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Abstract

Random projection is a straightforward yet effective dimension reduction technique, widely
used in various classification tasks. Following the projection process, quantization is often
applied to further simplify the projected data. Typically, quantized projections are required
to approximately preserve the pairwise distance between original data points, to avoid sig-
nificant performance degradation in classification tasks. To date, this distance preservation
property has been investigated for the commonly-used Gaussian matrix. In the paper,
we further explore this property for the hardware-friendly {0, 1}-binary matrix, specifically
when the projections undergo element-wise quantization into two types of low bit-width
codes: {0, 1}-binary codes and {0,±1}-ternary codes. It is found that the distance preser-
vation property tends to be better maintained, when the binary projection matrix exhibits
sparse structures. This property is corroborated by classification experiments, where very
sparse binary matrices, with only one nonzero entry per column, demonstrate better or
comparable classification performance compared to other more dense binary matrices and
Gaussian matrices. This presents an opportunity to significantly reduce the computational
and storage complexity of the quantized random projection model, without compromising
and potentially even improving its classification performance.

1 Introduction

Random projection is an unsupervised dimension reduction technique Johnson & Lindenstrauss (1984) that
simply projects a data vector x ∈ Rn from high dimension to low dimension via a linear measurement

x′ = Rx, (1)

where R ∈ Rm×n is a random matrix, m � n. For the random matrices with Gaussian distributions
Dasgupta & Gupta (1999), sparse {0,±1}-distributions Achlioptas (2003) and {0, 1}-distributions Dasgupta
et al. (2017); Li & Zhang (2022), it has been proved that the distance between any two original data points x
can be approximately preserved with high probability by their projections. The pairwise distance preservation
property implies the approximate preservation of data structure, which enables random projection to be
widely used in practical classification problems, while not causing drastic performance degradation.

In large-scale classification, it is common to further impose an element-wise quantization operation f(x′) on
the random projection x′ of original data x, such as the popular {0, 1}-binary or {0,±1}-ternary quantization,
in order to further reduce the data complexity. This operation results in a quantized random projection
model, which can be found in many applications and models, such as large-scale retrieval Charikar (2002)
and deep network quantization Wan et al. (2018); Qin et al. (2020). For such a quantization model, the
major concern remains the pairwise distance preservation property. More precisely, provided two data points
u, v ∈ Rn and their projections u′, v′ ∈ Rm, it is necessary to find a random matrix R ∈ Rm×n such that
the relation of ‖f(u′)− f(v′)‖ = ‖u− v‖, or equivalently f(u′)>f(v′) = u>v for normalized data, holds with
high probability. This distance preservation property f(u′)>f(v′) = u>v has been analyzed for Gaussian
matrices Charikar (2002); Li et al. (2014), but not for the sparse {0,±1}-ternary or {0, 1}-binary matrices.
Nevertheless, sparse matrices are preferred in practice because of their simpler structures. To maximally
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simplify the structure of sparse matrices, it is of high interest to estimate their sparsest distribution, namely
the minimal number of nonzero entries under the aforementioned distance preservation condition. This
proposes a discrete optimization problem, which seems hard to be addressed with the probability analysis
method used for Gaussian matrices. In the paper, we show that the problem could be tackled, if the data
to be projected have sparse distributions.

The data of sparse distributions are common in signal processing and machine learning. For instance, it is
known that the natural data of interest, like images and sounds, usually contain coherent structures and
redundant information over spatial or time domains Ruderman (1994); Simoncelli (1999); Weiss & Freeman
(2007); Kotz et al. (2012); Iyer & Burge (2019), and thus allow to be sparsified via globally or locally linear
transforms, such as the discrete cosine transform (DCT) Rao & Yip (2014); Eude et al. (1994), the discrete
wavelet transform (DWT) Mallat (2009), the deep convolutional neural networks (CNN) Krizhevsky et al.
(2012), and so on. In general, the sparse transforms will provide more discriminative features for classifi-
cation, especially when zeroing out the small-magnitude feature elements caused by high-frequency noise
Zarka et al. (2020). Furthermore, the feature discrimination could be improved further, as the remaining
large feature elements are quantized to the values of ±1 or 1 through appropriate ternary or binary quan-
tization Lu et al. (2023). This suggests that employing low bit-width binary and ternary quantization on
sparse features is advantageous for classification in terms of both complexity and accuracy. Then for the
quantized random projection of sparse features, instead of the conventional distance preservation condition
of f(u′)>f(v′) = u>v, we propose the condition of f(u′)>f(v′) = f>(u)f(v), i.e. preserving the distance
between the quantization codes of sparse features, in order to allow the quantized projections to capture
more discriminative features from the original data.

With the quantized sparse features as input, the random projection model is somewhat similar to the
compressed sensing model Donoho (2006). Inspired by the analysis of the sparse {0, 1}-binary matrix-
based compressed sensing Mendoza-Smith & Tanner (2017); Lu et al. (2018), in the paper we investigate the
proposed distance preservation property f(u′)>f(v′) = f>(u)f(v) for the sparse binary matrix-based random
projection. By varying the matrix sparsity, we find that the property tends to be better satisfied by the
very sparse matrices which contain only one nonzero entry per column, than other more dense counterparts.
Accordingly, theses very sparse matrices also achieve better classification performance. This is good news in
terms of both complexity and accuracy. Overall, the major contributions of the paper can be summarized
as follows.

• For the binary matrix-based random projection, we for the first time study the impact of matrix
sparsity on the classification of ternary (and binary) quantized projections. It is found that the
very sparse binary matrix that contains only one nonzero entry per column tends to provide better
classification performance than other more dense matrices, when the original data to be projected
are the sparse features we commonly study, such as the DWT and CNN features generated with the
known datasets YaleB Georghiades et al. (2001); Lee et al. (2005), CIFAR10 Krizhevsky & Hinton
(2009) and ImageNet Deng et al. (2009).

• To estimate the optimal matrix sparsity for classification, we investigate how accurately the ternary
(and binary) quantized projection can preserve the pairwise distance between the ternary (and
binary) quantization of original data, rather than directly between the original data as conventionally
studied. The proposed distance preservation offers two advantages: first, it enables the quantized
projection to obtain more discriminative features from the original data, as the data are the sparse
features described above Lu et al. (2023); and second, it is suited for the analysis of the binary matrix
based quantized random projection, which seems hard to analyze using the conventional distance
preservation condition.

The rest of the paper is organized as follows. In the next section, we review the literature related to the
quantized random projection model. In Section 3, we introduce the basic knowledge about the model and
describe the proposed distance preservation property. Among the binary matrices with different sparsity,
the one that better holds the proposed property is estimated in Section 4. The performance advantage of
such matrix in classification is verified in Section 5. Section 6 concludes the work.
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2 Related work

The quantized random projection model has been studied in two research areas: local similarity hashing
(LSH) Charikar (2002); Boufounos & Rane (2013); Valsesia & Magli (2016) and compressed sensing Jacques
et al. (2013). The former aims to adopt quantized projections to build hash tables for information retrieval,
and the latter aims to reconstruct original data from quantized projections. Different from our work, both
of them, broadly speaking, require the quantized projection f(x′) to preserve the pairwise distance (or
similarity) between original data x, rather than between the data’s quantization f(x). Furthermore, their
studies are mainly focused on Gaussian matrices. In contrast, our attention is restricted to binary matrices,
and in particular the impact of the varying matrix sparsity on the classification of quantized projections.
For the classification of quantized projections, a systematic evaluation has recently been presented in Li
et al. (2014), which demonstrates that compared to unquantized projections, a slight performance reduction
inclines to be caused by 2-bit quantization, and the reduction becomes noticeable for 1-bit quantization.
Contrarily, our study shows that the performance reduction could be avoided or mitigated for the random
projection of sparse features over binary matrices.

For the random projection based on sparse matrices, like {0,±1}-ternary matrices and {0, 1}-binary matrices,
existing research mainly explores the distance preservation property for the linear model (1), without the
quantization considered. Specifically, the `2 distance preservation property of ternary matrices has been
studied in Li et al. (2006), which demonstrates that the property can be well satisfied when the matrix has
the proportion of nonzero entries greater than 1/

√
n. In Dasgupta et al. (2017), the `2 distance preservation

is analyzed for binary matrices, and empirically the matrices tend to reach a stable performance for nearest
neighbors search when containing more than about 10% nonzero entries. In contrast, we demonstrate that
for the quantized projections of sparse features, the binary matrix tends to achieve the best classification
performance when containing only one nonzero entry per column.

3 Problem Formulation

In the paper, we study the random projection model (1) which has the original data x ∈ Rn sparsely
distributed and has the random matrix R ∈ {0, 1}m×n binary distributed. To improve the classification
on the quantization of projected data, we present a novel distance preservation property that maintains
the pairwise distance between the quantization of original data, rather than between the original data
themselves, and then investigate the probability that the property holds for the binary matrix with varying
matrix sparsity. In this section we provide the basic knowledge about the study, including the distribution of
binary matrices R, the distribution of original data x, the quantization functions f(·), as well as the distance
preservation model.

3.1 Binary matrix

For a random binary matrix R ∈ {0, 1}m×n, we assume it contains d (< m) nonzero entries per column,
or say having column degree d. This parameter measures the matrix sparsity, whose impact on distance
preservation will be the core of our research. We denote Ri,j ∈ R as the entry at the i-th row and j-th
column, R∗,j ∈ Rm the j-th column vector, Ri,∗ ∈ R1×n the i-th row vector, Ri,φ ∈ R1×|φ| the intersection of
the i-th row and the columns indexed by φ ⊂ [n], [n] := {1, 2, ..., n}, and R∗,φ ∈ Rm×|φ| the set of the columns
indexed by φ. Moreover, inspired by the analysis of the binary matrix-based compressed sensing Donoho
(2006), in Definition 1 we model the adjacency relation between the binary matrix’s rows and columns, which
corresponds to the mapping relation between the coordinates of original data x and projected data x′. The
relation will be explored in the following distance preservation analysis.
Definition 1 (Adjacency relation between the binary matrix’s rows and columns). Consider the binary
matrix R ∈ {0, 1}m×n with its columns and rows indexed by the variables j and i, respectively. For the
matrix’s j-th column, define its adjacent row set as N (j) = {i : Ri,j 6= 0, i ∈ [m]}; and subsequently, for a
subset of the columns J ⊂ [n], define its adjacent row set as N (J) = {

⋃
j N(j), j ∈ [J ]}. Similarly, for the

matrix’s i-th row, define its adjacent column set as N (i) = {j : Ri,j 6= 0, j ∈ [n]}. Notice that the matrix’s
columns and rows correspond respectively to the element coordinates of the original data x and projected
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data x′, and so the adjacency relation defined above can be used to describe the mapping relation between
the coordinates of the two kinds of data.

3.2 Original data

The analysis of the quantized random projection is related to the distribution of the original data x =
(x1, x2, · · · , xn)> ∈ Rn. In the paper, we propose to study the data with approximately sparse or exactly
sparse distributions, as specified in Definitions 2 and 3.
Definition 2 (Approximately sparse data). A data vector x ∈ Rn is called approximately sparse, if its
element-magnitude-ordered version x∗ = (x∗1, x∗2, · · · , x∗n) follows an exponential decay relation: |x∗i+1|/|x∗i | ≤
e−β , where β is an arbitrary positive constant; and the larger the value of β, the faster the decaying speed.
Definition 3 (Exactly sparse data). A data vector x ∈ Rn is called k sparse, or having sparsity k, if it
contains exactly k (� n) nonzero entries, or say having the support size |supp(x)| = k, supp(x) = {i : xi 6=
0, i ∈ [n]}.

The approximately sparse data are common in various classification tasks, such as the features extracted
with DCT, DWT, CNN and so on. It is known that these features have approximately sparse distributions,
and can be modeled with exponential decay functions Weiss & Freeman (2007); Kotz et al. (2012). Moreover,
they can be further transformed to exactly sparse structures by zeroing out the elements of small magnitude.
Compared to approximately sparse structures, exactly sparse structures have three advantages. First, it can
help reduce the computation complexity of the downstream random projection operation. Second, as studied
in Lu et al. (2023), it tends to improve feature discrimination, favorable for classification. Third, as detailed
latter, it is more easy to analyze, and allows us to simply set the projection’s quantization threshold to be a
constant value, zero. Therefore, in the final experiments we will pay more attention to the performance of
exactly sparse features.

3.3 Quantization function

We adopt two simple yet popular quantization operations, the ternary and binary quantization. The ternary
quantization is formulated as

fτ (xi) =


+ 1, xi > τ

− 1, xi < −τ
0, others

(2)

where the threshold parameter τ ≥ 0 will be empirically determined to control the sparsity of the quantization
fτ (x) of the vector x ∈ Rn. Here we take fτ (·) as an element-wise function and write the vector’s quantization
fτ (x) = (fτ (x1), fτ (x2), · · · , fτ (xn))>. In a similar manner, the binary quantization can be formulated
using only one threshold parameter τ . For brevity, in the following we will focus our analysis on ternary
quantization, and the analysis can be readily extended to binary quantization.

3.4 Distance preservation

Consider the random projection model (1), which has two original data u, v ∈ Rn and corresponding
projections u′, v′ ∈ Rm. We aim to determine the distribution of binary matrix R that ensures the following
distance preservation property

fτ3(u′)>fτ4(v′) = α · f>τ1
(u)fτ2(v) (3)

holding with high probability, where α is a positive constant, and the threshold parameters τi of the quan-
tization functions f(·) will be determined by analysis. Notice that for the convenience of analysis, the
parameter α is introduced to define a relative distance preservation, whose value varying does not affect the
classification of projected data; and the exact distance preservation, namely the case of α = 1, can be easily
obtained by scaling the element values of random matrix.

Different from the traditional quantized random projection model that requires preserving the distance
between two original data u and v, our proposed distance preservation model (3) maintains the distance
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between the two original data’s quantization codes, fτ1(u) and fτ2(v). This proposal is inspired by the
recent finding Lu et al. (2023) that the quantization of sparse features (i.e. our original data) can produce
more discriminative features for classification. Then compared to the conventional distance preservation, the
proposal (3) will help the projection to acquire more discriminative features from the original data. Also,
the proposal can facilitate analysis, since the quantization operation on original data simplifies the data
distribution.

4 Distance preservation analysis

For the projection matrix R ∈ {0, 1}m×n with varying column degree d, in this section we estimate the
optimal column degree d that ensures the proposed distance preservation property (3) holding with high
probability. For ease of analysis, we first describe the desired matrix structure that ensures the property (3)
holding with two given data x ∈ Rn, and then derive the probability that the desired matrix structure holds
with two arbitrary data x ∈ Rn. The analysis results are presented in Theorems 1-3, with comprehensive
proofs outlined in Appendices A.1-A.3. For brevity, we mainly analyze the ternary quantized projections
fτ (x′), and the analysis can be straightforwardly extended to the binary case.

4.1 Distance preservation for two given data

Given two original data points u, v ∈ Rn with deterministic structures, we evaluate the distance preservation
condition separately in Theorems 1 and 2 for two typical data distributions: exactly sparse and approximately
sparse, as specified in Definitions 3 and 2. On the whole, both theorems demonstrate that the proposed
distance preservation (3) will be achieved, if the submatrix R∗,φ of the binary matrix R, indexed by the
support union φ of the two original data’ quantization codes fτ1(u), fτ2(v), has orthogonal columns. The
details are discussed in their respective remarks.
Theorem 1 (Exactly sparse data). Consider the random projection model (1), which has two projected
data u′, v′ ∈ Rm generated from two exactly sparse data u, v ∈ Rn with sparsity k1, k2, provided a random
matrix R ∈ {0, 1}m×n with column degree d (< m). Let φ = supp(u) ∪ supp(v), then |φ| ≤ k1 + k2. If
R>∗,φR∗,φ = dI|φ|, where I|φ| denotes the identity matrix of size |φ|, we have

f0(u′)>f0(v′) = d · f0(u)>f0(v), (4)

where f0(·) is the ternary quantization function (2) with parameter τ = 0.

Remark of Theorem 1. For the theorem, there are three issues worth stating. (i) It is easy to see that the
orthogonal R∗,φ required by the theorem could be obtained, if the size of the support union of two original
data is less than the matrix’s row size, that is |φ| ≤ m. This condition can be easily achieved by zeroing out
the small-magnitude elements of sparse features, and as stated before, this sparsifying operation can improve
feature discrimination, beneficial to classification Lu et al. (2023). (ii) The four ternary functions of (4) all
simply fix their threshold parameter to be τ = 0 for both the original data and projected data, avoiding the
burden of parameter tuning. (iii) The derivation of (4) depends on the distribution of the nonzero entries
of binary matrix, but not on their specific values. Therefore, the result (4) is also available for the random
{0,±1}-ternary matrix. In the paper, we will focus on binary matrices for its simpler structure. (iv) The
ternary or binary quantization of exactly sparse data remains exactly sparse, and the quantization can be
used for easier projection, without altering the final projection result (4). In other words, Theorem 1 holds
for the random projection model which has both the original data and projected data quantized to be ternary
or binary codes.
Theorem 2 (Approximately sparse data). Consider the random projection model (1), which has two
projected data u′, v′ ∈ Rm generated from two approximately sparse data u, v ∈ Rn, provided a ran-
dom matrix R ∈ {0, 1}m×n with column degree d. For u and v, assigning two ternary functions fτ (·)
with τ = τ1 = |u∗k1

|+|u∗k1+1|
2 and τ = τ2 = |v∗k2

|+|v∗k2+1|
2 , respectively, such that supp(fτ1(u)) = k1 and

supp(fτ2(v)) = k2, where u∗k1
denotes the k1-th largest element of u in magnitude and v∗k2

is defined sim-
ilarly. Let φ = supp (fτ1(u)) ∪ supp(fτ2(v)), then |φ| ≤ k1 + k2. If R>∗,φR∗,φ = dI|φ| and u, v have their
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decaying parameter β ≥ ln(2 +
√

3), we can derive that

fτ1(u′)>fτ2(v′) = d · fτ1(u)>fτ2(v). (5)

Remark of Theorem 2. (i) The analysis and result for approximately sparse data are similar to those we
have obtained for exactly sparse data in Theorem 1. One of major differences is the choice of the threshold
parameter τ for ternary functions. As discussed in Section 3.4, we need to select a proper τ to produce
a data sparsity k that can improve feature discrimination when transforming u to fτ (u), thus leading to
better classification performance. As shown in Lu et al. (2023), the desired sparsity k can be empirically
determined. Without loss of generality, we assume two different sparsity values k1, k2 (corresponding to τ1
and τ2) for the two original data points u, v, in order to obtain the desired quantization performance. In
practical applications, for simplicity, we suggest to select a same sparsity k for the two data, since they are
generally obtained from the same scene and share similar distributions. (ii) Moreover, it is worth noting that
besides the orthogonal constraint on the submatrix R∗,φ, the derivation of (5) also imposes a constraint on
the distribution of the original sparse data: the data should have its decaying parameter β ≥ ln(2 +

√
3),

and roughly speaking, the data needs to decay sufficiently fast. Notice that the lower bound for β is a
sufficient but not necessary condition, and empirically our optimal matrix estimation is not sensitive to the
lower bound of β and tends to achieve the desired classification performance even for the sparse features
with smaller β.

4.2 Distance preservation for two arbitrary data

To generalize the distance preservation property (3) from two fixed data to arbitrary data, we should extend
the condition of orthogonal R∗,φ from a fixed column set φ = supp (fτ1(u)) ∪ supp(fτ2(v)) to an arbitrary
set φ ⊂ [n], |φ| = k1 + k2 < m. For a randomly generated binary matrix R ∈ {0, 1}m×n, however, it is hard
to ensure its each submatrix R∗,φ to have orthogonal columns. In Theorem 3, we analyze the probability of
having orthogonal R∗,φ under the varying column degree d.
Theorem 3. Given a random matrix R ∈ {0, 1}m×n with column degree d. Consider its submatrix R∗,φ
with φ ⊂ [n]. Denote Pr{R>∗,φR∗,φ = dI|φ|} as the probability of R>∗,φR∗,φ = dI|φ| holding for any φ ⊂ [n],
with |φ| ≥ 2 and d|φ| ≤ m. Provided m and φ, we have the probability

Pr{R>∗,φR∗,φ = dI|φ|} = [(m− d)!]|φ|
(m!)(|φ|−1)(m− |φ|d)! (6)

≤
∏|φ|−1
`=1 (m− `)
m|φ|−1 (7)

which has the value of (6) monotonically decreasing with the column degree d, and has the equality of (7)
achieved by d = 1.

Remark of Theorem 3. (i) The theorem demonstrates that the probability (6) of having orthogonal R∗,φ
will increase with the decreasing of column degree d. It suggests that the distance preservation property
(3) should be satisfied with higher probability by the binary matrix with smaller column degree d. Then
it is reasonable to conjecture that the classification of quantized projections will reach its best performance
with very sparse binary matrices, i.e. the ones with column degree as small as d = 1, as verified in our
experiments. (ii) Moreover, it is worth noting that besides the column degree d, the probability (6) is also
related to the size of φ. For the probability derived with d = 1 in (7), it is easy to see that the smaller
the |φ|, the higher the probability. This means that the more sparse features x (with smaller sparsity k)
should result in the better distance preservation property (3), and this relation is similar to the condition of
compressed sensing Donoho (2006).

4.3 Extension to binary quantization

In Theorems 1 and 2, we only investigate the ternary quantization (2) for the distance preservation condition
(3). From the proofs of the two theorems, it can be seen that their results can be directly extended to the
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case of binary quantization, with the same threshold values τi. Then by Theorem 3, we can predict that
the binary quantization of projected data will achieve its best classification performance when using very
sparse binary matrices. This is verified in our experiments. In the paper, we pay more attention to ternary
quantization than to binary quantization, as the latter generally performs worse due to discarding more
feature elements Lu et al. (2023).

5 Experiments

5.1 Setting

In this section, we investigate the classification performance on the ternary and binary-quantized projections
of sparse data. The random projection is implemented using random binary matrices with different column
degrees. Our goal is to find the column degree that leads to the best classification performance. For
comparison, the classification performance is also tested for the popularly used Gaussian matrices and for
the non-quantized projections. For brevity, we mainly provide the classification results on the ternary
quantized projections and defer the results about the binary quantization to Appendix A.4.

5.1.1 Classifier

Without loss of generality, we test the classification with the K-nearest neighbor (KNN) classifier Peterson
(2009) (withK = 5 for all experiments), which has performance fully dependent on the distance between data,
without introducing additional operations to further improve the data discrimination. In other words, KNN
can reflect the naive discrimination between data. Therefore, the comparative performance we derive with
KNN for the binary matrices with different column degrees should also be obtained using other classifiers,
such as the support vector machines (SVM) Cortes & Vapnik (1995), with experimental results provided in
Appendix A.4.

5.1.2 Data

The sparse data to be projected are generated from the datasets YaleB Georghiades et al. (2001); Lee et al.
(2005), CIFAR10 Krizhevsky & Hinton (2009) and Mini-ImageNet Vinyals et al. (2016), respectively via the
feature transforms DWT Mallat (2009), AlexNet Conv5 Krizhevsky et al. (2012) and VGG16 Conv5_3 Si-
monyan & Zisserman (2014). To provide relatively good classification performance, we assign more advanced
feature transforms to more complex datasets. The datasets are briefly introduced as follows. YaleB contains
the face images of 38 persons, with about 64 samples per person. From the dataset, we randomly select
9/10 samples for training and the rest for testing. CIFAR10 consists of 10 classes of color images, with 6000
samples per class. Mini-ImageNet is a subset of ImageNet Deng et al. (2009), which consists of 100 classes
of color images, each class having 600 samples. For the latter two datasets, we use their default training and
testing samples, with the ratio of 5/1. For the three datasets, we normalize the feature vectors with zero
mean and unit variance, and reduce the vector dimensions several times to the order of thousands for easier
simulation. The dimension reduction may decrease the classification accuracy but not influence our compar-
ative study. To verify Theorems 1 and 2, we evaluate two kinds of sparse data that have approximately and
exactly sparse distributions, respectively, as specified in Definitions 2 and 3. The approximately sparse ones
are the original sparse features generated with DWT and CNN, and the exactly sparse ones are obtained
by further sparsifying the features with given sparsity ratios of k/n = 1%, 5%, 10% and 20%. Compared
to the original, approximately sparse features, as mentioned earlier, the resulting exactly sparse features are
usually more favorable for classification Lu et al. (2023). For the random projection model (1), we test two
different projection ratios: m/n = 10% and 50%.

5.2 Results

The results are provided in Figs. 1-4 and Fig. 5, respectively for the exactly sparse features and the
approximately sparse features. In each figure, the first and second rows correspond respectively to the
random projection cases of projection ratios m/n = 10% and 50%, and the four subfigures in each row
correspond to the exactly sparse features with sparsity ratio k/n = 1%, 5%, 10% and 20%. Considering
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(a) k/n = 1%, m/n = 10% (b) k/n = 5%, m/n = 10% (c) k/n = 10%, m/n = 10% (d) k/n = 20%, m/n = 10%
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(e) k/n = 1%, m/n = 50% (f) k/n = 5%, m/n = 50% (g) k/n = 10%, m/n = 50% (h) k/n = 20%, m/n = 50%

Figure 1: Classification accuracy for the ternary-quantized (TQ) (and non-quantized) projections of the exactly sparse features
of YaleB (DWT), with three different feature sparsity ratios k/n = 1%, 5%, 10% and 20%, using two projection matrices: the
Gaussian matrix (GM) and the binary matrix (BM) with varying column degree BM-d ∈ [1, 10], under two projection ratios
m/n = 10% and 50%.

the fact that exactly sparse features outperform approximately sparse features, and ternary quantization
outperforms binary quantization Lu et al. (2023), for brevity, we mainly analyze the classification on the
ternary quantized projections of exactly sparse features, as illustrated in Figs. 1-3. The analysis is conducted
from the following several aspects.

5.2.1 Binary matrices with different column degrees

By the remark of Theorem 3, the proposed distance preservation property (3) tends to be held with higher
probability, when the binary matrix has a smaller column degree d. Then, the classification accuracy of
quantized projections is expected to decrease with the increased column degree d. This performance trend
is basically verified by the results illustrated in Figs. 1-3, see the x-marked, solid lines for the classification
of the ternary quantized projections of the exactly sparse features with different sparsity ratios k/n = 1%,
5%, 10% and 20%. It can be seen that the performance declining speed differs with different data types,
and it seems that the more easy the data for classification, such as the DWT features of YaleB shown in
Fig. 1, the more obvious the performance advantage of d = 1 over other larger d. An exception worth
mentioning is the case of k/n = 1%, as shown in Figs.1 and 2, where d = 1 performs slightly worse than
d = 2. This deviation should be attributed to the gap between theory and practice: the classification of
quantized projections relates not only to the distance preservation property studied here, but also to other
factors out of our scope, such as feature discrimination. Despite the imperfect, our theoretical estimation
is generally supported by the results of Figs. 1-3: the column degree d = 1 tends to provide better or at
least comparable performance to other larger d, in the classification of the ternary-quantized projections of
exactly sparse features.

5.2.2 Quantized vs. non-quantized projections

By Lu et al. (2023), quantized projections can provide better classification performance than non-quantized
projections, if both the original data and random matrix have sufficiently sparse distributions, and the
quantization threshold τ for projected data is properly selected. This performance property is also proved
in our experiments. Comparing the classification results provided in Figs. 1-3 for the ternary-quantized
projections (x-marked, solid lines) and non-quantized projections (x-marked, dashed lines), it can be seen
that the former tends to achieve better performance than the latter, when the column degree d of binary
matrix and the sparsity ratio k/n of original data (i.e. the exactly sparse features) both become smaller, such
as the case of d=1 and k/n = 1%. Note that by Theorem 1 we here simply set the quantization threshold
as τ = 0, and the better performance for quantized projections should be obtained if the threshold is more
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Figure 2: Classification accuracy for the ternary-quantized (TQ) (and non-quantized) projections of the exactly sparse features
of CIFAR10 (AlexNet), with three different feature sparsity ratios k/n = 1%, 5%, 10% and 20%, using two projection matrices:
the Gaussian matrix (GM) and the binary matrix (BM) with varying column degree BM-d ∈ [1, 10], under two projection ratios
m/n = 10% and 50%.
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Figure 3: Classification accuracy for the ternary-quantized (TQ) (and non-quantized) projections of the exactly sparse features
of Mini-ImageNet (VGG16), with three different feature sparsity ratios k/n = 1%, 5%, 10% and 20%, using two projection
matrices: the Gaussian matrix (GM) and the binary matrix (BM) with varying column degree BM-d ∈ [1, 10], under two
projection ratios m/n = 10% and 50%.

carefully selected as in Lu et al. (2023). Overall, the above results indicate that the sparse binary matrix
with d = 1 can obtain better classification performance on quantized projections than on non-quantized
projections. This result is highly attractive both in terms of complexity and accuracy.

5.2.3 Binary matrices vs. Gaussian matrices

As mentioned before, Gaussian matrices have been widely used for random projection. It is interesting to
compare its performance with binary matrices in the classification of ternary quantized projections. From
Figs. 1-3, it can be seen that binary matrices (x-marked solid lines) tend to become better than Gaussian
matrices (circle-marked solid lines), as the column degree d of binary matrix and the sparsity ratio k/n
of original data both become smaller, such as the case of d=1 and k/n = 1%. So in the random projec-
tion of sparse features, instead of Gaussian matrices, we are encouraged to use sparse binary matrices for
improvements both in complexity and accuracy.
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(e) k/n = 1%, m/n = 50% (f) k/n = 5%, m/n = 50% (g) k/n = 10%, m/n = 50% (h) k/n = 20%, m/n = 50%

Figure 4: Classification accuracy for the binary-quantized (BQ) (and non-quantized) projections of the exactly sparse features
of YaleB (DWT), with three different feature sparsity ratios k/n = 1%, 5%, 10% and 20%, using two projection matrices: the
Gaussian matrix and the binary matrix with varying column degree BM-d ∈ [1, 10], under two projection ratios m/n = 10%
and 50%.
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Figure 5: Classification accuracy for the ternary-quantized (TQ) (and non-quantized) projections of the original, approximately
sparse features: YaleB (DWT), CIFAR10 (AlexNet), Mini-ImageNet (VGG16), using two projection matrices: the Gaussian
matrix (GM) and the binary matrix (BM) with varying column degree BM-d ∈ [1, 10], under two projection ratios m/n = 10%
and 50%.

5.2.4 Binary quantized projections

By the discussion in subsection 4.3, the theoretical properties of binary matrices we derive with ternary
quantized projections in Theorems 1-3 should also hold with binary quantized projections. In other words,
the performance trends derived in Figs. 1-3 for ternary projections, should be also achievable for binary
projections. To verify this, we examine the classification on binary projections in Fig. 4, see the supplemen-
tary material for more results. Fig. 4 shows that similarly as the classification of ternary projections, in the
classification of binary projections the binary matrix with column degree d = 1 exhibits better or at least
comparable performance than other more dense counterparts. Moreover, it is worth mentioning that binary
quantization performs worse than ternary quantization, as found in Lu et al. (2023), due to discarding more
feature elements.
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5.2.5 Approximately sparse features

In Fig. 5, we provide the classification results on the ternary quantized projections of the original, approx-
imately sparse features. It can be seen that the classification exhibits declining performance trends with
the increasing of the binary matrix’s column degree d, similarly as the results derived for exactly sparse
features. Notice approximately sparse features can be viewed as an extreme case of exactly sparse features,
with the sparsity ratio reaching its upper bound k/n = 1. With the increasing of k/n, as shown in Figs.
1-5, the performance advantage of binary matrices over Gaussian matrices will become less evident in the
classification of quantized projections. This trend may be explained by the fact that with the original data
becoming denser (i.e. having larger k/n), the projection based on binary matrices will also become denser,
and then similarly as the projection based on Gaussian matrices, approximate the Gaussian distributions
Kotz et al. (2012). Finally, recall that the original, approximately sparse features can become more favor-
able for classification, if being further simplified to exactly sparse structures Lu et al. (2023). Then for
easier computation and better classification, it is suggested to transform the approximately sparse features
to exactly sparse structures before conducting random projection on them.

6 Conclusion

For the binary matrix-based random projection model, which involves projections undergoing binary or
ternary quantization, we have investigated how the sparsity of binary matrices influences the classification
performance of the quantized projections, by analyzing the distance preservation property. Our analysis
reveals that binary matrices with sparse structures tend to better maintain the distance preservation property,
when the original data for projections exhibit sufficiently sparse structures. This performance trend is
validated in the classification experiments conducted on quantized projections of common data features, such
as the DWT features of YaleB and the CNN features of CIFAR10 and ImageNet, all of which demonstrate
approximately sparse structures. In these experiments, highly sparse binary matrices with only one nonzero
entry per column can often deliver better or comparable classification performance compared to denser binary
matrices and the commonly-used Gaussian matrices, especially when ternary quantization is applied to the
projections.

Given the extreme sparsity of the proposed binary matrix, we can significantly reduce the complexity of
the quantized random projection model, when applied to practical applications, such as large-scale retrieval
Charikar (2002). Furthermore, our research offer insights into exploring the sparse structures inherent
in other advanced models that incorporate quantized projection architectures, such as deep quantization
networks Wan et al. (2018); Qin et al. (2020), as well as biological neuron models Dasgupta et al. (2017).
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A Appendices

A.1 Proof of Theorem 1

Proof. For the two exactly sparse data points u, v ∈ Rn, suppose their support intersection ψ = supp(u) ∩
supp(v). Then we can write

f0(u)>f0(v) =
∑
j∈ψ

f0(uj)f0(vj). (8)

Recall that f0(·) is an element-wise function. Similarly, for the two projected points u′, v′ ∈ Rm, we define
their support union and intersection as φ′ = supp(u′)∪ supp(v′) and ψ′ = supp(u′)∩ supp(v′), and then can
write

f0(u′)>f0(v′) =
∑
i∈ψ′

f0(u′i)f0(v′i). (9)

In the sequel, we aim to prove that (9) can be linearly transformed to (8). The analysis of (9) requires
us to first determine the support intersection ψ′ between projected data. To achieve this, we examine the
value of each element f0(u′i) of f0(u′), which for ease of analysis is divided into two groups on the basis of
i ∈ N (supp(u)) or not. Notice that the analysis will require us to frequently explore the adjacency relation
between the random matrix’s columns and rows, or say the mapping relation between the original data and
projected data, as specified in Definition 1. For the case of i /∈ N (supp(u)), by Definition 1 we have Ri,j = 0,
∀j ∈ supp(u), and then can write

f0(u′i) = f0

 ∑
j∈[n]\supp(u)

Ri,juj


= 0

(10)
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since uj = 0, ∀j ∈ [n] \ supp(u); otherwise, we can derive

f0(u′i)
1= f0

 ∑
j∈supp(u)

Ri,juj


2= f0

 ∑
j∈supp(u)∩N (i)

Ri,juj


3= f0

(
uj=supp(u)∩N (i)

)
4
6= 0

(11)

for the case of i ∈ N (supp(u)). The derivation of (11) is detailed as follows: (i) The first equation results from
the definition of supp(u), which holds ui 6= 0 for i ∈ supp(u), and otherwise, ui 6= 0. (ii) The second equation
is deduced by Definition 1, that is j ∈ N (i), if Ri,j 6= 0. (iii) By the structure of R ∈ {0, 1}m×n with column
degree d and with R>∗,φR∗,φ = dI|φ|, φ = supp(u) ∪ supp(v), it is easy to see that the columns of R∗,φ are
orthogonal to each other, and equivalently, N (j1)∩N (j2) = ∅, ∀j1 6= j2 and j1, j2 ∈ φ (or ∈ supp(u) ⊂ φ); the
orthogonality property suggests that there exists only one column index j ∈ N (i) ∩ supp(u) (and satisfying
Ri,j = 1), ∀i ∈ N (supp(u)), and this yields the third equation. (iv) The fourth equation is easily derived by
uj 6= 0, j ∈ supp(u).

Combing the results of (10) and (11), it follows that supp(u′)=N (supp(u)), which indicates that the support
of the projected data u′ is the adjacent set of the support of the original data u. Similarly, the same result can
also be derived for the other pair of data v, v′, that is supp(v′)=N (supp(v)). Then the support intersection
ψ′ of the two projected data u′, v′ can be expressed as

ψ′
1= supp(u′) ∩ supp(v′)
2= N (supp(u)) ∩N (supp(v))
3= N (supp(u) ∩ supp(v))
4= N (ψ)

(12)

which has the third equation derived by the orthogonality of R∗,φ, implying N (j1) ∩ N (j2) = ∅, ∀j1,
j2 ∈ φ = supp(u) ∪ supp(v). The result indicates that the support intersection ψ′ of projected data u′, v′ is
identical to the adjacent set of the support intersection ψ of original data u, v.

Given ψ′ = N (ψ) in (12), we can further formulate (9) as

f0(u′)>f0(v′) 1=
∑
i∈ψ′

f0(u′i)f0(v′i)

2=
∑
j∈ψ

∑
i∈N (j)

f0(u′i)f0(v′i)

3=
∑
j∈ψ

∑
i∈N (j)

f0(uj)f0(vj)

4= d ·
∑
j∈ψ

f0(uj)f0(vj)

5= d · f0(u)>f0(v)

(13)

for which the derivation is detailed as follows. (i) The second equation is derived by the result of (12), that
is ψ′ = N (ψ) =

⋃
j∈ψN (j), with N (j1)∩N (j2) = ∅, ∀j1 6= j2 and j1, j2 ∈ φ. (ii) The third equation results

from the uniqueness of j ∈ N (i) ∩ supp(u), provided i ∈ N (j), j ∈ ψ ⊂ supp(u); and the details can be
found in the analysis of the third equation of (11). (iii) The fourth equation is derived by N (j) = d. The
proof is complete.

14



Under review as submission to TMLR

A.2 Proof of Theorem 2

Proof. The proof is similar to that of Theorem 1. First, we divide the element coordinates of the original
data vectors u, v into two groups in terms of their element quantization fτ1(ui), fτ2(vi) equal to zero
or not, in order to define the support union φ = supp(fτ1(u)) ∪ supp(fτ2(v)) and the intersection ψ =
supp(fτ1(u)) ∩ supp(fτ2(v)). In the similar way, we also define the support union φ′ and intersection ψ′ for
the projected data u′, v′. Then we need to identify the relation between ψ′ and ψ. To achieve this, as in
(10) and (11), we propose to determine the value of fτ1(u′i) in terms of i ∈ N (supp(fτ1(u))) or not. For the
case of i /∈ N (supp(fτ1(u))), we have

fτ1(u′i) = f0

 ∑
j∈[n]\supp(fτ1 (u))

Ri,juj


= 0

(14)

since by the summation formula for geometric series, it can be deduced that τ1 = |u∗k1
|+|u∗k1+1|

2 is greater
than the absolute vale of the function input, under the condition of |u∗i+1|/|u∗i | ≤ e−β and β ≥ ln(2 +

√
3);

and for the other case of i /∈ N (supp(fτ1(u))), we can derive

fτ1(u′i)

1= fτ1

 ∑
j∈supp(fτ1 (u))

Ri,juj +
∑

j∈[n]\supp(fτ1 (ui))

Ri,juj


2= fτ1

uj=supp(fτ1 (u)))∩N (i) +
∑

j∈[n]\supp(fτ1 (ui))

Ri,juj


3= fτ1

(
uj=supp(fτ1 (u)))∩N (i)

)
4
6= 0

(15)

which has the third equation resulting from the relation of
∣∣∣uj=supp(fτ1 (u)))∩N (i)

∣∣∣ >∣∣∣∑j∈[n]\supp(fτ1 (ui)) Ri,juj

∣∣∣ + τ1, while the relation can be derived using the same method as for
(14). The above two results (14) and (15) are the major characteristics of the proof of Theorem 2, and the
subsequent proof will proceed similarly as in Theorem 1, omitted here for brevity.

A.3 Proof of Theorem 3

Proof. The condition of R>∗,φR∗,φ = dI|φ| means that R>∗,j1
R∗,j2 = 0 for ∀ j1, j2 ∈ φ, j1 6= j2. In other words,

the nonzero entries of any two columns of R∗,φ have no coordinates overlapping. By the distribution of the
nonzero entries, we can express the probability as

Pr{R>∗,φR∗,φ = dI|φ|} =
CdmC

d
m−d · · ·Cdm−(|φ|−1)d

(Cdm)|φ|

= [(m− d)!]|φ|
(m!)|φ|−1(m− |φ|d)!

15
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Given m and φ, define g(d;m,φ) = Pr{R>∗,φR∗,φ = dI|φ|}. Then it can be derived that

g(d;m,φ)
g(d+ 1;m,φ) =

[(m−d)!]|φ|
(m!)|φ|−1(m−|φ|d)!

[(m−d+1)!]|φ|
(m!)|φ|−1[(m−|φ|(d+1)]!

= (m− d)|φ|∏|φ|−1
`=0 (m− |φ|d− `)

> 1,

(16)

since m−d
m−|φ|d−` > 1, 0 ≤ ` ≤ |φ| − 1. This indicates that g(d;m,φ) is a monotonically decreasing function,

with its maximum value achieved by

g(d;m,φ)|d=1 = (m− 1)!
m|φ|−1(m− |φ|)!

=
∏|φ|−1
`=1 (m− `)
m|φ|−1 .

(17)

The proof is complete.

A.4 Other experimental results

The results depicted in Figs. 6-8 demonstrate a performance trend that aligns with our theoretical prediction:
the highly sparse binary matrix with a column degree of d = 1 can achieve superior or at least comparable
performance to other denser matrices with larger d values.

In Fig. 6, we conduct the SVM classification on the ternary-quantized projections of YaleB (DWT), and
conduct the KNN classification on the binary-quantized projections of CIFAR10 (AlexNet) and Mini-
ImageNet (VGG16), respectively, in Figs. 7 and 8.
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(a) k/n = 1%, m/n = 10% (b) k/n = 5%, m/n = 10% (c) k/n = 10%, m/n = 10% (d) k/n = 20%, m/n = 10%
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(e) k/n = 1%, m/n = 50% (f) k/n = 5%, m/n = 50% (g) k/n = 10%, m/n = 50% (h) k/n = 20%, m/n = 50%

Figure 6: SVM classification accuracy for the ternary-quantized (TQ) (and non-quantized) projections of the exactly sparse
features of YaleB (DWT), with three different feature sparsity ratios k/n = 1%, 5%, 10% and 20%, using two projection
matrices: the Gaussian matrix (GM) and the binary matrix (BM) with varying column degree BM-d ∈ [1, 10], under two
projection ratios m/n = 10% and 50%.
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(a) k/n = 1%, m/n = 10% (b) k/n = 5%, m/n = 10% (c) k/n = 10%, m/n = 10% (d) k/n = 20%, m/n = 10%
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(e) k/n = 1%, m/n = 50% (f) k/n = 5%, m/n = 50% (g) k/n = 10%, m/n = 50% (h) k/n = 20%, m/n = 50%

Figure 7: Classification accuracy for the binary-quantized (BQ) (and non-quantized) projections of the exactly sparse features
of CIFAR10 (AlexNet), with three different feature sparsity ratios k/n = 1%, 5%, 10% and 20%, using two projection matrices:
the Gaussian matrix (GM) and the binary matrix (BM) with varying column degree BM-d ∈ [1, 10], under two projection ratios
m/n = 10% and 50%.
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(a) k/n = 1%, m/n = 10% (b) k/n = 5%, m/n = 10% (c) k/n = 10%, m/n = 10% (d) k/n = 20%, m/n = 10%
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(e) k/n = 1%, m/n = 50% (f) k/n = 5%, m/n = 50% (g) k/n = 10%, m/n = 50% (h) k/n = 20%, m/n = 50%

Figure 8: Classification accuracy for the binary-quantized (BQ) (and non-quantized) projections of the exactly sparse features
of Mini-ImageNet (VGG16), with three different feature sparsity ratios k/n = 1%, 5%, 10% and 20%, using two projection
matrices: the Gaussian matrix (GM) and the binary matrix (BM) with varying column degree BM-d ∈ [1, 10], under two
projection ratios m/n = 10% and 50%.
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