
Direct Feedback Alignment for Recurrent Neural
Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Time series and sequential data are widespread in many real-world environments.1

However, implementing physical and adaptive dynamical systems remains a chal-2

lenge. Direct Feedback Alignment (DFA) is a learning algorithm for neural net-3

works that overcomes some of the limits of backpropagation and can be imple-4

mented in neuromorphic hardware (e.g., photonic accelerators). Until now, DFA5

has been investigated mainly for feedforward architectures. We adapt DFA for both6

“vanilla” and gated recurrent networks. Unlike backpropagation, the update rule of7

our DFA can be applied in parallel across time steps, thus removing the sequential8

propagation of errors. We benchmark DFA on 4 datasets for sequence classification9

tasks. Although backpropagation still achieves a better predictive accuracy, our10

DFA shows promising results, especially for environments and physical systems11

where backpropagation is unavailable.12

1 Introduction13

Backpropagation [Rumelhart et al., 1986] is the long-standing algorithm for credit assignment in14

artificial neural networks. Its efficient implementation in digital computers has supported the surge15

of machine and deep learning techniques as one of the key advancements in the field of artificial16

intelligence [LeCun et al., 2015]. However, with a few exceptions [Wright et al., 2022], the adoption17

of backpropagation-based learning systems is still mainly limited to digital computers and simulations.18

It is well known that backpropagation cannot be easily implemented and deployed in physical systems19

[Momeni et al., 2023, Lillicrap et al., 2020]. For example, due to issues like the weight transport20

where the synaptic weights of the backward circuit need to be constantly synchronized with the21

synaptic weights of the forward circuit [Lillicrap et al., 2016, Akrout et al., 2019].22

Physical deployment of backpropagation is even more challenging in Recurrent Neural Networks23

(RNNs) [Elman, 1990], where credit assignment must be performed across time. The most used24

algorithm to date is BackPropagation Through Time (BPTT) [Werbos, 1990], which extends back-25

propagation to recurrent architectures.26

Over time, several backpropagation-free algorithms have been proposed (see Section 2 for a non-27

exhaustive overview), some of them with the explicit objective of being compatible with the imple-28

mentation in physical systems or on unconventional hardware (e.g., neuromorphic, optical).29

We focus on Direct Feedback Alignment (DFA) [Nøkland, 2016], a backpropagation-free algorithm30

for credit assignment that removes the weight transport issue and also allows parallel computation31

of the weight update. DFA has already been implemented in nonconventional hardware, especially32

photonic [Filipovich et al., 2022]. The photonic co-processor introduced in Launay et al. [2020]33

scales DFA to trillion-parameter random projections.34

Submitted to the Second Workshop on Machine Learning with New Compute Paradigms at NeurIPS (MLNCP
2024). Do not distribute.



We briefly review DFA for feedforward networks in Section 3. We propose an extension of DFA35

tailored to recurrent neural networks. Our approach is able to compute the update of the recurrent36

parameters in parallel over all the time steps of the input sequence, thus removing one of the major37

drawbacks of BPTT. In fact, BPTT sends the error signal computed at the end of the input sequence38

back in time to compute the network parameters update. Instead, the update computed by our version39

of DFA is local at each time step, as it does not rely on the update computed for other time steps. Due40

to the weight sharing present in RNNs, the local update is eventually aggregated at the end of the41

input sequence to compute the final update. The aggregation operation includes information from all42

the time steps, thus enabling learning of temporal dependencies.43

We develop DFA for both a “Vanilla” RNN and a Gated Recurrent Unit (GRU) network [Cho et al.,44

2014, Chung et al., 2014]. We benchmark both architectures against BPTT on four time-series45

classification datasets and we find that DFA can achieve non-trivial performances in all of the tested46

datasets but cannot always attain a performance comparable to BPTT. In general, DFA shows strength47

in datasets with more than 2 classes and in datasets with a limited number of training samples,48

although BPTT still surpasses its performance. We show that the GRU architecture trained with DFA49

is able to learn longer temporal correlations than a “Vanilla” RNN.50

2 Related works51

Lillicrap et al. [2016] proposed the Feedback Alignment algorithm (FA) as a biologically plausible52

gradient-free learning rule for deep learning. The key idea of FA is to project the errors from the last53

layer of a deep feedforward architecture to the first layer via random projections between consecutive54

layers. This simple algorithm has shown competitive performance on the MNIST classification task55

against the commonly used backpropagation algorithm.56

Pushing the FA idea to the extreme, Nøkland [2016] proposed DFA, where the error is randomly57

projected back to each layer with a direct shortcut connection.58

Practical applications of DFA to RNNs have been explored in Nakajima et al. [2022]. The authors59

performed physical deep learning with an optoelectronic recurrent neural network. However, in their60

pioneering work, they do not explore the DFA algorithm in the context of fully trainable RNNs, since61

they only provide a proof-of-concept using a reservoir computing model with untrained reservoir62

connections [Lukoševičius and Jaeger, 2009]. In this paper, we investigate the potential of DFA on63

fully-trainable RNNs.64

Han et al. [2020] investigated a DFA-inspired algorithm for RNNs. However, their version of DFA is65

restricted and cannot be applied to any recurrent or gated architecture, like our approach. First, they66

implement an upper triangular modular structure. Second, they use random projections as powers67

of the same matrix, which effectively resembles an FA algorithm applied to RNNs rather than a68

DFA algorithm for RNNs. Overall, our approach stems directly from DFA and closely follows its69

assumptions without requiring any customization, thus remaining more general and targeting any70

recurrent model.71

3 DFA for feedforward networks72

We first introduce DFA for feedforward neural networks (Figure 1, middle), to prepare the notation and73

set the stage for its extension to recurrent neural networks. Consider a fully-connected, feedforward74

neural network with an arbitrary number of L layers (including input and output layers), input size75

I , hidden size H and output size O. Each layer l computes its preactivation al through a linear76

projection al = Wlul + bl, where Wl ∈ RH×I ,RH×H ,RO×H is the weight matrix for the input,77

hidden and output layers, respectively. Similarly, bl ∈ RH , l < L is the bias vector for the input78

and hidden layer and bL ∈ RO is the bias vector for the output layer. The input ul corresponds to79

the data sample x for the input layer (u1 ∈ RI ) and to the output of the previous layer for all other80

layers (ul ∈ RH , l > 1). The preactivation at each layer is passed through an element-wise nonlinear81

function σ (e.g., hyperbolic tangent) to generate the layer’s activation hl = σ(al). The output of82

the network ŷ is read out from the last layer: ŷ = hL. For each input example x, the loss function83

J(ŷ, y) (e.g., cross-entropy or mean-squared error) measures the error between the output and the84

target prediction y associated with the example x.85

Updating the last layer’s parameters WL, bL via gradient descent is straightforward as there is a direct86

dependency between ŷ and the loss function J . For the cross-entropy or the mean-squared error loss,87
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Figure 1: We propose DFA applied to recurrent networks (right). The error is projected through
random matrices BW and BV . We also show backpropagation (left) and DFA (middle) applied
to feedforward networks. Grey arrows denote the forward phase, black arrows denote the update
phase. Note that in the RNN, the matrices W ad V are shared across time steps (layers), while in
feedforward networks each layer has a different matrix. Also, the RNN receives a different input xt

at each time step (here, the input sequence has 3 time steps), while the feedforward network only
receives one input x.

e = ∂J
∂aL

= ŷ − y. Therefore, e can be directly used to update WL: WL ← WL − ηehT
L−1 and bL:88

bL ← bL − ηe, where η is the learning rate. The update of the last layer’s parameters is the same for89

both backpropagation and DFA.90

For the hidden layers, backpropagation computes the update by propagating the error signal e sequen-91

tially to lower layers (Figure 1, left). For any hidden layer, we have Wl ←Wl − η( (WT
l+1δal+1 ⊙92

σ′(al)) u
T
l ), where ⊙ denotes element-wise multiplication and δal+1 is the error signal coming from93

the layer above. This last term requires the error to be computed sequentially one layer at a time.94

This dependency prevents updating all layers in parallel.95

DFA removes this limitation by projecting the error e directly to all layers, through a random matrix96

B ∈ RH×O. B can also be different for each layer. Crucially, the matrix B is kept fixed and only97

governs the weights update. It does not take any part in the forward phase.98

DFA updates each hidden layer via99

Wl ←Wl − η( (Be⊙ σ′(al)) u
T
l ), (1)

bl ← bl − η( Be⊙ σ′(al) ). (2)

These updates can be applied to each layer independently, thus enabling embarrassingly parallel100

computation for all layers.101

DFA also removes the weight alignment issue, as the update circuit uses random connections instead102

of connections that always need to be synchronized with the forward circuit, like in backpropagation.103

4 DFA for recurrent networks104

We develop a version of DFA that is compatible with RNNs for sequential data processing (Figure105

1, right). We closely follow the DFA approach devised for feedforward networks and we extend it106

to the recurrent case. Each example x is a sequence of T input vectors: x = (x1, . . . , xT ), where107

xi ∈ RI . We consider the sequence classification task where each sequence x is associated with a108

target class y. The RNN keeps an internal hidden state h ∈ RH which is updated at each time step.109

We first focus on the “Vanilla” RNN [Elman, 1990], whose state update of reads:110

3



ht+1 = σ(Wht + V xt+1 + b), (3)

where V ∈ RH×I is the input-to-hidden matrix and we call at (pre-activations at time t) the terms111

inside σ. In RNNs, the same layer is applied to all time steps (weight sharing). The output ŷ of the112

RNN is computed from the hidden state: ŷ = σ(W outht+ bout), where W out ∈ RO×H and bout ∈ RO.113

The nonlinear function σ can be different from the one used in the hidden layers. For sequence114

classification tasks the output is computed at the end of the input sequence from hL.115

Due to the weight sharing, the forward pass of an RNN can be interpreted as the unrolling of the state116

update function over time. At each time step, the matrix W and V (and the bias as well) are used117

to compute the next hidden state, much like the matrix Wl is used to compute the layer’s output in118

a feedforward network. The backpropagation algorithm applied to RNNs, called backpropagation119

through time (BPTT) updates the hidden-to-hidden weight W via∇WJ(ŷ, y) = ∂J
∂ŷ

∑T
t=1

∂ŷ
∂ht

∂ht

∂W .120

The term ∂ŷ
∂ht

hides a dependency between hidden states
∏t−1

j=1
∂hj+1

∂hj
which is due to the sequential121

propagation of the error over the time steps.122

Our DFA-based algorithm for RNN removes this propagation and updates W by computing the term123
∂J
∂ŷ

∑T
t=1

∂ht

W . The error signal e is projected via a random matrix B, randomly initialized and kept124

fixed.125

The equations for the update of W and V via DFA read:126

W ←W − η

T∑
t=1

( Be⊙ σ′(at) ) h
T
t−1, (4)

V ← V − η

T∑
t=1

( Be⊙ σ′(at) ) x
T
t (5)

The bias is updated by omitting the outer product.127

DFA for gated recurrent networks. In addition to the development of DFA for “Vanilla” RNNs128

(Equation 3), we also developed a version of DFA for gated recurrent networks, focusing in particular129

on the GRU network [Cho et al., 2014, Chung et al., 2014]. The state update (forward pass) for a130

GRU reads:131

zt+1 = sig(Wzht + Vzxt+1 + bz),

rt+1 = sig(Wrht + Vrxt+1 + br),

ct+1 = tanh(Wc(ht ⊙ rt+1) + Vcxt+1 + bc),

ht+1 = (1− zt+1)⊙ ct+1 + zt+1 ⊙ ht,

where tanh and sig are the hyperbolich tangent and sigmoid functions, respectively. Our DFA update132

for all parameters of the GRU is provided in Appendix A. The output ŷ of the network is computed133

from the hidden state ht as previously discussed.134

5 Experiments135

We implemented all our experiments in PyTorch [Paszke et al., 2019]. Although DFA does not136

compute a true gradient, we filled the “grad” attribute of each weight tensor with the DFA update.137

This enabled us to use any PyTorch optimizer to apply the update. We used the Adam optimizer for138

all experiments.139

We assessed the performance of DFA against BPTT on the aforementioned “Vanilla” RNN and GRU.140

We report the average test accuracy and standard deviation computed over 5 runs1. Table 1 reports a141

summary of the time series datasets statistics. We considered 4 different datasets:142

1We will publicly release the code upon paper acceptance.
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Table 1: Summary of datasets statistics and average test accuracy and standard deviation over 5
repetitions for all datasets and models.

Strawberry LIBRAS ECG200 Row-MNIST

Input size 1 2 1 28
Number of classes 2 15 2 10
Sequence length 235 90 96 28
Dataset size 983 360 200 70000

DFA GRU 79.73 ± 1.23 67.50 ± 3.68 80.6 ± 2.25 72.49 ± 1.1
BPTT GRU 92.05 ± 2.54 80.83 ± 9.19 82.10 ± 1.14 99.23 ± 0.03

DFA RNN 67.84 ± 2.66 47.92 ± 3.3 78.2 ± 1.47 87.48 ± 0.74
BPTT RNN 79.08 ± 4.18 54.30 ± 18.32 83.30 ± 2.1 96.69 ± 0.24

1. Libras2 [Dias Daniel and Helton, 2009] contains 15 classes associated with a different hand143

movement type. The hand movement is represented as a bi-dimensional curve performed by144

the hand in a given period of time;145

2. Row-MNIST [Deng, 2012]: each image of the MNIST dataset is presented to the recurrent146

model one row at a time;147

3. ECG200 [Olszewski et al., 2001]: where each time series traces the electrical activity of a148

subject recorded during one heartbeat. The task is a binary classification prediction between149

a normal heartbeat and one highlighting a Myocardial Infarction;150

4. Strawberry [K. Kemsley] consists in classifying food spectrographs, a task with applications151

in food safety and quality assurance. The classes are strawberry (authentic samples) and152

non-strawberry (adulterated strawberries and other fruits).153

The datasets are divided into train, validation and test sets according to the proportions 60%-20%-154

20%. The hyperparameters have been selected based on a model selection with a grid search (see155

Appendix B for the details).156

Table 1 reports the test accuracy achieved by all methods, alongside the specifics of the datasets.157

Overall, BPTT still outperforms DFA across most datasets. Specifically, BPTT outperforms DFA158

with GRU architectures except for the ECG200 dataset, in which both learning algorithms achieve a159

comparable performance.160

With “Vanilla”RNN architectures, BPTT outperforms DFA except for the ECG200 and the Libras161

datasets, where the average test accuracy of DFA (Figure 2 top-left panel, orange line) is higher162

than BPTT’s one (red line) after the first 150 epochs. Moreover, in this dataset, DFA has the same163

learning slope of BPTT either with vanilla RNNs (for the first 150 epochs) or for GRUs (for the first164

50 Epochs).165

DFA seems to struggle with unbalanced datasets, like ECG200 and Strawberry. In the ECG dataset,166

which is the one with the smallest amount of data, the test accuracy of RNN with DFA is above the167

random performance of 12%. In the Strawberry dataset, the same model with DFA shows an accuracy168

which is above the random performance of only 5%. In the case of balanced datasets, RNNs trained169

with DFA are generally successful at learning temporal correlations.170

Overall, while BPTT generally resulted in higher test accuracy, DFA demonstrated comparable171

performance particularly for ECG200 in both GRU and RNN models. This suggests that although172

DFA is less accurate overall, it may be a viable alternative in scenarios where strong parallelization173

combined with a physical implementation is a possibility.174

6 Conclusion and Future Work175

We proposed a learning algorithm for recurrent neural networks based on DFA [Nøkland, 2016]. Our176

DFA enables parallel updates across the time steps, thus removing the sequential update constraint of177

2LIBRAS is the acronym of the Portuguese name "Lingua BRAsileira de Sinais", is the official Brazilian
sign language.
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Figure 2: Results on the Libras, Row-MNIST, Strawberry and ECG-200 datasets with a “Vanilla”
RNN architecture (orange and red) and with a GRU (blue and cyan). The models are trained with DFA
(lighter colors, full line) and BPTT (darker colors, dashed line). Error shades denote one standard
deviation computed over 5 repetitions with different seeds.

BPTT. The parallel update phase is particularly interesting for physical implementations of adaptive178

dynamical systems, as the signal needs not be propagated sequentially back in time. On digital179

computers, the parallel update allows speed-up when implemented on customized CUDA kernels180

or with low-level programming interfaces. Unfortunately, in native Python, the speed-up cannot be181

observed due to the GIL and the large overhead of process spawning. Starting from our publicly182

available code, future works can refine the implementation, perhaps by integrating the parallel DFA183

update within the C++ PyTorch API.184

There are still other aspects that require further consideration. For example, the choice of the185

random feedback matrix is crucial, as it affects the trajectory of the parameters during training.186

Moreover, different matrix structures are amenable to different implementations in neuromorphic or187

unconventional hardware. Crafton et al. [2019] implemented DFA for feedforward architectures on188

neuromorphic hardware with a sparse feedback matrix, at minimal or no performance loss.189

Our algorithm can also be easily extended to deal with time series forecasting tasks, where the190

prediction step is taken after each time step, instead of only at the end of the input sequence. Further191

benchmarking of our DFA in these settings is required to understand its effectiveness.192
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A Appendix - DFA for Gated Recurrent Unit network257

We provide the update rule of DFA for all the parameters of the GRU.258

Wz ←Wz − η

T∑
t=1

(Be⊙ ht−1 −Be⊙ ct)⊙ (rt ⊙ (1− rt))h
T
t−1,

Vz ← Vz − η

T∑
t=1

(Be⊙ ht−1 −Be⊙ ct)⊙ (rt ⊙ (1− rt))x
T
t ,

Wr ←Wr − η

T∑
t=1

(Wr(Be⊙ (1− zt)) ∗ (1− ct ⊙ ct)ht−1)⊙ (rt ⊙ (1− rt))h
T
t−1,

Vr ← Vr − η

T∑
t=1

(Wr(Be⊙ (1− zt)) ∗ (1− ct ⊙ ct)ht−1)⊙ (rt ⊙ (1− rt))x
T
t ,

Wc ←Wc − η

T∑
t=1

(Wr(Be⊙ (1− zt)) ∗ (1− ct ⊙ ct)(rt ⊙ ht−1)
T ,

Vc ← Vc − η

T∑
t=1

(Wr(Be⊙ (1− zt)) ∗ (1− ct ⊙ ct)x
T
t .

As in the “Vanilla” RNN, all the bias vectors are updated by omitting the outer product in the corresponding W259

or V update. The matrix B can also be a different random matrix for each parameter.260

B Appendix - Hyperparameter search261

Hyperparameters are selected based on the best performances on a validation set among these possible values:262

hsize∈ [50,512], lr∈ [0.0005, 0.001,0.005,0.01], bs∈ [10,100,256], clip=2. The values selected by the model263

selection are:264

1. Libras: Learning rate = 0.0005 (except for BPTT GRU: learning rate= 0.01), Hidden size = 512, Batch265

size = 10, Epochs= 900.266

2. Strawberry: Learning rate = 0.0005 (except for BPTT GRU: learning rate= 0.005), Hidden size = 50267

(except for RNN DFA: hidden size= 512), Batch size = 10 (except for RNN DFA: bs=100 and for268

RNN BPTT: bs= 256), Epochs= 300.269

3. ECG200: [ Learning rate = 0.0005 (Except for DFA GRU, lr=0.01), Hidden size = 50, Batch size =270

256, Epochs= 500.271

4. ROW-MNIST: [Learning rate=0.0005 (Except for RNN DFA and GRU DFA, lr=0.005), Hidden size =272

512 ( Except for RNN BPTT, hs= 50), Batch size = 100 (Except for RNN BPTT, bs = 10)].273

In Figure 2 we show the learning curves of the test accuracy for the datasets ECG200 and Strawberry. The fact274

that the lines start at a different level is because the train, test, and validation sets are divided randomly so the275

test set can be particularly imbalanced. In these cases, the learning lines of DFA are not visibly growing. We276

believe that the restricted range of the hyperparameters prevented us to find solutions of DFA that work at best277

for these datasets.278
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