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ABSTRACT

A good language model starts with a good tokenizer. Tokenization is espe-
cially important for speech modeling, which must handle noisy continuous speech
recordings. A speech tokenizer should produce compact, linguistically rich repre-
sentations while still enabling high-quality synthesis. We present Kanade, a tok-
enizer that realizes this ideal. Kanade separates out acoustic constants like speaker
identity from the signal to create a single-stream discrete representation of speech
that captures linguistic content, including suprasegmental features. Experiments
show that Kanade achieves state-of-the-art speaker disentanglement and linguistic
availability while maintaining competitive reconstruction quality.

1 INTRODUCTION

In the past decade, natural language processing has made tremendous progress. This was enabled by
the advent of language models pretrained using self-supervised learning. The power of this approach
was demonstrated by encoders such as BERT (Devlin et al., 2019) and later next-token prediction
models like GPT, which could perform various tasks without explicit training (Brown et al., 2020).
Spoken language processing has followed a similar path. Supervised models are still popular for
tasks like Automatic Speech Recognition (ASR), but for others the state-of-the-art (SOTA) often
uses pretrained self-supervised models within a larger task-specific architecture (Mohamed et al.,
2022).

The next-token prediction framework has also been applied to speech in pure spoken language mod-
els (SLMs) (Lakhotia et al., 2021), TTS (Chen et al., 2025), and speech-to-speech translation (Lee
et al., 2022). In text language models (LMs), the tokenizer splits text into subword units. In autore-
gressive speech models, the speech encoder plays a similar, but more demanding role. In contrast to
text, which is already a semantically dense discrete representation of human language, recordings of
speech are continuous waveforms that also include other acoustic information such as background
noise and speaker identity. This makes extracting meaningful representations a difficult task.

We often want encoded representations to be discrete (Mousavi et al., 2025). These are called speech
tokens and they align with our intuition that linguistic units such as syllables and words are discrete.
They are convenient because they allow us to use the architectures of the text LMs that have been
so successful. Speech tokens also naturally mix with text tokens, making it convenient to build
multi-modal LMs or initialize training with a pretrained text LM (Hassid et al., 2023).

For spoken language modeling, an ideal speech tokenizer should:
Surface linguistic information Just like text, good representations should surface the basic units of

language (Borsos et al., 2023; Guo et al., 2025). This includes phonetic and prosodic (intonation,
stress, and rhythm) information (Kharitonov et al., 2022). Perhaps the best reason to prefer SLMs
over text LM cascades is that an SLM can understand and output prosodic features. In human dis-
course, prosody is used to segment speech (Mehler et al., 1981), distinguish words, parse ambigu-
ous sentences (Kjelgaard & Speer, 1999), draw attention to specific information (Bolinger, 1972),
indicate forward references (Gernsbacher & Jescheniak, 1995), and indicate turn-taking (Cutler &
Pearson, 1986), among other uses. For more on the role of prosody in human language, see Cutler
et al. (1997) and Dahan (2015). When representations are rich in low-level phonetic and prosodic
information, we can recover higher-level features like morphology or syntax.
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Suppress non-linguistic information Importantly, speech tokens should be similar regardless of
speaker or background conditions: any acoustic instance of /a/ should be recognized as belonging to
the class /a/, regardless of the situation in which it is spoken. This is similar to how image encoders
are often optimized to produce representations that encode the identity of the pictured object rather
than channel or environment properties like orientation, lighting, and camera characteristics.
The neural networks used in downstream models can learn more efficiently if we provide them
with representations that contain only relevant information (Tishby & Zaslavsky, 2015). Just as
it is wasteful to learn models of images at the pixel level, which is correlated and noisy (van den
Oord et al., 2017), language modeling on verbose representations may be wasteful. We also need
to be careful to create representations with short sequence lengths, since the transformers (Vaswani
et al., 2017) often used in language models perform poorly on long sequence lengths (Tay et al.,
2020).

Enable high-quality reconstruction For SLMs to output high quality speech, they must produce
representations that can be turned into a high-fidelity waveform (Borsos et al., 2023; Guo et al.,
2025).

These goals are often in conflict. It can be difficult to (1) provide only relevant (i.e., linguistic)
information, and (2) preserve environment and speaker characteristics for reconstruction. However,
disentanglement sidesteps this dilemma: ideal disentanglement would perfectly separate speech into
linguistic and non-linguistic content. The former could be used for linguistic tasks like ASR or TTS,
and the latter can be used only when necessary for speaker-related tasks or speech synthesis. Dis-
entangled representations have been shown to make downstream models easier to train and require
less data to generalize well (Higgins et al., 2017; van Steenkiste et al.). They are also interpretable
and allow for more control (e.g., disentangling speaker identity allows for voice conversion).

It is common to separate speech into time-varying content and acoustic invariants. Since many
linguistically irrelevant features like speaker identity and microphone characteristics are constant,
this allows the content stream to contain easily-accessible linguistic information, while relegating
information necessary for reconstruction to a separate representation. Martı́n-Cortinas et al. (2024)
have shown that using only the content stream can improve the performance of downstream language
modeling. The authors hypothesize that this is because the model learns the content distribution,
rather than a more complicated joint distribution of speaker information and content. That is, we
can avoid the tradeoff described above by preserving reconstruction information, but not feeding it
to models that don’t need it.

In this work, we present Kanade, a disentangled single-layer speech tokenizer. Kanade uses WavLM
features to produce a stream of discrete tokens for time-varying content and a global embedding
for acoustic invariants. Among speech codecs, Kanade achieves high reconstruction quality SOTA
metrics on 1) lexical availability as measured by downstream ASR and TTS tasks, 2) paralinguistic
availability as measured by speaker and emotion discrimination, and 3) speaker disentanglement
as measured by voice-conversion performance and speaker discrimination tasks, all despite a low
marginal bitrate.

At inference time, it usually suffices to use only the content branch. Kanade’s excellent disentangle-
ment ensures that the global embedding does not encode content, so it does not need to be calculated
for linguistic discriminative tasks like ASR or intent classification. Generative models like SLMs
only need to generate a content stream, which can then be decoded to speech using a single baked-in
global embedding. This fixed embedding might be considered the “voice” of the model.

Our contributions:
• We build a simple and lightweight speech tokenizer that achieves best-of-class disentanglement

only by restricting the flow of information rather than auxiliary methods.
• To measure the suitability of speech tokenizers for speech modeling, we assemble a suite of met-

rics measuring reconstruction, ease of language modeling, and performance on downstream tasks.
We calculate these metrics on a wide variety recent open-source speech tokenizers, including ours.

• We demonstrate that a single-layer speech codec can have competitive SLM performance.
• Along the way, we document the approaches we considered, trade-offs we made, and a rich set of

ablations. While it is our hope that Kanade is useful as it is, we also want to create a strong founda-
tion for future work. (Code: https://anonymous.4open.science/r/kanade-code,
Audio samples: https://anonymous-speech-research.github.io/demo2/)
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Figure 1: Comparison of information distribution in major classes of speech tokenizers.
Color gradients represent mixed content. Adapted from SpeechTokenizer (Zhang et al., 2024).
Kanade is a single-layer disentangled codec.

2 RELATED WORK

Self-supervised representations such as those from wav2vec 2.0 (Baevski et al., 2020), Hu-
BERT (Hsu et al., 2021), and WavLM (Chen et al., 2022a) contain readily available phonetic (Pasad
et al., 2021) and prosodic information, as well as easily separable speaker information (Kamper
et al., 2025). The earliest SLMs used these representations by discretizing them using k-means
clustering (Lakhotia et al., 2021). Unfortunately, k-means tokens from layers selected for phonetic
information largely drop speaker and prosodic information, making them unsuitable for prosody
modeling and resynthesis (Kharitonov et al., 2022; Polyak et al., 2021; Sicherman & Adi, 2023).

To mitigate this issue, AudioLM (Borsos et al., 2023) uses SSL-based tokens in combination with
a neural audio codec (NAC). It generates SSL tokens which are then converted to NAC tokens and
then to speech. This design allows the main language model to focus on modeling phonetically-rich
tokens, but then uses a different model to fill in the acoustic details. This suffers from an information
bottleneck: the SLM cannot pass information about how to vocalize the prosody-poor SSL tokens it
generates. SpeechTokenizer (Zhang et al., 2024) is a hybrid codec that distills its first RVQ (Gray,
1984) layer from HuBERT representations. While this removes the need for a separate SSL encoder,
SLMs using it still require an AudioLM-like complex multi-stage generation process.

Ye et al. (2025b) present a single-layer codec with FSQ. This has the potential to reduce complex-
ity in autoregressive models, since there is no need for an additional step to produce finer tokens,
and also allows models to better attend to suprasegmental features. However, these tokens are not
disentangled, and so require downstream models to learn a more high-entropy distribution.

RepCodec (Huang et al., 2024) uses a VQ-VAE architecture to quantize SSL features, efficiently
capturing semantic information. A unit-based vocoder is then trained for speech reconstruction.
Kanade’s content branch is inspired by this work, but shows end-to-end training with speech recon-
struction can improve prosody and speech quality.

Most disentangled speech tokenizers use a multi-branch architecture along with at least one addi-
tional method to encourage disentanglement, such as time invariance (Ren et al., 2024), data aug-
mentation (Guo et al., 2024), supervision (Ju et al., 2024), or using pretrained models (Zheng et al.,
2024). Conversely, Kanade achieves disentanglement using only a two-branch architecture. To our
knowledge, only BiCodec (Wang et al., 2025a) has attempted this. However, it has a more compli-
cated global branch and our work demonstrates that it does not achieve good disentanglement.

For more details, see Appendix A. Figure 1 illustrates each of the main speech tokenizer types.

3 METHOD

The major components of our model are illustrated in Figure 2. First, we use an SSL encoder
to extract SSL features from various layers. Features from deep layers, associated with phonetic
content (Pasad et al., 2023), go into a content branch (top gray box, Section 3.1.1) which further
encodes the speech and then quantizes it into tokens (green circles). Features from shallow layers,
associated with speaker characteristics (Chen et al., 2022b), go into a global branch (bottom gray
box, Section 3.1.2) which produces a single continuous embedding (red square). The decoder
(right side of Figure 2, Section 3.1.3) reconstructs the waveform from the content tokens and global
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Figure 2: Model architecture of Kanade

embedding. We train using SSL feature and mel spectrogram reconstructions losses (Section 3.2.1),
then post-train using adversarial losses (Section 3.2.2). To summarize our approach:
SSL reconstruction loss on content-rich SSL features emphasizes phonetic information.
Mel reconstruction loss is sensitive to supresegmental features, so encourages the content branch

to include them.
A global branch provides a path for non-linguistic information to flow through. Feature recon-

struction loss is relatively insensitive to this information, so the bitrate-constrained content encoder
is encouraged to drop it.

3.1 ARCHITECTURE

SSL encoder SSL features already contain the information that we would like to extract from
speech, including not only lingusistic, but also easily separable reconstruction-related informa-
tion (Kamper et al., 2025). Therefore, it is easier to reconfigure these than start with the raw audio
or mel spectrogram. See Appendices C.1 and C.2 for layer selection ablations.

3.1.1 CONTENT BRANCH

Content encoder We average the content layers’ representations and normalize each dimension
to zero mean and unit variance. We pass these features through a transformer encoder, selected
for its strong modeling ability (see Table 9 for an ablation). We use local window attention in all
our transformers to bias the model towards encoding information near its source and because it is
cheaper to calculate. The encoder outputs are temporally downsampled via a strided convolution.

Vector quantization (FSQ) We use a VQ-VAE (van den Oord et al., 2017) architecture for ex-
tracting discrete tokens given its success in prior work (Défossez et al., 2023; Huang et al., 2024).
Unfortunately, the vector quantization method used by van den Oord et al. (2017) is sensitive to ini-
tialization, prone to codebook collapse, and can have difficulty keeping up with constantly moving
encoder outputs (Łańcucki et al., 2020). Though previous work uses residual vector quantization
(RVQ) (Gray, 1984) to alleviate these problems, we wanted to produce one token per timestep so
opted to use Finite Scalar Quantization (FSQ) (Mentzer et al., 2024) to quantize encoder outputs.
FSQ is simple and avoids many of the problems caused by a dynamic codebook.

To obtain tokens, representations from the content encoder are projected to the FSQ dimension,
quantized, and represented by their indices in the implied codebook.

3.1.2 GLOBAL BRANCH

The goal of the global branch is to capture information about the audio that does not change over
time. Hence, we produce only one global embedding for the entire utterance. Since linguistic
information can only be conveyed by features that can change, nearly all of it is forced into the
content branch. Ablation confirms this (see Table 6).
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The global branch architecture is inspired by NeXt-TDNN (Heo et al., 2024), which uses the
ECAPA-TDNN (Desplanques et al., 2020) architecture with modified ConvNeXt (Liu et al., 2022)
blocks. We did not use a transformer for the global branch because there is no long-range structure
that we would like to capture. The global embedding is not discretized because we don’t expect it to
be used in autoregressive modeling. Li et al. (2024) showed that discretizing it may be detrimental.
Furthermore, we show in Appendix D.3 that the continuous representation can be freely manipulated
to condition the decoder.

Global encoder The shallow SSL representations for the global branch are averaged, but not nor-
malized. They are then passed to the global encoder, which is a stack of standard ConvNeXt blocks.

Attentive stats pool To obtain one embedding for the entire sequence, we use an attentive stats
pool (Okabe et al., 2018), following ECAPA-TDNN. An ablation using average pooling instead
shows this slightly improves reconstruction quality (see Table 8).

3.1.3 DECODER

The first step of decoding is to convert the content tokens back into their codes by performing a
lookup in the codebook.

These are passed through two transformer-based decoder modules: the Token Module and Mel
Module. This two-module design is inspired by TTS systems (Ren et al., 2021), where phonemes
are put through a transformer, expanded to the spectrogram length with a duration predictor, and
then put through another transformer. Since our tokens are produced at a constant rate, we use
transposed strided convolution to upsample features before feeding them to the mel module instead
of a duration predictor.

The mel module’s role is to produce a final mel spectrogram. It is conditioned by the global em-
bedding using adaLN-Zero (Peebles & Xie, 2023). All timesteps receive the same conditioning. We
choose adaptive layer normalization based on its success in AdaSpeech (Wu et al., 2022) and use the
zero variant because it has better training characteristics. However, ablations in Table 8 show that
our architecture is not very sensitive to the way decoding is conditioned. A convolutional post-net
is applied at the end to refine the generated spectrogram.

We target a mel spectrogram rather than a waveform mainly to make model training easier. The
focus of our work is token quality and we found it sufficient to use Vocos (Siuzdak, 2024) as a final
step to convert the mel spectrogram to a waveform.

3.2 TRAINING OBJECTIVES

3.2.1 MAIN TRAINING PHASE

Feature reconstruction Since the SSL representations that the content branch uses surface useful
linguistic information, we use a feature reconstruction loss to preserve that information in our tokens.
Ablation shows this is very important, as seen in Table 6. To compute this, we convert the tokens
back into their codes and upsample with a transposed strided convolution to the SSL frame rate. We
then pass these to the transformer-based Feature Decoder to reconstruct the input. We compare
the results with the input to the content encoder and compute the L2 loss Lssl, as was done by
RepCodec (Huang et al., 2024). The feature decoder is used in training only.

Mel reconstruction We compute L1 loss from the reconstructed mel spectrogram to obtain Lmel,
following convention (Kim et al., 2021).

We combine these two losses to obtain L = Lmel + αLssl in the main training phase. We also tried
splitting this into two stages, with only SSL loss at first, then switching to mel reconstruction loss.
However, we found this caused the encoder to ignore some prosodic features (see Table 6). This
is similar to how k-means (which is also computed using L2 distances in SSL feature space) loses
prosodic information before phonetic information (Kharitonov et al., 2022; Onda et al., 2025), so
we suspect that distances in phonetically rich SSL layers are not very sensitive to prosodic features.
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3.2.2 GAN POST-TRAINING

With only the main training phase, the model produces intelligible speech (see ablations in Table 10),
but the spectrogram is blurry, degrading audio quality. Wu et al. (2023) show that introducing
GAN (Goodfellow et al., 2014) post-training on the decoder can restore finer details.

To avoid passing gradients through the vocoder, we compare the mel spectrograms rather than the
waveforms. The discriminator splits the mel spectrum into frequency bands and feeds each to a
stack of convolutional layers. The per-band results are concatenated back together, a final convolu-
tion is applied, and the results are downsampled by 2D average pooling in the time and frequency
dimensions, producing the final discriminator output. This formulation was originally proposed in
DAC (Kumar et al., 2023). We use adversarial loss Ladv and feature matching loss Lfm as described
in Vocos (Siuzdak, 2024). During post-training, only the global branch and the decoder are updated.

The post-training objective is Lpost = Lmel + βLadv + γLfm.

4 EXPERIMENTS

4.1 TRAINING SETUP

Details on our model and training configurations can be found in Appendix E.1. We train our models
using all training sets of LibriTTS (Zen et al., 2019), a multi-speaker English corpus containing 586
hours of audiobook speech sampled at 24kHz. LibriTTS is derived from the same materials as the
LibriSpeech (Panayotov et al., 2015) corpus.

4.2 BASELINES

We compare Kanade with a variety of SOTA speech codecs, including hybrid codecs, single-stream
codecs, and disentangled codecs. See Appendix E.5 for more details. SpeechTokenizer (Zhang
et al., 2024) is abbreviated as ST.

We also train several reference models that change the way content is encoded. We train k-means
reference models (KM) that use the same SSL representations used by the content encoder (see
Section 3.1.1—normalizing before clustering is consistent with prior work (Borsos et al., 2023)).
These features are downsampled with average pooling and clustered using k-means, which is trained
on the LibriTTS train subsets. A separate continuous reference model (Cont.) is trained by replacing
both encoding branches with full-resolution (50Hz) continuous SSL features. Since we remove the
global branch, these are an average of all four layers used in our main models.

4.3 EVALUATION

We evaluate generated speech according to: (1) intelligibility: word/character error rate
(WER/CER) using Parakeet 1; (2) quality: MUSHRA2, UTMOS (Saeki et al., 2022),
ViSQOL (Chinen et al., 2020), and Mel L1; (3) speaker identity: speaker embedding cosine sim-
ilarity (SIM) using WavLM Base+ for Speaker Verification3 (WavLM-SV) and mel cepstral dis-
tortion (MCD); and (4) prosody: log F0 Pearson correlation (F0Corr) and root mean square error
(F0RMSE), extracted by SWIPE (Camacho & Harris, 2008). Evaluation code is largely adapted
from VERSA (Shi et al., 2025).

We also evaluate our models and baselines using various downstream tasks. The relevant metrics
will be introduced along with their results.

1https://huggingface.co/nvidia/parakeet-tdt-0.6b-v3
2More details about the listening test are in Appendix E.4.
3https://huggingface.co/microsoft/wavlm-base-plus-sv
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Table 1: Speech reconstruction results. The top group includes reference metrics. Only models
that are best in some metric are included. The bold numbers are the best in their group. For all
results, see Table 19 in the appendix.

Model Token
Rate

Intelligibility Quality Speaker Prosody

WER↓ CER↓ MUSHRA↑UTMOS↑ ViSQOL↑Mel L1↓ SIM↑ MCD↓ F0Corr↑ F0RMSE↓

Ground Truth – 1.9 0.6 78.0 4.07 5.00 – – – – –
Cont. 50Hz – 2.0 0.6 72.1 3.90 4.54 0.74 0.99 3.91 0.94 0.04
KM 12.5Hz 12.5 3.0 1.1 72.1 4.04 3.33 1.44 0.96 7.45 0.66 0.15
KM 25Hz 25 2.7 1.0 72.4 4.07 3.40 1.30 0.96 6.76 0.67 0.15

Multi-layer

FACodec 480 2.1 0.7 81.4 4.11 4.27 0.76 0.98 5.17 0.94 0.04
PAST 400 2.1 0.7 82.4 4.18 4.32 0.72 0.99 4.42 0.92 0.04
ST 400 2.1 0.7 76.0 3.90 4.26 0.72 0.98 4.72 0.92 0.05
DualCodec 100 2.1 0.7 75.6 4.12 4.28 0.66 0.98 4.08 0.95 0.04

Single-layer

X-Codec 2 50 2.5 0.9 77.0 4.13 4.12 0.77 0.98 4.92 0.90 0.06
BiCodec 50 2.5 0.9 75.0 4.18 4.09 0.94 0.98 5.22 0.91 0.05
WavTokenizer 40 9.4 4.7 72.1 3.57 3.55 1.00 0.92 6.17 0.91 0.07
StableCodec 25 5.7 2.6 79.3 4.31 3.50 1.28 0.93 7.29 0.91 0.05

Kanade 12.5Hz 12.5 3.3 1.3 74.6 4.17 3.69 1.25 0.97 6.82 0.85 0.10
Kanade 25Hz 25 2.4 0.8 75.0 4.16 3.86 1.02 0.97 5.67 0.88 0.07

4.4 RESULTS

4.4.1 RECONSTRUCTION

We evaluate speech reconstruction on LibriSpeech test-clean. The results are shown in Table 1.
Kanade maintains high speech quality and achieves the best WER among single-layer codecs and
even approaches the heaviest RVQ models. The k-means reference models have significantly de-
graded audio quality and prosody preservation (0.68 KM 25Hz vs. 0.88 Kanade 25Hz on F0Corr),
even when conditioned by the global embedding. This indicates that our content tokens capture
prosodic information better than k-means tokens, which is further confirmed by probing (see Ap-
pendix D.1).

For MUSHRA confidence intervals, see Table 21. For results on out-of-distribution data, see Ap-
pendix D.6. For reconstruction metrics on longer samples, see Appendix D.8.

4.4.2 DISCRIMINATIVE DOWNSTREAM TASKS

ASR To measure the availability of lexical information in tokens, we train decoder-only ASR
models following (Huang et al., 2024). The models are trained to predict SentencePiece (Kudo
& Richardson, 2018) text tokens conditioned on speech tokens. The models are trained on tokens
extracted from the LibriSpeech training sets. We use all the token layers, but exclude global rep-
resentations. These models are evaluated on LibriSpeech test-clean. Appendix E.3 contains
further details.

The results are shown in Table 2. Kanade 25Hz achieves the lowest WER (7.1%), drawing nearer
to the performance of k-means tokens. Evaluation on spontaneous speech yields similar results (see
Appendix D.7). This indicates that our single stream captures rich and easily-accessible lexical
information. For metrics of phonetic information such as ABX and PNMI, see Appendix D.2. For a
correlation analysis between lexical and phonetic metrics, see Appendix D.5.

Speaker and emotion recognition We train discriminative models for each tokenizer using all
layers for RVQ tokenizers. For disentangled tokenizers, we report results using only the global rep-
resentation or content stream. We evaluate two speaker tasks: speaker identification (SID) and
automatic speaker verification (ASV). Following Jung et al. (2022), we train ECAPA-TDNN (De-
splanques et al., 2020) with AAM-softmax loss (Deng et al., 2019) on representations extracted from
VoxCeleb1 (Nagrani et al., 2020). We report accuracy (Acc) and equal error rate (EER) for SID and
ASV, respectively. For emotion recognition (ER), we use an identical backbone with cross-entropy
loss. Following Yang et al. (2024), we perform 5-fold cross-validation across the five sessions of
IEMOCAP and report the unweighted average accuracy (Acc) on the four most common classes
(angry, sad, neutral, and happy/excited). Appendix E.3 contains further details.
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Table 3: Text-to-speech results

Model LibriTTS test-clean Seed-TTS-eval

WER↓ SIM↑ UTMOS↑Quality↑ Prosody↑ WER↓ SIM↑

Ground Truth 2.3% – 4.13 74.9 80.9 1.9% –
KM 12.5Hz 4.6% 0.95 3.96 72.0 67.0 5.4% 0.93
KM 25Hz 4.3% 0.95 4.05 74.9 75.9 4.9% 0.93

CosyVoice 2 1.8% 0.96 4.42 77.1 83.0 2.1% 0.95

ST 9.7% 0.95 3.95 75.0 79.0 11.2% 0.94
Mimi 6.6% 0.95 3.48 74.9 73.9 6.0% 0.93
DualCodec 10.0% 0.96 3.68 73.0 80.0 5.5% 0.94
PAST 8.0% 0.95 4.14 74.9 78.4 9.0% 0.94
TiCodec 11.5% 0.94 3.86 73.8 72.9 12.9% 0.92
StableCodec 9.0% 0.91 3.78 71.0 66.0 10.9% 0.87
BiCodec 7.8% 0.95 4.12 73.8 78.9 7.5% 0.94
X-Codec 2 6.5% 0.95 4.21 72.0 78.0 7.2% 0.94
WavTokenizer 13.9% 0.92 3.76 74.5 77.0 15.6% 0.91

Kanade 12.5Hz 5.9% 0.95 4.13 77.1 77.9 5.7% 0.94
Kanade 25Hz 4.2% 0.95 4.18 73.0 81.0 4.0% 0.94

Table 2: Downstream task results (%). For
context, includes SOTA metrics from special-
ized models for ASR (Rekesh et al., 2023),
SID (Saritha et al., 2024), ASV (Heo et al., 2024)
and ER (Cao et al., 2025). N.C. denotes not con-
verged.

Model Lexical Speaker Emotion

WER↓CER↓ SID Acc↑ ASV EER↓ER Acc↑

Cont. 50Hz 4.3 1.9 92.5 6.2 73.9
KM 12.5Hz 5.8 2.9 2.9 38.7 59.7
KM 25Hz 5.8 3.1 8.4 28.1 63.0
SOTA 1.4 – 99.3 0.8 79.9

DualCodec 9.8 5.3 22.9 18.8 54.8
ST 8.2 4.2 60.0 11.7 60.0
Mimi 10.4 5.5 33.4 17.4 54.4
PAST 7.9 3.9 74.1 9.8 55.3
X-Codec 2 11.0 6.0 0.2 39.0 45.8
StableCodec 11.8 6.3 0.1 45.0 42.4
WavTokenizer 18.1 10.3 13.1 27.4 48.1
FACodec – – 64.7 11.8 58.5

content only 8.2 4.2 76.8 8.9 54.3
global only – – N.C. N.C. 40.8

TiCodec – – 23.9 20.4 48.8
content only 9.4 4.8 56.2 13.4 51.7
global only – – 4.3 43.0 45.7

BiCodec – – 17.6 31.8 46.6
content only 100.1 71.4 0.5 38.7 46.0
global only – – 27.0 19.7 49.7

Kanade 12.5Hz – – 69.6 13.7 59.1
content only 8.1 4.0 0.2 44.1 42.3
global only – – 78.8 6.6 54.3

Kanade 25Hz – – 71.0 11.8 60.2
content only 7.1 3.8 0.3 36.2 45.8
global only – – 78.6 7.0 53.0

Results are shown in Table 2. Kanade achieves
SOTA performance when using only its global
embedding, nearly matching the performance
of WavLM features (Cont. 50Hz) on ASV
EER. We see that BiCodec also performs bet-
ter on these tasks when using only the global
embedding, while TiCodec fails to capture
speaker information in its global representation.
Kanade fails on both speaker tasks when us-
ing content tokens, suggesting good disentan-
glement.

4.4.3 GENERATIVE DOWNSTREAM TASKS

Text-to-speech (TTS) To test text-conditioned
generative modeling, we train an autoregres-
sive phoneme-based TTS model for each tok-
enizer on the LibriTTS training sets. Follow-
ing CosyVoice (Du et al., 2024a), speaker ID
is conditioned by prepending the input with
WavLM-SV speaker embeddings from the ref-
erence. Global embeddings for synthesis af-
ter TTS modeling are also extracted from the
reference. To synthesize speech for RVQ-
based decoders, we need to generate multi-
ple layers of dependent tokens. Autoregressive
modeling produces the highest quality results
when tokens are flattened into a single token
stream (Copet et al., 2023). While some works
cite scalability and performance as reasons to
use additional modeling step instead (Chen
et al., 2025; Défossez et al., 2024), we chose to standardize on flattening for its topline synthesis
quality and simplicity. Details are in Appendix E.3.

We randomly select 1,000 samples (4-10 seconds) from LibriTTS (Zen et al., 2019) test-clean
and condition each with 3 reference samples from the same speaker. Quality and prosody are eval-
uated using MUSHRA-like listening tests. See Appendix E.4 for details. We also report Seed-TTS-
eval results for comparison with other work.

The results are shown in Table 3. Kanade achieves SOTA intelligibility (4.2%, 5.9% WER) with
excellent quality and prosody. This finding aligns with the ASR metrics discussed earlier: the
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Table 4: Voice conversion results. Bold numbers are the best among tokenizers.

Model Lexical Content Quality Speaker Timbre Prosody

WER↓ CER↓ UTMOS↑ EER↑ Similarity↑ S-F0Corr↑

Ground Truth 0.0% 0.0% 4.08 – – –
KM 12.5Hz 1.5% 0.6% 4.22 29.8% 74.0 0.55

LinearVC 0.6% 0.2% 3.94 29.7% 73.4 0.62
FreeVC 0.6% 0.3% 3.99 29.0% 74.5 0.67
CosyVoice 2 1.1% 0.5% 4.11 31.0% 76.0 0.64

FACodec 0.8% 0.4% 3.45 18.6% 62.6 0.66
BiCodec 1.2% 0.6% 3.84 18.5% 71.4 0.61
DualCodec 21.5% 12.9% 2.51 6.8% 52.0 0.54
ST 74.7% 61.7% 1.54 10.6% 35.0 0.20
Mimi 120.3% 86.8% 3.09 38.5% 81.7 0.21
PAST 22.9% 15.1% 1.84 8.2% 23.3 0.20
TiCodec 0.5% 0.2% 3.32 5.4% 68.0 0.77

Kanade 12.5Hz 1.6% 0.7% 4.17 32.0% 77.6 0.64
Kanade 25Hz 0.7% 0.3% 4.16 30.7% 77.1 0.71

Table 5: Spoken language modeling results. Chance level is 50%.

Model Token rate Vocab. size sWUGGY↑ sBLIMP↑ sSC↑ tSC↑

KM 12.5Hz 12.5 12 800 75.8 57.5 51.8 66.7
KM 25Hz 25 12 800 68.1 53.5 51.1 63.5

ST 50 1024 75.8 54.9 52.0 64.4
PAST 50 1024 76.8 53.6 51.8 59.5
Mimi 12.5 2048 77.6 56.1 52.0 67.8

Kanade 12.5Hz 12.5 12 800 76.6 55.2 52.1 65.3
Kanade 25Hz 25 12 800 69.7 52.4 51.3 60.0

stronger lexical availability in our content tokens provides easier text alignment for downstream
tasks. For MUSHRA confidence intervals, see Tables 23 and 24.

Voice Conversion (VC) To measure disentanglement in hybrid and disentangling speech tokeniz-
ers, we combine content tokens (usually RVQ layer 1) extracted from source utterances with re-
maining tokens and embeddings extracted from reference (or target) utterances and then resynthe-
size. This is done for 1,000 gender-balanced (source, reference) pairs from VCTK (Yamagishi et al.,
2019). We randomly select 20 source speakers, 10 target speakers, and 5 source sentences.

If the phonetic and prosodic content matches the source and the timbre matches the reference, this
indicates good disentanglement between content and speaker characteristics. Lingustic content is
measured using WER and prosodic correlation (S-F0Corr) is with respect to the source. We cal-
culate equal error rate (EER, higher is better) following Das et al. (2020) using WavLM Base+ for
Speaker Verification. We additionally conduct MUSHRA-like listening tests to subjectively eval-
uate speaker similarity (see Appendix E.4). Specialized VC models were included as baselines:
LinearVC (Kamper et al., 2025), FreeVC (Li et al., 2023), and CosyVoice 2 (Du et al., 2024b).

Results are shown in Table 4. We observe catastrophic content degradation in the converted speech
of SpeechTokenizer and Mimi, suggesting leakage of linguistic content into higher layers. We also
observe poor timbre transfer in all other tokenizers. Kanade is the only speech codec that both
preserves content (WER, F0Corr) and achieves high speaker similarity (EER, Similarity). Moreover,
our performance matches or even surpasses specialized VC models, demonstrating that our simple
architecture achieves excellent disentanglement. For the full results, see Table 20 and 22.

Spoken language modeling (SLM) We use the Slam (Maimon et al., 2025a) recipe to train a
warm-start SLM based on Qwen-2.5-0.5B on one epoch of LibriLight (Kahn et al., 2020). Only
first-layer RVQ tokens are used. We evaluate in-vocabulary sWUGGY, sBLIMP (Dunbar et al.,
2021), sStoryCloze (sSC), and tStoryCloze (tSC) (Hassid et al., 2023), all of which measure accu-
racy in assigning higher probability to linguistically plausible inputs. Since we keep constant the
SLM architecture, these metrics indirectly measure whether a tokenizer makes available the infor-
mation necessary to learn higher-level linguistic structure. Only baselines that performed well in
preliminary testing (see Appendix D.4) are included here. For these, only the semantic layer is

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 6: Ablation results. Based on Kanade 12.5Hz without post-training.

Model Reconstruction Discriminative Downstream

WER↓ MUSHRA↑UTMOS↑Mel L1↓ SIM↑ F0Corr↑ WER↓ SID Acc↑ ASV EER↓ER Acc↑

Kanade 12.5Hz 3.5% 69.0 4.10 1.27 0.96 0.84 8.1% 69.6% 13.7% 59.1%

w/o Dual-branch 6.1% 24.0 2.93 1.66 0.88 0.66 10.4% 1.3% 35.9% 50.3%
w/o Feature recon. 8.0% 68.5 4.08 1.25 0.96 0.84 14.9% 66.8% 14.0% 58.6%
w/o End-to-end 3.3% 60.7 3.97 1.34 0.96 0.76 7.7% 67.1% 13.3% 58.9%
w/o FSQ 25.8% 43.7 3.37 1.44 0.95 0.69 18.6% 62.0% 14.0% 61.1%

used. The resuls in Table 5 show that k-means, distilled tokens, and our tokens all have similar
performance (though 25 Hz variants underperform).

4.5 ABLATION STUDIES

We conduct a rich set of ablation studies to verify the effectiveness of our design choices. Some
results are shown here in Table 6. See Appendix C for more.

Dual-branch design We train a model without a global branch, using only content tokens to recon-
struct both SSL features and a mel spectrogram. This model shows heavy degradation on every
metric. Despite its simplicity, the global embedding is indispensable, capturing constant acoustic
information and allowing the content branch to focus on linguistic content.

SSL feature reconstruction loss In the model trained without SSL features reconstruction loss,
reconstruction and downstream ASR WERs are significantly higher. This suggests that the SSL
feature reconstruction loss encourages the content branch to encode lexical information.

End-to-end training In this setting, we (1) train the content FSQ-VAE with only SSL feature re-
construction loss, freeze it, and then (2) train the other components with only mel spectrogram
reconstruction loss. This is similar to the approach used by Huang et al. (2024). While this 2-stage
method has a slightly lower WER, the speech quality, in particular prosody, degrades. This demon-
strates that end-to-end training with dual objectives can extract more prosodic information without
losing much lexical information.

FSQ We replace FSQ with ordinary VQ (van den Oord et al., 2017), using exponential moving aver-
age (EMA) codebook (decay 0.8), k-means initialization, and random restart for dead codes (Dhari-
wal et al., 2020). The results show a serious degradation on nearly every metric, linguistic infor-
mation (WER, F0Corr). This observation aligns with findings reported by Mentzer et al. (2024).
FSQ yields better results and removes the need to tune extra hyperparameters.

5 CONCLUSION

We introduced Kanade, a speech tokenizer that extracts compact, linguistically rich single-stream
tokens suitable for both generative and discriminative modeling. Kanade draws closer to the ideal
speech tokenizer, with excellent information preservation and linguistic availability. It starts with
SSL features that already expose relevant information, allowing training with only 600 hours of data
and 120M unfrozen parameters. It then cleanly disentangles time-invariant features and linguistic
content only by restricting the flow of information. This allows downstream models using Kanade
tokens to achieve better results than baselines on various speech tasks, including ASR and TTS.
Despite the simplicity of Kanade’s disentanglement approach, speaker recognition and voice con-
version results reveal the best disentanglement among tested tokenizers. Furthermore, competitive
SLM results show that simple autoregressive language modeling with a single stream of tokens is
possible without giving up the speech quality benefits of a reconstruction-oriented codec.

While Kanade does not introduce any new components, it shows that a simple architecture with
simple losses is enough to create a high-performing speech tokenizer.

ETHICS STATEMENT

We recognize the potential for abuse using our models, especially when used for voice conversion.
However, during GAN post-training the discriminator was very strong and we had to hobble it
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severely, indicating that the audio generated by our model can easily be detected. We acknowledge
that the pretrained SSL encoder and our training data have biases and encourage anyone using our
architecture to use debiasing techniques or train with a larger, more diverse dataset, as we also plan
to do in the future.

REPRODUCIBILITY STATEMENT

All training data (Section 4.1) and evaluation data (described alongside each metric) we use, with the
exception of TIMIT (Garofolo et al., 1993), is freely available. TIMIT is available from the Linguis-
tic Data Consortium for a fee. Baselines (detailed in Section E.5) are tested using their official open-
source implementations and checkpoints. We made our best effort to provide model architecture and
training details (see Sections E.1 and E.3). We are committed to the integrity of our work and will an-
swer any questions regarding it by email. Some audio samples produced by our models can be found
on our demo page: https://anonymous-speech-research.github.io/demo2/. We
will publicly release our training code, evaluation code, and checkpoints before submitting the
camera-ready paper.

LLM USAGE

We used LLMs for coding assistance, literature discovery (to summarize paper contents and retrieve
related works), and some research ideation (to discuss experiment design, etc.), but did not use them
to draft or review this paper (with an exception for writing scripts to format LATEX tables).
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Arnaud Joly, Álvaro Martı́n-Cortinas, Ammar Abbas, Adam Michalski, et al. Base tts: Lessons
from building a billion-parameter text-to-speech model on 100k hours of data. arXiv preprint
arXiv:2402.08093, 2024.

Kushal Lakhotia, Eugene Kharitonov, Wei-Ning Hsu, Yossi Adi, Adam Polyak, Benjamin Bolte,
Tu-Anh Nguyen, Jade Copet, Alexei Baevski, Abdelrahman Mohamed, et al. On generative
spoken language modeling from raw audio. Transactions of the Association for Computational
Linguistics, 2021.
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Yi-Chiao Wu, Israel D. Gebru, Dejan Marković, and Alexander Richard. Audiodec: An open-
source streaming high-fidelity neural audio codec. In ICASSP 2023 - 2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023.

Yihan Wu, Xu Tan, Bohan Li, Lei He, Sheng Zhao, Ruihua Song, Tao Qin, and Tie-Yan Liu.
Adaspeech 4: Adaptive text to speech in zero-shot scenarios. In Interspeech 2022, 2022.

Junichi Yamagishi, Christophe Veaux, and Kirsten MacDonald. Cstr vctk corpus: English multi-
speaker corpus for cstr voice cloning toolkit (version 0.92). 2019.

Shu-wen Yang, Heng-Jui Chang, Zili Huang, Andy T. Liu, Cheng-I Lai, Haibin Wu, Jiatong Shi,
Xuankai Chang, Hsiang-Sheng Tsai, Wen-Chin Huang, Tzu-hsun Feng, Po-Han Chi, Yist Y. Lin,
Yung-Sung Chuang, Tzu-Hsien Huang, Wei-Cheng Tseng, Kushal Lakhotia, Shang-Wen Li, Ab-
delrahman Mohamed, Shinji Watanabe, and Hung-yi Lee. A large-scale evaluation of speech
foundation models. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2024.

Sicheng Yang, Methawee Tantrawenith, Haolin Zhuang, Zhiyong Wu, Aolan Sun, Jianzong Wang,
Ning Cheng, Huaizhen Tang, Xintao Zhao, Jie Wang, and Helen Meng. Speech Representation
Disentanglement with Adversarial Mutual Information Learning for One-shot Voice Conversion.
In Interspeech 2022, pp. 2553–2557, 2022. doi: {10.21437/Interspeech.2022-571}.

Zhen Ye, Peiwen Sun, Jiahe Lei, Hongzhan Lin, Xu Tan, Zheqi Dai, Qiuqiang Kong, Jianyi Chen,
Jiahao Pan, Qifeng Liu, Yike Guo, and Wei Xue. Codec does matter: Exploring the semantic
shortcoming of codec for audio language model. Proceedings of the AAAI Conference on Artificial
Intelligence, 2025a.

Zhen Ye, Xinfa Zhu, Chi-Min Chan, Xinsheng Wang, Xu Tan, Jiahe Lei, Yi Peng, Haohe Liu, Yizhu
Jin, Zheqi DAI, et al. Llasa: Scaling train-time and inference-time compute for llama-based
speech synthesis. arXiv preprint arXiv:2502.04128, 2025b.

Dacheng Yin, Xuanchi Ren, Chong Luo, Yuwang Wang, Zhiwei Xiong, and Wenjun Zeng. Re-
triever: Learning content-style representation as a token-level bipartite graph. arXiv preprint
arXiv:2202.12307, 2022.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi. Sound-
stream: An end-to-end neural audio codec. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 2022.

Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J. Weiss, Ye Jia, Zhifeng Chen, and Yonghui Wu.
Libritts: A corpus derived from librispeech for text-to-speech. In Interspeech 2019, 2019.

Xin Zhang, Dong Zhang, Shimin Li, Yaqian Zhou, and Xipeng Qiu. Speechtokenizer: Unified
speech tokenizer for speech language models. In The Twelfth International Conference on Learn-
ing Representations, 2024. URL https://openreview.net/forum?id=AF9Q8Vip84.

Xueyao Zhang, Xiaohui Zhang, Kainan Peng, Zhenyu Tang, Vimal Manohar, Yingru Liu, Jeff
Hwang, Dangna Li, Yuhao Wang, Julian Chan, Yuan Huang, Zhizheng Wu, and Mingbo Ma.
Vevo: Controllable zero-shot voice imitation with self-supervised disentanglement. In The Thir-
teenth International Conference on Learning Representations, 2025.

Youqiang Zheng, Weiping Tu, Yueteng Kang, Jie Chen, Yike Zhang, Li Xiao, Yuhong Yang, and
Long Ma. Freecodec: A disentangled neural speech codec with fewer tokens. arXiv preprint
arXiv:2412.01053, 2024.

21

https://openreview.net/forum?id=AF9Q8Vip84


1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A SURVEY OF RELATED WORK

Speech tokenizers of recent years generally fall into two categories: neural audio codec (NAC)-based
and SSL-based. NACs (Zeghidour et al., 2022; Défossez et al., 2023) are designed to compress audio
and are mainly trained with reconstruction objectives (Défossez et al., 2023). SSL representations
are designed to capture the structure of speech and are trained using contrastive loss (Baevski et al.,
2020) or masked prediction (Hsu et al., 2021). Using k-means, SSL representations can be clustered
into tokens that expose high levels of phonetic information (Hsu et al., 2021; Choi et al., 2024). Both
token types have been used in spoken language models (SLMs) (Lakhotia et al., 2021; Borsos et al.,
2023).

Efforts to improve speech tokenization have followed two main streams of work:
Unification In speech contexts, we often want both the information-preserving properties of

reconstruction-oriented NACs and the linguistic availability of SSL tokens. We need the former
to generate high-quality speech and the latter to understand speech and produce coherent out-
puts (Borsos et al., 2023). To this end, we have seen the development of NACs with more lin-
guistic availability (Zhang et al., 2024) and SSL discritization methods that improve the quality of
generated speech (Huang et al., 2024).

Disentanglement It is trivial to achieve a high level of phonetic availability (by representing speech
as text) or acoustic preservation (by representing it as a waveform). The difficulty lies in doing
both at the same time, so disentanglement has been a recurring theme in speech tokenization ef-
forts. This can help (1) make phonetic content more available (Qian et al., 2022); (2) achieve
flexible control of individual aspects of speech (Choi et al., 2023); and (3) reduce information
redundancy (Ren et al., 2024).

In the following paragraphs, we select a few works with at least one of these goals.

Hybrid speech codecs These codecs are usually based on NAC architectures, but are designed to
enhance lexical information by: (1) knowledge distillation, typically using SSL encoders as teacher
models (Zhang et al., 2024; Défossez et al., 2024; Jiang et al., 2024; Khurana et al., 2025); (2)
directly using SSL features as input (Ye et al., 2025a; Wang et al., 2025a; Li et al., 2025; Hussein
et al., 2025; Liu et al., 2024); (3) text conditioning of the encoder and/or decoder (Tseng et al., 2025;
Wang et al., 2025b); or (4) supervision, typically using phonemes (Ju et al., 2024) or text (Har-Tuv
et al., 2025).

Though largely effective, these methods have at least one of the following limitations: (1) relying on
multi-layer token structure, which complicates the architecture of downstream models; (2) having
parallel encoders, resulting in architectural redundancy; or (3) needing extra annotations and limiting
scalability. Following this line of research, Kanade improves on these by using only SSL features
that are already rich and learning single-layer linguistically meaningful tokens in an unsupervised
way, with a simple and elegant architecture.

SSL tokens K-means tokenization, popularized by HuBERT (Hsu et al., 2021), is the prevalent
method of discretizing SSL speech representations. It is simple and extracts phonetic information
suitable for SLMs (Lakhotia et al., 2021; Borsos et al., 2023). However, performing k-means on
the layers typically associated with high phonetic content eliminates too much information that is
required for faithful resynthesis (Sicherman & Adi, 2023).

To preserve additional information, Shi et al. (2024) propose applying k-means iteratively on the
residuals, creating a multi-layer token structure reminiscent of multi-layer NACs.

Others (Huang et al., 2024; Zhang et al., 2025) have used VQ-VAE to learn a discrete latent space.
The structure of our content branch (Section 3.1.1) was based on these methods. Auxiliary losses
are sometimes added to improve robustness (Gat et al., 2023; Chang et al., 2023; Messica & Adi,
2024) or integration with SLMs (Turetzky & Adi, 2024).

Some methods extract syllable-like units, producing extremely low-bitrate coarse tokens. This sig-
nificantly improves SLM performance (Baade et al., 2025; Cho et al., 2025).

UniWav (Liu et al., 2025) adds discriminative and generative objectives in a unified pre-training
framework. The k-means tokens obtained from their representation exhibit improved reconstruc-
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tion quality. Since pretraining requires significant computational resources, our work explores the
possibility of extracting better speech tokens from existing pretrained SSL models.

Disentangled speech representations Here we outline techniques for disentangling different as-
pects (phonetic content, prosody, speaker timbre, style, etc.) of speech. We include techniques from
research on voice conversion for completeness. (1) information bottlenecks, including vanilla au-
toencoders (Qian et al., 2019), k-means quantization (Polyak et al., 2021; Huang et al., 2022), and
VQ-VAE (Chorowski et al., 2019; Wu et al., 2020; Tjandra et al., 2021; Zhang et al., 2025); (2) struc-
tured priors that separate local and global information (Hsu et al., 2017; Wang et al., 2018; Yin et al.,
2022); (3) contrastive learning (Qian et al., 2022; Tang et al., 2022) and invariance learning (Chan
et al., 2022; Choi et al., 2023; Chang et al., 2023; Ren et al., 2024); (4) adversarial learning tech-
niques such as GAN (Kameoka et al., 2018) and gradient reversal (Ju et al., 2024; Łajszczak et al.,
2024); and (5) direct supervision (Hussain et al., 2023; Ju et al., 2024; Har-Tuv et al., 2025). Some
less popular techniques include mutual information loss (Wang et al., 2021; Yang et al., 2022; Lian
et al., 2022), instance normalization (Chou et al., 2019; Lin et al., 2021), and linear transformations
in the feature space (Kamper et al., 2025). Some models use more than one technique. For example,
TiCodec (Ren et al., 2024) uses vector quantization, structured priors, and invariance learning.

Following previous work, Kanade uses VQ-VAE as an information bottleneck. It assumes that
acoustic constants by including a global branch to provide a path for them to be preserved outside of
the main token stream, disentangling them from linguistic content. Critically, it does not introduce
the complexity of extra training objectives found in some of the methods above.

B LIMITATIONS AND FUTURE WORK

Since the SSL encoder we use is based on a bidirectional transformer, our tokens are not streamable,
requiring audio chunking and limiting applicability in some scenarios. Since the effective receptive
field of SSL encoders is limited (Meng et al., 2025), this can be solved by distilling a streamable en-
coder (Choi et al., 2025) and modifying our architecture to a streaming design, as done by Défossez
et al. (2024).

Our content tokens are produced at a constant rate, which may lead to information redundancy and
reduce alignment with linguistic categories. We hope to adopt approaches pioneeered by Baade
et al. (2025) and Cho et al. (2025) to enable variable-rate tokenization, mitigating these issues.
Although we achieve excellent separation of dynamic content and acoustic constants, currently it
is still not possible to further disentangle the content. As shown by the Gigaspeech experiments
(see Appendix D.6), our current approach is sensitive to dynamic background noise such as music.
Furthermore, it could be useful to further separate linguistic content into phonetic and prosodic
features for better flexibility.

Since the focus of this paper is to improve linguistic availability and information preservation in
discrete speech tokens, we did not experiment with any vocoding settings other than targeting a mel
spectrogram and using Vocos to generate a waveform. To improve audio quality, we might consider
using a more advanced decoder.

For more limitations regarding out-of-distribution data, see Appendix D.6.
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C ADDITIONAL ABLATION STUDIES

C.1 CONTENT BRANCH

Table 7: Content branch ablation results

Model Reconstruction Downstream

WER↓ UTMOS↑Mel L1↓ SIM↑ F0Corr↑ WER↓

Kanade 12.5Hz 3.5% 4.10 1.27 0.96 0.84 8.1%

Token rate 6.25Hz 14.0% 3.55 1.73 0.95 0.65 15.8%
Codebook size 3125 4.9% 4.05 1.33 0.96 0.79 10.0%

Layer 6 4.2% 4.09 1.29 0.96 0.82 12.5%
Layer 9 3.5% 4.07 1.28 0.96 0.81 7.5%
Layer 12 3.5% 4.04 1.29 0.96 0.80 7.8%
Layer 9+12 3.6% 4.08 1.29 0.96 0.81 7.4%
Layer 1–12 weighted-sum 3.5% 4.07 1.30 0.96 0.80 8.7%

Table 8: Global branch ablation results

Model Reconstruction Downstream

WER↓ UTMOS↑Mel L1↓ SIM↑ F0Corr↑ SID Acc↑ ASV EER↓ER Acc↑

Kanade 12.5Hz 3.5% 4.10 1.27 0.96 0.84 69.6% 13.7% 59.1%

Layer 6+9 3.6% 4.06 1.46 0.94 0.79 71.7% 13.8% 64.1%
Layer 1–4 weighted-sum 3.7% 4.09 1.28 0.97 0.82 75.4% 10.9% 60.4%
Mel 3.6% 3.81 1.23 0.93 0.81 46.3% 20.0% 56.0%

Avg pooling 3.7% 4.10 1.29 0.96 0.81 70.3% 12.6% 59.5%
Conditioning: full decoder 3.8% 4.09 1.27 0.96 0.82 70.9% 11.8% 59.5%
Conditioning: addition 3.8% 4.09 1.25 0.97 0.83 82.6% 12.7% 59.5%

Results of ablation on the content branch are shown in Table 7.

We tried decreasing the token rate and effective codebook size. When the token rate is halved
(85bps), the linguistic content and speech quality is unacceptable. On the other hand, the codebook
size has more moderate effect on information capacity, since the bitrate decreases logarithmically
with codebook size. In the model with 3,125 codes (∼ 1/4 of the original codebook size, 145bps),
WER and F0Corr mildly degrade.

We also study SSL feature layer selection for the content branch input. We observe a pattern
consistent with Pasad et al. (2023): shallow layers provide more acoustic information that benefits
audio quality and prosody preservation; deep layers offer more phonetic information. We find the
9th layer (3/4 the way through) is a good balance point. Zhang et al. (2025) observed a similar
result for HuBERT-large. Adding layer 6 to layer 9 improves speech quality and prosody, without
losing much lexical availability (+0.6% downstream WER), so we stick to this combination. We also
experimented with a learnable weighted-sum of all layers, with suboptimal results. Interestingly this
model distributes over 80% of the weight to the deepest layer.

C.2 GLOBAL BRANCH

Results of ablation on the global branch are shown in Table 8.

For SSL feature layer selection, we experiment with using the same combination of SSL layers as
our content branch (layers 6 and 9). This improves emotion recognition performance (64.1% ER
Acc) but Mel L1 and prosody metrics are worse. This suggests that deeper SSL features offer more
paralinguistic semantics but less prosodic information.

In a model with a learnable weighted-sum of layers 1–4, we notice increased speaker recognition
performance (75.4% SID Acc) but slightly worse intelligibility. Other metrics remain similar. Dur-
ing training, we find the model distributes over 50% of the weight to layer 1, indicating that the
global branch prefers information from earlier layers. For simplicity, we stick to a combination of
layers 1 and 2 for better intelligibility while maintaining reasonably high downstream performance.
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Table 9: Backbone and SSL encoder ablation results

Model Reconstruction Downstream

WER↓ UTMOS↑Mel L1↓ SIM↑ F0Corr↑ WER↓ SID Acc↑ ASV EER↓ER Acc↑

Kanade 12.5Hz 3.5% 4.10 1.27 0.96 0.84 8.1% 69.6% 13.7% 59.1%

ConvNeXt 4.0% 4.04 1.29 0.96 0.82 8.9% 73.1% 10.0% 59.4%
HuBERT 3.7% 4.09 1.26 0.96 0.82 9.2% 65.7% 10.5% 59.5%

Table 10: GAN post-training ablation results

Model Reconstruction

WER↓ MUSHRA↑ UTMOS↑Mel L1↓ SIM↑ F0Corr↑

Kanade 12.5Hz 3.4% 74.6 4.17 1.25 0.97 0.85
w/o GAN 3.5% 69.0 4.10 1.27 0.96 0.84

Kanade 25Hz 2.4% 75.0 4.16 1.02 0.97 0.88
w/o GAN 2.3% 70.3 4.13 1.03 0.97 0.88

We also experiment with using mel spectrograms as input for global branch instead of SSL features.
This worsened all metrics other than Mel L1. This indicates that SSL features provide more useful
and structured information on speaker identity and paralinguistic details, benefiting both reconstruc-
tion and downstream performance. This result motivated us to build a tokenizer fully based on SSL
features.

Moreover, we study the effect of pooling and conditioning in the global branch. Compared to
average pooling, our main model with attentive statistical pooling (Okabe et al., 2018) has slightly
better intelligibility and prosody. For conditioning mechanism ablation, we train (1) a variant where
global embeddings apply adaLN-Zero (Peebles & Xie, 2023) conditioning to both the token module
and mel module in our decoder instead of just the latter (noted as Conditioning: full decoder), and
(2) a variant using simple addition instead of adaLN-Zero (noted as Conditioning: addition). Both of
them exhibit slightly worse intelligibility and prosodic correlation, though the model with addition
conditioning achieves remarkable SID accuracy (82.6%). We stick to adaLN-Zero conditioning only
mel module, as this seems to better preserve linguistic information.

C.3 ARCHITECTURE

We train a model with all transformers replaced with ConvNeXt (Liu et al., 2022) backbones with
a matching parameter count. The results are in Table 9. The model shows similar results except
mildly worse linguistic content metrics (+0.5% reconstruction WER and +0.8% downstream WER).
This indicates that the stronger sequence modeling ability of transformers can help the model better
preserve and surface linguistic information.

We also try replacing WavLM Base+ with HuBERT-base, which shows similar results in Table 9.
This validates the effectiveness of our method across SSL models.

Table 10 shows reconstruction results without GAN post-training. Based on these ablations, post-
training slightly improves audio quality (higher MUSHRA, UTMOS and lower Mel L1) without
heavily affecting other metrics.
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D ANALYSIS

D.1 PROSODIC INFORMATION PROBING

Table 11: Probing results on fundamental frequency (F0)

Model Corr↑ RMSE↓

KM 12.5Hz 0.50 0.86
KM 25Hz 0.53 0.84

DualCodec 0.78 0.62
SpeechTokenizer 0.57 0.82
Mimi 0.46 0.88
FACodec 0.64 0.76
X-Codec 2 0.55 0.83
StableCodec 0.35 0.93
WavTokenizer 0.78 0.63
BiCodec 0.50 0.86
PAST 0.54 0.83
TiCodec 0.68 0.73

Kanade 12.5Hz 0.68 0.73
Kanade 25Hz 0.75 0.65
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Figure 3: Comparison of F0 probing predictions
To measure the availability of prosodic information within speech tokens, we conduct a probing
analysis on fundamental frequency (F0), which humans perceive as pitch. We train 7M-parameter
2-layer 512-dim bidirectional transformers with a linear head to predict log F0. The models are
optimized with MSE loss for 50k steps, using AdamW (Loshchilov & Hutter, 2019) (learning rate
1e-3, β1 = 0.9, β2 = 0.999, weight decay 1e-2). We use LibriSpeech train-clean-100 for
training and test-clean for testing. F0 extraction settings match those in our reconstruction
experiments (Section 4.4.1). Since our main focus is to investigate the usefulness of different speech
tokens for prosody modeling in SLMs, we use tokens from the most linguistically-related RVQ
layer (RVQ 1, or the first content layer in FACodec) for multi-layer codecs. The log F0 values are
normalized for each instance, as only relative pitch is linguistically relevant. We report Pearson
correlation coefficient (Corr) and root mean squared error (RMSE).

Results are shown in Table 11. Kanade models achieve better F0 probing performance than most
of the baselines and k-means tokens (Kanade 25Hz 0.75 vs. KM 25Hz 0.53 on Corr). We display
probing results for one sample in Figure 3: predictions from our content tokens are more aligned
with the ground truth than those from k-means or SpeechTokenizer. These results verify that our
tokens make prosody easily accessible.
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D.2 PHONETIC INFORMATION ANALYSIS

Table 12: Phonetic information metrics

Model ABX↓ PNMI↑

within across

KM 12.5Hz 4.4% 5.1% 0.79
KM 25Hz 3.5% 4.2% 0.81

DualCodec 16.0% 19.1% 0.56
ST 3.6% 4.5% 0.69
Mimi 6.6% 7.8% 0.63
FACodec 4.4% 5.9% 0.53
X-Codec 2 15.4% 22.4% 0.44
StableCodec 21.9% 25.0% 0.55
WavTokenizer 25.6% 31.5% 0.17
BiCodec 24.5% 34.3% 0.22

Kanade 12.5Hz 22.7% 24.3% 0.58
Kanade 25Hz 19.0% 21.6% 0.49

Vowels
Semivowels and Glides
Nasals
Fricatives
Affricates
Stops

Figure 4: PCA visualization of our content
embedding. Points are colored by category.
Larger markers represent per-phoneme aver-
age embeddings.

First, we visualize the distribution of phones in the continuous content embedding space of our
12.5Hz model. We encode the TIMIT dataset (Garofolo et al., 1993) using the content encoder
(768-dim) and find the average embedding for each phoneme. We perform Principal Component
Analysis (PCA) with two components on these average embeddings, then project all the collected
embeddings onto the learned PCA space. The result is shown in Figure 4. We observe a clear
phonetic configuration of the embedding space.

To numerically evaluate the phonemic information in our content tokens, we measure ABX phoneme
discriminability (Schatz et al., 2013) and phone-normalized mutual information (PNMI) (Hsu et al.,
2021). In the literature on speech representations, the phone/phoneme terminology is not well-
respected. We use terms as used in the original definitions of these metrics. Technically, both of
them measure phonemic information, but hierarchical clustering shows that SSL representations are
mostly phonetic (van Niekerk et al., 2023).

ABX measures the extent to which phonemic categories are localized in feature space. It starts with
a minimal pair of triphones like “bag” and “beg”. The model is presented with A, an instance of the
first, B, an instance of the second, and X , another instance of one of the two triphones. A and B
always come from the same speaker. X either comes from the same speaker (within) or a different
speaker (across).

We choose a distance measure d(x, y) and calculate both d(X,A) and d(X,B). In a well-configured
embedding, X should be closer to the sample from the same class. For example, if A is an in-
stance of “bag”, B is instance of “beg”, and X is another instance of “bag”, then we expect
d(X,A) < d(X,B). The ABX score is the error rate: lower ABX scores indicate better phone-
mic discriminability directly in the representation space. We evaluate ABX on Libri-light (Kahn
et al., 2020) test-clean, using the fastabx library (Poli et al., 2025). We use cosine similarity as
the distance measure following convention (Dunbar et al., 2021).

PNMI calculates the mutual information between phones and tokens I(phones; tokens), normalized
by phone entropy H(phones). It measures the amount of uncertainty about the phone identity that is
eliminated by observing the token. Higher PNMI score indicates stronger correspondence between
tokens and phones. We evaluate on the TIMIT dataset (Garofolo et al., 1993).

The results are shown in Table 12. K-means tokens achieve the best performance on these metrics,
indicating a strong relationship with phonetic categories. SpeechTokenizer and Mimi, which use
knowledge distillation, and FACodec, which uses phoneme labels, exhibit comparable performance.
DualCodec, X-Codec 2, and Kanade, which use VQ-VAE, perform similarly. Notably, Kanade
12.5Hz is ranked the third on PNMI score among codecs.

In Figure 5, we visualize the relationship between speech tokens and phonemes. PNMI is a measure
of the strength of this relationship. Though noisier than k-means tokens, ours show recognizable
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correspondence to TIMIT phonemes. Curiously, all tokenizers other than BiCodec, FACodec, and
ours have a significant token space that is unrelated to encoding this information.
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Figure 5: Joint probability distributions on speech tokens and TIMIT phones. The token indices
are sorted for better visualization.
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D.3 GLOBAL EMBEDDING PCA ANALYSIS
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Figure 6: PCA of global embeddings. Colored by LibriSpeech speaker ID.

We perform PCA on the global embeddings from LibriSpeech dev-clean and plot a subset of the
utterances in Figure 6.

To get a sense of what these components represent, we took utterances, tokenized them, and recon-
structed them using a perturbed global embedding. Subjectively, the first principal component seems
related to speaker gender. The second and third are harder to characterize without further analysis.
Samples of these perturbations are available on the demo page4.

4https://anonymous-speech-research.github.io/demo2/
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D.4 PRELIMINARY SLM RESULTS

Table 13: Preliminary SLM results

Model Token rate Vocab. size sWUGGY↑ sBLIMP↑

KM 12.5Hz 12.5 12 800 69.8% 54.0%
KM 25Hz 25 12 800 66.8% 53.3%

SSL-distilled Codecs

ST 50 1024 71.0% 52.1%
Mimi 12.5 2048 68.3% 53.7%

Other Codecs

DualCodec 12.5 16 384 56.5% 50.2%
FACodec 80 1024 57.2% 50.1%
X-Codec 2 50 65 536 52.4% 50.0%
StableCodec 25 46 656 57.1% 51.1%
WavTokenizer 40 4096 52.7% 50.8%
BiCodec 50 8192 54.1% 50.2%

Kanade 12.5Hz 12.5 12 800 65.6% 51.8%
Kanade 25Hz 25 12 800 61.5% 51.2%

Before training the SLMs described in main text, we trained weaker SLMs for each tokenizer using
the training subset of LibriSpeech. For multi-layer tokenizers, tokens are extracted from the first
RVQ layer (for FACodec, the first content layer), as those layers are meant to contain linguistic in-
formation for language modeling. Each training sequence is randomly cropped to 20.48 seconds. An
autoregressive transformer is trained for 200k steps, with a batch size of 16. We use the last check-
point for evaluation. Other transformer details are consistent with the descriptions in Appendix E.3.

Results are shown in Table 13. SSL-distilled codecs and k-means, both of which are phonetically
dense perform the best. Kanade exposes more suprasegmental information (see Appendix D.1) in
its one token stream, which may make learning more difficult, but as shown in the main text, using
more powerful models can erase the gap.
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D.5 METRIC CORRELATION ANALYSIS

Figure 7: Correlation among metrics of lexical and phonetic performance. Lexical metrics
include downstream ASR WER (Table 2) and sWUGGY in spoken language modeling (Table 13).
Phonetic metrics includes ABX across and PNMI (Table 12). Coarse model groupings are included
for readability.

High phonetic discriminability is not a necessary condition for high lexical availability. Al-
though Kanade models do not get the best phonetic metrics (as seen in Table 12), they still achieve
the SOTA performance on downstream ASR (as seen in Table 2). This observation lead us to further
investigate the correlation between different linguistic metrics.

The results are shown in Figure 7, where we observe correlation (also reported by Chang et al.
(2024)) between downstream WER and phonetic metrics. However, the relationship is not perfect.
Notably, in the ABX-WER plot (second row, first column):
• Our models (red dots) are significantly higher than the regression line, which means they are better

at providing lexical information than the models with similar phonetic performance.
• Hybrid codec models (green dots) are significantly lower than the regression line, which means

they fail to achieve word error rates typical of models with similar ABX scores (k-means).

The ABX-sWUGGY plot (second row, second column) also shows our models achieve noticeably
better sWUGGY scores than NACs, despite having similar ABX scores. Huang et al. (2024) also
report that the relationship between phonetic discriminability and downstream performance is not
strict: they recorded these scores during training and observed that PNMI scores peaked early then
decreased in parallel with downstream WER.

These results suggest that ABX and PNMI, originally designed for acoustic unit discovery, may not
be sufficient to measure token quality for downstream modeling. Kanade tokens perform similarly
to NAC tokens on these metrics, but perform similarly to k-means tokens on lexical tasks. We
hypothesize that Kanade tokens may contain more non-phonetic linguistic information that can help
identify words or might have a less well-behaved continuous embedding space. However, without
further investigation, we cannot make a decisive conclusion.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

D.6 OUT-OF-DISTRIBUTION RECONSTRUCTION

Table 14: OOD reconstruction results. Evaluation on various out-of-distribution (OOD) datasets.
† indicates models trained on relevant data (e.g., noisy data or Japanese). Includes only the best
models from the reconstruction results. F0RMSE is not included for voice conversion results. For
all results see Tables 25 and 26.

Model Intelligibility Quality Speaker Prosody

WER↓ CER↓ UTMOS↑Mel L1↓ SIM↑ MCD↓F0Corr↑ F0RMSE↓

Gigaspeech (Chen et al., 2021) (noisy speech)

Ground Truth 9.7 5.1 2.84 – – – – –
X-Codec 2† 11.5 6.3 2.99 0.89 0.97 5.53 0.87 0.08
BiCodec† 11.9 6.6 3.07 1.28 0.96 6.36 0.87 0.08
PAST 1:8 10.9 6.0 3.09 0.86 0.98 5.19 0.89 0.07
DualCodec 1:8† 11.0 6.0 3.11 0.76 0.98 4.62 0.84 0.08
WavTokenizer 33.9 21.9 2.64 1.19 0.88 6.97 0.82 0.10
StableCodec† 27.1 16.3 3.51 1.65 0.90 8.70 0.84 0.09
Kanade 12.5Hz 16.2 9.3 3.25 1.44 0.95 7.63 0.74 0.13
Kanade 25Hz 11.3 6.2 3.27 1.21 0.96 6.61 0.81 0.09

Salmon Sentiment Consistency (Maimon et al., 2025b) (emotional)

Ground Truth 2.9 1.0 3.79 – – – – –
w/ change 4.9 1.6 3.62 – – – – –

X-Codec 2† 3.8 1.2 3.77 0.84 0.97 5.40 0.85 0.09
w/ change 5.7 2.2 3.67 0.85 0.97 5.45 0.89 0.11

BiCodec† 5.4 1.7 3.84 1.21 0.98 6.00 0.81 0.10
w/ change 6.0 2.6 3.73 1.24 0.97 6.11 0.90 0.11

PAST 1:8 3.0 1.0 3.91 0.78 0.99 5.10 0.85 0.09
w/ change 4.2 1.7 3.77 0.78 0.98 5.09 0.90 0.08

DualCodec 1:8† 3.6 1.1 3.91 0.71 0.98 4.45 0.88 0.08
w/ change 4.4 1.8 3.76 0.71 0.98 4.41 0.90 0.10

WavTokenizer 14.5 7.7 3.21 1.12 0.90 6.70 0.74 0.12
w/ change 17.5 9.7 3.13 1.13 0.90 6.93 0.82 0.16

StableCodec† 14.8 7.2 4.08 1.45 0.93 7.87 0.81 0.12
w/ change 18.0 9.3 4.03 1.49 0.92 7.98 0.84 0.12

Kanade 12.5Hz 6.4 2.3 3.83 1.38 0.95 7.72 0.66 0.19
w/ change 7.0 3.1 3.83 1.50 0.94 8.22 0.67 0.22

Kanade 25Hz 4.4 1.5 3.85 1.12 0.96 6.57 0.73 0.16
w/ change 4.7 1.9 3.88 1.21 0.96 6.80 0.75 0.18

Japanese Versatile Speech (Takamichi et al., 2019) (unseen language speech)

Ground Truth 4.6 2.5 3.63 – – – – –
X-Codec 2† 5.4 2.9 3.59 0.76 0.98 5.28 0.89 0.10
BiCodec 5.7 3.1 3.73 1.62 0.98 7.67 0.86 0.10
PAST 1:8 5.2 2.8 3.62 0.84 0.98 5.98 0.88 0.09
DualCodec 1:8† 5.0 2.8 3.67 0.64 0.99 4.46 0.81 0.09
WavTokenizer 18.2 11.3 2.92 1.01 0.88 6.92 0.82 0.14
StableCodec 25.0 16.5 3.83 1.99 0.91 10.36 0.90 0.10
Kanade 12.5Hz 12.2 7.2 3.77 1.30 0.94 8.15 0.70 0.21
Kanade 25Hz 5.6 3.0 3.72 1.03 0.97 6.55 0.84 0.17

English Read by Japanese (Nakagawa, 2007) (accented speech)

Ground Truth 14.9 8.0 3.73 – – – – –
X-Codec 2† 20.7 11.3 3.69 0.78 0.97 5.16 0.86 0.08
BiCodec 21.4 11.7 3.76 2.25 0.97 8.75 0.86 0.07
PAST 1:8 25.3 14.1 3.65 0.90 0.97 5.40 0.85 0.07
DualCodec 1:8† 17.1 9.4 3.71 0.66 0.98 4.27 0.86 0.07
WavTokenizer 51.7 31.6 3.06 1.06 0.91 6.45 0.82 0.08
StableCodec 51.4 29.3 4.03 2.52 0.91 10.76 0.87 0.06
Kanade 12.5Hz 33.8 18.6 3.78 1.28 0.95 6.80 0.80 0.09
Kanade 25Hz 22.9 12.3 3.75 1.05 0.96 5.85 0.86 0.07

We reconstructed randomly sampled utterances from out-of-distribution datasets. Objective metrics
are shown in Table 14. We also included the best baselines from Table 1. In all datasets, we listened
to Kanade samples with the poorest reconstruction quality. We found phone substitution errors to be
common. Phone deletion also occurred with some frequency.

We tested noisy speech by sampling utterances with at least two words from Gigaspeech (Chen et al.,
2021). Transcripts were preprocessed to remove punctuation and other tags before computing WER.
Listening to the reconstructions, we found that background music and noise was partially captured

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

by the global embedding, as expected. Even though Kanade has only seen read English speech, it
maintains some of the best WERs in this condition.

We tested emotional speech using the sentiment consistency subset of Salmon (Maimon et al.,
2025b). Whispered samples were excluded. Samples are originally from Expresso (Nguyen et al.,
2023). Each track has a consistent version (only one speech style / emotion) and an inconsistent
version (speech style / emotion changes within the utterance). This dataset was chosen to test how
Kanade encodes large changes in speaking style across and within utterances, which is not seen in
the read English audio it was trained on. We report results for each version separately (w/ change
indicates results for the inconsistent track). Subjectively, reconstructions of consistent samples were
good. Inconsistent samples had some leakage of style into the global embedding, causing them to
become more uniform upon resynthesis. Nearly all metrics are degraded in the inconsistent case.
Interestingly, even speech tokenizers without disentanglement also suffered under this condition.

We also tested on Japanese, which was not seen during training. Transcripts and ASR results were
normalized to phonological script before comparison. While the 25Hz variant is quite good (22%
relative increase in WER, in line with results on English speech), the 12.5Hz variant performs poorly
(165% relative increase in WER). Subjectively, it sounds slightly accented. Interestingly, the only
other tokenizer that was not trained on Japanese data but did realatively well is BiCodec, which has
a similar design to Kanade.

Finally, we reconstructed Japanese-accented English speech using sentence samples from ERJ (Nak-
agawa, 2007). Since segmentals in this dataset are not always clearly in an English phonetic cat-
egory, we suspect that our discretization step may incorrectly categorize them and eliminate the
ambiguity that would normally allow an ASR model to recover using its language modeling capa-
bilities. No speech tokenizer did well on these utterances.

These experiments show that Kanade performs competitively in various scenarios despite being
trained on very little data. The consistency experiment shows that large changes in vocal quality do
not have a large detrimental effect on intelligibility.

These reconstructions can be found on our demo page5.

D.7 OUT-OF-DISTRIBUTION ASR

To validate that our results generalize to domains other than read speech, we trained ASR models on
all tokenizers on the Switchboard (Godfrey & Holliman, 1993) corpus of telephone conversations.
Results in Table 15 show similar relative rankings to in-domain speech.

Table 15: OOD ASR results on Switchboard (Godfrey & Holliman, 1993)

Model WER↓ CER↓

KM 12.5Hz 17.3% 11.2%
KM 25Hz 15.0% 9.5%

DualCodec 28.2% 18.1%
ST 29.4% 19.1%
Mimi 30.6% 20.1%
FACodec 25.5% 16.4%
X-Codec 2 103.3% 75.6%
StableCodec 45.0% 30.2%
WavTokenizer 67.2% 46.8%
BiCodec 108.8% 78.4%
PAST 28.9% 18.8%
TiCodec 29.1% 18.9%

Kanade 12.5Hz 24.6% 15.9%
Kanade 25Hz 18.6% 11.7%

5https://anonymous-speech-research.github.io/demo2/
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D.8 LENGTH GENERALIZATION
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Figure 8: Reconstruction metrics on different audio length bins

A good speech tokenizer should work on audio that is longer than the sequences it was trained on.
We test the length generalization performance of several high-performing baselines and Kanade on
LibriSpeech test-clean using reconstruction metrics, binned by audio length. The bin width is
5 seconds, with the final bin including all samples more than 30 seconds long. The results are shown
in Figure 8. Most models perform well, though audio quality in DualCodec degrades as the length
increases. Kanade models (trained on 5.76s segments) show consistent performance on every metric
even at 6x the audio length, indicating excellent length generalization.
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D.9 CHUNKED ENCODING AND DECODING

D.9.1 CHUNKED RESYNTHESIS

To show that it is possible to encode audio of arbitrary length with Kanade, we report metrics for a
chunked resynthesis experiment. We randomly select 100 samples (25-35 minutes per sample) from
Libri-Light (Kahn et al., 2020). Each is encoded into 5.76-second segments that overlap for 1.44
seconds. We decode with either (1) simple mean over all global embeddings of the chunks, or (2)
an exponential moving average (α = 0.8). We then combine the tracks using a 10ms crossfade.

To evaluate, we select 1000 randomly-selected LibriHeavy (Kang et al., 2024) segments that occur
within the 100 LibriLight samples. The corresponding segments are cut out from the resynthesized
audio and used to compute the metrics in Table 16.

Table 16: Chunked Resynthesis Results. Includes resynthesis using the average global embedding
for all chunks or an exponential moving average (α = 0.8)

Model Intelligibility Quality Speaker Prosody

WER↓ CER↓ UTMOS↑Mel L1↓ SIM↑ MCD↓F0Corr↑ F0RMSE↓

Ground Truth 4.0 1.7 3.89 – – – – –

Kanade 12.5Hz
Simple mean 5.7 2.6 3.98 1.68 0.97 8.57 0.75 0.13
EMA 5.5 2.5 3.97 1.56 0.98 8.21 0.84 0.09

Kanade 25Hz
Simple mean 4.7 2.2 4.00 1.64 0.98 8.31 0.78 0.12
EMA 4.6 2.1 3.99 1.51 0.98 7.97 0.85 0.08

This experiment shows that a single global embedding (the simple mean) is enough to encode large
amounts of audio with high fidelity.

D.9.2 CHUNKED STREAMING FOR SLMS

For an interactive speech language model, it is not necessary to compute any global embeddings as
they are not used as input and the output speech is synthesized using a constant global embedding.

Rough latency estimate As Table E.2 shows, Kanade is extremely fast. Therefore, input latency
is dominated by the amount of padding necessary on the end of the audio input to get a reasonable
representation. According to work by Meng et al. (2025), we can estimate that we need a 400ms
lookahead and 2 seconds of history to get SSL features that are reasonably accurate (and in turn,
good tokens). For synthesis of the SLM output, it is not clear how much lookahead is necessary, but
we conservatively estimate that it is the same as the input, 400ms. Therefore, the minimum theoret-
ical latency is 800ms plus Kanade encoding time (2.4s times Kanade’s encoding-decoding RTF of
0.0011 is 3ms) and SLM latency. A streaming variant would decrease the necessary lookahead and
decrease latency substantially.
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D.10 CODEBOOK UTILIZATION

Table 17: Normalized entropy of different speech tokenizers

DualCodec ST Mimi FACodec X-Codec 2 StableCodec WavTokenizer BiCodec Kanade 12.5Hz Kanade 25Hz

0.923 0.984 0.914 0.953 0.965 0.962 0.885 0.995 0.976 0.974

To test the codebook utilization of baselines and Kanade, we calculate normalized entropy as:

Normalized Entropy = − 1

logN

N∑
x=1

p(x) log(p(x)),

where N is the codebook size and p(x) denotes the probability distribution of extracted codes at
codebook index x. Values are between 0 and 1. Higher values indicates better codebook utilization.
Note that for codebook-free models such as StableCodec, X-Codec 2 and Kanade, the codebook
here refers to the effective codebook produced by FSQ indices. We estimate this using the tokens
extracted from each tokenizer on LibriSpeech test-clean. The results are shown in Table 17.
Nearly every tested model has good codebook utilization. The normalized entropy values of Kanade
content tokens are over 97%, indicating excellent coding efficiency.
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E EXPERIMENT DETAILS

E.1 MODEL AND TRAINING

Model Details The content encoder and feature decoder are 6-layer, 12-head, 768-dim
LLaMA (Grattafiori et al., 2024)-style transformers with rotary position embeddings (RoPE) (Su
et al., 2024), 2048-dim SwiGLU (Shazeer, 2020) feed-forward networks, and local attention (win-
dow size 125).

The FSQ (Mentzer et al., 2024)6 module uses 5 dimensions with levels of [8, 8, 8, 5, 5], equivalent
to a codebook of 12,800 tokens. This results in bitrates of 171bps and 341bps for the 12.5Hz and
25Hz models, respectively.

The global branch uses a 4-layer, 384-dim ConvNeXt (Liu et al., 2022) encoder with attentive statis-
tics pooling (Okabe et al., 2018)7 to produce a 128-dim global embedding.

The token module is a 6-layer, 12-head, 768-dim transformer (window size 31/65 for 12.5/25Hz
model), and the mel module is a 6-layer, 8-head, 512-dim transformer (window size 65) with adaLN-
Zero (Peebles & Xie, 2023) conditioning. The post-net consists of 5 convolutional layers with a
kernel size of 7 and 256 channels. The Mel spectrograms use 100 bins, 1024-point FFT, and 256
hop length, consistent with Vocos (Siuzdak, 2024).

The discriminator used in post-training is a multi-band spectrogram discriminator directly applied
on our generated mel spectrogram, adapted from DAC (Kumar et al., 2023). It splits the mel bins
into 5 bands, and processed each band using 5 convolution layers with kernel size of [3, 3] and 64
channels. For a higher-level overview, see Section 3.2.2.

The resulting 12.5Hz model has 120M training parameters and 207M total parameters (containing
73M from WavLM Base+ and 13.5M from Vocos). The 25Hz variant has 118M training paramters
and 205M total parameters.

Training Details We train the models for 150k steps with a batch size of 128 using randomly
chunked 5.76-second audio segments. The SSL feature and mel-spectrogram reconstruction losses
are weighted equally (α = 1). We optimize with AdamW (Loshchilov & Hutter, 2019) (β1 =
0.9, β2 = 0.99, weight decay 1e-4) and a cosine learning rate schedule with a peak of 2e-4 and a
10% warmup.

In the GAN post-training phase, the weights for adversarial loss and feature matching loss are
β = 1/30 and γ = 1/3, respectively. We use a constant learning rate of 4e-5 and select the fi-
nal checkpoint based on validation Mel L1 loss and subjective quality.

All models are trained with bfloat16 mixed precision and FlashAttention 2 for efficiency. Train-
ing takes approximately 32 hours on one NVIDIA 5090 GPU in total.

E.2 TRAINING BUDGET AND INFERENCE EFFICIENCY

We estimate each model’s training FLOPs by the reported training steps, batch size, and sample
length combined with testing using official checkpoints, so they may be slightly inaccurate. Some
values are unavailable due to undisclosed usage or failure to obtain good measurements.

One benefit of using SSL features to train a speech tokenizer is efficiency of data and computation.
We use much less data (0.6k vs. X-Codec 2’s 150k hours) and computation (6.1 vs. Mimi’s 67.3
exaFLOPs) than comparable models. Kanade models are relatively lightweight, with one fifth the

6FSQ typically works in a very low-dimensional space, and partitions it using a simple fixed grid. To
perform FSQ on a vector, we first project it into that lower-dimensional space. Then for each dimension we 1)
squash it using a scaled tanh such it lies in a bounded range (a, b) of the reals; and 2) round it to the nearest
integer. There are a finite number of integers between a and b and these correspond to our quantization levels.
Since the scaling factor of the squashing function can be chosen, we can freely chose the number of levels for
each dimension.

7Attentive stats pooling passes the input with d features to a simple convolutional network to weight each
element of the input. The mean and standard deviation are then computed over the time dimension for each
feature, producing one vector of dimension 2d for the entire sequence. The result is passed through a linear
layer to obtain the final dimension of the global embedding and then layer normalized.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Table 18: Training budget and inference efficiency. We measure the number of FLOPs for forward
passes only, as the actual training procedures of different models vary significantly. Real time factor
(RTF) indicates ratios of processing time for either encoding (En) or decoding (De) to input audio
length, measured on a NVIDIA A6000. Relative efficiency is calculated on full passes.

Model Params Dataset Sample
Rate

Data Size
(hours)

FLOPs
(×1018)

RTF
(En) ↓

RTF
(De) ↓

Relative
Efficiency ↑

Mimi 79M – 24 kHz – 67.3 0.0007 0.0006 0.77x
DualCodec 84M Emilia 24 kHz 100k 27.4 0.0078 0.0011 0.11x
StableCodec 953M Libri-Light + MLS 16 kHz 105k 24.5 0.0028 0.0028 0.18x
FACodec 102M Libri-Light 16 kHz 60k 6.8 0.0035 0.0067 0.10x
ST 104M LibriSpeech 16 kHz 1k 1.0 0.0010 0.0008 0.59x
X-Codec 2 823M Emilia + MLS 16 kHz 150k – 0.0181 0.0016 0.05x
BiCodec 156M LibriSpeech + Emilia 16 kHz 3k – 0.0045 0.0030 0.13x
WavTokenizer 81M LibriTTS 24 kHz 0.6k 6.7 0.0003 0.0003 1.67x
TiCodec 63M LibriTTS 24 kHz 0.6k 0.6 0.0021 0.0028 0.21x
PAST 184M LibriSpeech + TIMIT 16 kHz 1.0k 1.5 0.0012 0.0007 0.53x

Kanade 12.5Hz 207M LibriTTS 24 kHz 0.6k 5.9 0.0009 0.0002 1.00x
Kanade 25Hz 205M LibriTTS 24 kHz 0.6k 6.1 0.0009 0.0002 1.00x

parameters of StableCodec, but the 25Hz edition still obtains a similar MUSHRA subjective quality
score (73.57 vs. StableCodec’s 73.81). Inference speed is also excellent, surpassing most baselines.

E.3 DOWNSTREAM MODEL CONFIGURATIONS

Our transformer-based downstream models all share similar backbones to the ones used in our
main model. They are 12-layer, 12-head, 768-dim LLaMA-style transformers with 85M param-
eters (excluding embedding and output projection layers). Downstream transformers are con-
figured as decoder-only with causal attention. We use AdamW (Loshchilov & Hutter, 2019)
(β1 = 0.9, β2 = 0.999, weight decay 1e-3) and a cosine learning rate schedule with a peak of
2e-4 and a 10% warmup.

ASR Before training, we train a SentencePiece (Kudo & Richardson, 2018) text tokenizer on Lib-
riSpeech transcripts with a vocabulary size of 5,000. The transformer model is trained for 100k
steps on the LibriTTS training sets, with each batch of tokens extracted from 240 seconds of speech.
The training sequences are in the format <speech><BOS><text><EOS>. Cross-entropy loss is
calculated on text tokens only. To use both of the two content token layers of FACodec, we use two
embedding layers, concatenate the resulting embeddings along the feature dimension, then project
them back to the original dimension via a linear layer. For the continuous reference model, we use
the average of layer 6 and 9 features as input. We use label smoothing of 0.1. After training, we
select the best checkpoint with the lowest validation loss to test the final WER. During testing, we
set beam size as 8, length penalty to 1.0, and patience factor to 2.0.

TTS Before training, we run grapheme-to-phoneme on LibriTTS transcripts to get all phonemes us-
ing SoundChoice (Ploujnikov & Ravanelli, 2022). A transformer is trained on the LibriTTS training
sets for 200k steps, each step with a batch of tokens extracted from 120 seconds of speech. The se-
quence format is <speaker embedding><phonemes><BOS><speech><EOS>, where the
cross-entropy loss during training is calculated on speech tokens only. For RVQ models, we com-
bine all code indices of the used RVQ codebooks to create the token vocabulary. For example, if
a tokenizer uses two 1024-code codebooks, then the first codebook has indices [0, 1023], and the
second has indices [1024, 2047], forming a final vocabulary of size 2048. We use the last checkpoint
for evaluation. During inference, we set the temperature to 1.0 and use top-p sampling with p = 0.9.
We omit FACodec as a baseline here as its token rate is too high (240Hz for 3 layers).

Speaker and emotion discriminators For speaker and emotion related tasks, we use ECAPA-
TDNN (Desplanques et al., 2020) backbones. Following RawNet3 (Jung et al., 2022), the token
embedding dimension, hidden dimension, and final embedding dimension are 192, 1024, and 192,
respectively. We use AdamW (β1 = 0.9, β2 = 0.999, weight decay 1e-3) with a constant learning
rate 3e-4. We select the best checkpoint with the lowest validation loss for evaluation. For the
speaker model, we train for 50k steps; the scale and margin in AAM-Softmax loss (Deng et al.,
2019) are set to 30 and 0.3, respectively; the batch size is 64 and samples are randomly cropped to
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3 seconds. For the emotion model, we train for 25k steps. The batch size is 32 and we use label
smoothing of 0.3 to mitigate overfitting.

For RVQ models, the token embeddings from different token layers are concatenated and projected
back to the original dimension via a linear layer. For models with a global embedding, they are pro-
jected to the token embedding dimension and added to the token embeddings at each time step. For
BiCodec, which produces 32 global tokens, we allocate individual embedding layers for each token
index and aggregate those embeddings. For the continuous reference model, we use the average of
features from layers 1, 2, 6 and 9, which are used as the inputs of our main model.

As introduced in Section 4.4.2, we also evaluate these tasks only on our global embedding. To do
this, we replace the ECAPA-TDNN with a 3-layer MLP. The hidden dimension is 768.

E.4 SUBJECTIVE LISTENING TEST

We conduct Multiple Stimuli with Hidden Reference and Anchor (MUSHRA) subjective listening
tests using webMUSHRA (Schoeffler et al., 2018).

For the reconstruction quality scores, we ask the subjects to judge “unnatural or robotic-sounding
speech; muffled or distorted sound; the rhythm and melody of the voice sounding unnatural; the
speaker’s voice sounding different; and incorrect words or slurred pronunciation”. The ground
truth is shown as reference. 10 audio samples of between 3–6 seconds are randomly selected from
LibriSpeech test-clean.

For TTS, we prepare for two different tests. In the speech quality test, we ask the subjects to judge
“robotic artifacts, static noise, muffled sound; slurred pronunciation or unclear speech” and ignore
“the speaker’s emotion, rhythm, speed, pitch, or intonation”. In the prosody naturalness test, we ask
the subjects to judge “the melody of the voice (intonation), correct stress on words, natural speed,
and logical pauses (rhythm)” and ignore “audio quality issues such as static, robotic buzzing, or
muffled sounds”. There is no reference shown in the TTS tests. 10 audio samples are randomly
selected from the LibriTTS test-clean subset.

For the VC speaker similarity test, we ask the subjects to judge “if the sample sounds exactly like the
same person as the reference”. The reference speech from the target speaker is shown as reference.
10 audio samples are randomly selected from the VCTK subset.

For all tests, the ground truth is included as a hidden condition. Each sample is scored by at least 25
people. Since it is difficult for participants to score many models at once, we divide the models into
groups with roughly balanced quality composition based on objective metrics. We removed outlier
participants from the collected data and calibrated the groups by the mean reference scores among
the groups. Lowpass-filtered anchors are not used.

We use bootstrapping (Mendonça & Delikaris-Manias, 2018) with 1000 iterations to estimate the
median scores for each models and report 95% confidence intervals (see Section E.6).

E.5 BASELINES

SpeechTokenizer (Zhang et al., 2024) A hybrid speech codec that distills HuBERT (Hsu et al.,
2021) features into the first of 8 RVQ layers. By doing this, SpeechTokenizer makes its first layer
more like HuBERT features, making them a suitable alternative to SSL k-means tokens for spoken
language modeling. The rest of the token layers encode the rest of the information necessary for
reconstruction. It is one of the earliest hybrid speech codecs. The token rate per layer is 50Hz
and the codebook size is 1024. We use the hubert avg checkpoint. SpeechTokenizer and other
RVQ-based models introduced below support variable bitrates by using only the first N token layers,
thanks to random quantizer dropout training. 8

Mimi (Défossez et al., 2024) A streaming hybrid speech codec that distills WavLM (Chen et al.,
2022a) features into the first quantization layer, similar to SpeechTokenizer. The difference is Mimi
uses a separate VQ layer for distillation alongside 7 normal RVQ layers. The token rate per layer is
12.5Hz and the codebook size is 2048. 9

8https://github.com/ZhangXInFD/SpeechTokenizer
9https://huggingface.co/kyutai/mimi

39

https://github.com/ZhangXInFD/SpeechTokenizer
https://huggingface.co/kyutai/mimi


2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

DualCodec (Li et al., 2025) A hybrid speech codec that incorporates SSL features by compressing
w2v-BERT 2.0 (Barrault et al., 2023) features with a ConvNeXt (Liu et al., 2022)-based VQ-VAE
and using the quantized latents as RVQ 1. A separate encoder is applied to the waveform to pro-
duce an acoustic embedding. RVQ 1 is decoded and subtracted from the acoustic embedding. The
remaining 7 RVQ layers quantize the residual. The token rate per layer is 12.5Hz and the codebook
size is 16,384 for the first layer and 4,096 for the rest. 10

FACodec (Ju et al., 2024) A hybrid speech codec that explicitly disentangles prosody, phonetic
content, and speaker identity using supervision and gradient reversal layers. It produces 6 RVQ
layers: 1 for prosody (supervised by F0), 2 for phonetic content (supervised using phonemes se-
quences) and 3 for residual details. It also produces a global speaker embedding learned by speaker
supervision. Unlike codecs that distill from SSL features, FACodec enhances phonetic information
in content tokens via direct supervision. The token rate per layer is 80Hz and the codebook size is
1024. Considering the high bitrate, all evaluations omit the 3 residual layers. 11

StableCodec (Parker et al., 2024) A large transformer-based single-layer neural audio codec that
uses a novel post-hoc residual formulation of FSQ (Mentzer et al., 2024). They show transformers’
great scalability in speech coding and reach very low a bitrate of 400bps. It represents one of the
earliest speech codecs with a transformer-based architecture. In their official repository, the authors
further fine-tune the model using CTC loss on phonemes to enhance lexical information. Following
their recommendation, we use this fine-tuned checkpoint stable-codec-speech-16k. The
token rate is 25Hz and the codebook size is 46656. 12

WavTokenizer (Ji et al., 2024) A single-layer neural audio codec uses several techniques to improve
codebook utilization, such as k-means initialization and dead code random restart. It also uses a
ConvNeXt (Liu et al., 2022) backbone and predicts Short-Time Fourier Transform magnitude and
phase values instead of waveform. The token rate is 40Hz and the codebook size is 4096. We use
the speech-only checkpoint small-600-24k-4096. 13

X-Codec 2 (Ye et al., 2025b) A single-layer neural audio codec that adds a parallel VQ-VAE for
w2v-BERT 2.0 (Barrault et al., 2023) feature reconstruction alongside the original acoustic VQ-
VAE. Frozen SSL and acoustic features are projected and concatenated into a shared space that is
quantized using FSQ (Mentzer et al., 2024). The token rate is 50Hz and the codebook size is 65536.
14

BiCodec (Wang et al., 2025a) A single-layer neural audio codec that uses wav2vec 2.0 (Baevski
et al., 2020) features as main input and extracts global tokens from mel spectrogram to represent
constant acoustic characteristics such as speaker timbre. It uses cross attention mechanism similar to
Q-former on ECAPA-TDNN features to extract fixed-length global tokens, which are then quantized
by FSQ. The decoder reconstructs both the waveform and SSL features. The token rate is 50Hz and
the codebook size is 8192. 15

We don’t include the earlier codecs such as EnCodec (Défossez et al., 2023) and DAC (Kumar
et al., 2023) because (1) they mainly focus on high-quality general audio coding, while we focus
on speech-only tokenizers that have potential for speech language modeling; (2) they need more
tokens to reconstruct good quality audio, with the lowest bitrates starting from 1.5kbps, which is
impractical for speech LMs; and (3) their approaches are already well represented and improved on
in later works such as SpeechTokenizer, Mimi and DualCodec.

10https://github.com/jiaqili3/dualcodec
11https://github.com/open-mmlab/Amphion/tree/main/models/codec/ns3_codec
12https://github.com/Stability-AI/stable-codec
13https://github.com/jishengpeng/WavTokenizer
14https://huggingface.co/HKUSTAudio/xcodec2
15https://github.com/SparkAudio/Spark-TTS
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E.6 FULL RESULTS

Table 19: Full Speech reconstruction results. Grouped by model family. Bold numbers indicate
the best performance in that column.

Model Bitrate Token
Rate

Intelligibility Quality Speaker Prosody

WER↓ CER↓ MUSHRA↑UTMOS↑ ViSQOL↑Mel L1↓ SIM↑ MCD↓ F0Corr↑ F0RMSE↓

Ground Truth – – 1.9 0.6 78.0 4.07 5.00 – – – – –
Cont. 50Hz – – 2.0 0.6 76.7 3.90 4.54 0.74 0.99 3.91 0.94 0.04
KM 12.5Hz 171 12.5 3.0 1.1 72.1 4.04 3.33 1.44 0.96 7.45 0.66 0.15
KM 25Hz 341 25 2.7 1.0 72.4 4.07 3.40 1.30 0.96 6.76 0.67 0.15

FACodec* 1:6 4800 240 2.1 0.7 81.4 4.11 4.27 0.76 0.98 5.17 0.94 0.04
FACodec* 1:3 2400 240 2.4 0.8 – 3.62 3.85 1.02 0.97 6.05 0.85 0.08
PAST 1:8 4000 50 2.1 0.7 82.4 4.18 4.32 0.72 0.99 4.42 0.92 0.04
PAST 1:4 2000 50 2.4 0.9 – 3.88 4.07 0.85 0.98 5.07 0.89 0.06
PAST 1:2 1000 50 3.1 1.2 – 2.45 3.17 1.27 0.88 6.88 0.39 0.31
ST 1:8 4000 50 2.1 0.7 76.0 3.90 4.26 0.72 0.98 4.72 0.92 0.05
ST 1:4 2000 50 2.6 0.9 74.2 3.56 3.86 0.90 0.96 5.66 0.88 0.07
ST 1:2 1000 100 3.6 1.4 – 2.28 3.15 1.25 0.90 7.29 0.78 0.11
TiCodec* 1:4 3000 75 2.3 0.8 – 3.60 4.11 0.82 0.97 7.43 0.91 0.05
TiCodec* 1:2 1500 75 3.7 1.6 – 3.43 3.77 0.97 0.94 7.99 0.88 0.07
TiCodec* 1:1 750 75 9.3 4.8 – 3.17 3.44 1.09 0.91 6.55 0.85 0.08
Mimi 1:8 1100 50 3.7 1.9 – 3.56 3.87 1.18 0.97 6.30 0.93 0.05
Mimi 1:4 550 50 7.7 5.1 – 3.02 3.47 1.41 0.93 7.45 0.87 0.09
Mimi 1:2 275 50 14.7 10.8 – 2.39 2.88 1.82 0.86 9.39 0.60 0.17
DualCodec 1:8 925 50 2.1 0.7 75.6 4.12 4.28 0.66 0.98 4.08 0.95 0.04
DualCodec 1:4 625 50 2.6 0.9 – 4.07 3.97 0.79 0.97 4.95 0.93 0.05
DualCodec 1:2 325 25 3.7 1.5 72.4 3.67 3.56 0.99 0.94 6.11 0.91 0.07
X-Codec 2 800 50 2.5 0.9 77.0 4.13 4.12 0.77 0.98 4.92 0.90 0.06
BiCodec* 650 50 2.5 0.9 75.0 4.18 4.09 0.94 0.98 5.22 0.91 0.05
WavTokenizer 480 40 9.4 4.7 72.1 3.57 3.55 1.00 0.92 6.17 0.91 0.07
StableCodec 388 25 5.7 2.6 79.3 4.31 3.50 1.28 0.93 7.29 0.91 0.05
Kanade* 25Hz 341 25 2.4 0.8 75.0 4.16 3.86 1.02 0.97 5.67 0.88 0.07
Kanade* 12.5Hz 171 12.5 3.3 1.3 74.6 4.17 3.69 1.25 0.97 6.82 0.85 0.10

Models marked with * also use a fixed-size representation for reconstruction. FACodec: 8192 bits (256-dim fp32), TiCodec: 80 bits (8
tokens), BiCodec: 384 bits (32 tokens), and Kanade: 4096 bits (128-dim fp32).

Table 20: Full voice conversion results

Model Intelligibility Quality Speaker Prosody

WER↓ CER↓ UTMOS↑ EER↑ F0Corr↑

Ground Truth 0.0 0.0 4.08 – –
KM 12.5Hz 1.8 0.8 4.11 27.0 0.53

kNN-VC 0.7 0.3 3.89 34.1 0.59
LinearVC 0.6 0.2 3.94 29.7 0.62
FreeVC 0.6 0.3 3.99 29.0 0.67
CosyVoice 2 1.1 0.5 4.11 31.0 0.64

PAST 1:8 22.9 15.1 1.84 8.2 0.20
PAST 1:4 13.3 8.3 1.80 5.4 0.17
PAST 1:2 6.6 3.8 1.69 3.9 0.17
ST 1:8 74.7 61.7 1.54 10.6 0.19
ST 1:4 35.2 26.1 1.62 8.9 0.19
ST 1:2 10.6 6.0 1.52 5.8 0.22
TiCodec 1:4 0.5 0.2 3.32 5.4 0.77
TiCodec 1:2 3.4 1.9 3.13 5.7 0.74
TiCodec 1:1 10.2 6.1 3.25 8.9 0.64
Mimi 1:8 120.3 86.8 3.09 38.5 0.24
Mimi 1:4 110.8 84.6 2.15 15.2 0.21
Mimi 1:2 102.4 85.3 1.59 5.1 0.18
DualCodec 1:8 21.5 12.9 2.50 6.8 0.54
DualCodec 1:4 8.5 4.6 2.88 7.1 0.56
DualCodec 1:2 4.4 2.3 3.07 5.8 0.62
BiCodec 1.2 0.6 3.84 18.5 0.61
FACodec 0.8 0.4 3.45 18.6 0.66
Kanade 25Hz 0.7 0.3 4.16 30.7 0.71
Kanade 12.5Hz 1.6 0.7 4.17 32.0 0.64
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Table 21: Full reconstruction MUSHRA
results with 95% confidence intervals.

Model − Median +

Ground Truth 76.0 78.0 80.0
Cont. 50Hz 72.1 76.7 80.3
KM 12.5Hz 66.9 72.1 76.2
KM 25Hz 68.2 72.4 76.1

ST 1:8 72.0 76.0 78.0
ST 1:4 64.9 74.2 78.8
DualCodec 1:8 73.5 75.6 80.9
DualCodec 1:2 68.2 72.4 75.6
FACodec 77.8 81.4 83.4
PAST 1:8 78.3 82.4 84.5
StableCodec 75.2 79.3 81.4
X-Codec 2 74.0 77.0 80.0
BiCodec 72.0 75.0 79.0
WavTokenizer 65.9 72.1 76.2

Kanade 12.5Hz 70.3 74.5 77.7
w/o GAN 59.0 69.0 74.0

w/o Dual-branch 15.0 24.0 46.5
w/o SSL Recon. 57.5 68.5 75.5
w/o End-to-End 51.1 60.7 66.6
w/o FSQ 31.4 43.7 55.9

Kanade 25Hz 72.0 75.0 78.0
w/o GAN 66.0 70.3 75.6

Table 22: Full voice conversion speaker
similarity MUSHRA results with 95% con-
fidence intervals.

Model − Median +

Ground Truth 72.0 74.5 77.0
KM 12.5Hz 71.0 74.0 76.0

kNN-VC 69.0 73.0 75.5
LinearVC 69.3 73.4 78.1
FreeVC 71.0 74.5 77.5
CosyVoice 2 73.0 76.0 79.0

ST 25.0 35.0 47.5
Mimi 77.6 81.7 85.9
DualCodec 34.0 52.0 68.0
FACodec 51.7 62.6 69.3
PAST 15.5 23.3 50.7
TiCodec 57.0 68.0 73.0
BiCodec 66.7 71.4 75.5

Kanade 12.5Hz 72.4 77.6 81.7
Kanade 25Hz 73.4 77.1 80.7

Table 23: Full TTS speech quality
MUSHRA results with 95% confidence in-
tervals.

Model − Median +

Ground Truth 72.0 74.9 77.1
KM 25Hz 71.5 74.9 79.3
KM 12.5Hz 67.0 72.0 78.5

CosyVoice 2 74.9 77.1 79.3

ST 69.0 75.0 78.0
Mimi 71.5 74.9 78.2
DualCodec 69.0 73.0 78.0
PAST 70.4 74.9 79.3
TiCodec 71.5 73.8 77.1
StableCodec 64.0 71.0 77.0
X-Codec 2 68.0 72.0 78.0
BiCodec 69.8 73.8 76.0
WavTokenizer 68.0 74.5 79.0

Kanade 12.5Hz 72.6 77.1 79.3
Kanade 25Hz 67.0 73.0 80.0

Table 24: Full TTS prosody naturalness
MUSHRA results with 95% confidence in-
tervals.

Model − Median +

Ground Truth 78.9 80.9 83.0
KM 12.5Hz 60.0 67.0 73.0
KM 25Hz 69.8 75.9 78.9

CosyVoice 2 80.9 83.0 85.5

ST 75.0 79.0 81.0
Mimi 66.8 73.9 78.4
DualCodec 74.0 80.0 83.0
PAST 72.9 78.4 81.5
TiCodec 65.8 72.9 78.9
StableCodec 58.0 66.0 74.5
X-Codec 2 75.0 78.0 81.0
BiCodec 73.9 78.9 82.0
WavTokenizer 73.0 77.0 80.0

Kanade 12.5Hz 73.9 77.9 80.9
Kanade 25Hz 78.0 81.0 83.0

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Table 25: Full OOD reconstruction results (Part I). Evaluation on noisy (Gigaspeech) and emo-
tional (Salmon) speech. † indicates models trained on noisy data.

Model Intelligibility Quality Speaker Prosody

WER↓ CER↓ UTMOS↑ Mel L1↓ SIM↑ MCD↓ F0Corr↑ F0RMSE↓

Gigaspeech (Chen et al., 2021) (noisy speech)

Ground Truth 9.7 5.1 2.84 – – – – –
FACodec 1:6 11.3 6.3 2.85 0.88 0.97 5.32 0.88 0.07
PAST 1:8 10.9 6.0 3.09 0.86 0.98 5.19 0.89 0.07
PAST 1:4 12.6 7.1 2.70 0.99 0.96 5.95 0.81 0.11
PAST 1:2 18.5 11.1 1.78 1.41 0.85 7.62 0.27 0.34
ST 1:8 11.8 6.6 2.60 0.85 0.97 5.45 0.88 0.08
ST 1:4 14.7 8.8 2.41 1.04 0.93 6.47 0.83 0.10
ST 1:2 21.4 13.1 1.71 1.44 0.85 8.28 0.75 0.13
TiCodec 1:4 12.4 7.0 2.45 0.91 0.95 6.49 0.86 0.08
TiCodec 1:2 18.5 11.5 2.35 1.08 0.91 7.35 0.83 0.09
TiCodec 1:1 31.4 21.0 2.25 1.21 0.88 8.05 0.74 0.13
Mimi 1:8† 12.3 7.0 2.71 1.23 0.96 6.66 0.85 0.09
Mimi 1:4† 16.0 9.6 2.37 1.45 0.93 7.68 0.79 0.11
Mimi 1:2† 22.6 14.2 1.98 1.81 0.85 9.35 0.58 0.17
DualCodec 1:8† 11.0 6.0 3.11 0.76 0.98 4.62 0.84 0.08
DualCodec 1:4† 12.3 7.0 3.07 0.91 0.96 5.54 0.83 0.09
DualCodec 1:2† 15.8 9.3 2.78 1.16 0.93 6.81 0.81 0.10
X-Codec 2† 11.5 6.3 2.99 0.89 0.97 5.53 0.87 0.08
BiCodec† 11.9 6.6 3.07 1.28 0.96 6.36 0.87 0.08
WavTokenizer 33.9 21.9 2.64 1.19 0.88 6.97 0.82 0.10
StableCodec† 27.1 16.3 3.51 1.65 0.90 8.70 0.84 0.09
Kanade 12.5Hz 16.2 9.3 3.25 1.44 0.95 7.63 0.74 0.13
Kanade 25Hz 11.3 6.2 3.27 1.21 0.96 6.61 0.81 0.09

Salmon Sentiment (Maimon et al., 2025b) (emotional)

Ground Truth 2.9 1.0 3.79 – – – – –
w/ change 4.9 1.6 3.62 – – – – –

FACodec 1:6 3.8 1.2 3.87 0.77 0.98 4.92 0.92 0.08
w/ change 4.4 1.8 3.77 0.80 0.98 5.20 0.90 0.09

FACodec 1:3 3.9 1.4 3.32 1.12 0.97 6.19 0.79 0.15
w/ change 5.9 2.2 3.34 1.18 0.96 6.42 0.78 0.17

PAST 1:8 3.0 1.0 3.91 0.78 0.99 5.10 0.85 0.09
w/ change 4.2 1.7 3.77 0.78 0.98 5.09 0.90 0.08

PAST 1:4 3.9 1.4 3.46 0.97 0.96 5.86 0.86 0.10
w/ change 5.4 2.0 3.32 0.98 0.95 6.09 0.85 0.13

PAST 1:2 6.9 3.0 1.96 1.56 0.72 7.97 0.20 0.49
w/ change 6.1 2.8 1.92 1.56 0.68 7.97 0.10 0.49

ST 1:8 3.9 1.2 3.53 0.82 0.97 5.58 0.86 0.10
w/ change 4.3 1.7 3.42 0.81 0.97 5.54 0.86 0.10

ST 1:4 5.2 1.7 3.15 1.02 0.92 6.52 0.79 0.11
w/ change 7.4 3.7 3.11 1.02 0.91 6.59 0.88 0.12

ST 1:2 9.4 3.8 2.30 1.39 0.82 8.28 0.72 0.16
w/ change 10.6 5.2 2.30 1.39 0.82 8.32 0.80 0.15

TiCodec 1:4 3.9 1.3 3.44 0.86 0.96 6.09 0.92 0.10
w/ change 4.5 1.9 3.28 0.86 0.96 6.19 0.86 0.11

TiCodec 1:2 6.0 2.7 3.07 1.05 0.92 7.12 0.88 0.10
w/ change 8.0 4.3 3.00 1.06 0.91 7.28 0.81 0.12

TiCodec 1:1 16.7 9.3 2.98 1.18 0.88 7.70 0.75 0.16
w/ change 19.0 10.6 2.83 1.20 0.87 7.66 0.78 0.15

Mimi 1:8† 4.1 1.8 3.22 1.29 0.96 6.94 0.82 0.11
w/ change 5.9 3.0 3.09 1.28 0.95 7.09 0.79 0.14

Mimi 1:4† 6.1 2.9 2.75 1.56 0.91 8.07 0.75 0.14
w/ change 8.5 4.6 2.65 1.55 0.91 8.17 0.77 0.16

Mimi 1:2† 13.2 8.4 2.18 2.03 0.83 9.86 0.48 0.23
w/ change 14.7 9.1 2.18 2.00 0.82 9.80 0.53 0.24

DualCodec 1:8† 3.6 1.1 3.91 0.71 0.98 4.45 0.88 0.08
w/ change 4.4 1.8 3.76 0.71 0.98 4.41 0.90 0.10

DualCodec 1:4† 4.7 1.8 3.88 0.88 0.97 5.56 0.78 0.12
w/ change 5.3 2.4 3.77 0.88 0.97 5.36 0.91 0.10

DualCodec 1:2† 6.8 2.9 3.46 1.13 0.94 6.63 0.80 0.13
w/ change 7.0 3.4 3.41 1.12 0.94 6.74 0.81 0.15

X-Codec 2† 3.8 1.2 3.77 0.84 0.97 5.40 0.85 0.09
w/ change 5.7 2.2 3.67 0.85 0.97 5.45 0.89 0.11

BiCodec† 5.4 1.7 3.84 1.21 0.98 6.00 0.81 0.10
w/ change 6.0 2.6 3.73 1.24 0.97 6.11 0.90 0.11

WavTokenizer 14.5 7.7 3.21 1.12 0.90 6.70 0.74 0.12
w/ change 17.5 9.7 3.13 1.13 0.90 6.93 0.82 0.16

StableCodec† 14.8 7.2 4.08 1.45 0.93 7.87 0.81 0.12
w/ change 18.0 9.3 4.03 1.49 0.92 7.98 0.84 0.12

Kanade 12.5Hz 6.4 2.3 3.83 1.38 0.95 7.72 0.66 0.19
w/ change 7.0 3.1 3.83 1.50 0.94 8.22 0.67 0.22

Kanade 25Hz 4.4 1.5 3.85 1.12 0.96 6.57 0.73 0.16
w/ change 4.7 1.9 3.88 1.21 0.96 6.80 0.75 0.18
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Table 26: Full OOD reconstruction results (Part II). Evaluation on unseen language (JVS) and
accented speech (ERJ). † indicates models trained on Japanese.

Model Intelligibility Quality Speaker Prosody

WER↓ CER↓ UTMOS↑ Mel L1↓ SIM↑ MCD↓ F0Corr↑ F0RMSE↓

JVS (Takamichi et al., 2019) (unseen language)

Ground Truth 4.6 2.5 3.63 – – – – –
FACodec 1:6 5.1 2.8 3.69 0.76 0.97 5.80 0.90 0.09
FACodec 1:3 6.4 3.5 2.89 1.04 0.95 6.89 0.79 0.18
PAST 1:8 5.2 2.8 3.62 0.84 0.98 5.98 0.88 0.09
PAST 1:4 7.3 4.1 2.73 1.06 0.91 7.13 0.80 0.16
PAST 1:2 17.0 10.8 1.63 1.57 0.64 9.42 0.16 0.53
ST 1:8 5.7 3.2 3.32 0.79 0.96 6.22 0.86 0.10
ST 1:4 7.8 4.6 2.87 0.96 0.90 7.06 0.82 0.12
ST 1:2 16.0 10.4 2.02 1.31 0.80 8.70 0.81 0.15
TiCodec 1:4 5.6 3.1 3.21 0.76 0.95 5.44 0.86 0.10
TiCodec 1:2 8.5 4.8 3.06 0.89 0.92 6.34 0.85 0.10
TiCodec 1:1 18.9 13.2 2.69 1.03 0.86 7.15 0.81 0.15
Mimi 1:8 7.7 4.5 2.94 1.11 0.94 6.55 0.83 0.11
Mimi 1:4 12.7 8.0 2.48 1.30 0.86 7.88 0.81 0.15
Mimi 1:2 22.9 16.9 1.86 1.63 0.73 10.00 0.56 0.26
DualCodec 1:8† 5.0 2.8 3.67 0.64 0.99 4.46 0.81 0.09
DualCodec 1:4† 5.5 3.1 3.64 0.77 0.97 5.40 0.83 0.10
DualCodec 1:2† 7.8 4.4 3.24 0.97 0.96 6.57 0.83 0.11
X-Codec 2† 5.4 2.9 3.59 0.76 0.98 5.28 0.89 0.10
BiCodec 5.7 3.1 3.73 1.62 0.98 7.67 0.86 0.10
WavTokenizer 18.2 11.3 2.92 1.01 0.88 6.92 0.82 0.14
StableCodec 25.0 16.5 3.83 1.99 0.91 10.36 0.90 0.10
Kanade 12.5Hz 12.2 7.2 3.77 1.30 0.94 8.15 0.70 0.21
Kanade 25Hz 5.6 3.0 3.72 1.03 0.97 6.55 0.84 0.17

ERJ (Nakagawa, 2007) (accented speech)

Ground Truth 14.9 8.0 3.73 – – – – –
FACodec 1:6 18.2 9.9 3.73 0.73 0.98 4.68 0.90 0.06
FACodec 1:3 22.0 12.3 3.37 0.95 0.97 5.40 0.81 0.09
PAST 1:8 25.3 14.1 3.65 0.90 0.97 5.40 0.85 0.07
PAST 1:4 33.7 19.4 3.04 1.14 0.92 6.32 0.75 0.12
PAST 1:2 47.3 27.8 2.00 1.56 0.79 7.96 0.30 0.30
ST 1:8 19.6 10.8 3.48 0.76 0.97 5.13 0.89 0.06
ST 1:4 28.5 15.7 3.11 0.93 0.94 6.12 0.82 0.09
ST 1:2 47.5 27.1 1.97 1.28 0.84 7.67 0.66 0.13
TiCodec 1:4 18.3 10.3 3.29 0.79 0.96 5.96 0.88 0.07
TiCodec 1:2 26.7 15.8 3.13 0.95 0.94 6.90 0.82 0.08
TiCodec 1:1 47.9 30.1 2.82 1.08 0.92 7.48 0.80 0.10
Mimi 1:8 27.3 17.1 2.84 1.36 0.95 6.88 0.84 0.08
Mimi 1:4 45.5 30.6 2.31 1.62 0.90 8.19 0.74 0.11
Mimi 1:2 67.5 49.0 1.70 2.19 0.73 10.89 0.46 0.22
DualCodec 1:8† 17.1 9.4 3.71 0.66 0.98 4.27 0.86 0.07
DualCodec 1:4† 21.5 11.9 3.66 0.80 0.96 5.18 0.83 0.08
DualCodec 1:2† 29.2 16.7 3.25 1.04 0.94 6.45 0.80 0.09
X-Codec 2† 20.7 11.3 3.69 0.78 0.97 5.16 0.86 0.08
BiCodec 21.4 11.7 3.76 2.25 0.97 8.75 0.86 0.07
WavTokenizer 51.7 31.6 3.06 1.06 0.91 6.45 0.82 0.08
StableCodec 51.4 29.3 4.03 2.52 0.91 10.76 0.87 0.06
Kanade 12.5Hz 33.8 18.6 3.78 1.28 0.95 6.80 0.80 0.09
Kanade 25Hz 22.9 12.3 3.75 1.05 0.96 5.85 0.86 0.07
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