

Data Dowsing: Determining Data Collection Priorities

John Doe*¹

¹Affiliation 1

{jane.doe}@affiliation.com

001 Abstract

002 This work proposes a novel framework, data dowsing,
003 to determine which data is needed to improve LLMs.
004 This framework is based on estimating influence and
005 imposing simplifications based on concept domains
006 to circumvention computational intractability.

007 1 Motivation

008 The goal of this work is to sketch a solution to sup-
009 port issues faced in creating new foundation models
010 and for resources constrained languages. The ap-
011 proach here is to use influence as signal to determine
012 which concepts in a model require more data. Influ-
013 ence is a measure of how much a specific data point
014 affects a model[1]. Through using influence, the
015 objective is to determine which data is needed most
016 to improve a model. Given that foundation models
017 have already siphoned conventional data sources,
018 getting direction via influence, allows model devel-
019 opers to prioritize which data to collect and where
020 to focus investment. Additionally, through using
021 derived metrics from influence, one can estimate a
022 saturation point of model learning[2]. This estimates
023 how many more data is needed to train a model,
024 given its current configuration. This can be used in
025 inform when a developer should update their model
026 architecture as the amount of data will not be a
027 significant limiting factor in performance.

028 For resource constrained languages, as is the case
029 in Norwegian, this technique provides guidance on
030 where to prioritize the collection of data. While the
031 case has significant differences than with the training
032 of large foundation models, data dowsing provides a
033 prioritization on how to distribute resources to best
034 improve models and provides a parallel remedy to
035 familiar problem.

036 2 Influence

037 A more formal discussion of influence will be useful
038 for understanding the barriers and innovation being
039 leveraged in the work.

040 Let θ denote the model parameters that minimize

the empirical loss

$$L(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(z_i, \theta),$$

where $\ell(z_i, \theta)$ is the per-sample loss for training
example $z_i = (x_i, y_i)$. The *influence* of a training
example z on the test loss at z_{test} is defined as

$$I(z, z_{\text{test}}) = -\nabla_{\theta} \ell(z_{\text{test}}, \theta)^{\top} H_{\theta}^{-1} \nabla_{\theta} \ell(z, \theta),$$

where $H_{\theta} = \nabla_{\theta}^2 L(\theta)$ is the Hessian of the empirical
loss with respect to θ .

The most significance issue in computing influence
is the inversion of the hessian matrix. It is an
intractable problem that requires simplification.

3 Concept Domains

In this experiment, distinct concept domains are
defined to represent semantically meaningful areas
of knowledge: Astronomy, Economics, Biology, and
Physics. Each domain is characterized by a small
collection of factual statements drawn from their
respective disciplines. These statements are passed
through GPT-2, and the resulting hidden representa-
tions from the final transformer layer are extracted,
averaged, and normalized to form a single vector [3].
This vector encodes the dominant direction of that
domain in the model's latent space. The concept vec-
tor is then used to probe the model's gradients and
curvature along this direction, enabling simplified
estimation of influence and facilitating analysis of
how the model internally represents and prioritizes
different knowledge domains.

4 Estimating Influence

For each concept vector, the gradient of the model's
loss is computed on the facts across disciplines. This
is projected along the concept direction to determine
how each semantic dimension affects the model. To
capture the contours of the loss landscape, Hessian-
vector products are computed using double back-
propagation [4].

These HVPs allow the system to solve the linear
system

$$(H + \lambda I)z = g$$

*Corresponding Author.

080 through a Conjugate Gradient (CG) solver [5], where
 081 H is the Hessian, g is the gradient vector, λ is a small
 082 damping term for stability, and $z \approx H^{-1}g$ represents
 083 the approximate inverse-curvature response.

084 The influence value for each concept is then ob-
 085 tained as the inner product

$$086 \quad I = g^\top z,$$

087 which quantifies how much the model's loss would
 088 change if data aligned with that concept were added.
 089 A higher I indicates that changes along this concept
 090 direction have a stronger effect. These influence
 091 values are normalized and ranked across the do-
 092 mains. A power law saturation model estimates how
 093 many additional samples from each domain would
 094 be required before further data yields diminishing
 095 returns[6].

096 5 Saturation Estimation

097 To estimate how additional training data would
 098 affect performance, a power law saturation model is
 099 applied. The mean per example influence, denoted
 100 by $\mu(n)$, is assumed to decay as the number of
 101 samples n increases according to

$$102 \quad \mu(n) = c(n + N_0)^{-\alpha},$$

103 where c is a proportionality constant, N_0 is an offset
 104 that adjusts the curve near small sample sizes, and α
 105 controls the rate diminishing returns. To determine
 106 the number of additional samples required before the
 107 marginal improvement drops, the following relation
 108 is solved:

$$109 \quad \mu(n + \Delta n) = 0.1 \mu(n),$$

110 yielding

$$111 \quad \Delta n = (n + N_0)(0.1)^{-1/\alpha} - N_0 - n.$$

112 This value of Δn represents the estimated number
 113 of new samples needed for the concept to reach a
 114 point of diminishing returns.

115 6 Metrics

116 The following metrics capture the magnitude and
 117 significance of each concept to model its performance
 118 and guide how much more data is required to sat-
 119 urate a concept.

- 120 • **Rank:** Prioritization of concept domains based
 121 on their mean per example influence. It deter-
 122 mines which data should be collected first.

- 123 • **Concept:** The domain being evaluated.(
 124 Physics, Astronomy, Biology, Economics)

- **Mean:** The average per example influence 125
 126 value ($I = g^\top z$) across all evaluation texts from
 127 the domain. It represents how strongly the
 128 model's loss responds to directionality. 128
- **Share (%):** The normalized percentage contri- 129
 130 bution of each domain's total influence relative
 131 to the sum of influences across all domains. 132
 Captures how much of the model's learning
 133 potential is dominated by a specific domain. 133
- $\Delta n@10\%$: The estimated number of additional 134
 135 samples required before the marginal gain in
 136 that concept's influence drops to 10% of its
 137 current value, as determined by the power-law
 138 saturation model. 138
- **t vs rest:** t-statistic comparing the influence 139
 140 scores of the given concept against all others, 141
 indicating how statistically distinct its influence 142
 is from the rest. 142

7 Results

Observe Table 1. Based on evaluating GPT-2, it is 144
 determined that Physics data would be most useful 145
 to collect for this model. Physics is most responsive 146
 to increases in data. However, astronomy has the 147
 greatest share. This suggests that astronomy has 148
 the greatest potential to sway the model's accuracy, 149
 but the gains in performance for Physics outweigh 150
 this consideration. It is also estimated that 128700 151
 more examples are required to saturate the physics 152
 domain for the model. 153

Table 1. Concept priority ranking based on mean per-example influence.

Rank	Concept	Mean	Share	$\Delta n @10\%$	t vs rest
1	Physics	3.7×10^{-2}	10.2%	1.3×10^5	1.01
2	Astronomy	9.4×10^{-1}	44.2%	2.9×10^5	1.00
3	Biology	-2.6×10^{-4}	18.6%	—	0.99
4	Economics	-7.9×10^{-5}	6.1%	—	-1.80

8 Conclusion

Data dowsing is introduced as a framework to sug- 155
 gest the prioritization of data collection to improve 156
 resource constrained models. This framework at- 157
 tempts to estimate influence by imposing constrains 158
 and simplifications to make estimation possible by 159
 constraining analysis within concept domains. 160

161

References

162 [1] P. W. Koh and P. Liang. “Understanding Black-
163 box Predictions via Influence Functions”. In:
164 *Proceedings of the 34th International Confer-
165 ence on Machine Learning (ICML)*. Vol. 70. Pro-
166 ceedings of Machine Learning Research. PMLR,
167 2017, pp. 1885–1894. URL: <https://arxiv.org/abs/1703.04730>.

168

169 [2] A. Clauset, C. R. Shalizi, and M. E. Newman.
170 “Power-law distributions in empirical data”. In:
171 *SIAM Review* 51.4 (2009), pp. 661–703. DOI:
172 [10.1137/070710111](https://doi.org/10.1137/070710111). URL: <https://doi.org/10.1137/070710111>.

173

174 [3] A. Radford, J. Wu, R. Child, D. Luan, D.
175 Amodei, and I. Sutskever. “Language Models
176 are Unsupervised Multitask Learners”. In: *Ope-
177 nAI Technical Report* (2019). URL: https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf.

178

179

180

181 [4] B. A. Pearlmutter. “Fast Exact Multiplication
182 by the Hessian”. In: *Neural Computation* 6.1
183 (1994), pp. 147–160. DOI: [10.1162/neco.1994.6.1.147](https://doi.org/10.1162/neco.1994.6.1.147).

184

185 [5] M. R. Hestenes and E. Stiefel. “Methods of
186 Conjugate Gradients for Solving Linear Sys-
187 tems”. In: *Journal of Research of the National
188 Bureau of Standards* 49.6 (1952), pp. 409–436.
189 DOI: [10.6028/jres.049.044](https://doi.org/10.6028/jres.049.044).

190 [6] S. L. Brue. “Retrospectives: The Law of Di-
191 minishing Returns”. In: *Journal of Economic
192 Perspectives* 7.3 (1993), pp. 185–192. DOI: [10.1257/jep.7.3.185](https://doi.org/10.1257/jep.7.3.185). URL: <https://doi.org/10.1257/jep.7.3.185>.

193

194