
NLDL
#27

NLDL
#27

NLDL 2026 Abstract Submission #27. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Data Dowsing: Determining Data Collection Priorities

John Doe∗1

1Affiliation 1
{jane.doe}@affiliation.com

Abstract001

This work proposes a novel framework, data dowsing,002

to determine which data is needed to improve LLMs.003

This framework is based on estimating influence and004

imposing simplifications based on concept domains005

to circumvention computational intractability.006

1 Motivation007

The goal of this work is to sketch a solution to sup-008

port issues faced in creating new foundation models009

and for resources constrained languages. The ap-010

proach here is to use influence as signal to determine011

which concepts in a model require more data. Influ-012

ence is a measure of how much a specific data point013

affects a model[1]. Through using influence, the014

objective is to determine which data is needed most015

to improve a model. Given that foundation models016

have already siphoned conventional data sources,017

getting direction via influence, allows model devel-018

opers to prioritize which data to collect and where019

to focus investment. Additionally, through using020

derived metrics from influence, one can estimate a021

saturation point of model learning[2]. This estimates022

how many more data is needed to train a model,023

given its current configuration. This can be used in024

inform when a developer should update their model025

architecture as the amount of data will not be a026

significant limiting factor in performance.027

For resource constrained languages, as is the case028

in Norwegian, this technique provides guidance on029

where to prioritize the collection of data. While the030

case has significant differences than with the training031

of large foundation models, data dowsing provides a032

prioritization on how to distribute resources to best033

improve models and provides a parallel remedy to034

familiar problem.035

2 Influence036

A more formal discussion of influence will be useful037

for understanding the barriers and innovation being038

leveraged in the work.039

Let θ denote the model parameters that minimize040
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the empirical loss 041

L(θ) =
1

n

n∑
i=1

ℓ(zi,θ), 042

where ℓ(zi,θ) is the per-sample loss for training 043

example zi = (xi, yi). The influence of a training 044

example z on the test loss at ztest is defined as 045

I(z, ztest) = −∇θℓ(ztest,θ)
⊤H−1

θ ∇θℓ(z,θ), 046

where Hθ = ∇2
θL(θ) is the Hessian of the empirical 047

loss with respect to θ. 048

The most significance issue in computing influ- 049

ence is the inversion of the hessian matrix. It is an 050

intractable problem that requires simplification. 051

3 Concept Domains 052

In this experiment, distinct concept domains are 053

defined to represent semantically meaningful areas 054

of knowledge: Astronomy, Economics, Biology, and 055

Physics. Each domain is characterized by a small 056

collection of factual statements drawn from their 057

respective disciplines. These statements are passed 058

through GPT-2, and the resulting hidden representa- 059

tions from the final transformer layer are extracted, 060

averaged, and normalized to form a single vector [3]. 061

This vector encodes the dominant direction of that 062

domain in the model’s latent space. The concept vec- 063

tor is then used to probe the model’s gradients and 064

curvature along this direction, enabling simplified 065

estimation of influence and facilitating analysis of 066

how the model internally represents and prioritizes 067

different knowledge domains. 068

4 Estimating Influence 069

For each concept vector, the gradient of the model’s 070

loss is computed on the facts across disciplines. This 071

is projected along the concept direction to determine 072

how each semantic dimension affects the model.To 073

capture the contours of the loss landscape, Hessian- 074

vector products are computed using double back- 075

propagation [4]. 076

These HVPs allow the system to solve the linear 077

system 078

(H + λI)z = g 079
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through a Conjugate Gradient (CG) solver [5], where080

H is the Hessian, g is the gradient vector, λ is a small081

damping term for stability, and z ≈ H−1g represents082

the approximate inverse-curvature response.083

The influence value for each concept is then ob-084

tained as the inner product085

I = g⊤z,086

which quantifies how much the model’s loss would087

change if data aligned with that concept were added.088

A higher I indicates that changes along this concept089

direction have a stronger effect. These influence090

values are normalized and ranked across the do-091

mains. A power law saturation model estimates how092

many additional samples from each domain would093

be required before further data yields diminishing094

returns[6].095

5 Saturation Estimation096

To estimate how additional training data would097

affect performance, a power law saturation model is098

applied. The mean per example influence, denoted099

by µ(n), is assumed to decay as the number of100

samples n increases according to101

µ(n) = c (n+N0)
−α,102

where c is a proportionality constant, N0 is an offset103

that adjusts the curve near small sample sizes, and α104

controls the rate diminishing returns. To determine105

the number of additional samples required before the106

marginal improvement drops, the following relation107

is solved:108

µ(n+∆n) = 0.1µ(n),109

yielding110

∆n = (n+N0)(0.1)
−1/α −N0 − n.111

This value of ∆n represents the estimated number112

of new samples needed for the concept to reach a113

point of diminishing returns.114

6 Metrics115

The following metrics capture the magnitude and116

significance of each concept to model it performance117

and guide how much more data is required to satu-118

rate a concept.119

• Rank: Prioritization of concept domains based120

on their mean per example influence. It deter-121

mines which data should be collected first.122

• Concept: The domain being evaluated.(123

Physics, Astronomy, Biology, Economics)124

• Mean: The average per example influence 125

value (I = g⊤z) across all evaluation texts from 126

the domain. It represents how strongly the 127

model’s loss responds to directionality. 128

• Share (%): The normalized percentage contri- 129

bution of each domain’s total influence relative 130

to the sum of influences across all domains. 131

Captures how much of the model’s learning 132

potential is dominated by a specific domain. 133

• ∆n@10%: The estimated number of additional 134

samples required before the marginal gain in 135

that concept’s influence drops to 10% of its 136

current value, as determined by the power-law 137

saturation model. 138

• t vs rest: t-statistic comparing the influence 139

scores of the given concept against all others, 140

indicating how statistically distinct its influence 141

is from the rest. 142

7 Results 143

Observe Table 1. Based on evaluating GPT-2, it is 144

determined that Physics data would be most useful 145

to collect for this model. Physics is most responsive 146

to increases in data. However, astronomy has the 147

greatest share. This suggests that astronomy has 148

the greatest potential to sway the model’s accuracy, 149

but the gains in performance for Physics outweigh 150

this consideration. It is also estimated that 128700 151

more examples are required to saturate the physics 152

domain for the model. 153

Table 1. Concept priority ranking based on mean per-
example influence.

Rank Concept Mean Share ∆n @10% t vs rest

1 Physics 3.7×10−2 10.2% 1.3×105 1.01
2 Astronomy 9.4×10−1 44.2% 2.9×105 1.00
3 Biology −2.6×10−4 18.6% – 0.99
4 Economics −7.9×10−5 6.1% – −1.80

8 Conclusion 154

Data dowsing is introduced as a framework to sug- 155

gest the prioritization of data collection to improve 156

resource constrained models. This framework at- 157

tempts to estimate influence by imposing constrains 158

and simplifications to make estimation possible by 159

constraining analysis within concept domains. 160
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