2020) showed superior performance by using energy-based scores instead of softmax scores.
In a relevant but slightly different formulation, Platanios et al. (2016; 2017); Jiang et al. (2021); Garg
et al. (2022) considers the task of directly predicting a model’s generalization performance on OOD
data. As annotating data from the target domain would be both costly and inefficient, especially when
the distribution is non-stationary, it would be ideal to have a good estimator of a model’s performance
on the target domain in an annotation-free manner. However, previous works have established that
obtaining a consistent estimator is impossible without further assumptions on the nature of the shift
David et al. (2010); Lipton et al. (2018).

In this work, we aim to estimate the model performance under covariate shift, such as different
appearances of the same object, differences in image quality caused by camera degradation, etc.,
while assuming the label distribution of the target domain does not change. With the covariate shift
assumption, the task of predicting model performance with only labeled source data and unlabeled
target data becomes achievable. To deal with this task, numerous methods have been proposed.
Among them, many require some labeled samples from the target domain. For example, Guillory
et al. (2021) and Deng & Zheng (2021) train regression models based on model-based distribution
distances between the source and target domain to predict test performance. However, these methods
are suboptimal as they assume prior knowledge about the nature of the shift, and obtaining labels from
the target domain is very expensive in general. Meanwhile, more recent methods have focused on
predicting target domain performance without requiring additional labels. Baek et al. and Jiang et al.
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(2021) leverage the agreement rate of independently trained neural networks to estimate the accuracy.
Garg et al. (2022) adopts a thresholding strategy based on scores of the softmax outputs. These
methods have immediate practical value as people can have a sense of their model’s performance on
the target domain without having to label any data beforehand. Following these works, we assume
access to labeled source data and only unlabeled target domain data.

Given this setting, we propose Confidence Optimal Transport (COT) to provide a robust estimation
of a model’s error on the target domain via the Earth Mover’s Distance (EMD). While other methods
also explored using distribution distance such as Maximum Mean Discrepancy and Fréchet distance
for the task Guillory et al. (2021), they mainly use first and second-order summary statistics of source
and target data features from a model’s penultimate layer. Moreover, the output distances are not
calibrated, meaning labeled data from the target domain is required to learn an additional regression
model, and often underperform on shifts the regression model was not trained on Garg et al. (2022).
In contrast, our method considers the cost to transform samples from the source to the target domain,
leveraging information from every sample instead of only the mean and covariance. By representing
each sample through its softmax vector, we empirically show that the resulting EMD between the
source and target data after de-biasing serves as a highly robust estimator of a model’s performance
on the target domain and outperforms previous methods on three benchmark OOD datasets.

2 METHOD

2.1 OPTIMAL TRANSPORT AND WASSERSTEIN METRIC

In recent years, optimal transport theory has found numerous applications in the field of machine
learning. Optimal transport aims to move one distribution of mass to another as efficiently as possible
under a given cost function. Wasserstein distances are rooted in the optimal transportation problem,
providing a robust mathematical framework for comparing probability distributions that respect
the underlying space geometry. Specifically, the p-Wasserstein distance between two probability
measures µ and ν is defined as:

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
∥x− y∥pdπ(x, y)

)1/p

(1)

where Π(µ, ν) is the set of all possible couplings. However, in most applications, we have to work
with empirical measures. Let X1, ..., Xn ∼ P , and Y1, ..., Ym ∼ Q be i.i.d. samples, and define the
empirical measures Pn = 1

n

∑n
i=1 δXi and Qn = 1

m

∑m
i=1 δYi . Then the empirical estimator of the

p-Wasserstein distance is:

Wp(Pn, Qm) =

 inf
π∈Π(Pn,Qm)

m,n∑
i,j=1

∥Xi − Yj∥pπij

1/p

(2)

which can be solved as a linear assignment problem. In particular, when p = 1, the metric (1-
Wasserstein distance) is commonly known as the Earth Mover’s Distance (EMD), and the resulting
cost metric between samples is Manhattan distance. In the following section, we will demonstrate
how we leverage EMD to tackle the problem of estimating a model’s performance on test data.

2.2 CONFIDENCE OPTIMAL TRANSPORT

In this section, we introduce our method, Confidence Optimal Transport (COT), which leverages the
optimal transport framework to predict the performance of a trained classifier on the target domain
consisting of only unlabeled data Xt = {xt

1:m}. In its essence, COT uses the empirical estimator of
the Earth Mover’s Distance between labels from the source domain and softmax outputs of samples
from the target domain to provide highly accurate estimates.

For COT to provide unbiased estimates, the classifier needs to be first calibrated on a validation set
from the source domain. Let C be our classifier of interest. Given validation set {Xs, Y s} from the
source, we say C is perfectly-calibrated if C(Xs) = (Ŷ s, P̂ s) satisfies the following equation:
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Table 1: We compute coefficients of determination (R2) and rank correlations (ρ) to measure the
linear correlation between a method’s output quantity and the actual test error (the higher the better).
COT achieves superior performance than all existing methods across different models and datasets.

Dataset Network AC Entropy GDE ATC ProjNorm COT

R2 ρ R2 ρ R2 ρ R2 ρ R2 ρ R2 ρ

CIFAR10

ResNet18 0.825 0.980 0.862 0.982 0.842 0.981 0.875 0.987 0.947 0.988 0.996 0.998
ResNet50 0.950 0.995 0.949 0.995 0.959 0.995 0.885 0.989 0.936 0.989 0.993 0.996
VGG11 0.710 0.938 0.762 0.958 0.723 0.948 0.548 0.851 0.756 0.949 0.994 0.993
Average 0.828 0.971 0.858 0.978 0.841 0.975 0.769 0.942 0.880 0.975 0.994 0.996

CIFAR100

ResNet18 0.943 0.987 0.932 0.984 0.950 0.988 0.927 0.985 0.969 0.974 0.995 0.997
ResNet50 0.957 0.987 0.948 0.984 0.962 0.989 0.955 0.991 0.982 0.991 0.992 0.996
VGG11 0.794 0.959 0.821 0.973 0.870 0.978 0.736 0.975 0.653 0.849 0.996 0.997
Average 0.898 0.978 0.900 0.980 0.927 0.985 0.873 0.984 0.868 0.938 0.994 0.997

ResNet18 0.755 0.923 0.664 0.892 0.777 0.913 0.751 0.935 0.973 0.990 0.995 0.998
Tiny ResNet50 0.844 0.975 0.776 0.954 0.892 0.981 0.800 0.962 0.983 0.990 0.994 0.997

ImageNet VGG11 0.563 0.736 0.493 0.684 0.587 0.748 0.746 0.837 0.671 0.825 0.987 0.992
Average 0.727 0.878 0.644 0.843 0.752 0.881 0.766 0.911 0.876 0.935 0.992 0.996Correlation: CIFAR100 {Entropy, ProjNorm, COT}

COTProjNormEntropy
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Figure 1: We plot the output metric value against the true test error on CIFAR-100C using ResNet50.
Compared to Entropy and ProjNorm, COT shows a stronger linear correlation.

P(Ŷ s = Y s|P̂ = p) = p, ∀p ∈ [0, 1] (3)

where Ŷ s denotes class predictions, P̂ s denotes associated confidences (probability of correctness),
and probability p is over the joint distribution. In practice, Eq. 3 implies that when a model is
perfectly calibrated, the averaged confidence should be equal to its accuracy. We used Temperature
Scaling proposed in Guo et al. (2017) to perform model calibration.

Now suppose classifier C is perfectly-calibrated on the source distribution, and let St =
{softmax(C(xt

i:m))} be the softmax outputs of our classifier C on the target dataset Xt = {xt
1:m}.

The estimated error on the target domain Xt via COT is defined as:

̂TestError =
1

2
EMD(St, Y s) =

1

2
min

π∈Π(St,Y s)

m,n∑
i,j=1

∥si − yj∥πij (4)

where Y s = {ys1:n} are simply labels of the validation data from the source domain in one-hot format.
Thus, while COT computes a distance metric between the source and target domain, it doesn’t require
saving any samples from the source domain. In fact, instead of using Y s, we can even avoid saving
Y s by generating Ỹ s on the fly given knowledge of the label distribution.

Next, we will provide some intuitions on Eq. 4 as well as why we require the classifier to be calibrated.
Imagine a model with 80% accuracy on the source validation set. When it is calibrated, the model will
output softmax scores such as [0.8, 0.1, 0.1], [0.1, 0.8, 0.1] on samples from the source test set. When
calculating the coupling π in 2 to move one distribution to another, softmax output [0.8, 0.1, 0.1] will
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Table 2: We use Mean Absolute Error (MAE) to measure the difference between predicted test error
and the true test error across different architectures and benchmark datasets. COT, together with AC,
GDE, and ATC could provide direct estimates, in contrast to Entropy and ProjNorm, which only
demonstrate linear correlation.

Dataset Network AC GDE ATC COT

CIFAR10

ResNet18 10.6 13.1 3.68 1.9
ResNet50 6.5 9.65 3.17 1.50
VGG 11 10.4 22.5 6.94 1.94
Average 9.2 15.1 4.6 1.8

CIFAR100

ResNet18 11.3 14.9 3.6 2.9
ResNet50 11.2 19.2 3.5 3.3
VGG 11 11.7 31.2 6.2 2.2
Average 11.4 21.8 4.5 2.8

TinyImageNet

ResNet18 12.45 27.5 4.48 3.43
ResNet50 13.7 29.8 3.49 3.24
VGG 11 12.68 43.53 7.41 2.02
Average 12.95 33.60 5.12 2.90

be matched to label [1, 0, 0] and [0.1, 0.8, 0.1] to [0, 1, 0]. Thus, when using Manhattan distance
(which is ground cost used by EMD), the cost for a single pair will be (1− 0.8) + (0.2− 0) = 0.4,
which is double the error. Thus, we use EMD (1-Wasserstein distance) and divide it by 2 in Eq. 4.
At this point, it should be clear that model calibration is a necessity: COT will underestimate the
error when the model is overconfident and overestimate when it is underconfident. As models usually
become less confident on out-of-distribution samples Hendrycks & Gimpel (2016), we expect COT
to output larger error estimates on OOD data. Meanwhile, it is natural to expect COT to outperform
simple baselines such as Averaged Confidence, which only utilizes the average confidence instead of
the whole softmax output like COT does.

In terms of computational complexity, since COT requires calculating the EMD, its computation time
is O(n3). While such complexity seems rather unscalable at the first glance, we will show in Sec. 3
that COT only requires 2000 samples to provide state-of-the-art performance. Thus, when having a
large amount of data, we could break it into sufficiently-large subsets and simply apply COT multiple
times to obtain a good estimate.

3 EXPERIMENTS

We evaluated COT on three OOD benchmark datasets and compared it against several existing
methods. COT shows state-of-the-art performance on all evaluation metrics.

Dataset For image classification tasks, we utilized three synthetic-shift datasets, CIFAR10, CI-
FAR100, Tiny ImageNet as in-distribution data and their corrupted versions, CIFAR10-C, CIFAR100-
C, and Tiny ImageNet-C Hendrycks & Dietterich (2018), as out-of-distribution datasets. Each
standard dataset contains several types of common corruptions in their corrupted counterparts such as
change of brightness, existence of fog, occurrence of defocus blur, etc., where each corruption type
has 5 levels of severity.

Architectures We ran experiments using three different architectures ResNet18, ResNet50 He
et al. (2016), and VGG11Simonyan & Zisserman (2014), for all three datasets. We reserved 10, 000
images as validation set from each dataset. For each architecture, we load the weights pretrained on
ImageNet1k Russakovsky et al. (2015), and fine-tune on the target dataset. Since the datasets used
in our experiments have low resolution (32× 32 for CIFAR, and 64× 64 for Tiny ImageNet), we
upsampled the images to 224× 224. After fine-tuning, we calibrated the model on the validation set
using Temperature Scaling Guo et al. (2017).
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Prediction: TIN {AC, GDE, ATC, COT}

Figure 2: We compare COT’s prediction accuracy compared to several other methods. The scattered
points are estimates against true error. Since output metric value should be a direct estimate of the
test error, we added a dashed black line denoting y = x. We can see that COT provides consistent
estimates, especially when the shifts are large.

Methods We consider five existing methods to compare against COT: Averaged Confidence (AC)
Hendrycks & Gimpel (2016), Entropy Wang et al. (2020), Generalized Disagreement Equality (GDE)
Jiang et al. (2021), Averaged Threshold Confidence (ATC) Garg et al. (2022), and Projection Norm
(ProjNorm) Yu et al. (2022). AC is a simple baseline that uses the a model’s average confidence to
predict performance. Entropy shows that there is strong linear correlation between the entropy of
a model’s softmax outputs and its performance on OOD data. GDE shows that we can evaluate a
model’s generalization performance through its disagreement rate with another model independently
trained with a different seed. ATC adopts a thresholding strategy by first learning a threshold of the
score function of a model’s softmax outputs on the validation set and then using the percentage of
samples with scores below the threshold as the estimated error rate. Finally, ProjNorm shows that a
model’s performance on OOD data is linearly correlated to its difference in parameter space from
a reference model that’s trained with pseudo labels on the target OOD data. It’s worth noting that
Entropy and ProjNorm only demonstrate a linear correlation between the output quantity and the test
error, while AC, GDE, ATC, and our method COT not only show linear correlation but also give a
direct estimate of the test error.

Evaluation Metrics We utilized three evaluation metrics following prior works Yu et al. (2022);
Garg et al. (2022). The first two, coefficient of determination (R2) and Spearman’s rank correlation
coefficient (ρ), measure the linear correlation between a method’s output quantity and the actual test
error. The third one, Mean Absolute Error (MAE), measures how good a method’s estimate of the
test error is compared to the true error. We adopted R2 and ρ as evaluation metrics as methods such
as Entropy and ProjNorm do not give a direct estimate of the error; rather, they output a quantity
that’s linearly correlated with the error. These methods are less ideal as they require labeled OOD
data to find the line, but still relevant.

Results We summarize the linear correlation results in Table 1. We can see that COT consistently
outperforms all other methods in terms of R2 and ρ. Across different datasets and architectures,
COT is able to maintain R2 > 0.987 and ρ > 0.992. From Fig. 1, we observe that COT gives better
estimates than ProjNorm when the error is small, and outperforms Entropy when the error is large.
In general, we find that when the shifts are large, COT provides more consistent estimates than AC,
Entropy, GDE, and ATC, which often underestimate the error.
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Figure 3: We analyzed the sample complexity of COT and compared with ATC. We found that COT
is more sensitive to the number of test samples, but outperforms ATC with 1000 or more samples.

As for the estimation error measured by mean absolute error (MAE), we compare COT with AC,
GDE, ATC, which provide direct error estimates. We summarize the results in Table 2 and Fig.
2. Again, we see that COT demonstrates notable improvements over previous methods, especially
when encountering large shifts. In addition, we would like to point out two observations. Firstly,
while COT performs consistent estimates over different architectures, other methods often have
difficulty estimating VGG11’s error despite similar source performance. This makes COT more
broadly applicable to different architectures. Meanwhile, it would be interesting to further understand
the root of such discrepancy. Secondly, in our experiment setting, GDE seems to systematically
underestimate the test error. The reason is likely that both models started from the same pretrained
weights, so the only stochasticity we could impose was the training data order. One would expect the
two models fine-tuned from the same pretrained weights might be more similar to each other than
two with different initialization trained from scratch. We plan to perform experiments with models
trained from scratch in the future, but we do want to point out that this phenomenon undermines the
practicality of GDE as transfer learning is frequently used to improve models’ performance.

Sample Complexity In this section, we answer the question: how many test samples are required
for our method to provide accurate error estimates? We vary the number of test samples from 100 to
10000 and conduct the experiments using the ResNet50 architecture. The main results are summarized
in Fig 3. We can see that COT can still outperform ATC with as few as 1000 samples. However,
COT deteriorates when there are only 1 or 2 samples for each class (CIFAR-100 and Tiny-ImageNet).
This is expected as a good empirical estimation of distribution distances would require a sufficient
sample size. Empirically, COT works the best when there are at least 10 samples for each class
on average. By contrast, ATC is insensitive to the number of test samples, which is unsurprising,
since ATC uses a score function to reduce the softmax outputs to a scalar and adopts a thresholding
strategy to estimate the error. To summarize, COT provides superior error estimates when there are at
least 2000 test samples. While computing the EMD generally requires a computation time of O(n3),
current open-source solvers Flamary et al. (2021) can find the solution of this scale (n = 2000) within
seconds. When we have a large number of samples from the target domain, we can essentially break
them down into small batches and take the average of batch estimates as the final estimate.

4 CONCLUSION AND FUTURE WORK

In this work, we proposed COT, a novel method providing robust estimations of a model’s perfor-
mance on an out-of-distribution target domain without any additional annotation. COT consistently
outperforms existing methods on three synthetic shift datasets across various architectures. For next
steps, we plan to evaluate our method on natural shifts due to differences in the image collection
process. In terms of computational complexity, while solving for the EMD in COT requires cubic
time, we showed that COT only requires a batch size of 2000 to provide superior error predictions.
Thus, simply estimating with COT on subsets instead of the whole dataset allows us to scale it
to a large number of test samples. In future work, we plan to improve COT’s sample complexity.
Finally, we admit that the current formulation of COT is mostly based on heuristics and empirical
observations. We are seeking a more formal understanding of why COT works well.
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