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Abstract

Training deep networks on increasingly large-scale datasets is computationally
challenging. In this work, we explore the problem of “how to accelerate the con-
vergence of adaptive gradient algorithms in a general manner”, and aim at pro-
viding practical insights to boost the training efficiency. To this end, we propose
an effective Weight-decay-Integrated Nesterov acceleration (Win) for adaptive al-
gorithms to enhance their convergence speed. Taking AdamW and Adam as ex-
amples, we minimize a dynamical loss per iteration which combines the vanilla
training loss and a dynamic regularizer inspired by proximal point method (PPM)
to improve the convexity of the problem. Then we respectively use the first- and
second-order Taylor approximations of vanilla loss to update the variable twice
while fixing the above dynamic regularization brought by PPM. In this way, we
arrive at our Win acceleration (like Nesterov acceleration) for AdamW and Adam
that uses a conservative step and a reckless step to update twice and then linearly
combines these two updates for acceleration. Next, we extend this Win accelera-
tion to LAMB and SGD. Our transparent acceleration derivation could provide in-
sights for other accelerated methods and their integration into adaptive algorithms.
Besides, we prove the convergence of Win-accelerated adaptive algorithms by tak-
ing AdamW and Adam as examples. Experimental results testify the faster con-
vergence speed and superior performance of our Win-accelerated AdamW, Adam,
LAMB and SGD over their vanilla counterparts on vision classification tasks and
language modeling tasks with CNN and Transformer backbones.

1 Introduction

Deep neural networks (DNNs) are effective to model realistic data and have been successfully ap-
plied to various applications, e.g. image classification [1–10] and speech recognition [11–14]. Typ-
ically, their training models can be formulated as the following nonconvex optimization problem:

minz2Rd F (z) := E⇣⇠D[f(z, ⇣)] +
�

2
kzk22 , (1)

where z is the model parameters; sample ⇣ is drawn from a data distribution D; the loss f is
differentiable; � is a constant. To solve problem (1), SGD [15, 16] uses its compositional structure
to efficiently estimate gradient via minibatch data, and has become a dominant algorithm to train
DNNs. However, on sparse data or ill-conditioned problems, SGD suffers from slow convergence
speed [17, 18], as it scales the gradient uniformly in all parameter coordinate and ignores the data or
problem properties on each coordinate. To resolve this issue, recent work has proposed a variety of
adaptive methods, e.g. Adam [17] and AdamW [19], that scale each gradient coordinate according
to the current geometry curvature of the loss F (z). This coordinate-wise scaling greatly accelerates
the optimization convergence and helps them, e.g. Adam and AdamW, become much more popular
in DNN training.
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Unfortunately, along with the increasing scale of both datasets and models, efficient DNN training
even with SGD or adaptive algorithms has become very challenging. In this work, we are particularly
interested in the problem of “how to accelerate the convergence of adaptive algorithms in a general
manner” because of their dominant popularity across many DNNs. Heavy ball acceleration [20] and
Nesterov acceleration [21] are widely used in SGD but are rarely studied in adaptive algorithms.

Contributions: In this work, based on a recent Nesterov-type acceleration formulation [22] and
proximal point method (PPM) [23], we propose a new Weight-decay-Integrated Nesterov accelera-
tion (Win) to accelerate adaptive algorithms. By taking AdamW and Adam as examples, we follow
PPM spirit and minimize a dynamically regularized loss which combines vanillas loss and a dy-
namical regularization, and independently approximate the vanilla loss by its first- and second-order
Taylor expansions to update the variable twice while fixing the above dynamic regularization. As a
result, we achieve at our Win acceleration, a Nesterov-alike acceleration, for AdamW and Adam that
uses a conservative step and a reckless step to update twice and then linearly combines these two up-
dates for acceleration. Then we extend Win acceleration to LAMB [24] and SGD. This transparent
acceleration derivation may motivate other accelerations and provide examples to introduce other
accelerations into adaptive algorithms. Moreover, we analyze the convergence of Win-accelerated
adaptive algorithms to justify their convergence superiority by using AdamW & Adam as examples.

Finally, experimental results on both vision classification tasks and language modeling tasks show
that our Win-accelerated algorithms, i.e. accelerated AdamW, Adam, LAMB and SGD, can acceler-
ate the convergence speed and also improve the performance of their corresponding non-accelerated
counterparts by a remarkable margin on both CNN and transformer architectures.

2 Weight-decay-Integrated Nesterov Acceleration

In deterministic optimization, one widely used optimization-stabilizing and acceleration approach is
proximal point method (PPM) [23, 25]. At the k-th iteration, PPM optimizes an `2-regularized loss
F (z)+ 1

2⌘k
kz�zk�1k

2
2 instead of the vanilla loss F (z). This change enhances the convexity of the

problem, accelerating and also stabilizing optimization [26, 27]. To make the `2-regularized problem
solvable iteratively, PPM approximates F (z) by its first- or second-order Taylor expansion to get
a close-form solution. At below, we borrow the idea in PPM to induce a Weight-decay-Integrated
Nesterov acceleration (Win) for adaptive algorithms by using AdamW and Adam as examples.

Win-Accelerated AdamW and Adam. To begin with, following most adaptive gradient algorithms,
e.g. Adam and AdamW, we estimate the first- and second-order moments mk and vk of gradient as

gk =
1

b

Xb

i=1
rf(zk; ⇣i), mk = (1� �1)mk�1 + �1gk, vk = (1� �2)vk�1 + �2g

2
k, (2)

where m0 = g0, v0 = g2
0 , �1 2 [0, 1] and �2 2 [0, 1]. For brevity, with a small scaler ⌫ > 0, we

define
sk =

p
vk + ⌫, uk = mk/

p
vk + ⌫. (3)

Then following PPM spirit, at the k-th iteration, we minimize a regularized loss F (x)+ 1
2⌘kx �

xkk
2
sk

. Here we use the regularizer kx�xkk
2
sk

instead of the `2-regularization kx�xkk
2
2, since 1)

this new regularization allows us to handle adaptive algorithms as shown below Eqn. (4), and 2) it
also helps increase the problem convexity to speed up the convergence. To make problem solvable
iteratively, we approximate F (z) by its first-order Taylor expansion at the point zk and update xk+1

as

xk+1= argminxF (zk)+hmk,x�zki+
1

2⌘k
kx�xtk

2
sk
+
�

2
kxk2sk

=
1

1+�⌘k
(xk�⌘kuk), (4)

where kxksk
=

p
hx, sk⇤xi with element-wise product ⇤, mk is used to approximate the full

gradient rF (zk) for Taylor expansion. We add a small regularization �
2 kxk

2
sk

, as 1) it can im-
prove the generalization in practice [19, 28]; 2) it allows us to derive Adam (� = 0) and AdamW
(� > 0). If � = 0, the updating (4) becomes the exact Adam algorithm. If � > 0, the updat-
ing (4) can approximate the updating rule xk+1=(1� �⌘k)xk�⌘kuk of AdamW. This is because
consider �⌘k is small in practice, we approximate (1+�⌘k)�1 = 1��⌘k +O(�2⌘2k) and thus

1
1+�⌘k

(xk � ⌘kuk)=[1��⌘k+O(�2⌘2k)]xk�[⌘k�O(�⌘2k)+O(�3⌘3k)]uk which becomes AdamW
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Algorithm 1: Win-Accelerated AdamW, Adam and LAMB
Input: initialization x0 = z0 = 0, step size {(⌘k, ⌘̄k)}Tk=0, moment parameters {�1,�2}.

1 while k < T do
2 gk = 1

b

Pb
i=1 rf(zk; ⇣i)

3 mk = (1� �1)mk�1 + �1gk /* m0 = g0 */

4 vk = (1� �2)vk�1 + �2g2
k /* v0 = g2

0 */

5 uk = mkp
vk+⌫

for AdamW and Adam, uk = kxkk2

kmk/
p
vk+⌫k2

mkp
vk+⌫

for LAMB
6 xk+1 = 1

1+�⌘ (xk � ⌘kuk)

7 zk+1 = ⌘̄k⌧kxk+1 + ⌘k⌧k (zk � ⌘̄kuk) with ⌧k = 1
⌘k+⌘̄k+�⌘k⌘̄k

8 end while

by ignoring O(⌘2k) and O(⌘3k). This is one reason that we adopt the regularizer kx�xkk
2
sk

in (4)
instead of the `2-regularization in PPM, as we can flexibly derive Adam and AdamW.

Similarly, we minimize a regularized loss F (z) + 1
2⌘k

kz�xt+1k
2
sk

, and further approximate F (z)

by its second-order approximation F (zk) + hmk, z � zki+
1

2⌘̄k
kz � zkk2sk

:

zk+1=argminz F (zk)+hmk, z � zki+
1

2⌘̄k
kz � zkk

2
sk
+

1

2⌘k
kz � xk+1k

2
sk
+
�

2
kzk2sk

=⌘̄k⌧kxk+1 + ⌘k⌧k
�
zk � ⌘̄kuk

�
,

(5)

where ⌧k=
1

⌘k+⌘̄k+�⌘k⌘̄k
, mk can approximate rF (xk) as shown in Theorem 1 in Appendix B.

For more clear, we introduce a virtual sequence yk+1=zk�⌘̄kuk in Win, and rewrite (5) as

xk+1=(1 + �⌘k)
�1 (xk � ⌘kuk) , yk+1=zk � ⌘̄kuk, zk+1= ⌘̄k⌧kxk+1 + ⌘k⌧kyk+1. (6)

See detailed steps in Algorithm 1. Interestingly, Win acceleration is similar to Nesterov-type accel-
eration, since they both use a conservative step ⌘k and a reckless step ⌘̄k to update xk+1 and yk+1

respectively, and then linearly combine xk+1 and yk+1 to obtain zk+1.

Our Win-acceleration is quit simple and efficient, as our accelerated AdamW/Adam only adds an
extra simple algorithmic step, i.e. the 7th step in Algorithm 1, on vanilla AdamW/Adam. Moreover,
for the only extra hyper-parameter, the reckless step ⌘̄k, in Algorithm 1 over AdamW/Adam, we
always set it as ⌘̄k=2⌘k, which works well in our all experiments.

Extension to LAMB and SGD. Here we generalize Win acceleration to LAMB [24] and SGD [15].
For LAMB, it scales the update uk of AdamW in Eqn. (3) so that uk is at the same magnitude of
the network weight xk. That is, it changes the update rule xk+1 = (1 � �⌘k)xk � ⌘kmk/sk in
AdamW to xk+1 = xk � ⌘k

kxkk2

krk+�xkk2
(rk + �xk) where rk = mk/sk. This modification is to

avoid too large or small update, improving optimization efficiency. To extend Win acceleration to
LAMB, we inherit this scaling spirit, and scale the update uk in (3) to the following one:

uk = (kxkk2/kmk/skk2) · (mk/sk). (7)

Next, we can follow Eqn. (4) and (5) to update, and summarize detailed steps in Algorithm 1.

For SGD, applying Win acceleration to it is quite direct. Specifically, the only algorithmic difference
between SGD and AdamW on the `2-regularized problems is that SGD has no second-order moment
vk while AdamW has. So we can borrow the acceleration framework of AdamW to accelerate SGD
by setting sk = 1 2 Rd in Eqn. (3), (4) and (5), and obtain WIN-accelerated SGD:

mk=�1mk�1+�0
1gk, xk+1=

1

1+�⌘k
(xk�⌘kmk), zk+1= ⌘̄k⌧kxk+1+⌘k⌧k

�
zk�⌘̄kmk

�
, (8)

where �0
12 [0, 1] is dampening parameter. Here we slightly modify the moment mk to accord with

the one used in Nesterov-accelerated SGD (e.g. SGD-M in Pytorch).

Convergence Analysis. Theorem 1 in Appendix B analyzes the convergence of Win-accelerated
adaptive algorithms to justify their convergence superiority by using AdamW & Adam as examples.
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Table 1: ImageNet top-1 accuracy (%) of ResNet50&101 whose official optimizer is LAMB due to
the stronger data augmentation for better performance. ⇤ is reported in [29].

ResNet50 ResNet101
Epoch 100 200 300 avg. 100 200 300 avg.
SAM 77.3 78.7 79.4 78.5 79.5 81.1 81.6 80.7
SGD-H 75.3 76.9 77.2 76.5 77.7 78.6 78.8 78.4
SGD-M 77.0 78.6 79.3 78.3 79.3 81.0 81.4 80.6
SGD-Win 78.0 79.2 79.7 79.0+0.7 80.1 81.2 81.6 81.0+0.4

Adam 76.9 78.4 78.8 78.1 78.4 80.2 80.6 79.7
Adam-Win 77.8 78.8 79.3 78.7+0.6 79.2 80.6 81.0 80.3+0.6

AdamW 77.0 78.9 79.3 78.4 78.9 79.9 80.4 79.7
AdamW-Win 78.0 79.3 79.9 79.1+0.7 80.2 81.1 81.3 80.9+1.2

LAMB 77.0 79.2 79.8⇤ 78.7 79.4 81.1 81.3⇤ 80.6
LAMB-Win 78.4 79.7 80.1 79.4+0.7 80.6 81.5 81.7 81.3+0.7

Table 2: ImageNet top-1 accuracy (%) of ViT and PoolFormer whose default optimizers are both
AdamW. ⇤ and ⇧ are respectively reported in [28] and [30].

ViT-S ViT-B PoolFormer-S12
Epoch 150 300 avg. 150 300 avg. 150 300 avg.
SGD-M 77.4 79.4 78.4 79.6 80.0 79.8 69.7 74.3 72.0
SGD-Win 78.1 80.1 79.1+0.7 80.4 80.8 80.6+0.8 71.1 74.5 72.8+0.8

Adam 77.3 79.3 78.3 79.0 79.7 79.4 74.3 76.3 75.3
Adam-Win 78.6 80.2 79.4+1.1 80 80.5 80.3+0.9 75.6 77.1 76.4+1.1

AdamW 78.3 79.8⇤ 79.1 79.5 81.8⇤ 80.7 75.2 77.1⇤ 76.2
AdamW-Win 79.3 80.8 80.1+1.0 81.0 82.2 81.6+0.9 76.7 77.6 77.2+1.0

LAMB 78.0 79.6 78.8 80.3 80.8 80.6 75.4 77.4 76.4
LAMB-Win 79.3 80.6 80.0+1.2 81.0 81.4 81.2+0.6 76.7 78.0 77.4+1.0

3 Experiments

For clarity, we call our accelerated algorithm “X-Win”, where “X” denotes vanilla optimizers. In all
experiments, our accelerated algorithms, e.g. AdamW-Win, always use the default hyper-parameters
of vanilla optimizers, e.g. moment parameters �1 and �2 in AdamW; and set ⌘̄k=2⌘k.

Results on ResNets and ViTs. Table 1 reports accuracy of ResNets under the setting in [29], and Ta-
ble 2 gives the performance of ViT [2] and PoolFormer [30]. Our accelerated algorithms always out-
perform their corresponding non-accelerated version. On ResNet, LAMB-Win achieves remarkable
improvement over the official optimizer LAMB for this setting; SGD-Win also surpasses heavy-ball
accelerated SGD (SGD-H) and Nesterov accelerated SGD (SGD-M). On ViTs, our accelerated al-
gorithms consistently outperform the corresponding non-accelerated counterparts. Fig. 1 shows the
faster faster convergence behaviors of our accelerated algorithms over non-accelerated counterparts
which could benefit their better performance under the same computational cost.

Table 3: Test PPL of Transformer-XL-B.
* is officially reported.

Transformer-XL Training Steps
50k 100k 200k avg.

Adam 28.5 25.5 24.2⇤ 26.7
Adam-Win 26.7 25.0 24.0 25.2+1.5

Results on Transformer-XL. Table 3 shows that un-
der different training steps on WikiText-103 dataset, our
accelerated Adam-Win always achieves lower test PPL
than the official Adam optimizer of Transformer-XL-
base, and improves 1.5 average test PPL over Adam.

4 Conclusion

In this work, we adopt proximal point method to derive a weight-decay-integrated Nesterov acceler-
ation for AdamW and Adam, and extend it to LAMB and SGD. Moreover, we prove the convergence
of our accelerated algorithms, i.e. accelerated AdamW, Adam and SGD, and observe the superior-
ity of the accelerated Adam-type algorithm over the vanilla ones in terms of stochastic gradient
complexity. Finally, experimental results validate the advantages of our accelerated algorithms.
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Figure 1:Training/test losses on ImageNet. Lager training loss than test one is due to its strong augmentation.
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