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Abstract
Computer hardware architecture has played an
important role in the recent advances made in
deep learning and associated applications. How-
ever, effective teaching strategies for hardware
architectures for machine learning require a dif-
ferent structure and technical background than
classic machine learning. More specifically, not
only does the material need to convey necessary
machine learning concepts to students, but also
cover the hardware and software infrastructure
concepts required for supporting machine learn-
ing systems. In this paper, we describe our ap-
proach to designing the course materials along
with student assessment and evaluation for the
“Hardware Architectures for Machine Learning”
course targeting Electrical and Computer Engi-
neering graduate students.

1. Introduction
With the recent advances in deep learning, machine learning
has gained tremendous attention from students and young
academic trainees. According to the 2021 AI Index Report
from Stanford HAI (Zhang et al., 2021), “The number of
courses that teach students the skills necessary to build or
deploy a practical AI model on the undergraduate and gradu-
ate levels has increased by 102.9% and 41.7%, respectively,
in the last four academic years.” While courses for machine
learning are ubiquitous in academic institutions, the hard-
ware aspect of machine learning is receiving much less
attention despite its crucial role in advancing deep learning.

Understanding the hardware aspect of machine learning
is critical for making machine learning models work for
various hardware platforms, which can in turn democra-
tize machine learning to a wider audience. As an example,
there are around 250 billion devices based on microcon-
trollers (mic) while there are merely 80 million personal
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computers in the world (pc). On the other hand, building
suitable hardware for machine learning can be critical for
the energy efficiency of the machine learning systems used
for large scale training (Patterson et al., 2021). As a result,
it is critical to have courses teaching the hardware aspect of
machine learning.

We would be remiss if we did not mention that perhaps the
main reason why teaching hardware architectures for ma-
chine learning deployment is crucial lies in the deep learning
revolution that has taken over the world in last decade: in-
deed, none of it would have been possible without the advent
of hardware platforms exhibiting large scale parallelism that
have enabled the exponential growth in development and
deployment of machine learning systems.

In this paper, we present our experience in designing the
graduate-level course materials along with student assess-
ment and evaluation for the “Hardware Architectures for
Machine Learning” class for students majoring Electrical
and Computer Engineering. Compared to a introductory
machine learning course, we focus on teaching students
to analyze the hardware-related metrics for machine learn-
ing algorithms with a clear focus on deep learning. To
achieve this goal, we have had to introduce not only the
machine learning but also the hardware concepts, which has
inevitably required us to be thoughtful in what material from
a standard machine learning course should be included, and
what can become optional. In the following sections, we
describe the topic selection process, homework and project
design strategy, student feedback from the course, and fi-
nally the conclusion.

2. Class structure and topics coverage
The “Hardware Architectures for Machine Learning” class
was designed as graduate-level class, intended for first-year
graduate students or advanced senior undergraduate stu-
dents. The idea of offering the class came during summer
of 2018 after the instructor had already run a pilot of a few
lectures and homework assignments using machine learning
as an application in a separate graduate-level class on en-
ergy efficient hardware design. The feedback from students
was very positive, and with the help of several enthusiastic
teaching assistants (all of whom were Ph.D. students in their
second through fourth year of doctoral studies) the class
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came to fruition in Fall 2018 as a first iteration, and offered
again in its final form in Spring 2019.

The “Hardware Architectures for Machine Learning” class
requires as pre-requisites “Introduction to Machine Learn-
ing” (either undergraduate or graduate level) and one of
“Hardware Arithmetic for Machine Learning,” an undergrad-
uate class focusing largely on computer arithmetic used in
data intensive hardware architectures, or ”Introduction to
Computer Architecture,” an upper level undergraduate class
that most students interested in computer hardware take.
The reason for allowing two different computer hardware
pathways to enter the class is to encourage participation
from students who may have an interest in circuits or logic
design vs. computer architecture or system design. Some of
the Electrical and Computer Engineering students interested
in enrolling had not already taken the “Introduction to Ma-
chine Learning” class, so depending on their level of interest
or background they were allowed to take it simultaneously
while being enrolled in our class. This worked out well, and
based on their input, it allowed for better understanding of
topics covered in both classes.

This course provides an overview of current advances in
hardware architectures that can enable fast and energy ef-
ficient machine learning applications from the edge to the
cloud. Topics include hardware accelerators, hardware-
software co-design, and general or application specific sys-
tem design and resource management for machine learning
applications. The course requires no textbook and relies
only on technical papers available publicly. The grading
algorithm included three components to assess student learn-
ing and evaluate progress. Specifically, it is separated into
homework (30%), paper presentation and discussion (15%),
and project (55%). To encourage discussion in paper pre-
sentation, we allocate 5% out of the 15% to be discussion.
As for project, we have 15% allocated to each of the first
two reports and another 25% of the final report.

The primary purpose of the homework assignments was
to help students master the material and prepare for the
projects. We encouraged students to work together with
their classmates to help them understand the basic concepts.
However, students were required to do their own homework,
unless teaming was explicitly allowed in certain assign-
ments. Homework assignments were due in the evening of
the due date. No late homework assignments were accepted.

The project was designed to: (i) help students understand
and synthesize all of the course concepts; (ii) demon-
strate their ability at correctly stating and implementing
the project’s goals; (iii) demonstrate their ability to ex-
plore and incorporate good engineering trade-offs in a sys-
tem/subsystem implementation. All project components
should have clearly identified the individual contributions
of each team member. Any project proposal, report or pre-

sentation could have been submitted up to 5 days late, but
subject to a 10% per day late penalty.

The topics covered in the course were chosen to cover all
aspects of basic supervised and unsupervised machine learn-
ing and their hardware implementation implications. The
lectures were designed to cover material discussed and pre-
sented in recently published technical papers in the area,
while assignments, paper presentations, and projects were
designed to reinforce concepts and enable hands-on learning.
A typical schedule of lecture topics, homework assignments,
paper presentations, and project reports is shown in Table 1.
In this course, we mainly focus on supervised convolutional
neural networks with one lecture on classic supervised learn-
ing approaches such as linear and logistic regression and
support vector machine, and one lecture on unsupervised
learning that focuses on the K-means algorithm. For each
of the machine learning topic, we discuss the corresponding
hardware architectures in the literature.

3. Homework design
We have designed a total of six homework for the course
with each homework being related to the material of the on-
going lectures. We split the six homework assignments into
three paper reading and three implementation assignments.
The inclusion of paper reading has enabled coverage of
broad topics in hardware architectures for machine learning
and hardware-aware machine learning, both of which are
active fields of research. By including paper reading assign-
ments, students were exposed to state-of-the-art methods
and were able to absorb new knowledge from papers.

3.1. Design of Implementation-based Homework
Assignments

The goal of implementation-based homework assignments
is to strengthen students’ capabilities for implementing mod-
ern machine learning models, as well as help students learn
the tools to explore the hardware support for machine learn-
ing models. We gradually guided the students to learn to
implement Convolutional Neural Networks (CNNs) in Py-
Torch, use hardware architecture models, and finally opti-
mize both the hardware and the model to achieve the best
overall performance. To facilitate students’ understanding,
one of the key learning strategies we found useful for our
students was visualizing the empirical data obtained from
each of the assignments. Visualization can aid students’ un-
derstanding by having them reason and explain why certain
plots look the way they do and what general conclusions
can be drawn from those behaviors.

CNN Implementation The first homework assignment
involved the implementation of the well-known LeNet net-
work (LeCun et al., 1998) with the MNIST dataset (LeCun
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Table 1. Course schedule. We start with supervised learning, dive into deep learning, and close with unsupervised learning. HW: Hardware;
DNN: Deep Neural Networks; FPGA: Field-programmable gate array.

LECTURE HOMEWORK PROJECT PAPER PRES.

INTRO TO HW ARCHITECTURES FOR ML
HW ARCHITECTURES FOR SUPERVISED LEARNING
TOOLS FOR DEEP LEARNING (DL) 1 OUT PROJECT TOPICS OUT
DNN OVERVIEW AND IMPLICATIONS IN HW
PAPER PRESENTATIONS 1 DUE/2 OUT SESSION I
DNN LATENCY: WHERE DO THE CYCLES GO? PROJECT SELECTION DUE
DNN ENERGY EFFICIENCY: WHERE DO THE JOULES GO?
PAPER PRESENTATIONS SESSION II
CUSTOM HARDWARE ARCHITECTURES FOR DNNS 2 DUE/3 OUT
DNNS COMPRESSION FOR EFFICIENT HW IMPLEMENTATION
PROJECT PRESENTATIONS I GROUP 1 - 1ST REPORT DUE
PROJECT PRESENTATIONS II GROUP 2 - 1ST REPORT DUE
PAPER PRESENTATIONS SESSION III
LOW & VARIABLE PRECISION ARCHITECTURES FOR DNNS 3 DUE/4 OUT
FPGA-BASED ARCHITECTURES FOR DNNS
PAPER PRESENTATIONS SESSION IV
HARDWARE ARCHITECTURE-DNN MODEL CO-DESIGN
STORAGE EFFICIENT ARCHITECTURES FOR DNNS 4 DUE/5 OUT
PROJECT PRESENTATION I GROUP 2 - 2ND REPORT DUE
PROJECT PRESENTATION II GROUP 1 - 2ND REPORT DUE
DNNS ON MOBILE ARCHITECTURES
PAPER PRESENTATIONS SESSION V
EDGE-SERVER SOLUTIONS FOR DNNS 5 DUE/6 OUT
HW ARCHS FOR DISTRIBUTED, FEDERATED LEARNING
HW ARCHS FOR UNSUPERVISED LEARNING
PAPER PRESENTATIONS SESSION VI
FINAL PROJECT POSTERS AND DEMOS 6 DUE FINAL REPORT DUE

& Cortes, 2010) using PyTorch (Paszke et al., 2019). As a
starting point for students, we provided a boilerplate code
for training a standard LeNet on MNIST using PyTorch.
In the homework questions included to assess learning, we
asked students to try various hyperparameters involved in
training as a hands-on experience for understanding the
sources of randomness in modern machine learning systems.
Furthermore, we have asked students to identify the number
of floating point operations (FLOP) needed to carry out an
inference, which was the first step in building up students’
awareness that the computation intensity of the machine
learning model is as important as its final predictive accu-
racy. To facilitate students’ understanding, we have asked
the students to visualize the experimental data, including
accuracy vs. FLOP, FLOP vs. runtime, and accuracy vs. run-
time for models characterized by different hyperparameters.

Hardware Modeling In our second implementation-
based homework, we guide the students to understand a
model built upon a CNN hardware accelerator (Gao et al.,
2017). We have provided a Python environment for the
students which includes boilerplate code to interact with the
hardware models. More specifically, we build our boiler-
plate upon the official Github repository1 for Tetris (Gao
et al., 2017). In the assignment, we ask students to first
understand the hardware architecture by reading the refer-
ence papers and guide them with reasoning questions about
the content. We also ask students to change the boilerplate
code to reflect different hardware architecture designs and
their resulting performance. Similar to the previous assign-
ment, students were asked to visualize the data to help them

1https://github.com/stanford-mast/nn dataflow

further interpret empirically the significance of the results.
Specifically, one of the items required was visualizing the
trade-offs between throughput and the resulting design area
of a possible hardware accelerator implementing the model,
given certain design knobs.

CNN and Hardware Co-exploration The last
implementation-based assignment offers a synergy
between the first two assignments where we guide the
students to alter neural architectures to observe the resulting
impact on a fixed hardware and also alter the hardware
architecture given a predefined CNN. In addition, we ask
students to explore changing both hardware and neural
architectures by visualizing the resulting performance
metrics. Specifically, we ask students to provide scatter
plots for the solutions comparing model’s predictive
performance and execution time. Finally, students perform
random search-based optimization to identify a good
CNN-Hardware implementation pair and reason about the
effectiveness of the obtained solution.

3.2. Design of Reading-based Homework Assignments

The reading-based assignments are designed to improve
students’ capability in understanding fundamentals and ab-
sorbing knowledge from recent technical papers. Similar to
the implementation-based assignments, the chosen papers
align with the lecture material. To achieve this, for each
subject, we identify relevant papers and split them into two
categories. The first category includes topics to be covered
in the class lectures, while the second category is used for
the assignments. To aid students in absorbing the main tech-
nical content conveyed in the paper, our assignments consist
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of various questions that encourage students to follow along.

In addition, we have also included a few (e.g., one to two)
questions to aid students think critically about the papers
they read. Usually these questions start with a scenario of a
potential failure mode for the proposed method described
in the paper and guide the students to generalize the failure
mode in the described scenarios. As an example, we ask
students to read PuDianNao (Liu et al., 2015) and one of
the questions for the students is shown below.

Section 6.4 claims that “the efficiency and accuracy of
scalable-effort classifiers is a strong function of δ, which
can be easily adjusted at runtime to an appropriate value.”
Consider the scenario where the input data characteristics
change over time, then the optimal δ should probably also
change. Can you propose an algorithm to address this
problem?

One thing to note is that the papers included in the read-
ing assignments included a balanced mix of hardware and
machine learning content so as to not overwhelm students
whose background was lacking in one aspect or another. To
achieve this, the assignments point to specific sections in
the paper that students should read carefully, which makes
for a more tenable learning experience, even if the students
cannot grasp every little detail described in the paper.

4. Paper presentations
To aid students in becoming familiar with the state-of-the-
art in this area, we have included paper presentation and
discussion sessions. In each session, four to five students
present the paper of their choice and the rest of the class
is required to participate by asking questions or participate
in the discussion. We provided students with a list of pa-
pers for them to choose from and they selected the papers
they want to present in the beginning of the semester. Per
our past experience, students are reluctant to sign up for a
presentation early in the semester, so to incentivize early
participation we offer a few points of extra credit for such
sign ups. As shown in Table 1, paper presentation sessions
are scattered uniformly throughout the course and support
in topic coverage the material presented in lectures.

5. Project design
The goal of projects is to take students through a hardware-
aware machine learning project experience, which exposes
them to the life cycle of a complete hardware architecture
design for machine learning. This includes motivation, prob-
lem definition, solution, and presentation. We provide four
checkpoints for a project, which includes proposal, first
report, class presentation, and final report. Since students
have various backgrounds coming in the course, we have

provided a wide variety of predefined project topics for
students to select from, which has greatly helped students
narrow down a project based on their background, experi-
ence, and interest. We provide an example below.

Topic: Implementation of the idea of “Adaptive Neural
Network for Efficient Inference (Bolukbasi et al., 2017)”
with current state-of-the-art deep neural networks such
as NasNet (Zoph et al., 2018) and MobileNetV2 (San-
dler et al., 2018).
Background: Dynamic network inference is one of the
techniques used to reduce the execution latency. The
goal of this project is to determine whether adaptive
neural network design is a promising way for more effi-
cient network inference given modern neural networks.
Please implement the approach in this paper, and iden-
tify the challenges and limitations of such an approach
considering its hardware implications.

6. Student feedback
The course received positive evaluations from students dur-
ing both initial and subsequent offering (averaging 4.4-4.6
on a scale of 1-5). Student comments reflect their positive
experience and provide some insight into what makes for a
balanced coverage of topics and suitable learning process.
In general, the topics coverage was welcome in its breadth:
“The course topics were sufficiently diverse and they covered
both hardware, software, and hw-sw co-design approaches
really well.” In particular, the homework assignments were
found to be well designed to enable learning and material un-
derstanding: “The assignments were not ridiculously long;
hence, I had enough time to think through about the ques-
tions, improve my implementations, understand the essence
of the field, and do extra readings on my own at times.”
or “Great class, I really liked the homework assignments.”
Overall, the course was viewed positively for how students
were engaged in the learning process: “The courses were
designed well to allow for good technical discussion in the
class. I don’t think that I participated in “active learning” by
that degree in any other class.”

7. Conclusion
We have designed a graduate-level course that focuses on
the hardware aspect of modern machine learning. Due to
the interdisciplinary nature of the course, we put focus on
deep learning, adopt paper presentation sessions to foster
discussions, design homework to prepare students for course
projects and getting to learn the state-of-the-art, and provide
predefined projects to help our students succeed. Our ap-
proach was deemed to work well empirically as the feedback
from students was positive.
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