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ABSTRACT

In this paper, we show that structures similar to self-attention are natural to learn
many sequence-to-sequence problems from the perspective of symmetry. Inspired
by language processing applications, we study the orthogonal equivariance of
seq2seq functions with knowledge, which are functions taking two inputs—an in-
put sequence and a “knowledge”—and outputting another sequence. The knowl-
edge consists of a set of vectors in the same embedding space as the input se-
quence, containing the information of the language used to process the input se-
quence. We show that orthogonal equivariance in the embedding space is natural
for seq2seq functions with knowledge, and under such equivariance the function
must take the form close to the self-attention. This shows that network structures
similar to self-attention are the right structures to represent the target function of
many seq2seq problems. The representation can be further refined if a “finite in-
formation principle” is considered, or a permutation equivariance holds for the
elements of the input sequence.

1 INTRODUCTION

Neural network models using self-attention, such as Transformers Vaswani et al. (2017), have be-
come the new benchmark in the fields such as natural language processing and protein folding.
Though, the design of self-attention is largely heuristic, and theoretical understanding of its success
is still lacking. In this paper, we provide a perspective for this problem from the symmetries of
sequence-to-sequence (seq2seq) learning problems. By identifying and studying appropriate sym-
metries for seq2seq problems of practical interest, we demonstrate that structures like self-attention
are natural for representing these problems.

Symmetries in the learning problems can inspire the invention of simple and efficient neural net-
work structures. This is because symmetries reduce the complexity of the problems, and a network
with matching symmetries can learn the problems more efficiently. For instance, convolutional
neural networks (CNNs) have seen great success on vision problems, with the translation invari-
ance/equivariance of the problems being one of the main reasons. This is not only observed in
practice, but also justified theoretically Li et al. (2020b). Many other symmetries have been studied
and exploited in the design of neural network models. Examples include permutation equivari-
ance Zaheer et al. (2017) and rotational invariance Kim et al. (2020); Chidester et al. (2019), with
various applications in learning physical problems. See Section 2.1 for more related works.

In this work, we start from studying the symmetry of seq2seq functions in the embedding space, the
space in which each element of the input and output sequences lie. For a language processing prob-
lem, for example, words or tokens are usually vectorized by a one-hot embedding using a dictionary.
In this process, the order of words in the dictionary should not influence the meaning of input and
output sentences. Thus, if a permutation is applied on the dimensions of the embedding space, the
input and output sequences should experience the same permutation, without other changes. This
implies a permutation equivariance in the embedding space. In our analysis, we consider equivari-
ance under orthogonal group, which is slightly larger than the permutation group. We show that
if a function f is orthogonal equivariant in the embedding space, then its output can be expressed
as linear combinations of the elements of the input sequence, with the coefficients only depending
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on the inner products of these elements. Concretely, let X ∈ Rd×n denote an input sequence with
length n in the embedding space Rd. If f(QX) = Qf(X) holds for any orthogonal Q ∈ Rd×d,
then there exists a function g such that

f(X) = Xg(XTX).
However, the symmetry on the embedding space is actually more complicated than a simple orthog-
onal equivariance. In Section 3.2, we show that the target function for a simple seq2seq problem is
not orthogonal equivariant, because the target function works in a fixed embedding. To accurately
catch the symmetry in the embedding space, we propose to study seq2seq functions with knowl-
edge, which are functions with two inputs, f(X,Z), where X ∈ Rd×n is the input sequence and
Z ∈ Rd×k is another input representing our “knowledge” of the language. The knowledge lies in
the same embedding space as X , and is used to extract information from X . With this additional
input, the symmetry in the embedding space can be formulated as an orthogonal equivariance of
f(X,Z), i.e. f(QX,QZ) = Qf(X,Z) for any inputs and orthogonal matrix Q. Intuitively under-
stood, in a language application, as long as the knowledge is always in the same embedding as the
input sequence, the meaning of the output sequence will not change with the embedding. Based on
the earlier theoretical result for simple orthogonal equivariant functions, if a seq2seq function with
knowledge is orthogonal equivariant, then it must have the form

f(X,Z) = Xg1(X
TX,ZTX,ZTZ) + Zg2(X

TX,ZTX,ZTZ)

If Z is understood as a parameter matrix to be learned, the following subset of this representation,

f(X,Z) = Xg(XTZ),

is close to a self-attention used in practice, with Z being the concatenation of query and key parame-
ters. This reveals one possible reason behind the success of self-attention based models on language
problems.

Based on the results from orthogonal equivariance, we further study the permutation equivariance
on the elements of the input sequence. Under this symmetry, we show that seq2seq functions with
knowledge have a further reduced form which only involves four different nonlinear functions. Fi-
nally, discussions are made on the possible forms of g (or g1 and g2) in the formulations mentioned
above. Based on the assumption that these functions are described by a finite amount of information
(although their output sizes need to change with respect to the sequence length n), we reason that
quadratic forms with a nonlinearity used in usual self-attentions is one of the simplest choice of g.
We also discuss practical considerations that add the complexity of the models used in application
compared with theoretical forms.

2 BACKGROUND AND RELATED WORK

2.1 NEURAL NETWORKS AND SYMMETRIES

Implementing symmetries in neural networks can help the models learn certain problems more ef-
ficiently. A well-known example is the success of convolutional neural networks (CNNs) on image
problems due to their (approximate) translation invariance LeCun et al. (1989). Many types of sym-
metries have been explored in the design of neural networks, such as permutation equivariance and
invariance Zaheer et al. (2017); Guttenberg et al. (2016); Rahme et al. (2021); Qi et al. (2017a;b), ro-
tational equivariance and invariance Thomas et al. (2018); Shuaibi et al. (2021); Fuchs et al. (2020);
Kim et al. (2020), and more Satorras et al. (2021); Wang et al. (2020b); Ling et al. (2016a); Ravan-
bakhsh et al. (2017). Some works deal with multiple symmetries. In Villar et al. (2021), the forms
of functions with various symmetries are studied. These networks see many applications in physical
problems, where symmetries are intrinsic in the problems to learn. Examples include fluid dynam-
ics Wang et al. (2020a); Ling et al. (2016b); Li et al. (2020a); Mattheakis et al. (2019), molecular
dynamics Anderson et al. (2019); Schütt et al. (2021); Zhang et al. (2018), quantum mechanics Luo
et al. (2021a;b); Vieijra et al. (2020), etc. Theoretical studies have also been conducted to show the
benefit of preserving symmetry during learning Bietti et al. (2021); Elesedy & Zaidi (2021); Li et al.
(2020b); Mei et al. (2021).

2.2 SELF-ATTENTION

self-attention Vaswani et al. (2017); Parikh et al. (2016); Paulus et al. (2017); Lin et al. (2017); Shaw
et al. (2018) is a type of attention mechanism Bahdanau et al. (2014); Luong et al. (2015) that attends
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different elements in a same input sequence. It is the building block of a series of large language
models (e.g. Devlin et al. (2018); Brown et al. (2020); Raffel et al. (2020)), and is under extensive
research. See Bommasani et al. (2021); Niu et al. (2021) for reviews.

As a preparation for later studies, we briefly summarize the structure of (multihead) self-attention.
A self-attention is a seq2seq operator which takes a sequence of vectors as the input, and another
sequence of vectors (of the same size) as the output. Let X ∈ Rd×n be the input sequence with
length n. A self-attention computes the output using three parameter matrices: the query parameters
WQ ∈ Rd1×d, the key parameters WK ∈ Rd1×d, and the value parameters WV ∈ Rd×d. Given the
input X , a “query” and a “key” is computed for every column of X by multiplying with WQ and
WK , i.e. we compute Q(X) = WQX ∈ Rd1×n and K(X) = WKX ∈ Rd1×n. Then, an attention
matrix is obtained by computing the inner product of all pairs of queries and keys:

A(X) = Q(X)TK(X) = XTWT
QWKX ∈ Rn×n.

Next, a weight matrix is computed by applying softmax over rows of A, and the output of the
attention is obtained by a linear combination of the “values”,WVX , using rows in the weight matrix
as coefficients. In practice, A(X) is usually scaled by a factor of 1/

√
d1, and a residual connection

is added, thus we have

Attn(X) = X +WVXSr

(
1√
d1
XTWT

QWKX

)T

(1)

where Sr(·) computes the softmax of an input matrix over rows.

Remark 1. In this paper we use X ∈ Rd×n to denote sequences with length n in the space Rd.
Each column of X is an element of the sequence. In many works the same sequence is represented
by an n× d matrix. The two representations are intrinsically equivalent.

The self-attention mechanism described above consists of one “head”, in the sense that we have one
query, key and value for each element of X . Similar to the way that we add more neurons to a
layer of a fully connected neural network, we can add more heads to a self-attention, which gives a
multihead attention. For a multihead attention with m heads, we have m different query, key, and
value matrices, denoted by W (i)

Q , W (i)
K , and W (i)

V . W (i)
Q and W (i)

K are still d1 × d matrices, while

W
(i)
V are d2 × d matrices. Besides, in order to still use the residual connection, an output parameter

matrix W (i)
out ∈ Rd×d2 is added for each head to transform the value vectors in Rd2 into vectors in

Rd. With these parameters, each head is similar to a single-head self-attention:

headi(X) =W
(i)
V XSr

(
1√
d1
XT (W

(i)
Q )TW

(i)
K X

)T

,

and the output of the multihead attention is

Attnm(X) = X +

m∑
i=1

W
(i)
outheadi(X)

= X +

n∑
i=1

W
(i)
outW

(i)
V XSr

(
1√
d1
XT (W

(i)
Q )TW

(i)
K X

)T

.

Remark 2. In a practical model like a Transformer, a fully-connected layer is sometimes added after
multihead attentions. The fully-connected layer is applied to each element of the output sequence.

3 ORTHOGONAL EQUIVARIANCE IN THE EMBEDDING SPACE

In this section, we focus on the orthogonal equivariance in the embedding space. We show that
functions with such equivariance enjoy a representation which takes a similar but more general form
as self-attention. We start from a theoretical characterization for simple seq2seq functions with
orthogonal equivariance (Proposition 1). Then, we introduce and study a class of functions called
seq2seq function with knowledge, whose form is inspired by typical seq2seq learning problems.
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3.1 SIMPLE ORTHOGONAL EQUIVARIANT FUNCTIONS

We first consider orthogonal equivariant functions given by the following definition:

Definition 1. Let X =
⋃∞

n=1 Rd×n be the space of all sequences in Rd. Let f : X → X be a
sequence to sequence function. f is called orthogonal equivariant in the embedding space if for any
X ∈ X and orthogonal matrix Q ∈ Rd×d, there is f(QX) = Qf(X).

For orthogonal equivariant functions, the following proposition shows that any column of the output
must be a linear combination of the the columns of X , with the coefficients depending only on the
inner products between X’s columns.

Proposition 1. Let f : X → X be orthogonal equivariant in the embedding space given by Defini-
tion 1. Then, there exists a function g takingXTX as input and producing a matrix with appropriate
shape as output, such that for all X ∈ X , we have

f(X) = Xg(XTX).

Proposition 1 shows that orthogonal equivariant seq2seq functions always represent a linear combi-
nation of the elements of their input sequence X , with the coefficients being orthogonal invariant.
We give the proof in Appendix A. A similar result has appeared in Villar et al. (2021) and played an
important role for physics applications.

3.2 ORTHOGONAL EQUIVARIANCE WITH “KNOWLEDGE”

Proposition 1 treats seq2seq functions that are strictly orthogonal equivariant in the embedding
space. For many practical language problems or other seq2seq learning problems, the embedding
indeed has some flexibility over orthogonal transformations–the information is encoded only in the
relative positions between vectors in the embedding space, and an orthogonal transformation of those
vectors does not change the “meaning” of the sequence, hence the “answer” of the transformed input
sequence should be the transformed original answer.

However, this intuitive symmetry does not mean that the target function is orthogonal equivariant.
As an example, consider a seq2seq function f that takes an arithmetic expression as the input and
outputs the result of the expression, e.g f(“2+1”) = “3”, f(“2−1”) = “1”. The tokens used in the
input and output sequences include single digit numbers 0−9 and arithmetic operators. These tokens
can be cast into vectors by an one-hot embedding. To be simple, suppose we only use operators “+”
and “-”. Then, the embedding space has 12 dimensions. One possible embedding is

“ + ” → e1, “− ” → e2, “0” → e3, “1” → e4, · · · “9” → e12,

where ei is the i-th unit vector in the standard orthonormal basis of R12. Under this embedding,
f(“2 + 1”) = “3” can be written as

f([e5, e1, e4]) = [e6].

Now, let Q12 ∈ R12×12 be a linear transformation that swaps the first and second entries of any
vector in R12. Then, Q12 is orthogonal. If f is orthogonal equivariant, we will have

f([e5, e2, e4]) = f(Q[e5, e1, e4]) = [Qe6] = [e6].

This means f(“2− 1”) = “3”, which is obviously not what we expect.

To summarize, the target function is not orthogonal equivariant because it works in a fixed em-
bedding and cannot deal with sequences from different embeddings. The intuitive symmetry we
discussed earlier can be understood as the symmetry in an equivalent class of target functions. Let
f be a seq2seq function in a certain embedding, if an orthogonal transformation Q is applied to this
embedding, then there exists another function fQ that satisfies

fQ(QX) = Qf(X).

fQ does the same thing as f in a different embedding. Collecting fQ for all orthogonal transfor-
mations Q, the set {fQ} is an equivalence class of f in all embeddings (obtained by orthogonal
transformations).
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The discussion above points out that the target function is aware of the embedding it works in.
Intuitively, this is because the function contains some knowledge used to process the input sequence,
and the knowledge depends on the embedding. Motivated by this point of view, we propose to
study functions which take the “knowledge” as an explicit input. Like the input sequence, the
knowledge also consists of vectors in the embedding space, showing its embedding dependence.
The knowledge is used to extract information from the input sequence. Concretely, we consider
functions f : X × Rd×k → X taking two inputs, X ∈ X and Z ∈ Rd×k, with X being the original
input sequence, and Z being the knowledge. With this additional knowledge input, the function f
can be orthogonal equivariant—changing the embedding transforms X and Z simultaneously, and
the true “meaning” of what f does is not changed. In other words, the equivalent class {fQ} is
parameterized by the knowledge input such that fQ(·) = f(·, QZ).
From now on, we study orthogonal equivariant functions with knowledge, whose definition is given
below:
Definition 2. Let f : X × Rd×k → X be a seq2seq function with knowledge. For any Z ∈ Rd×k,
f is called orthogonal equivariant with knowledge Z if for any X ∈ X and orthogonal matrix
Q ∈ Rd×d, there is f(QX,QZ) = Qf(X,Z).

As a corollary of Proposition 1, we have the following proposition characterizing the formulation of
functions satisfying Definition 2.
Proposition 2. Let Z ∈ Rd×k, and f : X × Rd×k → X be a function that is orthogonal equiv-
ariant with knowledge Z. Then, there exist two functions g1 and g2 independent of Z, taking
XTX,ZTX,ZTZ as inputs, and producing matrices with appropriate shapes as outputs, such that
for all X ∈ X , we have

f(X,Z) = Xg1(X
TX,ZTX,ZTZ) + Zg2(X

TX,ZTX,ZTZ). (2)

Proof. Let X̃ = [X,Z] ∈ Rd×(n+k). Viewed as a function of X̃ , f satisfies f(QX̃) = Qf(X̃) for
any orthogonal matrix Q ∈ Rd×d. Hence, by Proposition 1, there exists a function g depending on
X̃T X̃ , such that

f(X̃) = X̃g(X̃T X̃).

By the definition of X̃ , g can be written as a function of XTX , ZTX and ZTZ, i.e. g(X̃T X̃) =

g(XTX,ZTX,ZTZ). Noticing that X̃ has n+ k columns, g must have n+ k rows. Letting

g(XTX,ZTX,ZTZ) =

[
g1(X

TX,ZTX,ZTZ)
g2(X

TX,ZTX,ZTZ)

]
with g1 taking the first n rows and g2 taking the next k rows, we have

f(X,Z) = Xg1(X
TX,ZTX,ZTZ) + Zg2(X

TX,ZTX,ZTZ).

In practice, the knowledge Z in a function f(X,Z) studied above can be treated as a parameter ma-
trix learned during the training process. We note that the self-attention in equation 1 takes a similar
form. In the self-attention, the product of X with the attention matrix has the form Xg(ZTX), with
Z = [WT

Q ,W
T
K ], and g being the composition of a quadratic function and a softmax operation:

g(Y ) = Sr

(
1√
d1
Y T

[
0 I
0 0

]
Y

)
.

Indeed, similar as our understanding of Z, the query and key parameters in the self-attention are usu-
ally understood as knowledge of the language used to extract information from the input sequence.
These parameters are naturally embedding dependent. Certainly, the self-attention used in practice
contains more components than merely a Xg(ZTX) form. For example, as shown in equation 1, a
linear transformation in the embedding space is applied by WV , and a residual connection is added.
in Section 5, we discuss some practical considerations that may cause additional complication of the
model in practice.

Coming back to the formulation 2, if Z is understood as a parameter matrix, it is fixed after training.
Then, among the three inputs of g1 and g2, ZTZ is a constant, and XTX is an identity matrix under
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one-hot embedding. Hence, ZTX is the most informative input. Moreover, since Z is a constant
matrix, the linear combination of its columns, Zg2(XTX,ZTX,ZTZ) becomes less important than
the linear combination of X’s columns, Xg1(XTX,ZTX,ZTZ). Extracting the most meaningful
parts in the formulation 2, we obtain a simpler form f(X,Z) = Xg1(Z

TX). This coincides with
what appears in the self-attention.

3.3 FINITE INFORMATION AND THE REPRESENTATION OF COEFFICIENTS

In formulation 2 or the simplified formulation f(X,Z) = Xg1(Z
TX), the coefficient functions

g1, g2 can be quite arbitrary. They can have very complicated dependence with their inputs. For
example, for a function f(X,Z) = Xg(ZTX) whose output has the same length as the input, when
X ∈ Rd×n, we have g(ZTX) ∈ Rn×n. In the most general case, g can have a different formulation
gn : Rk×n → Rn×n for each n. Because n can be arbitrarily large, the description of g requires
infinite amount of information. However, if these functions can be described and implemented by
machine learning models, they must contain only a finite amount of information. In other words,
the functions cannot get infinitely complicated when the sizes of their inputs become large. In this
section, based on this finite information principle, we discuss possible forms of the g’s.

For the convenience of the discussion, we focus on the form f(X,Z) = Xg(ZTX) and assume
that the output of f has the same length as its input. Hence, for any input X ∈ Rd×n, we have
g(ZTX) ∈ Rn×n. In this case, we put our discussion on g under the following more specific
statement of the finite information principle:

Assumption 1. (Finite information principle) g is represented by a parameterized model with a
finite number of parameters not depending on n.

This assumption concerns only one aspect of the broader idea of “finite information”. But it is the
only aspect that we can quantify easily.

Now, we consider parameterized representations for g. Given Assumption 1, one of the sim-
plest parameterizations is the composition of a nonlinear function and a quadratic forms, such as
σ(XTZAZTX) for some matrix A ∈ Rk×k. To see this, denote Y = ZTX ∈ Rk×n and consider
g represented by a composition of an elementwise nonlinear function and a sum of matrix products
involving Y , i.e.

g(Y ) = σ

 N∑
i=1

Wi,0

Ki∏
j=1

Ỹ Wi,j

 , (3)

where Ỹ is either Y or Y T , and N can be infinity. In the formulation above, Wi,j are parameters.
By the finite information principle, the dimensions of Wij in equation 3 should not depend on n.
Then, it is easy to show that we always have Ki ≥ 2 in equation 3, because terms with Ki = 0 or
1 cannot have shape n× n without n-dependent parameter matrices. Hence, there is no constant or
linear terms in the sum of matrix products, and thus the simplest terms are quadratic terms. In its
simplest form, without higher order terms, we have g(Y ) = σ(Y TWY ) for some W ∈ Rk×k, in
which case the output always has the shape n×n for any n. Note that the self-attention matrix used
in practice is very close to this form. If Z is the concatenation of the query and key matrices, i.e.

Z = [WT
Q ,W

T
K ], then by taking A =

[
0 I
0 0

]
we have

XTZAZTX = XTWT
QWKX.

The only difference is that the softmax operation is not elementwise.

A PERSPECTIVE FROM KERNELS

Another perspective to create g with finite amount of information is from the kernels. Viewing the
input Y ∈ Rk×n as n vectors in Rk, g maps the n vectors into an n × n matrix, characterizing
the relations between these vectors. This can naturally be achieved by a kernel function K(·, ·) :
Rk × Rk → R. Denote Y = [y1, ...,yn], then we can let g(Y ) = (K(yi,yj))n×n. When K is
an inner product kernel K(x,y) = σ(xTy), which is widely used in traditional machine learning
models such as the support vector machine, g takes a similar quadratic form (with an elementwise
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nonlinearity) as in the discussion above, i.e. g(Y ) = σ(Y TY ). Besides, there are more kernels
to choose. For instance, a radio basis function (RBF) kernel K(x,y) = f(∥x − y∥) can produce
a g defined by gij(Y ) = f(∥yi − yj∥). These representations of coefficients may see benefits in
some special applications. Actually, self-attention using kernels has already been studied in previous
works such as Rymarczyk et al. (2021); Chen et al. (2021)

4 PERMUTATION EQUIVARIANCE FOR SEQUENCE ELEMENTS

in this section, we consider another symmetry—the permutation equivariance for the elements of
the sequence. With this permutation equivariance, the form 2 can be further restricted. In a seq2seq
problem such as a language problem, though, the order of the input is usually important. Hence,
permutation equivariance on the order of the sequence should not be expected. However, in practice
some parts of the problems or models may have permutation equivariance. For example, when self-
attention based models are used to learn seq2seq problems, a position encoding is usually added to
the input sequence before fed into the model Vaswani et al. (2017). In this case, the order information
is included in the input sequence and the function implemented by the model can be permutation
equivariant.

For any sequenceX ∈ Rd×n, we call n the length ofX , denoted by l(X). We consider the following
definition of permutation equivariance:

Definition 3. Let f : X ×Rd×k → X be a seq2seq function with knowledge. Assume l(f(X,Z)) =
l(X) always holds. For any Z ∈ Rd×k, f is called elementwise permutation equivariant with
knowledge Z if for any permutation matrix P ∈ Rl(X)×l(X), we have f(XP,Z) = f(X,Z)P .

Based on the discussions in previous sections, we focus on functions with the form f(X,Z) =
Xg(ZTX). Given the additional permutation equivariance in Definition 3, we have the following
proposition that further narrows down the form of the functions. The proof of the proposition is
given in Appendix B.

Proposition 3. Let f be a function with form f(X,Z) = Xg(ZTX). Assume f is elementwise
permutation equivariant with knowledge Z. Then, for any specific n, there exist functions ρ1, ρ2,
ψ1, ψ2, such that for any X ∈ Rd×n with full column rank, we have

gii(Z
TX) = ρ1

(
xi, Z,

n∑
k=1, k ̸=i

ψ1(xk;xi, Z)
)

gij(Z
TX) = ρ2

(
xi,xj , Z,

n∑
k=1, k ̸=i,j

ψ2(xk;xi,xj , Z)
)

for i, j = 1, 2, ..., n and j ̸= i. Here, gij are the (i, j)-th component function of g, i.e. g = (gij)n×n.

Remark 3. For a self-attention layer used in practice, Z = [WQ,WK ], in which case we have

gij(Z
TX) =

ex
T
i WT

QWKxj∑n
k=1 e

xT
i WT

QWKxk
.

Using the form in Proposotion 3, this g can be obtained by taking

ψ2(x;y, z, Z) = ey
TWT

QWKx, ρ2(x,y, Z, ψ) =
ex

TWT
QWKy

ex
TWT

QWKy + ψ
,

and taking
ψ1(x;y, Z) = ψ2(x,y,y, Z), ρ1(x, Z, ψ) = ρ2(x,x, Z, ψ).

5 PRACTICAL CONSIDERATIONS

In previous sections, we revealed the natural forms of seq2seq functions that satisfy specific sym-
metries that are reasonable for many practical problems. Therefore, the structures identified can
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be taken into consideration when designing neural network models to learn these problems, as ap-
proaches to improve the efficiency of learning. The self-attention, although designed without uti-
lizing these connections between symmetries and structures, has structures that coincides with the
forms we identified. This may partially explain the success of self-attention based models.

Usually, the models used in practice have to be more complicated than that given by the theory, to
address practical issues that are not caught in the simplified setting of the theory. For CNNs, for
example, convolution layers are stacked to extract features hierarchically, and normalization layers
are added to help training. In the following, we discuss several considerations when the theories
built in the previous sections are used in practical applications.

THE EVOLUTION OF EMBEDDINGS

In our analysis for orthogonal equivariant functions, we assume the output and the input of the func-
tions are in the same embedding. In practice this might not be true. For example, for a translation
problem the input and the output sequences are in two different languages, and hence they may not
share one embedding. In this case, we need to implement a mechanism to change the embedding
of the output sequence. The simplest way is to apply an elementwise linear transformation to the
output, i.e. for a function f with form f(X,Z) = Xg(ZTX), we can build a new function f̃ by
multiplying a matrix on the left of the output of f :

f̃(X,Z,W ) =WXg(ZTX). (4)

A more flexible way is to apply a general elementwise nonlinear transformation to the output, which
can be achieved for example by a two-layer neural network, as used in many self-attention based
models:

f̃(X,Z,U, V ) = V σ
(
UXg(ZTX)

)
, (5)

where U , V are parameter matrices, and σ is an elementwise nonlinear activation function.

HIGHER CAPACITY

In the application of neural networks, higher capacity of the model is desired in many cases. Giving
the model more flexibility compared to the theoretical formulation can help improve the performance
of the model, as long as the flexibility does not impair the training efficiency. Based on the structures
in equation 4 or 5, more flexibility can be added to the model by considering a “multihead” version
of such functions. For example, a multihead version for 4 with m heads can be

f̃m(X,Z,W ) =

m∑
i=1

WiXgi(Z
T
i X), (6)

whereZ1, ..., Zm andW1, ...,Wm are different matrices, andZ = [Z1, ..., Zm],W = [W1, ...,Wm],
and g1, ..., gm are different functions. This structure is similar to the multihead self-attention.

COMPOSITIONS AND HIERARCHICAL FEATURE EXTRACTION

A very successful way to increase the capacity of a model and improve the performance of learning is
to stack several modules compositionally to form a deep model. A deep model with many layers can
extract the information from its input hierarchically. This is the intuitive reason behind the success
of deep neural networks. For sequence to sequence applications, we can also stack structures like 6
into a deep model. For example, a model with L layers can be

h(0) = X; h(l) =

m∑
i=1

W
(l)
i h(l−1)g((Z

(l)
i )Th(l−1), ), 1 ≤ l ≤ L; f(X,Z,W ) = h(L),

where Z and W include all Z(l)
i and W (l)

i parameters, respectively. This structure looks similar
to the successful large language models used in practice. One difference is that a residual link is
added on each layer of those models to help the training. Another difference is that elementwise
fully connected layers are added after some self-attentions, which can be understood as stacking
structures in equation 5.
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6 SUMMARY

In this paper, we study the representations of sequence-to-sequence functions with certain symme-
tries, and show that such functions have forms similar to the self-attention. Hence, self-attention
seems to be the natural structure to learn many seq2seq problems. Moreover, except the inner prod-
uct based attention mechanism widely used nowadays, our study reveals more possibilities that may
be picked in the design of attention mechanisms, such as higher-order matrix products or the RBF
kernels. These forms arise from the discussion on the finite information principle. As a limitation,
our discussion on the forms of g in Section 3.3 started from a simple general form 3. More gen-
eral discussions and more precise characterizations of the finite information principle is left as an
important future work.
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A PROOF OF PROPOSITION 1

Proof. Consider X = [x1,x2, ...,xn] ∈ Rd×n ⊂ X . We first show that the columns of f(X)
lie in the span of x1, ...,xn. Without loss of generality, we assume f(X) has only one column,
i.e. f(X) ∈ Rd. Let V = span(x1, ...,xn). Then, there exist v ∈ V and u ∈ V ⊥, such that
f(X) = v + u. Let Qu be the Householder transformation

Qu = I − 2

∥u∥2
uuT .

Then, Qu is an orthogonal matrix. By its definition, we have Quu = −u, and Quw = w for any
w ⊥ u, which implies Quv = v and Quxi = xi for all i = 1, 2, ..., n. Since f is orthogonal
equivariant, we have

f(QuX) = Quf(X) = Qu(v + u) = v − u.

11
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On the other hand, since QuX = X , we must have

f(QuX) = f(X) = v + u.

Therefore, we have u = 0, and f(X) = v ∈ V .

Next, we show that the coefficient of the linear combinations can be taken as orthogonal invariant
functions. By the analysis above, there exists a function g of input X , such that

f(X) = Xg(X).

The size of g’s output depends on X and f(X). Because f is orthogonal equivariant, for any
orthogonal matrix Q ∈ Rd×d we have

QXg(QX) = f(QX) = Qf(X) = QXg(X),

which means Xg(QX) = Xg(X). Obviously, we can choose g to satisfy g(QX) = g(X) for any
orthogonal Q.

Finally, we invoke the first fundamental theorem of invariant theory for the orthogonal group Weyl
(1946); Procesi (2006), which states that g only depends on X via XTX . This completes the
proof.

B PROOF OF PROPOSITION 3

Proof. With an abuse of notations, we use g(X,Z) to denote the output of g given inputs X and Z,
despite that g only depends on ZTX . Since X has full column rank, we have X†X = I . Hence,
g(X,Z) = X†f(X,Z). By Definition 3, for any permutation matrix P ∈ Rn×n, we have

g(XP,Z) = PTX†f(XP,Z) = PTX†f(X,Z)P = PT g(X,Z)P. (7)

Therefore, applying any permutation on X leads to the same permutation on the rows and column
of g(X,Z). Recall that the (i, j)-th entry of g is given by the function gij . Denote the output of gij
given input X and Z by gij(x1, ...,xn, Z). We then study the forms of gij using equation 7.

First, consider a permutation P1i that swaps x1 and xi. By equation 7, we have g(XP1i, Z)11 =
g(X,Z)ii, which means

gii(x1, · · · ,xi, · · · ,xn, Z) = g11(xi, · · · ,x1, · · · ,xn, Z).

Hence, all gii can be generated by g11 with a swap permutation of its inputs. For g11, if we apply
a permutation that is identity on 1, the output of g11 does not change although the order of inputs
is changed. This means g11 is permutation invariant with the inputs x2, ...,xn. By Theorem 2
in Zaheer et al. (2017), viewed as a function of x2, ...,xn, g11 has the form ρ(

∑n
k=2 ψ(xk)) for

some functions ρ and ψ. Considering the inputs x1 and Z, the functions ρ and ψ above depend on
x1 and Z. Therefore, there exist functions ρ1 and ψ1, such that

g11(X,Z) = ρ1(x1, Z,

n∑
k=2

ψ1(xk;x1, Z)).

By the relation between g11 and gii, we have

gii(X,Z) = ρ1(xi, Z,
∑
k ̸=i

ψ1(xk;xi, Z)).

for any i = 1, 2, ..., n.

Next, we consider gij with i ̸= j. Without loss of generality, assume i < j. Let P1i,2j be a
permutation that swaps x1 with xi, and x2 with xj . By the permutation equivariance, we have

gij(x1,x2, · · · ,xi, · · · ,xj , · · · ,xn, Z) = g12(xi,xj , · · · ,x1, · · · ,x2, · · · ,xn, Z),

which means any gij with i ̸= j can be generated by g12. Focusing on g12, similar to the arguments
for g11, it is easy to show that g12 is permutation invariant with inputs x3, ...,xn. Therefore, there
exist functions ρ2 and ψ2, such that

g12(X,Z) = ρ2(x1,x2, Z,

∞∑
k=3

ψ2(xk;x1,x2, Z)).
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Hence,
gij(X,Z) = ρ2(xi,xj , Z,

∑
k ̸=i,j

ψ2(xk;xi,xj , Z)).
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