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Abstract

Aligning small language models (SLMs) with001
human values typically involves distilling pref-002
erence knowledge from large language models003
(LLMs). However, existing distillation meth-004
ods model preference knowledge in teacher005
LLMs by comparing pairwise responses, over-006
looking the extent of difference between re-007
sponses. This limitation hinders student SLMs008
from capturing the nuanced preferences for009
multiple responses. In this paper, we pro-010
pose a Preference-Aligned Distillation (PAD)011
framework, which models teacher’s preference012
knowledge as a probability distribution over all013
potential preferences, thereby providing more014
nuanced supervisory signals. Our insight in015
developing PAD is rooted in the demonstra-016
tion that language models can serve as re-017
ward functions, reflecting their intrinsic pref-018
erences. Based on this, PAD comprises three019
key steps: (1) sampling diverse responses us-020
ing high-temperature; (2) computing rewards021
for both teacher and student to construct their022
intrinsic preference; and (3) training the stu-023
dent’s intrinsic preference distribution to align024
with the teacher’s. Experiments on four main-025
stream alignment benchmarks demonstrate that026
PAD consistently and significantly outperforms027
existing approaches, achieving over 20% im-028
provement on AlpacaEval 2 and Arena-Hard,029
indicating superior alignment with human pref-030
erences. Notably, on MT-Bench, using the031
GEMMA model family, the student trained by032
PAD surpasses its teacher, further validating033
the effectiveness of our PAD.034

1 Introduction035

Recently, small language models (SLMs) have036

demonstrated impressive performance across a va-037

riety of tasks (Grattafiori et al., 2024; Riviere et al.,038

2024; Jiang et al., 2023). Compared to large lan-039

guage models (LLMs) such as GPT4 (OpenAI,040

2024), SLMs, with their fewer parameters, offer041

greater efficiency for deployment in diverse appli-042

A user asks for travel tips.

LLM

Scenario 1

Paris is a wonderful city to visit. Be sure 
to explore the Eiffel Tower and try the 
local cuisine.

Response A

Paris is a great place to visit. Don't miss 
the Eiffel Tower.

Response B

Teacher-as-Annotator

A   B≻

Our PAD

P(A ≻ B)=0.61

P(B ≻ A)=0.39

A user asks for advice on mental health.
Scenario 2

If you're feeling overwhelmed, consider 
reaching out to a therapist or a trusted 
friend for support.

Response A

Feeling overwhelmed is normal; you don't 
need to talk to anyone about it.

Response B

rewardLLM

LLM

Teacher-as-Annotator

A   B≻

Our PAD

P(A ≻ B)=0.91

P(B ≻ A)=0.09rewardLLM

Figure 1: Comparison of the Teacher-as-Annotator
methods and our PAD, where “A ≻ B” means the LLM
prefers response A over B.

cations. However, their smaller parameter number 043

limits their capacity to capture the nuances of hu- 044

man preferences, posing challenges in generating 045

responses that align with human values, such as 046

providing harmless replies to extreme or sensitive 047

questions (Tunstall et al., 2024). 048

Unlike SLMs, LLMs exhibit superior alignment 049

with human preferences (OpenAI, 2024; Georgiev 050

et al., 2024). Consequently, existing works lever- 051

age LLMs as teachers to distill preference knowl- 052

edge into student SLMs (Bai et al., 2022; Cui et al., 053

2023; Tunstall et al., 2024; Wang et al., 2024; Yuan 054

et al., 2024). All these works typically encode pref- 055

erence knowledge in teacher LLMs by comparing 056

pairwise responses. For example, Bai et al. (2022) 057

uses teacher-annotated responses to train a reward 058

model, which guides the student via reinforcement 059

learning. Similarly, Tunstall et al. (2024) employs a 060

teacher model for preference annotation but instead 061

applies Direct Preference Optimization (Rafailov 062

et al., 2023) to optimize the student model. 063

However, the supervision signals provided by 064

these “Teacher-as-Annotator” methods consider 065

only the ordering between responses, disregard- 066

ing the extent to which one response is preferred 067
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over another. As illustrated in Figure 1, in Sce-068

nario 1, response A is only slightly better than B069

by providing more informative details; whereas in070

Scenario 2, response B contains harmful content071

(in red), making the difference with A more signif-072

icant. Nonetheless, both scenarios are uniformly073

represented as A ≻ B. This simplified treatment074

overlooks the differences between preference pairs,075

thereby negatively impacting their generations after076

preference learning (Amini et al., 2024).077

To address the limitation, we propose a078

Preference-Aligned Distillation (PAD) framework,079

in which preference knowledge is encoded as a080

probability distribution over all potential prefer-081

ences, providing subtle supervisory signals from082

the teacher model. Our insight behind PAD de-083

rives from the demonstration that the average084

log-likelihood of language models can act as re-085

ward functions, reflecting their intrinsic preference.086

Based on this insight, our PAD consists of three087

steps: 1) Sampling a diverse list of responses from088

the student model using high temperature; 2) Cal-089

culating rewards for each response using both the090

teacher and student models, and calibrating these091

rewards using selection probabilities from multiple-092

choice questions prompting; 3) Enumerating all093

potential preferences and computing the overall dis-094

tribution based on the rewards, allowing the student095

to learn and mimic the teacher’s preference distri-096

bution. As illustrated in Figure 1, PAD provides097

more precise signals, distinguishing the subtle dif-098

ference in Scenario 1 and significantly differentiat-099

ing safe and harmful responses in Scenario 2. To100

enhance PAD’s efficiency, we introduce a Prefer-101

ence Decomposing Strategy, which breaks distilla-102

tion into multiple rounds to accelerate the training103

process. Comprehensive experiments across four104

benchmarks, including Alpaca Eval 2, Arena-Hard,105

MT-Bench, and GSM8K, with the GEMMA-2 and106

LLAMA-3 families, demonstrate that PAD consis-107

tently outperforms existing approaches, effectively108

aligning SLMs with human preferences.109

Code is available1, and our main contributions110

can be summarized as follows:111

• We propose a Preference-Aligned Distillation112

(PAD) framework, which moves beyond pair-113

wise preference by modeling the full prefer-114

ence distribution, enabling the student to cap-115

ture the teacher’s nuanced preferences.116

1https://anonymous.4open.science/r/PAD-E8C6.

• We are the first to demonstrate that the av- 117

erage log-likelihood of language models can 118

directly serve as reward functions, capturing 119

the model’s intrinsic preference. 120

• Experimental results across four benchmarks 121

show that our PAD outperforms existing ap- 122

proaches, suggesting that PAD more precisely 123

captures human preferences. 124

2 Background 125

This section reviews two topics: 1) Preference mod- 126

eling in preference learning theory, and 2) The 127

generation process of language models under the 128

reinforcement learning framework. 129

Preference Modeling Given a prompt x ∈ X , 130

the language model π generates pairs of responses 131

(y1,y2) ∼ π(y | x). A possible preference can 132

be denoted as y1 ≻ y2 | x, where y1 and y2 133

represent the preferred and dispreferred responses. 134

Preferences are assumed to be generated based on a 135

reward model r(y | x), which assigns a continuous 136

reward r to each response y. For simplicity, we 137

omit x and use r(y) to denote r(y | x). 138

The pairwise preference probability p(y1 ≻ y2 | 139

x) can be modeled using the Bradley-Terry (BT) 140

framework (Bradley and Terry, 1952) as follows: 141

p(y1 ≻ y2 | x) = exp(r(y1))

exp(r(y1)) + exp(r(y2)))
.

(1) 142

Now, consider a more generalized scenario with 143

a list of n responses, denoted as Yn = {yi}ni=1, 144

and the corresponding list of reward Rn = {ri}ni=1. 145

A possible preference ranking τn = y(1) ≻ · · · ≻ 146

y(i) ≻ · · · ≻ y(n) | x, where y(i) denotes the 147

response ranked at the i-th position. Using the 148

Plackett-Luce ranking model (Plackett, 1975; Luce, 149

2012), the preference probability is defined as: 150

p(τn) =
n∏

i=1

exp(r(y(i)))∑n
j=i exp(r(y

(j)))
. (2) 151

Text Generation as a Markov Decision Process 152

(MDP) The text generation process can be mod- 153

eled as an MDP, which is represented by the triple 154

(S,V, u)2, where the state space S represents all 155

possible partially generated sequences, and the ac- 156

tion space V corresponds to the vocabulary in the 157

2We omit the transition dynamics T for simplicity. In text
generation, these dynamics are deterministic, as each state-
action pair uniquely determines the next state.
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language model. At each step t, an action yt ∈ V158

(a token) is taken based on the current state s ∈ S159

(the partially generated sequence) and gains a step160

(token)-level reward u.161

3 Self-Derived Log-Likelihood Rewards162

This section introduces how we derive a reward163

function from language models without any refer-164

ence model, providing the theoretical foundation165

for the framework proposed in the next section.166

Inverse Reinforcement Learning (IRL) To in-167

duce the token-level reward model u, we follow the168

maximum-entropy IRL framework (Ziebart et al.,169

2008; Chan and van der Schaar, 2021), where the170

Q-value function at step t is defined as:171

Q(yt | y<t,x) = (3)172

u(yt | y<t,x) + log
∑
yt+1

exp[Q(yt+1 | y≤t,x)].173

Following Hao et al. (2022), we parameterize the174

Q-function as Q(·) = fπ(·), where fπ(·) represents175

the output logits of the language model π. The176

reward function u at each step t is then defined as177

u(yt | y<t,x) =fπ(yt | y<t,x) (4)178

− log
∑

yt+1∈V
exp[fπ(yt+1 | y≤t,x)]179

We further define ft := fπ(yt | y<t,x) and180

Zt :=
∑

yt∈V exp
(
fπ(yt | y≤t−1,x)

)
for simplic-181

ity, which allows us to write that u(yt | y<t,x) =182

ft − logZt+1. Please note that at last step, i.e.,183

t = |y|, we have logZ|y|+1 = 0 according to the184

definition of the Q-value.185

Cumulative Log-Likelihood Reward Given the186

token-level reward function u, the sequence-level187

reward is naturally defined by cumulating the token-188

level rewards:189

r(y | x) =
|y|∑
t=1

u(yt | y<t,x) =

|y|∑
t=1

(ft − logZt+1)190

=

|y|∑
t=1

(ft − logZt) + logZ1 −XXXXXlogZ|y|+1191

=

|y|∑
t=1

log pπ(yt | y<t,x) + logZ1192

= log pπ(y | x) + logZ1, (5)193

where pπ(yt | y<t,x) is the probability of token194

yt given the previous sequences (y<t,x). Please195

note that logZ1 does not depend on the particular 196

sequence y. 197

Normalized Log-Likelihood Reward By com- 198

bining the Plackett-Luce model in Eq. 2 with the 199

cumulative reward in Eq. 5, the probability for pref- 200

erence τn is given by: 201

p(τn) =

n∏
i=1

exp
(
log pπ(y

(i) | x)
)∑n

j=i exp
(
log pπ(y(j) | x)

) . (6) 202

When modeling preferences, the term logZ1 can 203

be eliminated due to the translation invariance 204

property of the softmax function. Therefore, the 205

cumulative reward simplifies to: 206

r(y | x) = 1

|y|
log pπ(y | x). (7) 207

where 1/|y| is a length-normalized term to avoid 208

bias towards longer sequences (Meng et al., 2024; 209

Gu et al., 2024). 210

In other words, the reward of a language model 211

can be formalized as the average log-likelihood, 212

which naturally reflects the inherent preferences 213

of the language model. Specifically, the higher 214

the probability the model assigns to generating a 215

response y, the greater the associated reward 3. 216

4 PAD: Preference-Aligned Distillation 217

This section outlines our PAD, which involves three 218

key training phases (§4.1-4.3), followed by the in- 219

troduction of a preference decomposition strategy 220

to accelerate the training process (§4.4). 221

4.1 Diverse Response Generation 222

As the first step, taking prompt x as input, we 223

directly sample n responses Yn from the student 224

model πstu through repeated sampling. To enhance 225

response diversity, we apply a higher decoding tem- 226

perature of 0.8. This approach offers two key ad- 227

vantages. First, enabling the generation of higher- 228

quality responses. Existing works have shown that 229

as the number of repeated samples increases, the 230

likelihood of the model generating better answers 231

across various tasks, such as mathematics and cod- 232

ing (Wang et al., 2023; Rozière et al., 2024; Brown 233

et al., 2024). Second, mitigating the exposure bias. 234

Exposure bias arises from the mismatch between 235

3Existing works (Rafailov et al., 2023; Gu et al., 2024) also
propose constructing reward functions using language models.
However, the reward functions we present offer advantages in
training efficiency and performance, which are discussed and
compared theoretically in Appendix D.
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Why is the problem always DNS?
Prompt

Because it is a core 
component of the internet…

The statement is a 
humorous exaggeration…

I'd like to clarify that the 
concept of …

Repeated sampling

(a) Response Sampling (b) Reward Calculation

Response A

Response B

Response C

Student

(c) Preference Distillation

(i) Vanilla Preference Distillation (VPD)

P (A ≻ B ≻ C)

P (A ≻ C ≻ B)

P (B ≻ A ≻ C)

···
teacherstudent

Ranking
Permutation

-0.24

argsort(·)

Unique Ranking

Student

A
B

≻

≻

NLL Loss

(ii) Probabilistic Preference Distillation (PPD)

Student

Teacher
reward

calibrate

-0.24

-0.16

-0.35

-0.15

-0.17

-0.20

-0.31

-0.12

-0.24

Please evaluate and select 
the best response to a query.
# Query
A) Because … B) The state …

MCQ

Reward function
A C

C

C B

A B C

-0.31

B
-0.12

A BC≻ ≻ 

JSD Loss

Figure 2: The overall process of the PAD contains three critical steps. The initial step involves sampling diverse
responses with high temperature (§4.1). Next, rewards for both models are computed, where the rewards of the
teacher would be calibrated(§4.2). Finally, the student is trained to mimic the teacher’s preference distributions.(§4.3)

training and inference, where the model is trained236

on ground truth contexts but relies on its own pre-237

dictions during inference, leading to error accu-238

mulation. Following Gu et al. (2024); Agarwal239

et al. (2024), we train the student model on self-240

generated responses to reduce this bias.241

4.2 Reward Calculation and Calibration242

Given a prompt x and its corresponding list of re-243

sponses Yn from the previous step, we calculate244

the rewards for both the teacher and student mod-245

els for each response yi ∈ Yn using Equation (7).246

These rewards, denoted as rtch(yi) and rstu(yi),247

represent the models’ average log-likelihood for248

each response. However, language models often249

suffer from miscalibration, where the assigned like-250

lihoods do not accurately reflect the actual quality251

of the sequences (Zhao et al., 2023). For instance,252

phrases such as "pros and cons" and "cons and253

pros" convey the same meaning, but the former254

may be more frequent in the training data, leading255

the model to assign it a higher probability. This256

miscalibration poses a challenge: if the teacher’s257

reward is miscalibrated, aligning the student model258

to the teacher may propagate this issue.259

To address this, we leverage insights from Ren260

et al. (2023a) and Ren et al. (2023b), who demon-261

strate that Multiple-Choice Question (MCQ) se-262

lection probabilities better capture response qual-263

ity than sequence likelihoods. We introduce the264

MCQ selection probability to calibrate the teacher265

model’s reward.4 Specifically, each response yi ∈266

Yn is randomly mapped to a choice within a pre-267

defined set Cn (e.g., C3 = {‘A’, ‘B’, ‘C’}), and we268

compute the (token-level) probability of selecting269

4A discussion of other calibration methods is provided in
Appendix E.

each choice: 270

psel(yi) = p(ci | Yn, Cn,x), (8) 271

where ci corresponds to the choice associated with 272

response yi. 273

We then calibrate the reward for each response 274

by combining the normalized log-likelihood reward 275

with the selection probability: 276

r̂tch(y) = (1− α)rtch(y) + α log psel(y), (9) 277

where the reward calibration ratio α ∈ [0, 1] is a 278

hyperparameter that balances the influence of the 279

original reward and the MCQ selection probability. 280

4.3 Preference Distillation 281

Based on different ways of modeling teacher pref- 282

erences, we employ two losses to distillation: the 283

vanilla preference loss LVPD, and the probabilistic 284

preference loss LPPD. 285

Vanilla Preference Distillation (VPD) Follow- 286

ing Rafailov et al. (2023); Song et al. (2024), the 287

preference is modeled as a unique ranking. Specifi- 288

cally, we obtain ranking τn of the responses Yn by 289

sorting them according to their rewards r̂tch. The 290

student model is then trained with negative log- 291

likelihood (NLL) loss to maximize the probability 292

of teacher preference using Eq. 6. 293

LVPD =

n∑
i=1

log
exp

(
βrstu(y(i))

)∑n
j=i exp

(
βrstu(y(j))

) , (10) 294

where β is a hyperparameter that controls the scal- 295

ing of the reward difference. 296
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Probabilistic Preference Distillation (PPD) In-297

spired by Cao et al. (2007), we treat the teacher’s re-298

wards as uncertain indicators of preference, which299

means any preference ranking is assumed to be300

possible but has a different likelihood.301

The preference distribution over all possible302

rankings for the teacher is expressed as:303

∀τn ∈ T , pπtch(τn) =

n∏
i=1

exp
(
βr̂tch(y(i))

)∑n
j=i exp

(
βr̂tch(y(j))

) ,
(11)304

where T denotes the set of all possible rankings.305

The student’s preference distribution pπstu(τn) is306

modeled similarly.307

We then employ the Jensen-Shannon divergence308

(JSD) loss to align the student’s and teacher’s pref-309

erence distributions:310

LPPD =
1

2

[
DKL(π

tch||πmix) +DKL(π
stu||πmix)

]
,

(12)311

where mixed distribution πmix = (πtch + πstu)/2,312

and DKL(·∥·) is the Kullback-Leibler divergence313

(KLD). Specifically, the KLD between the teacher’s314

preference distribution and the mixed distribution315

is defined as:316

DKL(π
tch||πmix) =

∑
τn∈T

pπtch(τn) log
pπtch(τn)

pπmix(τn)
.317

Similarly, DKL(π
stu||πmix) is computed in the same318

way. By aligning the student’s preference distribu-319

tion with the teacher’s, the student model not only320

learns the correct preference ranking but also cap-321

tures the teacher’s confidence in these rankings.322

4.4 Preference Decomposing Strategy323

In our PAD, the number of sampled responses, i.e.,324

the sample size n, plays a pivotal role. A larger325

n allows for a more macro comparison among re-326

sponses, reduces the variance introduced by sam-327

pling, and increases the likelihood of generating328

high-quality responses (Brown et al., 2024). How-329

ever, as n increases, the computational cost of both330

sampling and forward propagation also rises. Par-331

ticularly when modeling preference distributions,332

the complexity grows factorially, making the com-333

putation unfeasible when n becomes large.334

To reduce the computational cost, we propose a335

preference decomposition strategy. This strategy336

breaks down the preference of a large batch of337

responses into the preferences of multiple smaller338

batches, allowing the training process to be split339

(for i from 1 to k)

Next iteration

Prompt

Si+1

-0.31

-0.12

-0.24

Si T

S student

T teacher

sample

reward
calculation

training

A B C

A

B

C

Figure 3: Iterative Distillation Process.

into several iterative rounds, thereby reducing the 340

overall computational load. 341

Decomposing Preference Modeling Given a 342

preference ranking τn, we define a prefer- 343

ence decomposition function ϕ to decompose 344

it into k sub-preferences, such that ϕ(τn) = 345

{τ (1)m , τ
(2)
m , . . . , τ

(k)
m }. Assuming that these sub- 346

preferences are independent, we simplify the prob- 347

ability of the complete preference to the probability 348

of the decomposed preferences as follows: 349

p(τn)
simplify−−−−→ p(ϕ(τn)) =

k∏
i=1

p(τ (i)m ). (13) 350

Hence, we use decomposed preferences as the 351

learning objective, for VPD, its NLL loss for de- 352

composed preferences as 353

log p(ϕ(τn)) =
k∑

i=1

log p(τ (i)m ). (14) 354

This shows that the distillation loss for a large 355

batch of responses is equivalent to the sum of losses 356

over multiple smaller batches.5 Based on this in- 357

sight, we adopt the Iterative Distillation Process, 358

as depicted in Figure 3. In this approach, the dis- 359

tillation process is divided into k iterations, each 360

applied to smaller batches of size m. This reduces 361

the complexity of modeling the preference distribu- 362

tion from O(n!) to O(k ·m!), thereby significantly 363

lowering the computational cost of training. 364

5 Experiment 365

5.1 Setup 366

Models We evaluate two model families in our 367

main experiments: 1) GEMMA-2 Models6 (Riv- 368

iere et al., 2024) include GEMMA-2-9B-IT as 369

5A similar decomposition can be applied to Preference
Propagation Decoding (PPD), with the detailed proof provided
in Appendix A.

6https://ai.google.dev/gemma

5

https://ai.google.dev/gemma


Model Families Method Alpaca-Eval 2.0 Arena-Hard MT-Bench GSM8K
LC (%) WR (%) WR (%) Score (1∼10) Acc. (%)

GEMMA-2

Teacher (9B) 55.27 42.50 61.16 6.99 87.41
Student (2B) 39.51 41.99 37.55 6.70 51.63
Standard KD 41.67 (↑2.2) 45.24 (↑3.3) 52.36 (↑14.8) 6.78 (↑0.1) 54.37 (↑2.7)

SeqKD 42.91 (↑3.4) 46.44 (↑4.4) 54.87 (↑17.3) 6.88 (↑0.2) 55.72 (↑4.1)

MiniLLM 42.97 (↑3.5) 48.32 (↑6.3) 55.75 (↑18.2) 6.88 (↑0.2) 55.26 (↑3.6)

DPO 43.77 (↑4.3) 54.02 (↑12.0) 57.43 (↑19.9) 6.87 (↑0.2) 57.07 (↑5.4)

SimPO 44.94 (↑5.4) 54.16 (↑12.2) 58.64 (↑21.1) 6.91 (↑0.2) 57.24 (↑5.6)

PRO 45.87 (↑6.4) 56.48 (↑14.5) 58.95 (↑21.4) 6.96 (↑0.3) 58.83 (↑7.2)

PAD w/ LVPD 46.13 (↑6.6) 57.94 (↑16.0) 59.07 (↑21.5) 6.93 (↑0.2) 59.06 (↑7.4)

PAD w/ LPPD 49.62 (↑10.1) 59.50 (↑17.5) 60.00 (↑22.4) 7.02 (↑0.3) 59.29 (↑7.7)

LLAMA-3

Teacher (8B) 37.01 38.93 52.66 7.00 84.00
Student (3B) 27.82 29.02 31.70 6.42 57.09
Standard KD 29.11 (↑1.3) 29.60 (↑0.6) 41.68 (↑10.0) 6.49 (↑0.1) 59.15 (↑2.1)

SeqKD 29.48 (↑1.7) 30.04 (↑1.0) 42.52 (↑10.8) 6.53 (↑0.1) 60.94 (↑3.8)

MiniLLM 30.05 (↑2.2) 30.38 (↑1.4) 42.21 (↑10.5) 6.67 (↑0.3) 60.35 (↑3.3)

DPO 31.42 (↑3.6) 32.01 (↑3.0) 44.71 (↑13.0) 6.62 (↑0.2) 61.63 (↑4.5)

SimPO 32.74 (↑4.9) 32.46 (↑3.4) 44.85 (↑13.2) 6.73 (↑0.3) 61.22 (↑4.1)

PRO 32.11 (↑4.3) 32.23 (↑3.2) 45.09 (↑13.4) 6.71 (↑0.3) 61.47 (↑4.4)

PAD w/ LVPD 32.71 (↑4.9) 32.34 (↑3.3) 45.23 (↑13.5) 6.77 (↑0.3) 61.35 (↑4.3)

PAD w/ LPPD 33.61 (↑5.8) 32.55 (↑3.5) 46.73 (↑15.0) 6.84 (↑0.4) 62.24 (↑5.1)

Table 1: Main results with the Gemma-2 and LLaMA-3 Models.

teacher and GEMMA-2-2B-IT as the student, and370

2) LLAMA-3 Models7 (Grattafiori et al., 2024)371

includes LLAMA-3.1-8B-INSTRUCT as teacher372

and LLAMA-3.2-3B-INSTRUCT as student.373

Training Training data is sourced from ULTRA-374

FEEDBACK8 (Cui et al., 2023), comprising around375

60k preference samples across a diverse range of376

tasks, including mathematical reasoning and open-377

ended writing. We filter out samples that exceed the378

models’ context length, set the number of sampled379

responses n = 4, and apply a reward calibration380

ratio α = 0.8 to mitigate teacher model bias. Train-381

ing is conducted for one epoch by default, with382

further details provided in Appendix B.1.383

Evaluation We assess our models on four bench-384

marks: AlpacaEval 2.0 (Li et al., 2023), MT-Bench385

(Zheng et al., 2023), Arena-Hard (Li et al., 2024),386

and GSM8K (Cobbe et al., 2021), which evaluate a387

model’s conversational versatility across a range of388

tasks. For AlpacaEval, we report both the raw win389

rate (WR) and the length-controlled win rate (LC),390

the latter being robust to verbosity. For Arena-Hard,391

we report the win rate (WR)9. For MT-Bench, we392

7https://ai.meta.com/blog/meta-llama-3/
8https://huggingface.co/datasets/argilla/

ultrafeedback-binarized-preferences-cleaned
9Please note that for AlpacaEval 2.0 and Arena-Hard, we

employ LLAMA-3.1-70B-INSTRUCT as the judge model,
which achieved capabilities comparable to GPT-4 Turbo on
the judge test of AlpacaEval while being more cost-effective
and faster.

present the average MT-Bench score, evaluated by 393

GPT-4 Turbo. Detailed evaluation settings can be 394

found in Appendix B.2. 395

Baselines We compare PAD with two types of 396

baselines: 1) Traditional Knowledge Distillation, 397

which aims to learn the teacher’s distribution at 398

the logits level, including Standard KD (Hin- 399

ton et al., 2015), SeqKD (Kim and Rush, 2016), 400

and MiniLLM (Gu et al., 2024); 2) Preference 401

Knowledge Distillation, which aims to transfer 402

the teacher’s preference knowledge to the stu- 403

dent model. Under the “Teacher-as-Annotator” 404

paradigm, we choose DPO (Tunstall et al., 2024), 405

SimPO (Meng et al., 2024), and PRO (Song et al., 406

2024) as baselines. A detailed description of these 407

baselines can be found in Appendix B.3. 408

5.2 Main Result 409

Table 1 summarizes the experimental results across 410

several benchmarks.The primary finding is that the 411

student models trained with PAD consistently out- 412

perform both their initial counterparts and existing 413

approaches. Specifically, PAD achieves over a 20% 414

improvement on Alpaca-Eval 2.0 and Arena-Hard, 415

highlighting its ability to more effectively capture 416

the teacher’s preferences, thereby aligning more 417

closely with human values. 418

Preference distillation methods offer significant 419

advantages over traditional KD methods. Tradi- 420

tional KD approaches, such as Standard KD and 421
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Strategy Alpaca-Eval 2 GPU Hours
LC (%) A800

Total Sample Size: 4
1 × 4 49.42 12.32
2 × 2 48.94 (↓0.5) 12.35 (↑0.0%)

Total Sample Size: 8
1 × 8 50.57 31.51
2 × 4 51.42 (↑0.8) 27.98 (↓12%)

Total Sample Size: 12
1 × 12 51.55 52.74
3 × 4 52.67 (↑1.1) 42.07 (↓20%)

Table 2: Decomposition Strategy Improves Performance
While Reducing Cost. “Strategy” such as “1 × 4” indi-
cates that the number of training iterations is 1, and the
sample size per iteration is 4.

SeqKD, yield modest improvements (1-3%) in422

Alpaca-Eval 2.0 LC scores. In contrast, preference423

distillation methods like DPO and SimPO show424

more substantial gains, particularly in aligning with425

human preferences, as evidenced in Alpaca-Eval426

2.0 and Arena-Hard benchmarks. These findings427

align with the work of Tunstall et al. (2024).428

Notably, PAD with LPPD outperforms PAD429

with LVPD across multiple benchmarks, includ-430

ing Alpaca-Eval 2.0 LC (49.62 vs. 46.13) and431

MT-Bench (7.02 vs. 6.93). For the GEMMA-2432

model family, the student trained with LPPD even433

surpasses its teacher in MT-Bench, scoring 7.02434

compared to the teacher’s 6.99. The key advantage435

of PPD over VPD lies in its preference modeling436

approach: by capturing the full preference distribu-437

tion rather than just a simple ranking, PPD provides438

more nuanced supervisory signals, thereby better439

reflecting subtle human preferences—an aspect of-440

ten overlooked by existing distillation methods.441

5.3 Analysis442

We analyze the impact of our proposed Preference443

Decomposing Strategy and Reward Calibration. To444

assess the generalization capability of PAD, we445

further investigate its performance when the teacher446

and student models belong to different families. A447

more detailed analysis is provided in Appendix C.448

Effect of Preference Decomposing Strategy We449

investigated the impact of the iterative distillation450

process on performance and training time using the451

preference decomposing strategy. Table 2 presents452

the effects of varying iteration counts and sample453

sizes. For a sample size of 4, decomposing the454

sampling process into two iterative steps does not455

reduce training time, as the low complexity of mod-456

eling the distribution with fewer samples renders457

40.0 42.5 45.0 47.5 50.0 52.5 55.0
LC (%)

1

2

3

Ite
ra

tio
n

Teacher
Student
DPO
SimPO
PRO
PAD w/ VPD
PAD w/ PPD

Figure 4: Alpaca-Eval LC with different iterations.

Method Calibration Alpaca-Eval LC (%)
Student - 39.51

PAD w/ LVPD No 40.36 (↑0.8)

PAD w/ LVPD Yes 46.13 (↑6.6)

PAD w/ LPPD No 41.59 (↑2.0)

PAD w/ LPPD Yes 49.62 (↑10.1)

Table 3: Ablation study on the Reward Calibration

the effect negligible. However, when the sample 458

size increases to 12, adopting a three-iteration de- 459

composition reduces training time by 20%, demon- 460

strating that the preference decomposing strategy 461

becomes more advantageous as the sample size 462

grows, thereby accelerating training. Notably, de- 463

composing the sampling into multiple iterations 464

does not result in a significant performance drop, 465

indicating that the strategy effectively balances ef- 466

ficiency with stable performance. 467

Additionally, we examined the iterative distil- 468

lation process as a continuous learning method. 469

As shown in Figure 4, we compared three high- 470

performing baseline methods—DPO, SimPO, and 471

PRO. The results indicate that the iterative distil- 472

lation process consistently improves performance 473

across all methods, with PAD achieving the best 474

results, highlighting its superior effectiveness. 475

Influence of Reward Calibration We conduct 476

ablation experiments on GEMMA-2-2B-IT with 477

Reward Calibration, as summarized in Table 3. The 478

results show a significant performance improve- 479

ment, with an 8.03 LC gain on PAD with LPPD. To 480

further assess the impact of reward calibration, we 481

vary the calibration ratio α and examine its effect 482

on performance, as depicted in Figure 5. Increasing 483

α leads to consistent performance gains, peaking at 484

α = 0.8. Beyond this point, further increases in α 485

result in diminishing returns. For applications with 486

lower performance demands, setting α = 1 offers 487

a practical trade-off by avoiding the computational 488

cost of calculating the teacher’s log-likelihood. 489
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Ratio 

39

42
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48

51
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)

Optimal: 49.62
( = 0.8)

PAD w/ PPD

Student

Figure 5: Alpaca-Eval LC Win Rate with different α

Method
Alpaca-Eval LC (%)

LLAMA QWEN

Student 27.82 9.37

DPO 49.42 (↑21.6) 16.66 (↑7.3)

SimPO 49.78 (↑22.0) 18.08 (↑8.7)

PRO 50.18 (↑22.4) 18.57 (↑9.2)

PAD w/ LVPD 50.45 (↑22.6) 18.83 (↑9.4)

PAD w/ LPPD 51.96 (↑24.1) 20.57 (↑11.2)

Table 4: Heterogeneous Distillation Study. We use
GEMMA-2-9B-IT as the teacher and LLAMA-3.2-3B-
INSTRUCT/QWEN-2.5-1.5B-INSTRUCT as the student.

Heterogeneous Study Previous experiments typ-490

ically involve teacher and student models from the491

same family, sharing a common vocabulary and492

similar architectures. To evaluate the generalization493

ability of our PAD method, we extend these exper-494

iments by using teacher and student models from495

different families. As shown in Table 4, our ap-496

proach consistently outperforms existing methods,497

demonstrating robust generalization. Furthermore,498

a comparison with results in Table 1 reveals that499

using a stronger teacher model, GEMMA-9B, sig-500

nificantly improves the performance of the student501

model (LLAMA-3B). Specifically, with GEMMA-502

9B as the teacher, the student achieves an LC of503

51.96%, compared to only 33.61% with LLAMA-504

8B. This suggests a positive correlation between505

the teacher’s performance and the student’s post-506

distillation performance, aligning with findings507

from Gu et al. (2024); Lee et al. (2024).508

6 Related Work509

Traditional Knowledge Distillation Knowledge510

distillation (KD), introduced by Hinton et al.511

(2015), primarily aims at model compression by512

training a smaller student model to mimic the513

output behavior of a larger teacher model (Kim514

and Rush, 2016; Liang et al., 2021; Zhang et al.,515

2023; Gu et al., 2024; Agarwal et al., 2024). Kim516

and Rush (2016) extended KD to machine transla-517

tion by training students on sequences generated518

by teachers in order to imitate teacher behavior.519

More recently, Gu et al. (2024) advanced KD us- 520

ing reverse KL divergence on student -generated 521

sequence to mitigate exposure bias, improving stu- 522

dent model performance. A key feature of these 523

methods is that distillation is performed over the 524

shared vocabulary of both teacher and student mod- 525

els. Our PAD eliminates this limitation, enabling 526

effective distillation with different vocabularies. 527

Preference Knowledge Distillation Motivated 528

by the observation that large models have achieved 529

a high degree of alignment with human values and 530

preferences, many efforts focus on distilling pref- 531

erence knowledge from large models to smaller 532

ones (Bai et al., 2022; Cui et al., 2023; Lee et al., 533

2024; Yuan et al., 2024; Tunstall et al., 2024; Yang 534

et al., 2024). Bai et al. (2022) first introduced this 535

concept, also known as Reinforcement Learning 536

from AI Feedback (RLAIF), where teacher models 537

annotate response pairs from the student to create a 538

preference dataset for training a reward model. Tun- 539

stall et al. (2024) further utilized teacher-annotated 540

preferences with Direct Preference Optimization 541

(DPO) (Rafailov et al., 2023), streamlining the 542

training of student models. These approaches fol- 543

low the "Teacher-as-Annotator" paradigm. The 544

annotated preference datasets generated through 545

this paradigm can be directly employed with meth- 546

ods such as DPO, SimPO (Meng et al., 2024), and 547

PRO (Song et al., 2024), enabling preference opti- 548

mization of student models. However, a significant 549

limitation of these methods lies in their reliance on 550

unique ranking, which constrains their ability to 551

model nuanced preferences. In contrast, our PAD 552

treats modeling preference knowledge as a distribu- 553

tion over all possible preferences, enabling nuanced 554

alignment for the student and teacher models. 555

7 Conclusion 556

In this paper, we introduced the Preference-Aligned 557

Distillation (PAD) framework, which models the 558

teacher’s preference knowledge as a probability 559

distribution over all potential preferences. This 560

supervisory signal enables the student model to 561

capture subtle distinctions between responses. Ex- 562

perimental results on the GEMMA-2 and LLAMA- 563

3 model families show that PAD outperforms both 564

traditional knowledge distillation and existing pref- 565

erence distillation methods across four benchmark 566

tasks, highlighting its capacity for learning in-depth 567

human preferences. 568
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Limitations569

Our research has several limitations. Firstly, the570

generalization capability is insufficient as we have571

not conducted experiments on larger-scale teacher572

and student models, primarily due to limited com-573

putational resources. Secondly, sampling multiple574

responses consumes more computational overhead.575

However, because SLMs have relatively smaller pa-576

rameter sizes, this overhead remains comparatively577

modest. Thirdly, our method requires token-level578

probabilities, which are unavailable in some black-579

box models.580
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hyperparameter Value Searching Space
β 10 [1, 2, 5, 8, 10]

batch size 128 [32, 64, 128]

warmup ratio 0.1 [0.05, 0.1]

Table 5: The hyperparameter values in PAD training.

A Decomposing Probabilistic Preference816

Distillation817

Substituting Eq. 13 into the KLD:818

∑
τn

(
k∏
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log
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)
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interchange summations,821
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notice that for a fixed i, the logarithm term only823

depends on τ
(i)
m , and the product can be separated,824

=

k∑
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826

based on the independence assumption of sub-
preferences,

∑
τ
(j)
m

pπtch(τ
(j)
m ) = 1 for each j,827

=
k∑

i=1

∑
τ
(i)
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828

Therefore, the KLD can be decomposed as:829

DKL(pπtch(τn)∥pπmix(τn)) =830

k∑
i=1

DKL(pπtch(τ (i)m )∥pπmix(τ (i)m ))831

The JSD Loss (Eq. 12) used in PPD is the av-832

erage of two KLDs in different directions, making833

JSD also decomposable.834

B Implementation Details835

B.1 Training836

We individually search the learning rates for dif-837

ferent model families in the range of [3e− 7, 5e−838

Model Human Agreement
GPT4 69.17

LLAMA-3.1-70B-INSTRUCT 69.10
GPT4-Turbo 68.09

LLAMA-3-70B-INSTRUCT 67.53
QWEN2.5-72B-INSTRUCT 67.51

Humans 65.66

Table 6: Leaderboard of judge models in AlpacaEval.

7, 8e − 7, 1e − 6, 1e − 5]. As a result, the learn- 839

ing rate for GEMMA-2 Models is 8e − 7 and for 840

LLAMA-3 Models is 1e− 6. Table 5 shows other 841

hyperparameters for training. All the training ex- 842

periments in this paper were conducted on 2×A800 843

GPUs based on the TRL repo10. 844

B.2 Evaluation 845

Data Statistics AlpacaEval 2 consists of 805 846

questions from five datasets, MT-Bench includes 847

80 questions across eight categories, and the re- 848

cently released Arena-Hard is an enhanced version 849

of MT-Bench, comprising 500 challenging ques- 850

tions. Since the training data, ultrafeedback, in- 851

cludes some mathematical reasoning problems, we 852

additionally incorporate the GSM8K test set, which 853

contains approximately 1,300 questions, to evalu- 854

ate the model’s mathematical abilities. 855

Judge Models For AlpacaEval 2.0 and Arena- 856

Hard, we employ LLAMA-3.1-70B-INSTRUCT as 857

the judge model. For MT-Bench, we employ GPT- 858

4 Turbo as the judge model. For GSM8K, we report 859

accuracy on the test set. Table 6 presents the eval- 860

uation capability test11 of these judge models on 861

AlpacaEval. We can see that LLAMA-3.1-70B- 862

INSTRUCT has evaluation capabilities comparable 863

to GPT4-Turbo. 864

B.3 Baselines 865

For traditional knowledge distillation, we consider 866

three baselines: 1) Standard KD (Hinton et al., 867

2015): Fine-tunes the student model using the 868

teacher model’s logits distribution as a supervision 869

signal, applied to golden responses. 2) SeqKD 870

(Kim and Rush, 2016): Directly fine-tunes the stu- 871

dent model with cross-entropy loss using responses 872

generated by the teacher model. 3) MiniLLM (Gu 873

et al., 2024): Employs the teacher model’s logits 874

10https://github.com/huggingface/trl/tree/main
11https://github.com/tatsu-lab/alpaca_eval/

tree/main/src/alpaca_eval/evaluators_configs

12
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distribution as supervision signal while fine-tuning875

the student model on its own generated responses.876

For preference knowledge distillation, under877

the "Teacher-as-Annotator" paradigm, we employ878

three offline preference optimization methods as879

baselines: 1) DPO (Rafailov et al., 2023; Tunstall880

et al., 2024): Treats the student model as a reward881

model, fine-tuning it based on a reward function882

derived from a reference model. 2) SimPO (Meng883

et al., 2024): Operates similarly to DPO but uses884

average log-likelihood as the optimization objec-885

tive. 3) RPO (Song et al., 2024): Extends the886

above approaches by optimizing with listwise pref-887

erence information. For a fair comparison, we also888

use responses sampled from the student model for889

these baselines. We use the MCQ selection prob-890

ability introduced in Section 4.2 as the score to891

rank the responses. For the pairwise preference892

optimization methods DPO and SimPO, we se-893

lect the responses with the maximum and mini-894

mum rewards to form preference pairs. For the895

listwise preference optimization method PRO, we896

directly sort the scores to form the preference rank-897

ing. Please kindly note that constructing preference898

pairs using the maximum and minimum scores of899

responses is a common practice (Cui et al., 2023;900

Meng et al., 2024). Moreover, our preliminary ex-901

periments indicate that splitting the entire listwise902

response data into multiple pairwise data and train-903

ing with DPO/SimPO does not yield significant904

performance improvements.905

C Additional Experiments and Analyses906

Method Alpaca-Eval Arena-Hard
LC (%) WR (%)

Teacher 56.89 76.09
Student 39.51 37.55

DPO 51.93 65.42
SimPO 52.36 66.36
PRO 52.45 68.01

PAD w/ LVPD 53.32 67.38
PAD w/ LPPD 55.96 69.90

Table 7: Scaling-up Study.

Scaling Up We use GEMMA-2-27B-IT as the907

teacher and GEMMA-2-2B-IT as the student. The908

overall performance is shown in Table 7. When909

employing larger-scale teacher models, our PAD910

consistently and significantly enhances the ability911

of small models to align with human preferences.912

Compared to the main result (§5.2), we observe913

(a) Alpaca-Eval 2.0 LC Win Rate (%) (b) Arena-Hard Win Rate (%) 
Sample size n Sample size n

Figure 6: Win Rate with different sample size n.

that when using a more capable teacher, the student 914

model achieves greater performance improvements, 915

indicating that the performance gap between the 916

teacher and student is a key factor in determining 917

the extent of the student’s enhancement. 918

Effect of Sample Size We investigate the impact 919

of the number of sampled responses on PPD, and 920

the results can be seen in Figure 6. We observe 921

that as the number of sample size n increases, the 922

performance of the student model improves accord- 923

ingly. This indicates that obtaining more feedback 924

knowledge through extensive sampling from the 925

text generation space facilitates better alignment of 926

the student model with the teacher’s preferences. 927

D Comparative Analysis of Reward 928

Functions 929

For the preference distillation, existing works 930

DPO(Rafailov et al., 2023) and MiniLLM(Gu et al., 931

2024) both propose using language models to con- 932

struct reward functions. However, there are signif- 933

icant differences between these methods and our 934

PAD, particularly in the formulation of the reward 935

function, the theoretical foundation, and how the 936

reward is used during training. Below, we elaborate 937

on three key distinctions. 938

D.1 Formulation of Reward Functions 939

DPO (Direct Preference Optimization) con-
structs the reward function using the log ratio of
the likelihoods between the "current model" and
the "reference model" for the same response:

r(y) = log
pcurrent(y)

preference(y)
,

where pcurrent represents the likelihood of response 940

y under the model aligned with human preferences, 941

and preference typically corresponds to the likelihood 942

from a supervised fine-tuning (SFT) model. A 943

higher reward indicates that the current model is 944

more likely to generate y than the reference model. 945
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Formulation Preference Expression Reference-free Aligned with Generation

DPO r(y) = log
pcurrent(y)

preference(y)
✓ × ×

MiniLLM r(y) = log
pteacher(y)

pstudent(y)
× × ×

PAD (Ours) r(y) =
1

|y| log pcurrent(y) ✓ ✓ ✓

Table 8: Theoretical Comparison of Reward Functions

MiniLLM is similar in spirit to DPO but uses a
“teacher model” and “student model” in a distilla-
tion framework. Its reward function is based on the
likelihood ratio:

r(y) = log
pteacher(y)

pstudent(y)
.

Here, a larger reward implies that the teacher model946

is more inclined to generate the sequence than the947

student model.948

PAD (Ours) defines the reward function as the
model’s log-likelihood of the response, averaged by
the sequence length for consistency across varying
lengths:

r(y) =
1

|y|
log pcurrent(y).

When the model assigns a higher probability to a949

response, that response receives a higher reward.950

D.2 Theoretical Foundations and Training951

Processes952

Different Theoretical Foundations. DPO is953

grounded in the Reinforcement Learning from954

Human Feedback (RLHF) framework, while955

MiniLLM derives its reward function from the re-956

verse KL-divergence of the policy gradient. In957

contrast, PAD is based on Inverse Reinforcement958

Learning (IRL), where we demonstrate that the959

average log-likelihood can function as a reward,960

effectively capturing the model’s intrinsic prefer-961

ences.962

Roles in the Loss Function. DPO aims to di-963

rectly maximize the margin between "good" and964

"bad" responses within its loss function. MiniLLM,965

on the other hand, treats the reward function as a966

scaling factor for the SFT loss, where responses967

with higher rewards experience a more significant968

increase in likelihood. PAD utilizes the reward969

function to derive a preference distribution over970

responses, enabling a student model to emulate the971

teacher model’s preferences. Notably, unlike DPO972

and PAD, MiniLLM’s reward function does not 973

explicitly encode preference. 974

Reference Model Requirement. Both DPO and 975

MiniLLM necessitate the simultaneous use of two 976

models (current/reference or teacher/student) for 977

reward computation. In contrast, PAD requires only 978

the log-likelihood of the current model, eliminating 979

the need for a reference model. This simplification 980

not only streamlines the theoretical framework but 981

also reduces computational cost in practice. 982

Alignment with the Generation Stage. The re- 983

ward functions in DPO and MiniLLM generally 984

do not align with the probability distribution used 985

during the final text-generation phase. In contrast, 986

PAD’s reward function is directly aligned with the 987

model’s log-likelihood, ensuring consistency be- 988

tween the training and inference. 989

D.3 Empirical Evaluation 990

Beyond the theoretical distinctions outlined in Ta- 991

ble 8, the choice of reward significantly influences 992

performance across various benchmarks. As illus- 993

trated in the main results of Table 1, PAD, which 994

employs average log-likelihood as its reward func- 995

tion, demonstrates superior performance gains. 996

E Discussion of Reward Calibration 997

E.1 Existing Methods 998

Recent studies have shown that large language mod- 999

els (LLMs) are well-calibrated for multiple-choice 1000

question-answering and true/false evaluation tasks 1001

(Kadavath et al., 2022; OpenAI, 2024; Robinson 1002

and Wingate, 2023), suggesting that these models 1003

exhibit better calibration on token-level scores. In 1004

addition to the MCQ-based calibration method, we 1005

also compare it with the P(True) method proposed 1006

by Kadavath et al. (2022). 1007

P(True) involves asking the model whether a can-
didate answer is correct. If the answer is correct,
the model outputs True, otherwise False, with the
probability of True representing the likelihood of
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the response being correct. Formally, for an input
x and a response y, this probability is given by:

ptrue(x, y) = p(Yes | x, y).

A variant, P(True) with reference, incorporates
all candidate responses:

ptrue(x, y, Y ) = p(Yes | x, y, Y ).

Notably, the P(True) method is more computation-1008

ally intensive than the MCQ-based method, as it1009

requires multiple queries to determine the probabil-1010

ity values for different responses, whereas MCQ-1011

based calibration can map responses to options and1012

obtain probabilities in a single query.1013

E.2 Experimental Comparison1014

We conducted experiments on the Alpaca-eval1015

Evaluator test set (Li et al., 2023) to assess the1016

alignment of various calibrated reward functions1017

with human preferences. This test set, consisting of1018

approximately 2.5k data points, is commonly used1019

to evaluate LLM performance as judges, where1020

each data point includes a pair of responses ranked1021

by human preferences. We applied different re-1022

ward calibration methods to rank these preference1023

pairs and evaluated their alignment with human1024

preferences.1025

The evaluation metrics include Human Agree-1026

ment and Prob. prefer longer.1027

Human Agreement: This metric measures the1028

alignment between human and model rankings of1029

response pairs. Given n response pairs (yg for the1030

good response and yb for the bad response), the1031

score is calculated as:1032

score = 1− 1

n

n∑
i=1

[ ∣∣∣rankhuman
i (yg)− rankpred

i (yg)
∣∣∣

+
∣∣∣rankhuman

i (yb)− rankpred
i (yb)

∣∣∣]1033

with a score closer to 1 indicating stronger align-1034

ment with human preferences.1035

Prob. prefer longer: This metric measures the1036

likelihood that the model’s preferred response is1037

longer than the alternative, indicating a potential1038

length bias in the model’s preferences.1039

We evaluated the performance of two models,1040

Gemma-2-9B-It and Llama-3.1-8B-Instruct, with1041

the results presented in Table 9. These results show1042

that the MCQ-based calibration achieves the high- 1043

est alignment with human preferences while ex- 1044

hibiting a relatively lower bias toward longer re- 1045

sponses. 1046

Method Agreement Prob. prefer longer
(%) (%)

GEMMA-2
MCQ 68.21 65
P(True) 61.27 52
P(True) w/ ref. 67.75 76

LLAMA-3
MCQ 65.59 75
P(True) 63.12 60
P(True) w/ ref. 65.47 76

Table 9: Alpaca Evaluator Performance Comparison.

We further examined the impact of different re- 1047

ward calibration methods on PAD with PPD Loss 1048

using two benchmarks, Alpaca-Eval 2.0 and Arena- 1049

Hard. The results, shown in Table 10, demonstrate 1050

that the MCQ-based method consistently outper- 1051

forms other methods, achieving the highest perfor- 1052

mance on both benchmarks. 1053

Method Alpaca-Eval Arena-Hard
LC (%) WR (%)

MCQ 49.62 59.50
P(True) 44.09 53.96
P(True) w/ ref. 48.59 57.74

Table 10: Impact of Different Reward Calibration Meth-
ods on PAD with Gemma-2

These findings highlight the significant impact 1054

of the chosen reward calibration method on PAD 1055

performance. The MCQ-based method not only 1056

aligns more closely with human preferences but 1057

also improves the effectiveness of PAD training, 1058

leading to better alignment in the distilled model. 1059
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