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Abstract. Multi-objective optimization studies the process of seeking
multiple competing desiderata in some operation. Solution techniques
highlight marginal tradeoffs associated with weighing one objective over
others. In this paper, we consider time-varying multi-objective optimiza-
tion, in which the objectives are parametrized by a continuously varying
parameter and a prescribed computational budget is available at each
time instant to algorithmically adjust the decision variables to accom-
modate for the changes. We prove regret bounds indicating the relative
guarantees on performance for the competing objectives.

Keywords: Time-varying · Multi-objective · Proximal Gradient Decent·
Regret Bound.

1 Introduction and Preliminaries

During the last decades, substantial research efforts have been devoted to learn-
ing and decision-making in environments with functionally relevant streaming
data with potentially changing statistical properties. In many engineering design
problems with social impact, including optimal power flow and sensor networks
[11, 14], mobile robots [18], and non-linear distributed flow equations [12], there
are potentially multiple criteria to consider in characterizing the best learning or
decision-making performance. Formally, such multi-criteria optimization prob-
lems are classed as multi-objective optimization.

The setting of a dynamically changing and uncertain environment lends itself
to what is classed as online optimization, where the cost function changes over
time and an adaptive decision pertaining only to past information has to be
made at each stage. The standard convergence criteria in online optimization is
the level of regret, a quantity capturing the difference between the accumulated
cost incurred up to some arbitrary time and the cost obtained from the best
fixed point chosen in hindsight.

In machine-learning applications of multi objective optimization, the time-
varying aspects could capture, e.g., time-varying group structure, seasonal or
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circadian cyclicity, or some form of a concept drift. In game theory, the time-
varying aspects could capture time-varying pay-offs (or time-varying price elas-
ticity of the demand) in extensive forms of Stackelberg-like games or time-varying
demands in congestion games.

Our contributions include:

– introduction of regret tradeoffs as the appropriate metric for grading solvers
for online multi-objective optimization

– an on-line proximal-gradient algorithm for handling multiple time-varying
convex objectives,

– theoretical guarantees for the algorithm.

2 Related work

Proximal Gradient Descent is a natural approach for minimizing both single and
multiple objectives. One of the most widely studied methods for multiobjective
optimization problems is steepest descent, e.g., [1, 7].

Subsequently, a proximal point method [8], that can be applied to non-smooth
problems, was considered. However, this method is just a conceptual scheme and
does not necessarily generate subproblems that are easy to solve. For non-smooth
problems, a subgradient method was also developed [10]. A very comprehensive
recent paper [19] has presented the regret bounds for classic algorithms for online
convex optimization with Lipschitz, but possibly non-differentiable functions,
proving a regret of O( 1√

K
), with K iterations at each time instant. With respect

to multiobjective (but not online) optimization, H.Tanabe [9] proposed proximal
gradient methods with and without line searches for unconstrained multiobjec-
tive optimization problems, in which every objective function is of the composite
form of interest in our work, Fi(x) = fi(x)+gi(x), with fi smooth and gi merely
proper and convex but with a tractable proximal computation.

Next, we describe the literature on online time-varying convex single objective
optimization. As the first innovative paper in this space, Zinkevich [15] proposed
a gradient descent algorithm with a regret bound of O(

√
K). In the case that cost

functions are strongly convex, the regret bound of the online gradient descent
algorithm was further reduced to be O(log(K)) with suitably chosen step size
by several online algorithms presented in [5].

3 Problem Formulation

We begin with describing the problem of Time-Varying Multi-Objective Op-
timization. Suppose we have a sequence of convex cost functions ϕi,t(x) :=
fi,t(x) + gi,t(x) where fi,t are smooth and gi,t non-smooth. The index t cor-
responds to the time step, and i indexes the objective function among the set
of desiderata. ABetween each time step t ∈ [T ] := {1, 2, ..., T}, there is a fi-
nite amount of time available to compute an optimal decision, indicated by a
maximum iteration count for any Algorithm, at which point the decision maker
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must choose an action xt ∈ R, and the decision maker is faced with a loss of
ϕi,t(x

t). In this scenario, due to insufficient computation time, the decision does
not necessarily correspond to the minimizers, and the decision maker faces a so-
called regret. Regret is defined as the difference between the accumulated cost
over time and the cost incurred by the best-fixed decision when all functions are
known in advance, see [5, 6, 15]. Let us consider ϕi,t(x) = fi,t(x) + gi,t(x) as

F (x, t) = (ϕ1,t(x), ϕ2,t(x), ..., ϕN,t(x))

At the time t, we consider the following time-varying vector optimization

min
x∈Rn

(F (x, t) := Ft(x)) (1)

where F : Rn → Rm and, each fi,t is Lfi,t Lipschitz continuously differentiable
and gi is convex with a simple prox evaluation. Throughout the entire paper, our
discussion on (1) and the proposed algorithm are motivated by the following:
As can be surmised from the definition, there is rarely a singleton that is a
Pareto optimal point. Usually, there is a continuum of solutions. As such one
can consider a Pareto front which indicates the set of Pareto optimal points. The
front represents the objective values reached by the components of the range of
F (x) and it is usually a surface of m − 1 dimensions. One can consider it as
representing the tradeoffs associated with the optimization problem, to lower i’s
value, i.e. fi(x), how much are you willing to compromise in terms of potentially
raising fj(x) for the set of j ̸= i? Because of the fundamental generality of the
concept of a solution to a vector optimization problem, finding a solution can be
defined as (see, e.g., for a survey [17] and for a text [13]):

1. Visualizing the entire Pareto front, or some portion of it
2. Finding any point on the Pareto front
3. Finding some point that satisfies an additional criteria, effectively making

this a bilevel optimization problem.

In regards to the second option, one can notice that this can be done, in the
convex case, by solving the so called “scalarized" problem:

min
x∈Rn

N∑
i=1

ωifi(x),

N∑
i=1

ωi = 1, 0 ≤ ωi ≤ 1

for any valid choice of {ωi}. This reduces the problem to simple unconstrained
optimization. This leaves the choice of said constants, however, arbitrary, and
thus not all that informative. Although the parameters are weights balancing the
relative importance of the objective functions, poor relative scaling across fi(x)
can make an informed choice of {ωi} insurmountable. For example, if f1(x) =
1000x2 and f2(x) = 0.001(x − 2)2, taking ω1 = ω2 = 0.5 clearly pushes the
solution of the scalarized problem to prioritize minimizing f1(x).

As an additional challenge, we consider the time varying case, i.e., each fi(x)
changes over time, e.g., due to data streaming with concept drift. With a finite
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processing capacity at each time instant, we seek an Algorithm that appropri-
ately balances the objectives at each time instant.

In this paper, we introduce scalarization at the algorithmic level for time
varying multiobjective optimization. In particular, at each iteration, we consider
computing a set of steps, each of which intends to push an iterate towards the
solution of the problem of minimizing fi(x) exclusively. The algorithm then form
a convex combination of these steps with a priori chosen coefficients. We derive
tradeoff regret bounds indicating how the choice of said coefficients results in
guarantees in regards to suboptimality for every objective. We assert that this
would be the most transparently informative theoretical guarantee, in terms
of exactly mapping algorithmic choices to comparative performance for every
objective function, and as such a natural and important contribution to time
varying multi-objective optimization.

Now we shall present our formal assumptions in regards to the problem,
in particular the functional properties of F as well as the Algorithm we are
proposing and studying the properties of in this paper.

Assumption 1 (Problem Structure) (i) For all i, t functions fi,t(·) : Rn →
R are continuously differentiable such that the gradient is Lipschitz with
constant Lfi,t :

∥∇fi,t(x)−∇fi,t(y)∥ ≤ Lfi,t∥x− y∥, ∀x, y ∈ Rn

(ii) For all t, the function gi,t(·) : Rn → (−∞,∞] is proper, lower semi-continuous,
and convex, but not necessarily differentiable. Also, assume that dom(gi,t(·)) =
{x ∈ Rn : gi,t(x) < ∞} is non-empty and closed.

(iii) Corresponding to each objective ϕi,t we consider Ti,t(x) = proxCigi,t(x −
Ci∇fi,t(x))

We also assume a bound on the magnitude of change between successive times:

Assumption 2 (Slow Changes) The observations as compared to estimates
of the function values from the previous time step are bounded at all x, i.e.,

sup
t≥1

max
i∈[N ]

{
|fi,t+1(x)− fi,t(x)|,
|gi,t+1(x)− gi,t(x)|

}
≤ e

4 Algorithm and Preliminaries

The Algorithm is stated formally as Algorithm 1. The coefficients {αi} denote

the priority of objective i, and belong to the unit simplex (meaning
N∑
i=1

αi = 1,

0 ≤ αi ≤ 1).
The following assumptions are typical in the analysis of online algorithms

and make real-time algorithmic path-following of solutions feasible. In particular,
we consider the online streaming setting with a finite sampling rate, which we
assume permits K iterations of the proximal-gradient steps between two updates
of the inputs.
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Algorithm 1 On-Line Multi-Objective Proximal Gradient Decent
Input: Initial iterate x1 solving the problem with data f1,1(x), g1,1(x) parameters
C1 ∈ (0, 1

Lf1,1
], αi > 0, and let x1,0 ← x1

for t = 1, 2, ..., T do
xt,1 ← xt;
Receive data fi,t(x

t), gi,t(x
t);

for k = 0, 1, 2, ...,K do
yt,k+1,i ← proxCigi,t

(xt,k − Ci∇fi,t(xt,k)) ∀i;

xt,k+1 ←
N∑
i=1

αiy
t,k+1,i;

k ← k + 1, t← t+ 1
end for
xt+1,0 ← xt,K and xt+1 ← xt,K+1;

end for

Assumption 3 (Sufficient Processing Power) At all times t ∈ [T ], the al-
gorithm executes at least K iterations before receiving the new input.

We consider two measures of the quality of the solution trajectory:
(A): The dynamic regret bound (see, e.g., [15], and reference therein) defined

as:
In the case of static regret [4], xopt,t,i is replaced by xopt,i ∈ argminx∈X

∑T
t=1 ϕi,t(x),

i.e,

S− Regi =

T∑
t=1

ϕi,t(x
t)−min

x∈X

T∑
t=1

ϕi,t(x)

(B): In addition, we will consider the following quantities:

ϕt(x) :=
∑

i∈[N ]

αiϕi,t(x), xopt,t ∈ argmin
x

ϕt(x)

WT :=
∑

t∈[T ]

∥xopt,t+1 − xopt,t∥2

Now we define the dynamic of the regret bound for the convex combination
of ϕi,t as follows

Regt =

T∑
t=1

ϕt(x
t)−

T∑
t=1

ϕt(x
opt,t)

Assumption 4 Choose αi such that Tt(x) =
∑

i∈[N ] αiTi,t(x) is proximal oper-
ator of ϕt(x).

The following lemma is a key result throughout the paper.
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Lemma 1. Let f be convex and smooth, and g be non-smooth and ϕ = f + g
then

ϕ(T (x))− ϕ(y) ≤ 1

2C
[∥x− y∥2 − ∥T (x)− y∥2] (2)

and ϕ(T (x)) ≤ ϕ(x). (3)

where T (x) = proxCg(x − C∇f(x)), C ∈ (0, 1
Lf

] and Lf is Lipschitz constant
for ∇f .

Proof. Take G(x) := 1
C (x− T (x)) and apply the standard Descent Lemma:

f(y) ≤ f(x) +∇f(x)T (y − x) +
Lf

2
∥x− y∥2 ∀x, y ∈ Rn. (4)

Plugging y = x− CG(x) in (4) one obtains that

f(x− CG(x)) ≤ f(x) +∇f(x)T ((x− CG(x))− x) +
LfC

2

2
∥G(x)∥2 (5)

≤ f(x)− C∇f(x)T (G(x)) +
C

2
∥G(x)∥2. (6)

Now, from x− CG(x) = proxCg(x− C∇f(x)) it follows that

G(x)−∇f(x) ∈ ∂g(x− CG(x)).

Therefore, for any y, by convexity of g we obtain the relation:

g(x− CG(x)) ≤ g(y)− (G(x)−∇f(x))
T
(y − x− CG(x)). (7)

Now consider ϕ(T (x)) = ϕ(x−CG(x). By simplifying and applying (7), one has

ϕ(x− CG(x)) = f(x− CG(x)) + g(x− CG(x))

≤ f(x)− C∇f(x)T (G(x)) +
C

2
∥G(x)∥2 + g(x− CG(x))

≤ f(y)−∇f(x)T (y − x)− C∇f(x)T (G(x)) +
C

2
∥G(x)∥2 + g(x− CG(x))

≤ f(y)−∇f(x)T (y − x)− C∇f(x)T (G(x))

+
C

2
∥G(x)∥2 + g(y)− (G(x)−∇f(x))T (y − x+ CG(x))

= ϕ(y)−∇f(x)T (y − x)− C∇f(x)T (G(x)) +
C

2
∥G(x)∥2 −G(x)T (y − x)

− C∥G(x)∥∇f(x)T (y − x) + C∇f(x)T (G(x))

≤ ϕ(y) +
1

2C
[∥x− y∥2 − ∥(x− y)− CG(x)∥2],
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5 Main Results

Our main result provides a bound on the expected dynamic regret of the online
multi-objective proximal gradient descent (Algorithm 1). Depending on the co-
efficients αi, there are two cases, i) if for all i ∈ [N ], αi ̸= 0 and ii) if there is
i ∈ [N ] such that αi = 1 and for all j ̸= i, αj = 0. For case i), we have

Theorem 1. Let xt, (t=1,..., T) be a sequence generated by running Algorithm
1 over T time steps. Then, we have

Reg =

T∑
t=1

ϕt(x
t)−

T∑
t=1

ϕt(x
opt,t) ≤ CT + 4(T − 1)e+ ∥x1 − xopt,1∥2 +WT

where CT = |ϕ1(x
1)− ϕ1(x

opt,T)|. In addition one has,

Reg =

T∑
t=1

ϕi,t(x
t)−

T∑
t=1

ϕi,t(x
opt,t) ≤ 1

αi

[
CT + 4(T − 1)e+ ∥x1 − xopt,1∥2 +WT

]
To prove the result, we need a technical lemma:

Lemma 2. The following holds.
(a) For all t ∈ [T ], k ∈ [K] one has

∥xt,k+1 − xopt,t∥ ≤ ∥xt,k − xopt,t∥
(b) For all t ∈ [T ] one has ϕt(x

t+1) ≤ ϕt(x
t) and particularly |ϕt(x

t+1) −
ϕt+1(x

t)| < e
(c) For all t ∈ [T ], one has |ϕt(x)− ϕt+1(x)| < 2e

Returning to the proof of the main result,

Proof. Utilizing Lemma 1, one obtains

ϕt(x
t+1)− ϕt(x

opt,t) (8)

= ϕt(Tt(x
t,K))− ϕt(x

opt,t) ≤ 1

C̃

[
∥xt,K − xopt,t∥2 − ∥Tt(x

t,K)− xopt,t∥2
]

=
1

C̃

[
∥xt,K − xopt,t∥2 − ∥xt+1 − xopt,t∥2

]
≤ 1

C̃

[
∥xt,1 − xopt,t∥2 − ∥xt+1 − xopt,t∥2

]
=

1

C̃

[
∥xt − xopt,t∥2 − ∥xt+1 − xopt,t∥2

]
(9)

where Tt(x) =
∑

i∈[N ] αiTi,t(x), C̃ =
∑

i∈[N ] αiCi. Alternatively, it is straight-
forward to verify that

∥xt+1 − xopt,t∥2 ≥ ∥xt+1 − xopt,t+1∥2 − ∥xopt,t+1 − xopt,t∥2 (10)

the above combined with (9) leads to the following

ϕt(x
t+1)− ϕt(x

opt,t) ≤ 1

C̃

[
∥xt − xopt,t∥2 − ∥xt+1 − xopt,t+1∥2 + ∥xopt,t+1 − xopt,t∥2

]
.
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Now, summing up the result over t ∈ [T ] derives

T∑
t=1

ϕt(x
t+1)−

T∑
t=1

ϕt(x
opt,t) ≤ 1

C̃

[
∥x1 − xopt,1∥2 +WT

]
(11)

which resulted in

T−1∑
t=1

ϕt(x
t+1)−

T−1∑
t=1

ϕt(x
opt,t) ≤ 1

C̃

[
∥x1 − xopt,1∥2 +WT

]
(12)

on the other side since ϕt+1(x
t+1)− 2e ≤ ϕt(x

t+1) we would have the following

(
T∑

t=1

ϕt(x
t)−

T∑
t=1

ϕt(x
opt,t)

)
− ϕ1(x

1)− 2(T − 1)e+ ϕT (x
opt,T) (13)

≤ 1

C̃

[
∥x1 − xopt,1∥2 +WT

]
(14)

taking summation over t ∈ [T ] follows that

T∑
t=1

ϕt(x
t)−

T∑
t=1

ϕt(x
opt,t) ≤ CT + 4(T − 1)e+

1

C̃

[
∥x1 − xopt,1∥2 +WT

]
(15)

In the following corollary, it will be shown that for a single objective, the dynamic
regret bound is weaker than for a multi-objective case.

Corollary 1. In the case that there exists i, αi = 1 and for all j ̸= i we have
αj = 0 the problem reduces to time-varying single objective optimization, i.e,

xt,k+1 = proxCigi,j (x
t,k − Ci∇fi,j(x

t,k)).

Then

T∑
t=1

ϕi,t(x
t)− ϕi,t(x

opt,t,i) ≤ CT + 4(T − 1)e+
1

(K + 1)Ci

[
∥x1 − xopt,1∥2 +WT

]
(16)

Proof. As can be seen from Lemma 1 we have

ϕi,t(x
t,k+1)− ϕi,t(x

opt,t,i) ≤ 1

Ci
[∥xt,k − xopt,t,i∥2 − ∥xt,k+1 − xopt,t,i∥2].

Summing the result over k from 1 to K we conclude that

K∑
k=1

[ϕi,t(x
t,k+1)− ϕi,t(x

opt,t,i)] ≤ 1

Ci
[∥xt,1 − xopt,t,i∥2 − ∥xt,K+1 − xopt,t,i∥2],
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Since ϕi,t(x
t,k+1) ≤ ϕi,t(x

t,k) the previous term gives that

ϕi,t(x
t,K+1)− ϕi,t(x

opt,t,i) ≤ 1

(K + 1)Ci
[∥xt − xopt,t,i∥2 − ∥xt+1 − xopt,t,i∥2],

Now, by using (10) (11), and subsequently summing the previous inequality over
t from 1 to T , one establishes the required assertions.

If we make an additional assumption regarding the correspondence of the
function values and the distance to the solution set, we can obtain guarantees
for the latter.

Assumption 5 For all i and t, ϕi,t satisfies the quadratic growth property, i.e.,

ϕi,t(x) ≥ ϕi,t(x
opt,t,i) +

γi,t
2

dist2(x, Si,t) for all x ∈ [ϕi,t ≤ ϕ∗
i,t + νi,t]

in which Si,t is the set of all optimal points of ϕi,t, and ϕ∗
i,t = ϕi,t(x

opt,t,i)

The following regret bound can be readily deduced from [20, Corrolary 3.6]
It is worth noting that the complexity bound aligns with the linear rate of con-
vergence exhibited by the proximal gradient method when employed for strongly
convex functions, albeit with a constant factor.

Corollary 2. The following regret bound holds

Regi =

T∑
t=1

ϕi,t(x
t)−

T∑
t=1

ϕi,t(x
opt,t,i) ≤ Tϵ (17)

after at most

t ≤ βT

2νT
ΓT + 12

βT

γ0
ln

MT

ϵ
iterations. (18)

where

MT = min
t∈[T ]

min
i∈[N ]

ϕi,t(x
1)− ϕi,t(x

opt,t,i), ΓT = min
i∈[N ]

min
t∈[T ]

dist(x1, Si,t) (19)

βT = min
i∈[N ]

min
t∈[T ]

Lfi,t , νT = min
i∈[N ]

min
t∈[T ]

, γ0 = min
i∈[N ]

min
t∈[T ]

γi,t, νT = min
i∈[N ]

min
t∈[T ]

νi,t

Proof. First, we note that by considering Theorem 3.2 and Corollary 3.6 of [20]
one can see for all i, t that

ϕi,t(x)− ϕi,t(x
opt,t,i) ≤ ϵ ∀x ∈ [ϕi,t ≤ ϕ∗

i,t + νi,t] (20)

for

t ≤
Lfi,t

νi,t
dist(x1, Si,t) + 12

Lfi,t

γi,t
Ln(

ϕi,t(x
1)− ϕi,t(x

opt,t,i)

ϵ
)

now, assume that xt generated by Algorithm 1 and taking into account quantities
(19), and also taking summation from t = 1 to t = T from (20) one observes
that Regi ≤ Tϵ for at most t defined in (18).
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6 Conclusions

We have studied a time-varying multi-objective optimization problem in a set-
ting, which has not been considered previously. We have shown the properties of a
natural, online proximal-gradient algorithm when the processing power between
iterations is bounded. Going forward, one could clearly consider alternative uses
of the same algorithm (e.g., how many operations one requires per update to
achieve a certain bound in terms of the dynamic regret), variant algorithms,
or completely novel settings. In parallel with our work, Tarzanagh and Balzano
[3] studied online bilevel optimization under assumptions of strong convexity
throughout, which could be seen as one such novel setting.
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