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Abstract
Automatically interpreting CT scans can ease001
the workload of radiologists. However, this002
is challenging mainly due to the scarcity of003
adequate datasets and reference standards for004
evaluation. This study aims to bridge this gap005
by introducing a novel evaluation framework,006
named “GPTRadScore”. This framework as-007
sesses the capabilities of multi-modal LLMs,008
such as GPT-4 with Vision (GPT-4V), Gemini009
Pro Vision, LLaVA-Med, and RadFM, in gener-010
ating descriptions for prospectively-identified011
findings. By employing a decomposition tech-012
nique based on GPT-4, GPTRadScore com-013
pares these generated descriptions with gold-014
standard report sentences, analyzing their ac-015
curacy in terms of body part, location, and016
type of finding. Evaluations demonstrated a017
high correlation with clinician assessments and018
highlighted its potential over traditional met-019
rics, such as BLEU, METEOR, and ROUGE.020
Furthermore, to contribute to future studies, we021
plan to release a benchmark dataset annotated022
by clinicians. Using GPTRadScore, we found023
that while GPT-4V and Gemini Pro Vision fare024
better, their performance revealed significant025
areas for improvement, primarily due to lim-026
itations in the dataset used for training these027
models. To demonstrate this potential, RadFM028
was fine-tuned and it resulted in significant ac-029
curacy improvements: location accuracy rose030
from 3.41% to 12.8%, body part accuracy from031
29.12% to 53%, and type accuracy from 9.24%032
to 30%, thereby validating our hypothesis.033

1 Introduction034

In current clinical practice, a radiologist communi-035

cates the results of an imaging exam for a patient036

to their referring doctor through a signed report.037

While reading the patient exam, the radiologist rou-038

tinely use Speech Recognition Software (SRS) that039

converts dictated speech into text. SRS has signifi- 040

cantly reduced the report turn-around time. How- 041

ever, any errors resulting from the dictation have 042

to be corrected by the radiologists themselves, and 043

persistent errors can negatively impact the interpre- 044

tation of patient diagnoses and can have medico- 045

legal ramifications (Smith and Berlin, 2001). These 046

errors are most common for cross-sectional imag- 047

ing (Ringler et al., 2017), such as CT and MR, and 048

the volume of these exams has steadily increased 049

each year (Mahesh et al., 2023). This has led to 050

a 54-72% radiologist burn-out rate (Fawzy et al., 051

2023) where they are under increased pressure to 052

deal with a substantially higher number of patients 053

while maintaining a high level of accuracy. 054

To ameliorate the radiologist workload, various 055

transformer-based approaches have been proposed 056

to generate radiology reports in one shot (Chen 057

et al., 2020, 2021). However, these efforts focus 058

mainly on chest radiographs (CXR), with limited 059

attention to CT (Ichinose et al., 2023). Devel- 060

oping CT-based reporting methods is challenging 061

due to the 3D nature of CT data, computational 062

complexity, and the factual accuracy of reporting 063

needed. Recent advances with Large Language 064

Models (LLMs) like GPT-4 (Achiam et al., 2023), 065

GPT-4 Vision (GPT-4V), Gemini Pro Vision (Team 066

Gemini et al., 2023), LLaVA-Med (Li et al., 2024), 067

and Radiology Foundation Model (RadFM) (Wu 068

et al., 2023) show potential for various tasks, such 069

as taking medical exams, note-taking, and disease 070

diagnosis (Tian et al., 2024; Nori et al., 2023; Jin 071

et al., 2023). These multi-modal models could pre- 072

fill the “findings” section of radiology reports for 073

quick review by radiologists (Zhu et al., 2023). 074

Despite these advances, crucial factors determin- 075

ing their clinical use involve: (1) radiologist trust, 076
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and (2) easy interpretation and evaluation of the077

generated content. Current evaluation metrics, in-078

cluding Natural Language Generation (NLG) and079

Clinical Efficacy (CE) metrics, are notoriously lim-080

ited (Irvin et al., 2019; Zhu et al., 2023, 2024; Jin081

et al., 2024) when it comes to capturing the se-082

mantic richness and clinical relevance necessary083

for radiology reports. Additionally, they lack the084

explanatory power that is required for clinical use.085

In this paper, we present a novel evaluation086

framework to assess the capability of multi-modal087

LLMs to generate diagnostically accurate descrip-088

tions of CT-based findings for radiology reports.089

CT slices with an abnormal finding were fed to a090

multi-modal LLM (e.g., GPT-4V) that generated a091

description of the abnormality. A language-centric092

GPT-4 model decomposed the summary into its093

characteristics (body part, location, type), evalu-094

ated them against gold-standard references, and095

scored the description based on its clinical rele-096

vance and accuracy. Our contribution can be sum-097

marized as follows:098

• We introduced a new framework named “GP-099

TRadScore”, designed to evaluate the accuracy of100

multi-modal LLMs in describing CT scan findings,101

specifically focusing on the precision of identifying102

body parts, locations, and types of findings.103

• To validate this approach, we conducted human104

evaluations on 500 cases in collaboration with clin-105

icians. Furthermore, we intend to publicly release106

these expert annotations (with CC-BY-NC-SA 4.0107

licence) to establish a new benchmark for accuracy108

in future assessments.109

• Four recent multi-modal LLMs were evaluated110

for their ability to describe CT findings.111

• RadFM was fine-tuned with domain-specific data112

to improve its generation accuracy.113

2 Related Works114

Early efforts in extracting pathologies utilized NLG115

rules, which were crafted to isolate specific disease116

features. Notable examples include the cheXpert-117

labeler and NegBio (Wang et al., 2017; Peng et al.,118

2018; Irvin et al., 2019), both of which were em-119

ployed to derive disease labels in chest X-rays.120

With the advent of transformer models, notably121

the BERT model, a more advanced solution, the122

cheXbert-labeler, was introduced. The cheXbert-123

labeler is a model specifically trained on the CheX-124

pert dataset to perform this task.125

As LLMs gain popularity, their integration into126

radiology becomes increasingly inevitable. These 127

models, including multimodal LLMs, are set to 128

assist in clinical decisions, extract information from 129

clinical notes, and generate radiological reports, 130

showcasing their broad utility in the field (Zhou 131

et al., 2023b,a; Bhayana, 2024; Tian et al., 2024). 132

LLMs possess the advanced capability for com- 133

plex reasoning, making them highly suitable for 134

analyzing AI-generated radiological reports in com- 135

parison to ground truth. Leveraging LLMs to eval- 136

uate radiological reports harnesses their analytical 137

power and provides a scalable solution for manag- 138

ing large datasets, potentially containing thousands 139

of reports. Relying on clinicians to validate these 140

reports is an inefficient use of their time, given their 141

essential roles in direct patient care and decision- 142

making. By using LLMs for initial evaluations, 143

healthcare systems can reserve clinicians’ exper- 144

tise for tasks where human judgment is crucial, 145

optimizing resources and potentially speeding up 146

the diagnostic process. 147

Wang et al. (2024) recently introduced LLM- 148

RadJudge, a method that compares the perfor- 149

mance of various LLMs and demonstrates that us- 150

ing GPT-4, their proposed metric achieves evalua- 151

tion consistency close to that of radiologists. Fur- 152

thermore, they constructed a dataset based on LLM 153

evaluation results and used knowledge distillation 154

to train a smaller model, which achieves evaluation 155

capabilities comparable to GPT-4. Similarly, Liu 156

et al. (2024) proposed MRScore, a framework akin 157

to LLM-RadJudge. Zhu et al. (2024) proposed a 158

method that combines the expertise of professional 159

radiologists with LLMs such as GPT-3.5 and GPT- 160

4. Using In-Context Instruction Learning (ICIL) 161

and Chain of Thought (CoT) reasoning to align 162

LLM evaluations with radiologist standards, ex- 163

perimental results demonstrated greater alignment 164

with expert evaluations, surpassing traditional NLG 165

metrics such as BLEU, ROUGE, and METEOR. 166

Despite these advancements, there is still no au- 167

tomated system for validating the clinical accuracy 168

of CT reports, largely because of the scarcity of 169

high-quality datasets and the complexity of CT 170

imaging, which involves a broad range of body 171

parts and requires extensive anatomical knowledge. 172

This paper introduces GPTRadScore, a novel eval- 173

uation framework that assesses the capabilities of 174

multimodal LLMs. It uses a decomposition method 175

based on GPT-4, which mimics clinicians’ evalu- 176

ation processes, comparing AI-generated descrip- 177

tions with the actual ground truth across factors 178
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such as body part, location, and type.179

3 Methods180

This study introduces a novel “GPTRadScore”181

framework for evaluating the accuracy of multi-182

modal LLMs in generating clinical descriptions of183

CT-based findings. Figure 1 illustrates the exper-184

imental design. We break down the experimental185

setting into two integral steps: 1. Generating De-186

scriptions of CT Findings: (1)Visual Context Inte-187

gration: CT slices with abnormalities are marked188

with bounding boxes to provide clear visual context189

to the multi-modal LLMs. (2) Text-Based Chain-of-190

Thought (CoT): The multi-modal LLMs generate191

free-text descriptions of the abnormalities, focusing192

on body part, specific location, and type of finding.193

(3) Fine-Tuning RadFM: RadFM was fine-tuned194

using domain-specific data from the DeepLesion195

dataset to improve its accuracy in generating clini-196

cally relevant descriptions of findings. 2. Evalua-197

tion Process (GPTRadScore): GPT-4 was used to198

compare the generated descriptions against gold-199

standard report sentences. Scores were assigned200

based on clinical relevance and accuracy, mimick-201

ing clinician assessment.202

3.1 Dataset203

To the best of our knowledge, no publicly avail-204

able dataset pairs CT exams with corresponding205

radiology reports for lesions. For this retrospective206

study, the DeepLesion dataset (Yan et al., 2018)207

was utilized. The dataset comprises 23,436 CT208

slices and 8,340 studies with reports from 3,832 pa-209

tients (mean age: 51, s.d.: 17; 2,085 males). Report210

sentences containing prospective RECIST-based211

measurements, made by radiologists and referred212

to as “bookmarks”, were extracted using regular213

expressions. An enclosed bounding box was also214

created from the prospective measurement to high-215

light the finding in the CT slice.216

The main portion of this experiment utilizes a217

subset of the DeepLesion dataset (Yan et al., 2019),218

which comprises 496 CT volumes (496 studies)219

from 486 patients (mean age: 52.2, s.d.: 17.7; 294220

males). The subset contained 500 lesions of vari-221

ous kinds (e.g., liver, kidney, bone, etc.) that were222

prospectively marked in 500 CT slices. The subset223

also provided specific characteristics of lesions that224

were extracted from the sentences in the radiology225

reports using an automated method. These included226

the body part where the lesion is located, the fine-227

grain location within that region (e.g., upper pole 228

of left kidney), and the type of lesion attributes. As 229

certain lesion characteristics were missed by the 230

automated extraction, two board-certified radiolo- 231

gists, each with 10+ years of experience, manually 232

reviewed and comprehensively annotated any miss- 233

ing lesion characteristics. 234

3.2 Visual Context Integration 235

In addition to the CT slice that shows the abnormal 236

finding, a visual prompt was also provided. This 237

prompt, in the form of a bounding box, delineated 238

the abnormality before being input into the multi- 239

modal LLM. The clear visual context was hypoth- 240

esized to enhance the accuracy of the generated 241

descriptions of findings. 242

3.3 Text-Based CoT 243

Through Text-Based CoT, the free-text abnormal- 244

ity description generated by a multi-modal LLM 245

should contain the following aspects: Body Part, 246

Location (specific), and Lesion Type. The prompt 247

used for this task was designed to allow the model 248

to concentrate on each aspect individually, thereby 249

optimizing the use of its natural language genera- 250

tion capabilities to produce clinically relevant and 251

informative descriptions. This approach contrasted 252

with the one-shot methods (Wei et al., 2022) that 253

attempted to generate entire reports in a single step 254

without explicit intermediate reasoning. 255

“Body Part” is the larger anatomical region or 256

organ of the body (e.g. liver) where the lesion or 257

abnormality is situated. “Location” refers to the 258

specific site within a body part (e.g., Couinaud 259

segment 2 of liver) where the abnormality is lo- 260

cated. “Type” includes classifications, such as nod- 261

ule, mass, or enlarged lymph node. The description 262

should be concise and clinically relevant, such that 263

the characteristics of the findings can be pre-filled 264

in the findings section of a radiology report. 265

Through experiments, it was observed that 266

LLaVA-Med and RadFM were unable to leverage 267

text-based CoT as shown in Figure 2. GPT-4V and 268

Gemini Pro Vision effectively used CoT to provide 269

detailed and relevant descriptions, demonstrating 270

stronger comprehension skills. In contrast, LLaVA- 271

Med, despite being tasked with using CoT, did not 272

produce an analysis related to CoT, focusing in- 273

stead on the visual elements of the scan, such as 274

the bounding box. RadFM also showed limited ca- 275

pability and offered minimal output, which aligned 276

with findings in literature (Kim et al., 2023). This 277
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Ground Truth
Text

Predicted
Text

Dataset:
- 500 slices, 500 nodules
- 486 patients (294M, 192F)

Gemini Pro Vision

LLaVA-Med

Vision LLMs

CT slice 
w/ pathology

Prompt:
Imagine you are
a radiologist...

bbox w/o bbox

NLG Metrics Clinician GPTRad
Score

Evaluation Pipeline

Correlation Score

BLEU-[1,2,3,4]
ROUGEL
METEOR

Location
Body Parts

Type

Location
Body Parts

Type

GPT4-V

RadFM

RadFM (FT)

Figure 1: “GPTRadScore” framework for the auto-evaluation of LLM descriptions of CT-based findings. CT slices
with outlined lesions were fed to vision-based LLMs that generated a description of the finding. They were then
evaluated against the gold-standard sentences by a clinician, with NLG metrics, and auto-evaluation with GPT-4.

Case Study

Ground Truth: right renal parapelvic cyst.

GPT-4V: Location: Right abdomen, near the kidney;
Body Part: Abdomen, kidney; Type: Mass; Impres-
sion: Well-circumscribed homogenous mass in the
right abdomen, adjacent to the right kidney.

Gemini Pro Vision: Location: Right kidney; Body
Part: Kidney; Type: Mass; Impression: Right renal
mass, likely benign.

LLaVA-Med: The image is an axial computed to-
mography (CT) scan that has been annotated with a
bounding box by a radiologist. The bounding box is
a rectangular box that encloses the lesion, which is
indicated in green. This helps to highlight the area
of interest and provides a clear view of the lesion’s
location, size, and shape.

RadFM: { Lesion 1 }

Figure 2: Comparison of the responses from multi-
modal LLMs (using CoT reasoning) for a renal cyst
in the right kidney. Red, blue and purple fonts denote in-
correct, correct, and uncertain descriptions respectively.

discrepancy highlighted the architectural or design278

limitations that hinder certain models from effec-279

tively processing input information in a sequential280

manner. Additional comparative analyses, includ-281

ing those with and without CoT, are detailed in the282

supplementary material.283

3.4 Fine-Tuning RadFM 284

These models have not been specifically fine-tuned 285

for lesion detection on Chest CT scans. Instead, 286

they are often applied in a zero-shot setting, where 287

they are expected to generalize without prior train- 288

ing on the specific task (Li et al., 2024). To address 289

this, RadFM was fine-tuned using domain-specific 290

non-overlap data from the DeepLesion subset (Yan 291

et al., 2019), to enhance its ability to produce clin- 292

ically accurate descriptions of CT findings. Fine- 293

Tuning the model required 1 x 80GB A100 GPU, 294

and took approx. 4 days. We believe a major reason 295

for these issues is the lack of public datasets with 296

paired CT studies and detailed descriptions of find- 297

ings, which are essential for training effective med- 298

ical imaging models, so we prepossess this dataset 299

fist. The initial dataset, created by radiologists, 300

was not formatted suitably for direct fine-tuning. 301

Therefore, we utilized the GPT-4 API to systemat- 302

ically organize the findings; relevant descriptions 303

of findings and measurements were extracted (sam- 304

ple examples are in the supplementary material). 305

Cases lacking informative descriptions were ex- 306

cluded, resulting in a refined dataset comprising 307

17,907 descriptions linked with CT images for fine- 308

tuning. These descriptions served as the ground 309

truth for the fine-tuning process. The enhanced 310

model, designated as RadFM (FT), utilized these 311

datasets. The effectiveness of RadFM (FT) was sub- 312

sequently assessed using the “GPTRadScore” eval- 313

uation framework, confirming the enhancements in 314

its performance. 315

3.5 GPTRadScore: Evaluation using GPT-4 316

“GPTRadScore” is the cornerstone of our frame- 317

work, leveraging GPT-4 to replicate the evalua- 318

tion processes traditionally conducted by radiol- 319
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ogists. This system assesses the ability of other320

multimodal LLMs to generate accurate descrip-321

tions for prospectively-identified radiological find-322

ings. Specifically, GPT-4 evaluates the accuracy of323

summaries provided by multimodal LLMs against324

gold-standard sentences derived from the DeepLe-325

sion dataset. Prioritizing criteria most significant326

to radiologists, the evaluation is segmented into327

three key aspects: body part, location, and type.328

For each category, GPT-4 assigned one of the fol-329

lowing categorical scores: “Correct”, “Partially330

Correct”, “Incorrect”, and “Not Applicable”. A331

“Correct” score indicated a completely accurate in-332

terpretation. “Partially Correct” suggested the in-333

terpretation captured some aspects accurately, but334

lacked complete precision or detail. “Incorrect”335

implied the interpretation did not align with the336

gold-standard at any level. “Not Applicable” was337

used when relevant information was omitted from338

the description and thus evaluated was not possi-339

ble. Detailed instructions provided to GPT-4, as340

outlined in the supplementary materials, guided the341

model to analyze these predictions in a manner akin342

to clinical judgment. Meanwhile, GPT-4 provided343

relevant explanations when scoring (see supple-344

mentary material) and this capability underscored345

the advantages of leveraging GPT-4 for complex346

medical evaluation tasks, where it is crucial to un-347

derstand detailed anatomical context.348

4 Experiment Setup349

4.1 Human Evaluation Process350

To assess the effectiveness of GPT-4 in automati-351

cally evaluating findings from multimodal LLMs,352

we need to establish a human evaluation baseline.353

This involves comparing AI-generated findings354

with the ground truth as evaluated by a human ex-355

pert. We undertook a human evaluation through356

a structured, collaborative, and iterative process.357

For this analysis, we randomly selected 100 le-358

sions from a total pool of 500 for each of the five359

models evaluated: GPT-4V, Gemini Pro Vision,360

LLaVA-Med, RadFM, and RadFM (FT). Initially,361

the 500 cases (100 from each model) were ana-362

lyzed by three graders (PhDs) with bioinformatics363

backgrounds. The grading guidelines provided mir-364

ror the prompt issued to GPT-4. These assessments365

were subsequently reviewed and enriched with clin-366

ical insights during discussions with a clinician.367

Any ambiguous findings were collaboratively re-368

fined and confirmed, ensuring that the final evalua-369

tions were both scientifically robust and clinically 370

relevant. The outcomes of this process is then com- 371

pared with GPT-4’s evaluation of the same report. 372

4.2 Implementation Details 373

The Advanced 1.5 Pro setting of Gemini Pro Vision 374

was used. LLaVA-Med and RadFM were run using 375

the default configurations. For the model evalua- 376

tion, we employed the Azure API for GPT-4, con- 377

figured with a “temperature” of 0, “top_p” of 0.95, 378

“max_tokens” of 4000, and the “model_version” set 379

to “2024-02-15-preview”. 380

4.3 Metrics 381

The quality of the generated descriptions were ini- 382

tially assessed using traditional NLG metrics from 383

Huggingface evalaute package, including BLEU, 384

METEOR, and ROUGE. Then, following the ap- 385

proach suggested (Zhu et al., 2024), we conducted 386

an auto-evaluation using GPTRadScore, where the 387

model’s predictions were compared against gold- 388

standard annotations. Additionally, these evalua- 389

tions were compared with assessments conducted 390

by a clinician. The Pearson’s Correlation Coeffi- 391

cient (Pearson, 1895) between the GPTRadScore 392

and clinician evaluations served as an indicator of 393

GPT-4’s reliability for auto-evaluation tasks. 394

5 Results and Discussion 395

5.1 Traditional NLG Metrics Analysis 396

Results: Table 1 evaluates multi-modal LLMs us- 397

ing traditional NLG metrics, and differentiates their 398

performance in scenarios with and without bound- 399

ing box constraints. RadFM (FT) bbox model ex- 400

hibited outstanding performance across all NLG 401

metrics, and particularly excelled at structural align- 402

ment and linguistic matching. GPT-4V bbox with 403

CoT and Gemini Pro Version bbox with CoT also 404

performed well; GPT-4V bbox with CoT achieved 405

the highest METEOR score of 0.165. Conversely, 406

the non-fine-tuned versions of RadFM, LLAVA- 407

Med, and GPT-4V without CoT exhibited substan- 408

tially lower performance. This decline is likely due 409

to significant domain shift of the test dataset (ra- 410

diology reports) in contrast to the model training 411

dataset. Despite this discrepancy, the experiment 412

was setup to expose the limitations of traditional 413

NLG metrics. 414

Limitations of traditional metrics: While tradi- 415

tional NLG metrics are valuable for assessing lin- 416

guistic quality, they do not fully capture the clinical 417
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Model BLEU_1 BLEU_2 BLEU_3 BLEU_4 ROUGE METEOR

GPT-4V

bbox CoT 0.164 0.048 0.015 0.003 0.171 0.165
w/o bbox CoT 0.099 0.016 0.004 0.000 0.103 0.107
bbox w/o CoT 0.057 0.007 0.002 0.000 0.057 0.146
w/o bbox w/o CoT 0.022 0.002 0.000 0.000 0.029 0.071

Gemini Pro Vision

bbox CoT 0.160 0.037 0.007 0.000 0.180 0.137
w/o bbox CoT 0.116 0.025 0.006 0.000 0.137 0.108
bbox w/o CoT 0.061 0.014 0.004 0.001 0.085 0.140
w/o bbox w/o CoT 0.025 0.005 0.001 0.000 0.045 0.075

LLAVA-Med bbox 0.024 0.002 0.000 0.000 0.025 0.062
w/o bbox 0.028 0.002 0.000 0.000 0.031 0.069

RadFM bbox 0.096 0.011 0.000 0.000 0.075 0.095
w/o bbox 0.094 0.010 0.001 0.000 0.075 0.095

RadFM (FT) bbox 0.203 0.058 0.016 0.002 0.205 0.159
w/o bbox 0.187 0.052 0.015 0.001 0.195 0.151

Table 1: Comparative performance of various natural language generation models using BLEU, ROUGE, and
METEOR metrics, including fine-tuned RadFM (FT). “bbox” meant with bounding box, “w/o bbox” meant without
bounding box. These metrics, which measured word overlap, showed low scores across the board. This suggested
limitations in handling tasks that require deep contextual understanding. This highlighted the need for more
sophisticated evaluation methods to gauge true performance.

relevance of the generated descriptions. In clinical418

settings, the priority lies in the factual accuracy419

and clinical relevance of generated summary over420

mere linguistic fidelity. This highlights the need for421

more robust evaluation methods that better mirror422

the utility in medical contexts.423

5.2 Correlation between Clinician,424

GPTRadScore, Traditional Metrics425

Figure 3 shows the correlation between the vari-426

ous metrics computed based on the ground truth427

evaluation, GPTRadScore, and traditional NLG428

metrics. Traditional NLG metrics like BLEU and429

METEOR demonstrate strong correlations amongst430

themselves (purple box), particularly at lower lev-431

els of precision like BLEU-1 and BLEU-2. This432

indicated a consistency in evaluating the linguistic433

quality of generated texts at these levels. However,434

at higher precision levels (BLEU-3 and BLEU-4),435

these correlations significantly weaken, particularly436

for LLaVA-Med, where scores frequently register437

at zero and indicate no correlation. This pattern438

again reflects the limitations of traditional metrics439

in evaluating complex sentence structures typical440

in radiology reports.441

Furthermore, the decomposition of the descrip-442

tion into specific aspects (location, body part, and443

lesion type) revealed insightful patterns (peach444

box). These aspects showed a lack of strong cor-445

relation with one another, and other pairings also446

displayed no significant correlation. These obser-447

vations affirmed the efficacy of the approach in 448

dissecting the findings into their granular elements, 449

such that the distinct parts of report quality can be 450

assessed independently. 451

Comparing traditional metrics with the ground 452

truth evaluation showed a weak correlation, sug- 453

gesting that these metrics may not serve as reli- 454

able indicators of clinical accuracy for radiology 455

reports (blue box). This highlighted a potential gap 456

in utilizing NLG metrics for assessing the clini- 457

cal relevance of generated reports, pointing to the 458

necessity for domain-specific evaluation methods. 459

Lastly, the comparison between GPTRadScore 460

and the ground truth evaluation showed the strength 461

of our framework (pink box), and summarized 462

in Table 2. The results showed a strong correla- 463

tion with ground truth, suggesting that GPTRad- 464

Score closely aligned with the clinical assessment 465

paradigms utilized by radiologists. This observa- 466

tion underscored the potential of LLMs like GPT-4 467

in accurately mirroring radiologists’ evaluations, 468

offering promise for automating assessment with a 469

high degree of fidelity to clinical standards. 470

Location Body Part Type Avg. p-value

GPT-4V 0.86 0.90 0.84 0.87 ± 0.02 <0.001
Gemini Pro Vision 0.87 0.91 0.96 0.91 ± 0.03 <0.001
LLaVA-Med 0.59 0.83 0.76 0.75 ± 0.10 <0.001
RadFM 0.99 0.92 0.82 0.90 ± 0.07 <0.001
RadFM (FT) 0.96 0.83 0.89 0.89 ± 0.05 <0.001

Table 2: Correlation scores between the clinician and
GPT-4 grading of reports.
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Figure 3: Heatmap of pairwise Pearson’s Correlation Coefficient among various grading scores; traditional metrics,
Clinician evaluations and GPTRadScore for Gemini Pro Vision, GPT-4V, LLaVA-Med, RadFM, and RadFM (FT).
Color intensity indicates the strength of correlation, with darker shades representing higher correlation.

5.3 GPTRadScore Evaluation471

Due to the strong correlation between the GPTRad-472

Score and clinician evaluations, GPTRadScore was473

employed to assess the predicted findings against474

the ground truth for all 500 lesions for three cate-475

gories: location, body part, and type of abnormality.476

Figure 4 displays the grading scores across four477

configurations: with and without lesion bounding478

boxes in the CT slice, and with and without text-479

based CoT. Notably, LLaVA-Med and RadFM do480

not support text-based CoT processes; thus, this481

figure exclusively presents the use of CoT in the482

GPT-4V and Gemini Pro Vision models. Bound-483

ing boxes consistently enhanced identification of484

body part and location across all models, thereby485

indicating a dependency on strong visual cues for486

accurate recognition. For example, GPT-4V and487

Gemini Pro Vision performed better with bounding488

boxes, particularly for accurate body part identifi-489

cation.490

To better illustrate the impact of CoT reason-491

ing, besides this figure, we have included correct492

classification percentages for GPT-4V and Gem-493

ini Pro Version with bounding boxes in Table 3.494

CoT significantly boosts type classification accu-495

racy, with improvements of 28.1% for GPT-4V496

(from 16.5% to 44.6%) and 14.39% for Gemini Pro497

Vision (from 28.78% to 43.17%). However, its in-498

fluence on location and body part classifications is499

less pronounced and may even hinder performance 500

in some cases. This suggests that the structured 501

reasoning provided by CoT particularly benefits 502

complex decision-making tasks requiring nuanced 503

interpretation and detailed contextual understand- 504

ing. Conversely, for simpler tasks like identifying 505

locations or body parts, a direct approach with- 506

out CoT tends to be more effective. Overall, the 507

enhanced performance of CoT indicates that its 508

architecture is well-suited to sequential reasoning, 509

akin to a radiologist’s thought process, thus leading 510

to more accurate descriptions of CT findings. 511

Category GPT-4V Gemini Pro Vision
CoT w/o CoT CoT w/o CoT

Location 17.1% 13.0% 14.02% 17.27%
Body Part 46.4% 53.5% 53.51% 58.64%
Type 44.6% 16.5% 43.17% 28.78%

Table 3: Correct Classification Percentages for GPT-4V
and Gemini Pro Version with Bounding Boxes.

Among the non-fine-tuned models, GPT-4V and 512

Gemini Pro Vision excel in medical imaging tasks, 513

which is likely attributed to their extensive pre- 514

training on diverse datasets. Specifically, in tasks 515

requiring identification within bounding boxs, GPT- 516

4V scores 46.4% in type recognition and 53.5% in 517

body part identification. Gemini Pro Vision follows 518

closely with scores of 44.6% and 43.17%, respec- 519

tively. Despite outperforming other models, both 520
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Figure 4: Comparison of results of abnormality characterization by GPT-4V, Gemini Pro Vision, LLaVA-Med,
RadFM, and RadFM (FT) with bounding boxes (bbox) vs. without bounding boxes (w/o bbox). Color mapping =
{orange: ‘Incorrect’, beige: ‘Partially Correct’, teal: ‘Correct’, white: ‘Not Applicable’}. x-axis denotes scores
{ x ∈ R | 0 < x < 1 }, N = 500 samples.

GPT-4V and Gemini Pro Vision have room for im-521

provement in lesion location accuracy, with scores522

of 17.1% and 14% respectively. In contrast, models523

like LLaVA-Med and RadFM demonstrate signif-524

icantly weaker performance, particularly in tasks525

without spatial cues. For example, The LLaVA-526

Med bbox model achieves accuracies of 1.81% for527

identifying lesion locations and types, and 33.73%528

for recognizing body parts. These models struggle529

to generalize from their training data, highlight-530

ing significant challenges in adapting AI to real-531

world medical tasks. The suboptimal performance532

of models stems from the fact that these models533

have not been specifically fine-tuned for lesion de-534

tection on Chest CT scans (Li et al., 2024).535

To prove this, we fine-tuned the RadFM model536

by using domain-specific, non-overlapping data.537

RadFM (FT) exhibited improvement across all538

three categories compared to the standard RadFM.539

Especially when bounding boxes were employed,540

the location accuracy rose from 3.41% to 12.8%,541

body part accuracy increased from 29.12% to 53%,542

and type accuracy improved from 9.24% to 30%.543

This indicated that fine-tuning and targeted op-544

timizations with data effectively address specific545

weaknesses in model performance, suggesting a546

pathway for further enhancing the reliability of547

multi-modal LLMs for medical imaging. 548

6 Conclusion 549

In summary, we proposed the novel “GPTRad- 550

Score” framework for automatically evaluating AI- 551

generated descriptions of findings prospectively 552

identified in CT exams. These descriptions were 553

intended to be pre-filled into the radiology re- 554

ports’ findings section. Four multi-modal LLMs 555

were tested for the ability to generate a descrip- 556

tion of a CT-based finding when fed with an in- 557

put CT slice. GPT-4V and Gemini Pro Vision 558

notably outperformed other recent multi modal 559

LLMs in accurately predicting lesion characteris- 560

tics. Bounding boxes outlining the lesions in the 561

CT slices provided strong visual cues and consis- 562

tently helped these multi-modal LLMs to identify 563

the body part and location correctly. GPTRadScore 564

auto-evaluation results demonstrated a strong cor- 565

relation with clinician assessments as measured 566

by Pearson’s correlation coefficient. Our evalu- 567

ation highlighted specific weaknesses in various 568

multi-modal LLMs, primarily due to the dataset 569

limitations that these models were trained on. By 570

fine-tuning RadFM on domain-specific data, sig- 571

nificant enhancements substantially improve the 572

utility of multi-modal LLMs in radiology. 573
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7 Limitions574

One limitation of our study is the lack of investi-575

gation into prompt engineering. We utilized the576

prompts recommended by the model developers,577

assuming these would optimize performance. How-578

ever, more meticulously crafted prompts could po-579

tentially yield better outcomes. This reliance on580

predefined prompts mirrors the early days of image-581

based pattern recognition, suggesting that just as582

image recognition evolved to require less manual583

intervention, prompt engineering may also become584

more automated and effective in the future. To ad-585

dress this, future research could explore automated586

prompt generation techniques or machine learning587

algorithms that optimize prompt selection based on588

task specifics and data context.589

Another limitation involves the cost and practi-590

cality of implementing such advanced AI models591

in clinical settings. As LLMs continue to evolve,592

the associated deployment costs are expected to593

decrease, making the technology more accessible594

and feasible for wider implementation. Our model595

shows a key direction that can be used in the future596

to further this progress. To mitigate high costs and597

enhance practicality, solutions such as developing598

computationally efficient models, utilizing cloud-599

based deployments, forming partnerships with tech-600

nology providers, and initiating pilot projects could601

be pursued. These strategies can demonstrate the602

benefits of AI technologies and support broader603

adoption, aligning with the ongoing advancements604

and cost reductions in the field of LLMs.605

8 Ethical Statement606

The data used in this study are fully anonymized,607

and comply with the Health Insurance Portability608

and Accountability Act (HIPAA). Use of the data609

was approved by the Institutional Review Board610

(IRB), and the requirement for informed consent611

was waived. For the generation task, publicly avail-612

able images from DeepLesion were used. For the613

evaluation task, we accessed GPT-4, an online large614

language model, via Microsoft Azure services to615

guarantee secure and privacy-compliant data han-616

dling.617
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9 Appendix 778

Scenario Prompt
w/o CoT, bbox This image is with a bounding box created by a radiologist. Imagine you are a radiologist. Generate a

short radiological impression based on this image.
w/o CoT, w/o bbox Imagine you are a radiologist. Generate a short radiological impression based on this image.
CoT, bbox Please describe this image in detail, which is with a bounding box created by a radiologist. When

describing this image, please point this: 1. Location: Refers to the specific area where the lesion is
found. For example: the outer edge of the lower left lung; 2. Body Part: Indicates the larger region of
the body where the lesion is located. For example: lung; 3. Types, which include general terms (e.g.,
nodule, mass) and more specific ones (e.g., liver mass); 4. Impression: Summarize the most significant
findings.

CoT, w/o bbox Please describe this image in detail. When describing this image, if this image contains a lesion, please
point this: 1. Location: Refers to the specific area where the lesion is found. For example: the outer
edge of the lower left lung; 2. Body Part: Indicates the larger region of the body where the lesion
is located. For example: lung; 3. Types, which include general terms (e.g., nodule, mass) and more
specific ones (e.g., liver mass); 4. Impression: Summarize the most significant findings.

Evaluation This task involved evaluating the accuracy of a predicted diagnostic interpretation (pred_result) against
a ground truth description (gt_text) and its expanded terms in the context of medical imaging findings.
What’s Checked: Location: If the model finds the problem in the right spot. Body Part: If the model
correctly names which part of the lesion located. Type: If the model accurately describes what kind of
issue it sees (like a nodule or mass). Grading Terms: Correct: The model’s guess is just right. Partially
Correct: The model’s guess is somewhat right but lacks full accuracy or completeness. Incorrect:
The model’s guess doesn’t match the correct answer at all. Not Applicable: The model’s guess omits
relevant information and thus cannot be evaluated

Table 4: Prompts for CT Reporting Generation and Evaluation

Original Sentence Current Description Current Size
There is no mediastinal adenopathy however there is a nodule in the
prevascular space measuring BOOKMARK ( 1.8 cm x 1.0 cm ) (
series 3 , image 88 ) .

There is no mediastinal
adenopathy; however, there
is a nodule in the prevascu-
lar space.

1.8 cm x 1.0 cm

Smaller retroperitoneal nodules and masses for example iliac artery
OTHER_BMK ( 1.6 cm x 1.4 cm ) , prior exam was OTHER_BMK
( 3.4 cm x 1.8 cm ) and left internal iliac BOOKMARK ( 2.0 cm x
1.2 cm ) , prior exam OTHER_BMK was ( 5.1 cm x 4.4 cm )

Retroperitoneal nodules and
masses, for example left in-
ternal iliac.

2.0 cm x 1.2 cm

Table 5: This table illustrates the methodical extraction and analysis of radiological data from medical imaging
reports, specifically focusing on measurements based on the RECIST criteria, referred to as ’bookmarks.’ It details
how the Current Description and Current Size are extracted from the original text using the GPT-4 API.

gt_text: Right posterior hemithorax mass
pred_result: The image is a computed tomography (CT) scan of the chest, taken during the arterial phase. It shows a
mass in the right upper lobe of the lung, which appears to have lobulated contours and blurry margins. The mass has a
central caliber and a diameter of around 5 cm. Additionally, there is a solid lesion measuring approximately 3 x 1.5 cm
at the posterior wall of the trachea.
Criterion Evaluation Explanation
Location Partially Correct While the prediction does identify a ’right’ sided issue and a finding in the ’posterior’

aspect, it describes the mass being in the ’right upper lobe’, whereas the ground truth
indicates a ’right posterior hemithorax’ location.

Body Part Correct The prediction correctly identifies the ’lung’ and ’chest’ as the body parts involved,
which is consistent with the ground truth.

Type Correct The prediction correctly identifies a ’mass’, which is consistent with the ground truth.
Attributes Partially Correct The prediction describes some attributes of the mass (e.g., ’lobulated contours’, ’blurry

margins’, ’central caliber’, ’diameter of around 5 cm’) but these are not specified in
the ground truth. The prediction is however incorrect in describing the lesion at the
’posterior wall of the trachea’ because this is not mentioned in the ground truth.

Table 6: Evaluation from GPT-4 for LLaVA-Med Generated Findings. The gt_text represents the ground truth, while
pred_result contains the sentences generated by LLaVA-Med.
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gt_text: destructive left iliac bone ilium mass with extraosseous mass invading the adjacent iliopsoas and gluteus
minimus muscles
pred_result: The image is a pre-operative computed tomography (CT) scan of the pelvis. It shows multiple osteolytic
sacral and pelvic lesions, as well as a large anterior sacral wall defect and soft tissue invasion. The sacral region appears
to have irregular bone destruction, and there are several smaller lesions scattered throughout the pelvis. The largest
lesion is located in the left sacral bone, with a diameter of 27 mm.
Criterion Evaluation Explanation
Location Partially Correct The GT mentions ’left iliac bone ilium’ while the prediction mentions the ’sacral and

pelvic’ region. The iliac bone is a part of the pelvic bone, so this is partially correct.
Body Part Correct The ground truth mentions ’iliac bone ilium’ and ’iliopsoas and gluteus minimus muscles.’

The prediction mentioned ’sacral and pelvic’ bone which includes the body parts in GT,
so it is correct.

Type Incorrect The prediction indicates that there are multiple osteolytic lesions while the GT mentions
a destructive mass. There is a mismatch here. An osteolytic lesion is different from a
destructive mass.

Attributes Incorrect While the prediction provides a measure of the ’largest lesion’ and mentions ’several
smaller lesions,’ the ground truth does not mention size or number of masses but describes
an ’extraosseous mass invading adjacent muscles,’ which the prediction does not detail.

Table 7: Evaluation from GPT-4 for RadFM Generated Findings. The gt_text represents the ground truth, while
pred_result contains the sentences generated by RadFM.

gt_text: destructive left iliac bone ilium mass with extraosseous mass invading the adjacent iliopsoas and gluteus
minimus muscles
pred_result: The image is a pre-operative computed tomography (CT) scan of the pelvis. It shows multiple osteolytic
sacral and pelvic lesions, as well as a large anterior sacral wall defect and soft tissue invasion. The sacral region appears
to have irregular bone destruction, and there are several smaller lesions scattered throughout the pelvis. The largest
lesion is located in the left sacral bone, with a diameter of 27 mm.
Criterion Evaluation Explanation
Location Partially Correct The GT mentions ’left iliac bone ilium’ while the prediction mentions the ’sacral and

pelvic’ region. The iliac bone is a part of the pelvic bone, so this is partially correct.
Body Part Correct The ground truth mentions ’iliac bone ilium’ and ’iliopsoas and gluteus minimus muscles.’

The prediction mentioned ’sacral and pelvic’ bone which includes the body parts in GT,
so it is correct.

Type Incorrect The prediction indicates that there are multiple osteolytic lesions while the GT mentions
a destructive mass. There is a mismatch here. An osteolytic lesion is different from a
destructive mass.

Attributes Incorrect While the prediction provides a measure of the ’largest lesion’ and mentions ’several
smaller lesions,’ the ground truth does not mention size or number of masses but describes
an ’extraosseous mass invading adjacent muscles,’ which the prediction does not detail.

Table 8: Evaluation from GPT-4 for RadFM Generated Findings. The gt_text represents the ground truth, while
pred_result contains the sentences generated by RadFM.
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Model gt_text CoT w/o CoT

Gemini right renal
hypodensity;
cyst

Location: Right kidney; Body
Part: Kidney; Type: Cyst; Im-
pression: Right renal cyst.

There is a 5 mm non-obstructing calculus in the
mid ureter on the right.

GPT-4V Location: Right lower quadrant
of the abdomen, Body Part: Ap-
pendix, Type: Appendicolith,
Impression: ’Hyperdense focus
within the appendix suggestive
of appendicolith

There is a well-circumscribed, low-density le-
sion in the left kidney, which is highlighted by
the bounding box. This finding is suggestive of
a simple renal cyst. No features suggestive of
malignancy are noted in the visualized portion of
the abdomen. Further evaluation with ultrasound
can be done for confirmation and to exclude any
complex features.

Gemini large necrotic
right hepatic
mass

Location: Right lower quadrant
of the abdomen; Body Part: Ab-
domen; Type: Mass; Impres-
sion: Right lower quadrant ab-
dominal mass, likely represent-
ing an abscess.

There is a 3.8 x 3.3 x 4.1 cm enhancing mass
in the mid right kidney. The mass demonstrates
central low attenuation. There is no evidence of
perinephric extension or lymphadenopathy."

GPT-4V Location: Right upper quad-
rant of the abdomen, Body Part:
Liver, Type: Lesion, Impression:
Well-circumscribed hypodense
lesion in the right lobe of the
liver.

The axial CT image of the abdomen with con-
trast demonstrates a well-circumscribed lesion
in the left kidney, as demarcated by the bound-
ing box. The lesion shows homogeneous density
and does not appear to involve the renal hilum or
adjacent structures. There are no signs of local
invasion or distant metastasis. Further evalua-
tion with dedicated renal protocol imaging and
potential urology consultation is recommended
for characterization and management of the re-
nal lesion. No other significant abnormalities are
noted in the visualized portions of the abdomen.

Table 9: Generated descriptions with and without the CoT by Gemini and GPt-4V models.

13


	Introduction
	Related Works
	Methods
	Dataset
	Visual Context Integration
	Text-Based CoT
	Fine-Tuning RadFM
	GPTRadScore: Evaluation using GPT-4

	Experiment Setup
	Human Evaluation Process
	Implementation Details
	Metrics

	Results and Discussion
	Traditional NLG Metrics Analysis
	Correlation between Clinician, GPTRadScore, Traditional Metrics
	GPTRadScore Evaluation

	Conclusion
	Limitions
	Ethical Statement
	Appendix

