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Abstract

This work proposes a novel framework, data dowsing,
to determine which data is needed to improve LLMs.
This framework is based on estimating influence and
imposing simplifications based on concept domains
to circumvention computational intractability.

1 Motivation

The goal of this work is to sketch a solution to sup-
port issues faced in creating new foundation models
and for resources constrained languages. The ap-
proach here is to use influence as signal to determine
which concepts in a model require more data. Influ-
ence is a measure of how much a specific data point
affects a model[l]. Through using influence, the
objective is to determine which data is needed most
to improve a model. Given that foundation models
have already siphoned conventional data sources,
getting direction via influence, allows model devel-
opers to prioritize which data to collect and where
to focus investment. Additionally, through using
derived metrics from influence, one can estimate a
saturation point of model learning[2]. This estimates
how many more data is needed to train a model,
given its current configuration. This can be used in
inform when a developer should update their model
architecture as the amount of data will not be a
significant limiting factor in performance.

For resource constrained languages, as is the case
in Norwegian, this technique provides guidance on
where to prioritize the collection of data. While the
case has significant differences than with the training
of large foundation models, data dowsing provides a
prioritization on how to distribute resources to best
improve models and provides a parallel remedy to
familiar problem.

2 Influence

A more formal discussion of influence will be useful
for understanding the barriers and innovation being
leveraged in the work.

Let 0 denote the model parameters that minimize
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the empirical loss

n

o> 6:1,0),

i=1

where £(z;,0) is the per-sample loss for training
example z; = (x;,y;). The influence of a training
example z on the test loss at zies is defined as

I(Z, Ztcst) = _vﬂ‘g(ztcsta H)THglv9£(Za 0)7

where Hg = V3L(6) is the Hessian of the empirical
loss with respect to 6.

The most significance issue in computing influ-
ence is the inversion of the hessian matrix. It is an
intractable problem that requires simplification.

3 Concept Domains

In this experiment, distinct concept domains are
defined to represent semantically meaningful areas
of knowledge: Astronomy, Economics, Biology, and
Physics. Each domain is characterized by a small
collection of factual statements drawn from their
respective disciplines. These statements are passed
through GPT-2, and the resulting hidden representa-
tions from the final transformer layer are extracted,
averaged, and normalized to form a single vector [3].
This vector encodes the dominant direction of that
domain in the model’s latent space. The concept vec-
tor is then used to probe the model’s gradients and
curvature along this direction, enabling simplified
estimation of influence and facilitating analysis of
how the model internally represents and prioritizes
different knowledge domains.

4 Estimating Influence

For each concept vector, the gradient of the model’s
loss is computed on the facts across disciplines. This
is projected along the concept direction to determine
how each semantic dimension affects the model.To
capture the contours of the loss landscape, Hessian-
vector products are computed using double back-
propagation [4].

These HVPs allow the system to solve the linear
system

(H+X)z=g
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through a Conjugate Gradient (CG) solver [5], where
H is the Hessian, g is the gradient vector, A is a small
damping term for stability, and z ~ H~'g represents
the approximate inverse-curvature response.

The influence value for each concept is then ob-
tained as the inner product

I=g' 2z

which quantifies how much the model’s loss would
change if data aligned with that concept were added.
A higher I indicates that changes along this concept
direction have a stronger effect. These influence
values are normalized and ranked across the do-
mains. A power law saturation model estimates how
many additional samples from each domain would
be required before further data yields diminishing
returns|6].

5 Saturation Estimation

To estimate how additional training data would
affect performance, a power law saturation model is
applied. The mean per example influence, denoted
by w(n), is assumed to decay as the number of
samples n increases according to

u(n) = e(n+ No)~,

where c¢ is a proportionality constant, Ny is an offset
that adjusts the curve near small sample sizes, and «
controls the rate diminishing returns. To determine
the number of additional samples required before the
marginal improvement drops, the following relation
is solved:

w(n 4+ An) = 0.1 u(n),

yielding
An = (n+ Np)(0.1)"Y* — Ny —n.

This value of An represents the estimated number
of new samples needed for the concept to reach a
point of diminishing returns.

6 Metrics

The following metrics capture the magnitude and
significance of each concept to model it performance
and guide how much more data is required to satu-
rate a concept.

e Rank: Prioritization of concept domains based
on their mean per example influence. It deter-
mines which data should be collected first.

e Concept: The domain being evaluated.(
Physics, Astronomy, Biology, Economics)

e Mean: The average per example influence
value (I = g ' z) across all evaluation texts from
the domain. It represents how strongly the
model’s loss responds to directionality.

e Share (%): The normalized percentage contri-
bution of each domain’s total influence relative
to the sum of influences across all domains.
Captures how much of the model’s learning
potential is dominated by a specific domain.

e An@10%: The estimated number of additional
samples required before the marginal gain in
that concept’s influence drops to 10% of its
current value, as determined by the power-law
saturation model.

e { vs rest: t-statistic comparing the influence
scores of the given concept against all others,
indicating how statistically distinct its influence
is from the rest.

7 Results

Observe Table 1. Based on evaluating GPT-2, it is
determined that Physics data would be most useful
to collect for this model. Physics is most responsive
to increases in data. However, astronomy has the
greatest share. This suggests that astronomy has
the greatest potential to sway the model’s accuracy,
but the gains in performance for Physics outweigh
this consideration. It is also estimated that 128700
more examples are required to saturate the physics
domain for the model.

Table 1. Concept priority ranking based on mean per-
example influence.
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Rank Concept

Mean Share An @10% t vs rest

1 Physics  3.7x107% 10.2%  1.3x10° 1.01
2 Astronomy 9.4x1071 44.2%  2.9x10° 1.00
3 Biology —2.6x107% 18.6% — 0.99
4 Economics —7.9x107% 6.1% - —1.80
8 Conclusion 154

Data dowsing is introduced as a framework to sug-
gest the prioritization of data collection to improve
resource constrained models. This framework at-
tempts to estimate influence by imposing constrains
and simplifications to make estimation possible by
constraining analysis within concept domains.
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