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ABSTRACT

Offline reinforcement learning (RL) addresses the problem of learning a perfor-
mant policy from a fixed batch of data collected by following some behavior
policy. Model-based approaches are particularly appealing in the offline setting
since they can extract more learning signals from the logged dataset by learning
a model of the environment. However, the performance of existing model-based
approaches falls short of model-free counterparts, due to the compounding of esti-
mation errors in the learned model. Driven by this observation, we argue that it is
critical for a model-based method to understand when to trust the model and when
to rely on model-free estimates, and how to act conservatively w.r.t. both. To this
end, we derive an elegant and simple methodology called conservative Bayesian
model-based value expansion for offline policy optimization (CBOP), that trades
off model-free and model-based estimates during the policy evaluation step ac-
cording to their epistemic uncertainties, and facilitates conservatism by taking a
lower bound on the Bayesian posterior value estimate. On the standard D4RL
continuous control tasks, we find that our method significantly outperforms pre-
vious model-based approaches: e.g., MOPO by 116.4%, MOReL by 23.2% and
COMBO by 23.7%. Further, CBOP achieves state-of-the-art performance on 11
out of 18 benchmark datasets while doing on par on the remaining datasets.

1 INTRODUCTION

Fueled by recent advances in supervised and unsupervised learning, there has been a great surge of
interest in data-driven approaches to reinforcement learning (RL), known as offline RL (Levine et al.,
2020). In offline RL, an RL agent must learn a good policy entirely from a logged dataset of past
interactions, without access to the real environment. This paradigm of learning is particularly useful
in applications where it is prohibited or too costly to conduct online trial-and-error explorations
(e.g., due to safety concerns), such as autonomous driving (Yu et al., 2018), robotics (Kalashnikov
et al., 2018), and operations research (Boute et al., 2022).

However, because of the absence of online interactions with the environment that give correcting
signals to the learner, direct applications of online off-policy algorithms have been shown to fail in
the offline setting (Fujimoto et al., 2019; Kumar et al., 2019; Wu et al., 2019; Kumar et al., 2020).
This is mainly ascribed to the distribution shift between the learned policy and the behavior policy
(data-logging policy) during training. For example, in ()-learning based algorithms, the distribu-
tion shift in the policy can incur uncontrolled overestimation bias in the learned value function.
Specifically, positive biases in the @) function for out-of-distribution (OOD) actions can be picked
up during policy maximization, which leads to further deviation of the learned policy from the be-
havior policy, resulting in a vicious cycle of value overestimation. Hence, the design of offline
RL algorithms revolves around how to counter the adverse impacts of the distribution shift while
achieving improvements over the data-logging policy.
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Figure 1: Prevention of value overestimation & adaptive reliance on model-based value predictions. (Left) We
leverage the full posterior over the target values to prevent value overestimation during offline policy learning
(blue). Without conservatism incorporated, the target value diverges (orange). (Right) We can automatically
adjust the level of reliance on the model-based and bootstrapped model-free value predictions based on their
respective uncertainty during model-based value expansion. The ‘expected horizon’ (E[h] = Y, wn - h,
>, wn = 1) shows an effective model-based rollout horizon during policy optimization. E[h] is large at the
beginning, but it gradually decreases as the model-free value estimates improve over time. The figures were
generated using the hopper-random dataset from D4RL (Fu et al., 2020).

In this work, we consider model-based (MB) approaches since they allow better use of a given
dataset and can provide better generalization capability (Yu et al., 2020; Kidambi et al., 2020; Yu
et al., 2021; Argenson & Dulac-Arnold, 2021). Typically, MB algorithms — e.g., MOPO (Yu et al.,
2020), MOReL (Kidambi et al., 2020), and COMBO (Yu et al., 2021) — adopt the Dyna-style policy
optimization approach developed in online RL (Janner et al., 2019; Sutton, 1990). That is, they use
the learned dynamics model to generate rollouts, which are then combined with the real dataset for
policy optimization.

We hypothesize that we can make better use of the learned model by employing it for target value
estimation during the policy evaluation step of the actor-critic method. Specifically, we can compute
h-step TD targets through dynamics model rollouts and bootstrapped terminal () function values. In
online RL, this MB value expansion (MVE) has been shown to provide a better value estimation of
a given state (Feinberg et al., 2018). However, the naive application of MVE does not work in the
offline setting due to model bias that can be exploited during policy learning.

Therefore, it is critical to trust the model only when it can reliably predict the future, which can be
captured by the epistemic uncertainty surrounding the model predictions. To this end, we propose
CBOP (Conservative Bayesian MVE for Offline Policy Optimization) to control the reliance on
the model-based and model-free value estimates according to their respective uncertainties, while
mitigating the overestimation errors in the learned values. Unlike existing MVE approaches (e.g.,
Buckman et al. (2018)), CBOP estimates the full posterior distribution over a target value from
the h-step TD targets for h = 0, ..., H sampled from ensembles of the state dynamics and the @
function. The novelty of CBOP lies in its ability to fully leverage this uncertainty in two related
ways: (1) by deriving an adaptive weighting over different h-step targets informed by the posterior
uncertainty; and (2) by using this weighting to derive conservative lower confidence bounds (LCB)
on the target values that mitigates value overestimation. Ultimately, this allows CBOP to reap the
benefits of MVE while significantly reducing value overestimation in the offline setting (Figure 1).

We evaluate CBOP on the D4RL benchmark of continuous control tasks (Fu et al., 2020). The ex-
periments show that using the conservative target value estimate significantly outperforms previous
model-based approaches: e.g., MOPO by 116.4%, MOReL by 23.2% and COMBO by 23.7%. Fur-
ther, CBOP achieves state-of-the-art performance on 11 out of 18 benchmark datasets while doing
on par on the remaining datasets.

2 BACKGROUND

We study RL in the framework of Markov decision processes (MDPs) that are characterized by a
tuple (S, A,T,r,dy,~); here, S is the state space, A is the action space, T (s'|s,a) is the tran-
sition function, r(s,a) is the immediate reward function, dj is the initial state distribution, and
~v € [0,1] is the discount factor. Specifically, we call the transition and reward functions the
model of the environment, which we denote as f = (T,r). A policy  is a mapping from S
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to A, and the goal of RL is to find an optimal policy 7* which maximizes the expected cumu-
lative discounted reward, Es, a,[> o, ¥'7(st,a;)], where so ~ do,s; ~ T(-[s;—1,a,-1), and
a; ~ m*(:|sy). Often, we summarize the quality of a policy 7 by the state-action value function
Q7 (s,a) :=Eq, a,[D 1o V'7(st,a:)[so = s, a9 = a)], where a; ~ 7(+|s¢) V¢ > 0.

Off-policy actor-critic methods, such as SAC (Haarnoja et al., 2018) and TD3 (Fujimoto et al., 2018),
have enjoyed great successes in complex continuous control tasks in deep RL, where parameterized
neural networks for the policy 7y (known as actor) and the action value function ), (known as critic)
are maintained. Following the framework of the generalized policy iteration (GPI) (Sutton & Barto,
2018), we understand the actor-critic algorithm as iterating between (i) policy evaluation and (ii)
policy improvement. Here, policy evaluation typically refers to the calculation of Q4 (s, my(s)) for
the policy g, while the improvement step is often as simple as maximizing the currently evaluated
Qg ie., maxg Esp[Qe(s, me(s))] (Fujimoto et al., 2018).

Policy Evaluation At each iteration of policy learning, we evaluate the current policy my by min-
imizing the mean squared Bellman error (MSBE) with the dataset D of previous state transitions:

£(6,D) = MSBE : = E(s o r.5~p | (y(s,2,8") = Qu(s,2))°] ()

y(s,a,s’) = T(Sva) + ’YQQY (S/aa/)v a/ ~ W@("S/) (2)

where y(s, a,s’) is the TD target at each (s, a), towards which Q)4 is regressed. A separate target
network Q4 is used in computing y to stabilize learning (Mnih et al., 2015). Off-policy algorithms
typically use some variations of (2), e.g., by introducing the clipped double-Q trick (Fujimoto et al.,
2018), in which min;—; » Q¢/j (s’,a’) is used instead of Q4 (s’, a’) to prevent value overestimation.

Model-based Offline RL In the offline setting, we are given a fixed set of transitions, D, collected
by some behavior policy 7g, and the aim is to learn a policy 7 that is better than 7g. In particular,
offline model-based (MB) approaches learn the model f = (T, ) of the environment using D
to facilitate the learning of a good policy. Typically, f is trained to maximize the log-likelihood
of its predictions. Though MB algorithms are often considered capable of better generalization
than their model-free (MF) counterparts by leveraging the learned model, it is risky to trust the
model for OOD samples. Hence, MOPO (Yu et al., 2020) and MOReL (Kidambi et al., 2020)
construct and learn from a pessimistic MDP where the model uncertainty in the next state prediction
is penalized in the reward. Criticizing the difficulty of accurately computing well-calibrated model
uncertainty, COMBO (Yu et al., 2021) extends CQL (Kumar et al., 2020) to the model-based regime
by regularizing the value function on OOD samples generated via model rollouts. These methods
follow the Dyna-style policy learning where model rollouts are used to augment the offline dataset
(Sutton, 1990; Janner et al., 2019).

Model-based Value Expansion (MVE) for Policy Optimization An alternative to the aforemen-
tioned Dyna-style approaches is MVE (Feinberg et al., 2018), which is arguably better suited to
seamlessly integrating the power of both MF and MB worlds. In a nutshell, MVE attempts to more
accurately estimate the TD target in (2) by leveraging a model of the environment, which can lead

to more efficient policy iteration. Specifically, we can use the h-step MVE target Rh(s, a,s’) for
y(s,a,s’):

h
i(s,a,s") = Ru(s,a,8') =Y 7'#4(8,8) + 7" Qp (Sn11,8n11), 3)
=0

(é()véOavaél) = (Svaara S/)a ét ~ T('|étflaét71)7 ét ~ Wo('\ét), 1 S t S h+ 17

where Rh(s, a,s’) is obtained by the h-step MB return plus the terminal value at h + 1 (h = 0

reduces back to MF). In reality, errors in the learned model f compound if rolled out for a large h.
Thus, it is standard to set h to a small number.

3 CONSERVATIVE BAYESIAN MVE FOR OFFLINE POLICY OPTIMIZATION

The major limitations of MVE when applied to offline RL are as follows:
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1. The model predictions S; and 7; in (3) become increasingly less accurate as t increases
because model errors can compound, leading to largely biased target values. This issue is
exacerbated in the offline setup because we cannot obtain additional experiences to reduce
the model error.

2. The most common sidestep to avoid the issue above is to use short-horizon rollouts only.
However, rolling out the model for only a short horizon even when the model can be trusted
could severely restrict the benefit of being model-based.

3. Finally, when the model rollouts go outside the support of D, Ry, in (3) can have a large
overestimation bias, which will eventually be propagated into the learned Q4 function.

Ideally, we want to control the reliance on the model f and the bootstrapped ()4 according
to their respective epistemic uncertainty, while also preventing (), from accumulating large
overestimation errors. That is, when we can trust f , we can safely roll out the model for more steps
to get a better value estimation. On the contrary, if the model is uncertain about the future it predicts,
we should shorten the rollout horizon and bootstrap from ()4 early on. Indeed, Figure 1 (right)
exemplifies that CBOP relies much more on the MB rollouts at the beginning of training because
the value function is just initialized. As ()4 becomes more accurate over time, CBOP automatically
reduces the weights assigned to longer MB rollouts.

Below, we present CBOP, a Bayesian take on achieving the aforementioned two goals: trading off
the MF and MB value estimates based on their uncertainty while obtaining a conservative estimation

of the target §j(s, a,s’). To this end, we first let Q7 (s, a;) denote the value of the policy  at (s;, a; )
in the learned MDP defined by its dynamics f; that is,

Qﬂ—(st; at) = IE]EJT

Z’ka(ét+kaét+k)‘| s (ét,ét) = (Stvat)a yqp ~ 7T('|§t+k)- 4
k=0

Note that in the offline MBRL setting, we typically cannot learn Q™ due to having only an approxi-
mation f of the model, and thus we focus instead on learning Q7.

Although there exists a unique Q- (s,a) at Algorithm 1 Conservative Bayesian MVE

each (s,a) given a fixed model f, we can-
not directly observe the value unless we in-
finitely roll out the model from (s, a) until
termination, which is computationally in-
feasible. Instead, we view each R;L Vh de-
fined in (3) as a conditionally independent
(biased) noisy observation of the true underlying parameter Q’r ! From this assumption, we can con-
struct the Bayesian posterior over Q" given the observations Ry, Yh. With the closed-form posterior
distribution at hand, we can take various conservative estimates from the distribution; we use the
lower confidence bound (LCB) in this work. Algorithm 1 summarizes the procedure at a high-level.
Please see Algorithm 2 in Appendix B.1 for the full description of CBOP.

Input (Sta at,’l"t,st-i,-l) f Q¢’

1. Sample R, Vh < H using f and Qg as in (3)
2. Estimate uy, op, according to (8), (9)

3. Compute the posterior A (1, o) using (7)
return conservative value target (e.g., LCB p—o)

3.1 CONSERVATIVE VALUE ESTIMATION VIA BAYESIAN INFERENCE

In this part, we formally discuss the conservative value estimation of CBOP based on Bayesian pos-
terior inference. Specifically, the parameter of interest is ()™, and we seek its posterior estimation:

H
P(Qﬂ | Ro, .. -,IA%H) x P<R0, ., Ry | Qﬂ> P(Qﬂ) = P(Q”) 11 P(Rh | QAW) S

h=0
where we assume that R, (h =0,..., H) are conditionally independent given Q™ (see Appendix

A where we discuss in detail about the assumptions present in CBOP).

In this work, we model the likelihood of observations P(Rh@”) as normally distributed with the
mean pp, and the standard deviation op,:

Ry | Q™ ~ N(un,0o2), (6)

"We will omit (s, a,s’) henceforth if it is clear from the context.
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since it leads to a closed-form posterior update. Furthermore, since Ry, can be seen as a sum of
future immediate rewards, when the MDP is ergodic and -y is close to 1, the Gaussian assumption
(approximately) holds according to the central limit theorem (Dearden et al., 1998). Also, note
that our Bayesian framework is not restricted to the Gaussian assumptions, and other surrogate
probability distributions such as the Student-t distribution could be used instead.

For the prior, we use the improper (or uninformative) prior, IE”(Q”) = 1, since it is natural to assume
that we lack generally applicable prior information over the target value across different environ-
ments and tasks (Christensen et al., 2011). The use of the improper prior is well justified in the
Bayesian literature (Wasserman, 2010; Berger, 1985), and the particular prior we use in CBOP cor-
responds to the Jeffreys prior, which has the invariant property under a change of coordinates. The
Gaussian likelihood and the improper prior lead to a ‘proper’ Gaussian posterior density that inte-
grates to 1, from which we can make various probabilistic inferences (Wasserman, 2010).

The posterior (5) is a Gaussian with mean
1 and variance o2, defined as follows:

prph, p= Z(Zh v )uh, ™

where p = 1/52 and p;, = 1/o? are the pre-
cisions of the posterior and the likelihood
of Ry, respectively. The posterior mean
1 corresponds to the MAP estimation of
Q”. Note that i has the form of a weighted
sum, » ., wpptp, With wy, = pr/SSE p), €
(0, 1) being the weight allocated to Ry,. 1f  Figure 2: The graphical model representation of CBOP

»‘~(Q"\/’c,, - /}’,,)

the variance of R;, for some h is relatively

large, we give a smaller weight to that observation. If, on the other hand, Rh all have the same
variance (e.g. pg = --- = pp), we recover the usual H-step return estimate. Recall that the quality

of Ry, is determined by that of the model rollout return and the bootstrapped terminal value. Thus
intuitively speaking, the adaptive weight wy, given by the Bayesian posterior allows the trade-off
between the epistemic uncertainty of the model with that of the () function.

Figure 2 illustrates the overall posterior estimation procedure. Given a transition tuple (s, a,r,s’),
we start the model rollout from s; = s’. At each rollout horizon h, the cumulative discounted
reward Z?:o ~t#; is sampled by the dynamics model and the terminal value Q 5, 1s sampled by the
@ function (the sampling procedure is described in Section 3.2). We then get Ry, by adding the
h-step MB return samples and the terminal values vh‘HQh 11> which we deem as sampled from
the distribution P(Rh@") parameterized by fi5, o2 (we use the sample mean and variance). These
individual h-step observations are then combined through the Bayesian inference to give us the
posterior distribution over Q“.

It is worth noting that the MAP estimator can also be derived from the perspective of variance opti-
mization (Buckman et al., 2018) over the target values. However, we have provided much evidence
in Section 4 and Appendix D.3 that the point estimate does not work in the offline setting due to
value overestimation. Hence, it is imperative that we should have the full posterior distribution over
the target value, such that we can make a conservative estimation rather than the MAP estimation.

To further understand the impact of using the MAP estimator for the value estimation, consider an
estimator Q of Q™ and its squared loss: L(Q”, Q) (Q” - Q)2 It is known that the posterior
mean of Q™ minimizes the Bayes risk w.r.t. L(Q7r Q) (Wasserman, 2010), meaning that the pos-
terior risk [ L(Q", Q)P(Q”|RO, . RH)dQ’T is minimized at Q = y. In this context, x is also
called the (generalized) Bayes estimator of Q”, which is an admissible estimator (Robert, 2007).
Despite seemingly advantageous, this result has a negative implication in offline RL. That is, the

MAP estimator minimizes the squared loss from Q’T(s, a) over the entire support of the posterior,
weighted by the posterior distribution. Now, the distribution shift of 7 from 75 can lead to signif-

icantly biased Q” compared to the true Q™. In this case, the quality of the MAP estimator when
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evaluated in the real MDP would be poor. Especially, the overestimation bias in the MAP estimation
can quickly propagate to the ), function and thereby exacerbate the distribution shift.

3.2 ENSEMBLES OF DYNAMICS AND Q FUNCTIONS FOR SAMPLING H-STEP MVE TARGETS

In this section, we discuss how we estimate the parameters i, o7 of P(R;,|Q™) from the ensemble
of dynamics models and that of @) functions.

Assume we have a bootstrapped dynamics ensemble model f consisting of K different models
( fl, ce f ) trained with different sequences of mini-batches of D (Chua et al., 2018; Janner et al.,
2019). Similarly, we assume a () ensemble of size M. Given a state §; and an action a;, we can
construct the probability over the next state S;;1 and reward 7; by the ensemble as follows:

K
P(Sts17ulstsar) = > P(fi) - P(Sevn.7elsean i)
k=1

where P( fk) is the probability of selecting the kth model from the ensemble, which is 1/K when
all models are weighted equally. Now, the sampling method that exactly follows the probabilistic
graphical model shown in Figure 2 would first sample a model from the ensemble at each time step,
followed by sampling the next state transition (and reward) from the model, which should then be
repeated K times per state to generate a single sample. Then, we evaluate the resulting state S;41
and action a;41 ~ mg(8¢41) with the @ ensemble to obtain M samples. To obtain IV trajectories
from a single initial state to estimate y;, and o2 for h = 1,..., H, the overall procedure requires
O(N K H) computation, which can quickly become infeasible for moderately large K and N values.

To reduce the computational complexity, we follow Chua et al. (2018) where each particle is prop-
agated by a single model of the ensemble for H steps. With this, we can obtain N trajectories of
length H from one state with O(N H) instead of O(NK H) (below we use N = K, i.e., we gen-

erate one particle per model). Concretely, given a single transition 7 = (sg, ag, 1o, S1), We create
K numbers of particles by replicating s; K times, denoted as é(lk) Vk. The kth particle is propa-
gated by a fixed model f, and the policy 7y for H steps, where (sﬁ’“), f,gli)l) = fk(égli)l, ég’i)l) and
égk) ~ we(égk)). At each imagined timestep ¢ € [0, H + 1], M number of terminal values are

sampled by the (4 ensemble at (égk), a§k>).

Despite the computational benefit, an implication of this sampling method is that it no longer directly
follows the graphical model representation in Figure 2. However, we can still correctly estimate p,
and o3 by turning to the law of total expectation and the law of total variance. That is,

=[] ] =2 e ] ]

where the outer expectation is w.r.t. the dynamics ensemble sampling probability P( fk) = 1/k.

Hence, given a fixed dynamics model fk, we sample Ry, by following 7y and compute the average
of the h-step return, which is then averaged across different ensemble models. In fact, the resulting

Ln 1s the mean of all aggregated M x K samples of Ry.
The h-step return variance Vary, (Rh|7') decomposes via the law of total variance as following:
0f = Vary, [Ralr| = B, [Vats, | Ralr, fi] + Vary, [Ex, | R ‘ ] ©)

A B
Here, A is related to the epistemic uncertainty of the ()4 ensemble; while B is associated with
the epistemic uncertainty of the dynamics ensemble. The total variance Vary, (Rh |7) captures both
uncertainties. This way, even though we use a different sampling scheme than presented in the
graphical model of Figure 2, we can compute the unbiased estimators of the Gaussian parameters.

Once we obtain 1, and o3, we plug them into (7) to compute the posterior mean and the variance.
A conservative value estimation can be made by yjrcp = u — Yo with some coefficient i) > 0
(Jin et al., 2021; Rashidinejad et al., 2021). Under the Gaussian assumption, this corresponds to
the worst-case return estimate in a Bayesian credible interval for Q”. We summarize CBOP in
Algorithm 2 in Appendix B.1.
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Table 1: Normalized scores on D4RL MuJoCo Gym environments. Experiments ran with 5 seeds.

MOPO MOReL COMBO CQL TD3+BC EDAC IQL CBOP

£ halfcheetah 35.4+ 2.5 25.6 38.8 35.4 10.2+1.3 28.4+ 1.0 32.8+0.4
'§ hopper 11.7 £ 0.4 53.6 17.9 10.8 11.0 £ 0.1 31.3+ 0.0 31.44+0.0
5 walker2d 13.6 £ 2.6 37.3 7.0 7.0 1.4+1.6 21.7+ 0.0 17.8 + 0.4
E halfcheetah 42.3+ 1.6 42.1 54.2 44.4 42.8 +£ 0.3 67.5+ 1.2 47.4 74.3+0.2
5 hopper 28.0 £ 12.4 95.4 94.9 79.2 99.5 + 1.0 101.6 0.6 66.2 102.6 + 0.1
g walker2d 17.8 £19.3 77.8 75.5 58.0 79.7+ 1.8 92.5+ 0.8 78.3 95.5 1+ 0.4
E > halfcheetah 53.1+ 2.0 40.2 55.1 46.2 43.3 £ 0.5 63.9 + 0.8 44.2 66.4 + 0.3
'-5'% hopper 67.5 + 24.7 93.6 73.1 48.6 31.4 + 3.0 101.8 £ 0.5 94.7 104.3 + 0.4
g2 walker2d 39.0 + 9.6 49.8 56.0 26.7 25.24+5.1 87.1+2.3 73.8 92.7+ 0.9
Eﬂ halfcheetah 63.3 & 38.0 53.3 90.0 62.4 97.9+ 4.4 107.1 + 2.0 86.7 105.4 + 1.6
S & hopper 23.7+ 6.0 108.7 111.1 98.7 112.2+ 0.2 110.7 £ 0.1 91.5 111.6 £ 0.2
g3 walker2d 44.6 + 12.9 95.6 96.1 111.0 101.1 £9.3 114.7+ 0.9 109.6 117.2+ 0.5
= halfcheetah - - - - 105.7 £ 1.9 106.8 + 3.4 - 100.4 + 0.9
:-. hopper - - - - 112.2+ 0.2 110.3 £ 0.3 - 111.4 £ 0.2
o walker2d - - - - 105.7 £ 2.7 115.1 +1.9 - 122.7+ 0.8
> halfcheetah - - - - - 84.6 + 0.9 85.5 + 0.3
E—Z_ hopper - - - - - 105.4 + 0.7 108.1 + 0.3
2 walker2d - - - - - 99.8 + 0.7 107.8 + 0.2

4 EXPERIMENTS

We have designed the experiments to answer the following research questions: (RQ1) Is CBOP able
to adaptively determine the weights assigned to different hA-step returns according to the relative
uncertainty of the learned model and that of the ) function? (RQ2) How does CBOP perform in
the offline RL benchmark? (RQ3) Does CBOP with LCB provide conservative target () estimation?
(RQ4) How does having the full posterior over the target values compare against using the MAP
estimation in performance? (RQS5) How much better is it to adaptively control the weights to h-step
returns during training as opposed to using a fixed set of weights throughout training?

We evaluate these RQs on the standard D4RL offline RL benchmark (Fu et al., 2020). In particular,
we use the DARL MuJoCo Gym dataset that contains three environments: halfcheetah, hopper, and
walker2d. For each environment, there are six different behavior policy configurations: random (r),
medium (m), medium-replay (mr), medium-expert (me), expert (e), and full-replay (fr). We release
our code at https://github.com/jihwan-jeong/CBOP.

4.1 CBOP CAN AUTOMATICALLY ADJUST RELIANCE ON THE LEARNED MODEL

To investigate RQ1, we use the notion of the ex-
pected rollout horizon, which we define as E[h] =
ZhH:O wp, - h. Here, wy, is the weight given to the
mean of Rh as defined in (7), which sums to 1. A
larger E[h] indicates that more weights are assigned
to longer-horizon model-based rollouts.
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Figure 1 already shows that E[h] decreases as the
@ function becomes better over time. On the other I S S am e

hand, Figure 3 shows how the quality of the learned Epochs (dynamics training)

model affects E[h]. Specifically, we trained the dy-

namics model on halfcheetah-m for different num- Figure 3: E[h] during CBOP training with the

bers of epochs (10, ...,100); then, we trained the dynamics model trained for different numbers of
policy with CBOP f70r 1:50 epochs ’ epochs. CBOP can place larger weights to longer-
’ horizon rollouts as the dynamics model becomes

more accurate.

Expected rollout horizon E[h]
°
e :

4.2 PERFORMANCE COMPARISON

To investigate RQ2, we select baselines covering both model-based and model-free approaches:
(model-free) CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2022), TD3+BC (Fujimoto & Gu,
2021), EDAC (An et al., 2021); (model-based) MOPO (Yu et al., 2020), MOReL (Kidambi et al.,
2020), and COMBO (Yu et al., 2021). Details of experiments are provided in Appendix C.1.
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Table 1 shows the experimental results. Comparing across all baselines, CBOP presents new state-
of-the-art performance in 11 tasks out of 18 while performing similar in the remaining configura-
tions. Notably, CBOP outperforms prior works in medium, medium-replay, and full-replay config-
urations with large margins. We maintain that these are the datasets of greater interest than, e.g.,
random or expert datasets because the learned policy needs to be much different than the behavior
policy in order to perform well. Furthermore, the improvement compared to previous model-based
arts is substantial: CBOP outperforms MOPO, MOReL, and COMBO by 116.4%, 23.2% and 23.7%
(respectively) on average across four behavior policy configurations.

4.3 CBOP LEARNS CONSERVATIVE VALUES

To answer RQ3, we have selected 3 configurations Table 2: Difference between the values predicted
(m, me, and mr) from the hopper environment and by the learned @ functions and the true discounted
evaluated the value function at the states randomly returns from the environment.

sampled from the datasets, i.e., Egp[V™(s)] (nb.

a similar analysis is given in CQL). Then, we com- CcQL CBOP
pared these estimates with the Monte Carlo estima- ~ Taskname ~ Mean  Max Mean  Max
tions from the true environment by rolling out the  nhopper-m 6184  -3.20 5583 -1621
learned policy until termination. hopper-mr  -142.89  -28.73 -172.45  -39.45
hopper-me -79.67 -5.16 -114.39  -11.24

Table 2 reports how large are the value predictions
compared to the true returns. Notice that not only the mean predictions are negative but also the
maximum values are, which affirms that CBOP indeed has learned conservative value functions.
Despite the predictions by CBOP being smaller than those of CQL in hopper-mr and me, we can see
that CBOP significantly outperforms CQL in these settings. See Appendix D.1 for more details.

4.4 ABLATION STUDIES

LCB vs. MAP in the offline setting To answer RQ4, we compare CBOP with STEVE (Buckman
et al., 2018) which is equivalent to using the MAP estimation for target () predictions. Figure 1
(left) shows the case where the value function learned by STEVE blows up (orange). Further, we
include the performance of STEVE in all configurations in Appendix D.3. To summarize the results,
STEVE fails to learn useful policies for 11 out of 18 tasks. Especially, except for the fr datasets,
using the MAP estimation has led to considerable drops in the performances in the hopper and
walker2d environments, which reaffirms that it is critical to have the full posterior distribution over
the target values such that we can make conservative target predictions.

Adaptive weighting For RQS5, we also considered an alternative way of combining Ry, Vh by
explicitly assigning a fixed set of weights: uniform or geometric. We call the latter A-weighting, in
reference to the idea of TD(A) (Sutton, 1988). We evaluated the performance of the fixed weighting
scheme with various A € (0, 1) values, and report the full results in Appendix D.3. In summary,
there are some \ values that work well in a specific task. However, it is hard to pick a single A
that works across all environments, and thus A should be tuned as a hyperparameter. In contrast,
CBOP can avoid this problem by automatically adapting the rollout horizon.

Benefits of full posterior estimation To ablate the benefits of using the full posterior distribu-
tion in conservative policy optimization, we have compared CBOP to a quantile-based approach
that calculates the conservative estimate through the a-quantile of the sampled returns §(s, a,s’)
(3) from the ensemble. The experimental details and results are reported in Appendix D.3. In sum-
mary, we have found that CBOP consistently outperformed this baseline on all tasks considered, and
CBOP was more stable during training, showing the effectiveness of the Bayesian formulation.

5 RELATED WORK

In the pure offline RL setting, it is known that the direct application of off-policy algorithms fails
due to value overestimation and the resulting policy distribution shift (Kumar et al., 2019; 2020;
Fujimoto & Gu, 2021; Yu et al., 2021). Hence, it is critical to strike the balance between conser-
vatism and generalization such that we mitigate the extent of policy distribution shift while ensuring
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that the learned policy 7y performs better than behavior policy mg. Below, we discuss how existing
model-free and model-based methods address these problems in practice.

Model-free offline RL.  Policy constraint methods directly constrain the deviation of the learned
policy from the behavior policy. For example, BRAC (Wu et al., 2019) and BEAR (Kumar et al.,
2019) regularize the policy by minimizing some divergence measure between these policies (e.g.,
MMD or KL divergence). Alternatively, BCQ (Fujimoto et al., 2019) learns a generative model of
the behavior policy and uses it to sample perturbed actions during policy optimization. On the other
hand, value regularization methods such as CQL (Kumar et al., 2020) add regularization terms to
the value loss in order to implicitly regulate the distribution shift (Kostrikov et al., 2021; Wang et al.,
2020). Recently, some simple yet effective methods have been proposed. For example, TD3+BC
(Fujimoto & Gu, 2021) adds a behavioral cloning regularization term to the policy objective of an
off-policy algorithm (TD3) (Fujimoto et al., 2018) and achieves SOTA performances across a variety
of tasks. Also, by extending Clipped Double Q-learning (Fujimoto et al., 2018) to an ensemble of
N @ functions, EDAC (An et al., 2021) achieves good benchmark performances.

Model-based offline RL.  Arguably, the learning paradigm of offline RL strongly advocates the
use of a dynamics model, trained in a supervised way with a fixed offline dataset. Although a
learned model can help generalize to unseen states or new tasks, model bias poses a significant
challenge. Hence, it is critical to know when to trust the model and when not to. MOPO (Yu
et al., 2020) and MOReL (Kidambi et al., 2020) address this issue by constructing and learning from
a pessimistic MDP whose reward is penalized by the uncertainty of the state prediction. On the
other hand, COMBO (Yu et al., 2021) extends CQL within the model-based regime by regularizing
the value function on OOD samples generated via model rollouts. Rigter et al. (2022) also takes
an adversarial approach by optimizing the policy with respect to a worst-case dynamics model.
In contrast to these, CBOP estimates a full Bayesian posterior over values by using ensembles of
models and value functions during policy evaluation of an actor-critic algorithm. In principle, having
the full distribution that CBOP provides could also facilitate the use of other risk-informed statistics
and epistemic risk measures to address value overestimation (see, e.g., Eriksson & Dimitrakakis
(2020)).

Model-based value expansion Unlike Dyna-style methods that augment the dataset with model-
generated rollouts (Sutton, 1990; Janner et al., 2019), MVE (Feinberg et al., 2018) uses them for
better estimating TD targets during policy evaluation. While equally weighted h-step model returns
were used in MVE, STEVE (Buckman et al., 2018) introduced an adaptive weighting scheme from
the optimization perspective by approximately minimizing the variance of the MSBE loss, while ig-
noring the bias. Interestingly, the Bayesian posterior mean (i.e., the MAP estimator) we derive in (7)
matches the weighting scheme proposed in STEVE. However as we show in Figure 1 and 10, using
the MAP estimator as value prediction in the offline setting often results in largely overestimated )
values, which immensely hampers policy learning. See Section 3.1 for the related discussion.

6 CONCLUSION

In this paper, we present CBOP: conservative Bayesian model-based value expansion (MVE) for
offline policy optimization. CBOP is a model-based offline RL algorithm that trades off model-free
and model-based value estimates according to their respective epistemic uncertainty during policy
evaluation while facilitating conservatism by taking a lower bound on the Bayesian posterior value
estimate. Viewing each h-step MVE target as a conditionally independent noisy observation of
the true target value under the learned MDP, we derive the Bayesian posterior distribution over the
target value. For a practical implementation of CBOP, we use the ensemble of dynamics and that of
@ function to sample MVE targets to estimate the Gaussian parameters, which in turn are used to
compute the posterior distribution. Through empirical and analytical analysis, we find that the MAP
estimator of the posterior distribution could easily lead to value overestimation when the learned
MDP is not accurate under the current policy. In contrast, CBOP constructs the LCB from the
Bayesian posterior as a conservative estimation of the target value to successfully mitigate the issue
while achieving state-of-the-art performance on several benchmark datasets.
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