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Abstract

Neural networks are powerful surrogates for numerous forward processes.
The inversion of such surrogates is extremely valuable in science and engi-
neering. The most important property of a successful neural inverse method
is the performance of its solutions when deployed in the real world, i.e., on
the native forward process (and not only the learned surrogate). We propose
Autoinverse, a highly automated approach for inverting neural network
surrogates. Our main insight is to seek inverse solutions in the vicinity of
reliable data which have been sampled form the forward process and used for
training the surrogate model. Autoinverse finds such solutions by taking
into account the predictive uncertainty of the surrogate and minimizing it
during the inversion. Apart from high accuracy, Autoinverse enforces the
feasibility of solutions, comes with embedded regularization, and is initial-
ization free. We verify our proposed method through addressing a set of
real-world problems in control, fabrication, and design. Our code and data are
available at: https://gitlab.mpi-klsb.mpg.de/nansari/autoinverse

1 Introduction

“... optimizing for the wrong thing — offering prayers to the bronze snake of data rather the larger
force behind it.” [6]]

With the deep learning breakthrough during the last decade, data-driven modeling using neural
network based surrogates is now a standard practice in science and engineering. These surrogates
strive to imitate the behavior of a native forward process (NFP), such as a physics simulation, which
maps a design into its performance{ﬂ While forward processes are essential for troubleshooting
and analysis, oftentimes their ultimate application lies in their inversion, i.e., the reverse process
of mapping performances into designs. Despite the recent progress in inversion of neural networks
within multiple disciplines [35} 16} 13} 37], a fundamental unaddressed question is still standing
out. Inversion of a surrogate model, fitted to the data sampled from the NFP, is ultimately different
than the inversion of the NFP itself. The source of this gap could be explicit, such as the noise in

'In the applications showcased in this paper (fabrication-oriented design and robotics), the term design refers
to the space where the input to the forward process is characterized and parameterized and performance refers to
the parameterized space of desired properties. Commonly, hidden state or parameters, and measurement or goal
are used interchangeably with design and performance, respectively
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measurements, or implicit, such as the poor sampling of the NFP. Although the obtained solutions
from inverting the surrogate can be evaluated on the NFP, none of the current neural inversion methods
offers a tailored solution for addressing this important gap.

Our main insight in this work is to expect and account for any potential mismatch between the data,
and consequently the surrogate, on the one hand and the NFP on the other. Our proposed method,
Autoinverse, realizes this vision by taking into account the predictive uncertainty of the surrogate
and minimizing it during the inversion. Therefore, the inverted solutions avoid the unreliable regions
within the training data.

We show that our Autoinverse strategy can augment existing neural inversion methods (both
optimization-based and architecture-based approaches) with uncertainty compensation in a simple
and practical manner. Autoinverse closes the gap between the surrogate and the NFP not through
attempting a perfect fit of the surrogate to the NFP, an onerous task, but by finding inverse solutions
in the vicinity of the reliable training data where the surrogate and the NFP are most similar. Neural
inverse methods equipped with Autoinverse outperform their counterparts significantly on both
standard data sampled from the NFP and imperfect data, e.g., those corrupted by noise. Apart
from high accuracy, Autoinverse enforces the feasibility of solutions, comes with embedded
regularization (freeing the inversion approaches from hand-crafted regularizations based on domain
knowledge), and is initialization-free. It achieves all these properties in a highly automated manner
and only with a light, intuitive tuning.

2 Related work

Neural Network Inversion We can divide neural network inversion approaches into two main
categories. First, inverse architectures, where we compute a network architecture that takes a given
performance and maps it into a (distribution of) design(s). Second, direct optimization [33]], where
we optimize for a design such that it produces the desired performance. Although the simplest
inverse architecture can be attempted by training a neural network in the reverse direction, it fails
because of the one-to-many nature of the mapping. Tandem networks use an inverse architecture by
employing a pre-trained forward network in order to compute a consistent loss. The tandem approach
has been developed independently across different disciplines [23} 132} 33 |39]] dating back (at least)
to Tominaga [34]]. Many inverse architectures try to model the conditional posterior, p(z|y), using
variational methods [24,|19] based on (conditional) variational auto-encoders [20]. These networks
condition the design on the target performance and yield a distribution of solutions from which
multiple samples could be drawn. Kruse et al. [21] show that the invertible neural networks (INNs),
built upon normalizing flows [10]], give the highest accuracy in terms of both surrogate error and
design posterior compared to a wide range of inverse architectures.

When using direct optimization methods, gradient-based optimizers can be readily used as the neural
surrogate is differentiable. Ren et al. [30] use stochastic gradient descent via backpropagation
with respect to the design variables, and present a highly accurate and practical method. They
benchmark their method, dubbed as neural adjoint (NA), against a set of inverse architectures and
obtain significantly more accurate solutions. Sun et al. [33]] showed a similar approach except
using a quasi-Newton method for optimization. Ansari et al. [2]] push forward in this direction by
demonstrating that, for piecewise linear neural networks, e.g., those with ReLU activation, the direct
optimization can be formulated as a mixed-integer linear program (MILP) and thus obtain globally
optimal solutions. While optimization methods are very accurate, their main disadvantage is their
performance as they can be orders of magnitude slower than inverse architectures.

Neural Networks and Predictive Uncertainty While neural networks are ubiquitous in almost all
branches of natural sciences, their weakness at quantifying predictive uncertainty impedes their use in
crucial applications. Using a Bayesian formalism [4], Bayesian neural networks (BNNs) [28, 9} 26]],
given the training data and a prior over network’s parameters, compute the posterior distribution of the
parameters. Having computed the posterior, the predictive uncertainty can be computed. The inference
step in computing BNNSs is known to be computationally hard [[17)]. This explains the popularity of
simpler methods for estimating predictive uncertainty, such as Monte Carlo dropout [11]] and Deep
Ensembles [22]. Deep Ensembles strikes a good balance between simplicity and practicality on the
one hand and predictive performance on the other hand (Section[3.3). One of the main advantages
of the Deep Ensembles is its capability to predict aleatoric and epistemic uncertainty separately.
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Figure 1: By using a deep ensemble predictive uncertainty estimator as the forward model we can
make conventional inversion methods uncertainty aware. On the left we can see UANA and on the
right UA-tandem architecture.

Aleatoric and epistemic uncertainty carry different information regarding the surrogate [18] and
considering both of them improves the quality of the neural inversion (Section[4.3]). Neural networks
capable of predictive uncertainty are increasingly adopted in many different applications, such as
reinforcement learning and active learning [[12]. As we shall see, neural inversion is yet another
domain that takes advantage of this trend.

3 Method

Autoinverse is an easy-to-implement technique for augmenting neural inverse methods with uncer-
tainty awareness. Autoinverse achieves this goal by, first, training a surrogate capable of predictive
uncertainty [25]. Second, relying on this trained surrogate and using a novel inversion cost func-
tion, Autoinverse finds accurate designs with minimal uncertainty. We apply Autoinverse on
two inverse methods belonging to the two main neural inversion categories, i.e., optimization- and
architecture-based in Sections [3.1]and [3.2] respectively. As we will see in Section [3.3] we rely on
established methods [22] to train networks equipped with predictive uncertainty.

3.1 Uncertainty aware neural adjoint (UANA)

Given a pretrained neural surrogate f (+), neural adjoint (NA) [30] is an inverse method that uses the

cost function £N4(-) to push designs x to have a performance f(x) as close as possible to a desired
performance y*:

£ (x) 2= argmin | 70—y )

NA uses gradient descent to iteratively reduce the cost function, a scheme much like training neural
networks but with the input as the optimization variable instead of network’s weights and biases.
Equation [2|shows a single NA iteration with ¢ as the step size:

oLNA  Hf

x* =x*"1 —§(

Autoinverse proposes to perform the inversion using a pretrained BNN. We use Deep Ensem-
bles [22] made of M neural networks capable of a prediction F,(x), as well as its aleatoric F 4(x)
and epistemic F,p(x) uncertainties (Section . Aleatoric uncertainty increases as the noise
level in the training data increases. Epistemic uncertainty measures the uncertainty in the model.
Autoinverse modifies NA such that we obtain solutions x that have performances close to the target
performance y™* while resulting in small aleatoric and epistemic uncertainties:

LUMNA(x) = argmin [Fu(x) = y*[3 + @ Foa(x) + 8 Fop(x) 3)

We introduce « and S as hyperparameters to adjust the relative significance of aleatoric and epistemic
uncertainties, respectively.



Equation ] shows how one iteration of UANA requires the back-propagation using the ensemble of all
gradients of M networks of Deep Ensembles:
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where fm represents one of the networks in the ensemble. Figure depicts this collective procedure
where each individual network in the ensemble votes for the direction where updating the design will
lead to the maximal accuracy and minimal uncertainty.

3.2 Uncertainty aware tandem (UA-tandem)

Tandem is a representative of architecture-based methods in which we train an inverse network f 1)
in a manner resembling the encoder-decoder architecture ([32H34]). Unlike the encoder-decoder

approach, we start with training the forward model f (). Then we freeze the trainable parameters of

f (+) and train the inverse model 1 (+) in the position of the encoder in order to decrease the cost

function:
. . 2
LY(fHy")) o= arg min FU)) -y

&)

,
Once f ~1(.) is trained we can simply query it to find designs with our desired performances:
) =x ©6)

The uncertainty-aware tandem (UA-tandem) follows the same procedure except that it replaces f )
with ', (-). Additionally, it includes the uncertainties in the loss:

~ ~ 2 A A
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Figure[I(b)]depicts the architecture of UA-tandem.

3.3 Predictive uncertainty using Deep Ensembles

Deep Ensembles comprises of an ensemble of M neural networks f,, each fa
capable of a prediction ., (x) and its associated uncertainty o,,(x) in form

of a Gaussian distribution A (g, (x), o, (x)). The cost function for training

each network in the ensemble is the negative log likelihood [29]:

[NLL . log(o7,(x)) + (V" — pm(x))? (8)

mo 2 202, (x)
Intuitively, in case of the aleatoric uncertainty /i, (x) fails to reliably predict y*. Hence, o2, (-) must
increase to reduce the loss while the first term ensures o2, (-) does not diverge to infinity.

The next step is to ensemble the results of all the networks into a single prediction and a single uncer-
tainty. Deep Ensembles [22]] models the ensemble as a single Gaussian distribution N (F,(x), F, (x))
approximating the mixture of A previously computed Gaussian distributions

Fu(x):= % Z o, (X), (9a)
Folx) = 12 3 (03(6) + 12,(x)) — B3 (%) (o)

m

The uncertainty of the ensemble can be decomposed into two input-dependent uncertainties, i.e.,
aleatoric F, 4 (x) and epistemic F,, p(x) through slight modification to Equation |[9b] [18].
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This enables us to control the behavior of the neural inversion by tuning the relative importance of
these two uncertainties.

4 Evaluation

We evaluate the performance of Autoinverse through experimenting with the existing neural inverse
methods and their uncertainty-aware counterparts. In the paper, we focus on NA and UANA while
tandem and UA-tandem are evaluated mainly in the Appendix. We perform the evaluation on a set
of applications in robotics, and fabrication-oriented computational design. We report the error by
running the experiments 3 times to capture the variations. More details are provided in each case
study and in Appendix (Section [A).

Equations 3] and[7]have two hyperparameters (« and [3) that keep the balance between the MSE, the
aleatoric uncertainty and the epistemic uncertainty. We observe that with a relatively larger epistemic
weight () we obtain better results. Exploiting this intuition, we tune these parameters for 3 different
sets of values for {«, 8}: {{0.1,1},{1,10}, {10,100} }. We then make two finer step depending on
the outcome of the former evaluation and choose the best set of weights. We keep this budget of 5
experiment runs for the rival methods as well. Typically, we use 10% of the target performance for
tuning our inverse methods.

4.1 Experiments

Multi-joint robot is a simple inverse kinematics problem which is being used as a standard test
for neural inverse problems [21} [30]]. In this problem, the design is the 1D position of the base of
the multi-joint robot along with the 1D rotation of its three joints. The inverse problem concerns
finding a combination of positions and angles for the base and the joints such that the tip of the arm
lands the target position, i.e., the performance. We follow [30] for setting up this experiment and
its corresponding analytical equation used as the NFP. The training data consists of 10,000 pairs of
samples generated by randomly sampling the NFP.

Spectral printer Spectral printing enables digital fabrication of the object’s appearance faithfully
([14115]). Unlike reproduction of the color (e.g., RGB), reproducing the spectrum ensures that the
original and the duplicate remain visually similar independent of the color of the light source. Spectral
printing has various important applications specially in fine art reproduction using both 2D and 3D
printing [27, 1} 132]. Deep neural networks are becoming the main computational tool for modeling
the spectral printing process specially when dealing with a large number of inks. The final objective
is to find the correct ink densities at each pixel that can best estimate the target 31D spectrum.

In this experiment, we create the NFP by simulating a printer using an ensemble of 20 neural
networks. The design space comprises the ink densities and our spectral printer NFP predicts
the spectrum of the resulting color. We use real, measured data from an 8-channel printer with 8
EPSON inks including Cyan (C), Magenta (M), Yellow (Y), Black (K), Light black (LK), Light light
black (LLK), Light Cyan (LC), and Light Magenta (LM). The light inks, added to the standard CMYK
to improve the print quality, introduce significant multi-modality. All networks in the ensemble NFP
are trained on 40,000 printed patches [1]] consisting of different ink-density combinations and their
corresponding spectra. The ensembling is intended for an accurate NFP and is independent of our
use of Deep Ensembles for computing the uncertainty. The visual nature of spectral printer
makes it attractive for analyzing different methods. We release this NFP to the public to add another
example to the neural inversion testbed.



Table 1: The NFP and surrogate errors (mean £+ STD) of different neural inverse methods on
multi-joint robot for 1000 target locations.

Error NA UANA tandem UA-tandem MINI INN
NFP (324 £0.51) (3.21+1.48) (4.42+1.56) (4.04+0.38) 1.6 (9.48 + 0.021)
x10~% x10~6 x1073 x10~5 x1073 x1073
Surrogate  (1.99 £0.05) (9.13£6.08) (8.58 £3.00) (7.10 & 0.64) 0 (2.04 £ 0.017)
x1078 x10~7 x1076 %1076 x10713

Soft robot are made of soft, flexible materials. This unique property has made them suitable
candidates for interaction with humans in applications like minimally invasive surgery and advanced
prosthetics [7]]. Unlike multi-joint robot with a limited number of rotating joints, each segment
of the soft robot is a potential actuator that through their contraction and expansion can determine the
robot’s final shape. This inverse kinematics problem is typically solved through partial differential
equations ([38]). In order to accelerate the solve time of this inverse kinematics problem, Sun et al.
[33]] proposed a neural surrogate modeling of the problem and its inversion via tandem. The design
space in this problem consists of the contraction or expansion of 40 controllable soft edge segments.
The superposition of all the actuations determines the final deformation position of the soft robot via
the position of its 206 vertices.

We use an FEM-based simulation ([38 [15]) as our NFP. We model the relationship between the
actuations and the final shape of the soft robot with a neural-network surrogate. Our goal is to solve
the neural inversion to find a suitable set of actuations (design) that brings the tip of the soft robot to
the target position (performance). The training data consists of 50,000 samples queried by random
sampling the actuation with an expansion ratios between -0.2 and 0.2 [33]. The designs are then
evaluated on the FEM-based NFP to calculate their deformations.

4.2 Quantitative comparison of different neural inversion methods

We evaluate the accuracy of a set of neural inversion methods on multi-joint robot in terms of
both the NFP and the surrogate errors. The surrogate error is the difference between the ‘re-prediction’
of the obtained inverse solution by the surrogate neural network and the target performance. The NFP
error is the difference between the target and the performance of the generated design evaluated on
the NFP. In addition to the core methods described so far, we evaluate mixed-integer neural inversion
(MINI) [2]], and the invertible neural network (INN) [3].

Table[T]summarizes the inversion results on 1000 randomly sampled target locations for the multi-joint
robotic arm. We keep our evaluation fair by setting the capacity of the neural surrogates comparable
wherever possible. For instance, all methods except MINI have around 3 million parameters (see
Appendix, Table [3] for more details). We also used equal computational resources for the tuning.
Methods with hyperparameters, like UANA and UA-tandem, are tuned in 5 stages by hand. Alterna-
tively, the methods without hyperparameters (NA, tandem) are given 5x extra budget for inversion:
We run NA and tandem 5X and choose the model that generates the best NFP error. We repeat this
process 3 x and report the standard error. MILP and INN are fundamentally different methods. MILP
finds the global optimum and thus does not need tuning. INN has a latent space which we can sample
to generate diverse designs. We sample INN’s latent space 1024 times for all 1000 targets, evaluate
them on the NFP, and report the best NFP error. We repeat this process three times to generate the
standard error.

Table[T| shows the outstanding accuracy of the inverse methods that adopt Autoinverse, i.e., UANA
and UA-tandem, in terms of the NFP error. It also demonstrate how even a perfect surrogate error
(e.g., MINI) does not guarantee accurate solutions when tested on the NFP. A second look at Table|[T]
reveals further interesting insights. Although NA obtains notably lower surrogate error than its
uncertainty-aware counterpart (UANA), it performs significantly worse in terms of the NFP error.
The main reason for this trend is that, when optimizing the surrogate, UANA is not only concerned
with finding accurate designs leading to a small accuracy gap between the target and candidate
performances, i.e., the surrogate error, but also with those designs featuring low uncertainty (through
the uncertainty term in Equation[I0). Therefore, UANA achieves high accuracy in terms of the essential
NFP error at the cost of worsening the inconsequential surrogate error. Furthermore, UA-tandem, for
example, achieves better performance than NA. This is a remarkable result for an architecture-based



Table 2: The distribution of ink densities (> 0.4) after the inversion of spectral printer using
UANA. Once we insert noise into LC channel or sample it sparsely, Autoinverse detects and avoids
it. STD has been rounded to the nearest integer.

Model  dataset NEP error _ M Y _ LC LM LK LLK
Standard  (6.30 £ 0.031) x 1073 186 + 2 67+4 63+ 6 340 437+2 356 £7 26£3 348 £5
UANA Sparse  (5.64+£0.017) x 1072 316+ 1 60 £+ 2 59+1 240 0£0 326 £5 25+£4 323 £11
Noisy (6.134+0.026) x 1072 263+ 1 67+4 34+£2 1+0 0+0 276 £ 3 29+ 3 378 +£5

Standard  (1.57 +0.001) x 1071 1895+13 1060 +26 1795+18 162411 8656 £8 139630 179+15 2378+19
NA Sparse  (1.34 £0.007) x 107! 905 £ 6 606 £ 7 1515+8  137+6  1604+£11 2130+17 294+15 2312424

Noisy ~ (1.47+£0.002) x 107! 119214 988410 1128410 55+6  1029£23 948+21 283+12 1742+37
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Figure 2: Distribution of actuation values for soft robot. Edge 16 is corrupted by noise (top)
and sampled sparsely (bottom) in positive range. While other randomly chosen edges feature both
negative and positive actuations, UANA produces solutions without (or with less) positive actuations
for Edge 16.

method given it is significantly faster than the optimization-based NA. We report extensively the time
performance and the details of the training for this and the next experiments in the Appendix.

4.3 Neural inversion in the presence of imperfect data

One of the main advantages of Autoinverse appears in scenarios where the training data suffers
from noise, e.g., measurement noise or poor sampling, e.g., sparsity in some regions. We evaluate
the performance of Autoinverse on imperfect training data using NA and UANA (tandem and
UA-tandem are evaluated under the same configuration in the Appendix Section [C).

Locally sparse data We sample both soft robot and spectral printer NFPs (Section[d.T)
in a way that the data does not contain any samples from one of the inputs in a specific interval. For
spectral printer, we would like to find ink densities to reproduce the spectra of the colors in
the painting in Figure [3](made of 3568 distinct color spectra). We sample the printer channels at 0
(no ink), 0.05, 0.1, 0.5, and 1 (full ink) densities to form the standard training data (with no known
uncertainty). We create a partially sparse dataset similar to the standard one except for the Light
Cyan (LC) channel for which we only have samples at 0, 0.05 and 0.1. Table [2]shows that while for
the standard dataset UANA finds inverse solutions that include the LC channel frequently (437 times),
for the sparse dataset it avoids this channel completely and compensate for it using the Cyan channel.
UANA is able to avoid this channel as the epistemic uncertainty increases in sparse regions of dataset
(see Appendix Section[C.4]for more details).

In soft robot we sample the 16th (among 40) controllable edge only in the negative range (con-
traction only). We then use the trained network to invert 1000 test samples. Figure [2| shows the
distribution of each edge for 1000 inversion tasks. We have plotted the distribution for the 16th edge
as well as for 7 other randomly chosen edges. As evident from Figure 2] bottom row, UANA is highly
reluctant to choose designs with positive actuations for this edge.

Locally noisy dataset With the same problem configuration as before, we would like to test the
robustness of Autoinverse on a dataset locally corrupted with noise. We start with a standard
dataset and inject Gaussian noise N (0, 0.1) to the spectrum of the samples with more than 0.4 LC
density. Table 2] shows how after introducing noise to the LC, the network avoids that channel and
compensates it by using more Cyan instead. In soft robot we corrupt the final shape of the soft
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Figure 3: In painting reproduction, UANA outperforms NA with and without a boundary loss term. The
distribution of the inverse solutions is shown on right.

robot with Gaussian noise A'(0, 0.5) for all the shapes where the 16th edge has positive actuation.
As we can see in Figure 2] (top row), the inversion has completely avoided positive actuations for this
edge.

4.4 Autoinverse brings AutoML to neural inversion

Autoinverse incorporates feasibility. Deep Ensembles produces high epistemic uncertainty outside
the distribution of the training data. This includes the regions where the NFP is not defined and thus
not sampled. For example, ink densities outside [0, 1] are not printable. If such cases arise during
the inversion, they are clipped to [0, 1] [1]]. In such regions, networks in the ensemble do not agree
and thus the epistemic uncertainty increases. Autoinverse automatically avoids these unfeasible
regions. In order to simulate the result of the inversion, after clipping the out-of-range densities we
feed them into the NFP. As evident from Figure [3]left, inversion via NA results in a poor reproduction
of the original painting. UANA, on the other hand, achieves spectacular reproduction accuracy. This is
explained by the plot in Figure [3|right, showing the distribution of ink densities obtained from both
methods.

Autoinverse has built-in regularization. We incorporate regularization into inversion methods in
order to obtain solutions that, among other purposes, agree with the observations and follow a certain
statistical distribution. Oftentimes, regularization is case-specific, requires human knowledge, and
comes with unexpected side effects. Here we show that Autoinverse follows the distribution of the
training data naturally by taking into account the epistemic uncertainty. We validate this point using
both spectral printer and soft robot experiments. We show that Autoinverse without any
explicit regularization performs better or on par with its counterpart inversion methods equipped with
regularization.

In the spectral printer experiment, we evaluate the effect of the boundary loss, originally
proposed as a generic regularization for NA to limit the designs within a box constraint (see [30] and
Appendix Section[D). The boundary loss is added to Equation[T]and weighted using a hyperparameter.
We tune this parameter with the same tuning budget we allocate for tuning the uncertainty weights (5
set of inversions on evaluation data). In Figure[3] we observe that although NA with boundary loss
improves the distribution of ink densities within the valid region ([0, 1]), it still trails the regularization-
free UANA significantly.

Regularizing the soft robot is less intuitive as the superposition of all actuations determines the
final shape and whether it is physically plausible. In [33]], the regularization is a smoothness term
that keeps actuation values near each other (see Appendix Section D). Figure f(a)(1) demonstrates
how NA fails without regularization to control the robot with a reasonable deformation. Once the
regularization is added to NA, the designs become physically meaningful (Figure d(a)(2)). Figure
[A(a)(3) shows how UANA performs comparably without any regularization.
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Figure 4: On the left we can see the distribution of actuations calculated by UANA and NA with two
different initialization: one initialization near the training data distribution and one far from it. On the
right we can see a range of randomly chosen soft robot shapes calculated by different methods with
different regularization and initialization.

Autoinverse is initialization-free. Sensitivity to the initialization is a widely known issue in non-
convex optimizations. Despite equipping NA with the smoothness term in soft robot, Figure B(b)]
demonstrates how an incorrect initialization can result in solutions with seemingly good surrogate
and regularization loss (see Appendix Section [D)) but in the infeasible region of the design space
(Figure i(a)(4)). UANA with the same incorrect initialization and without any regularization, leads to
soft robot designs that reach the target location accurately and produce plausible deformations (Figure
M(a)(5)). For UANA, the solver starts with reducing the main contributor to the optimization objective,
i.e., the epistemic uncertainty. Once a region with a reasonably small uncertainty is reached, the
accuracy term starts to take effect and a desirable solution within the valid range of the design space
is found.

4.5 Ablation studies

Separating the ensembling effect Although in both NA and UANA we use surrogates with similar
capacity (network size), one could argue that the higher performance of UANA comes from the
ensemble architecture of its surrogate. We detach the impact of ensembling and uncertainty awareness
on the inversion performance by implementing NA ensemble where, instead of a single, large
forward neural network, it uses an ensemble of networks. The inversion procedure is identical to
NA (see Appendix Section [E] and Figure [5). We employ NA ensemble in multi-joint robot
with the same configurations as in Section4.2] The surrogate and NFP error for NA ensemble are
(3.30 £ 0.59) x 1079 and (1.17 + 0.32) x 10~4, respectively. Comparing these values with those
in Table|I} NA ensemble shows a slight improvement over NA but is significantly outperformed by
UANA.

Diversity of activation functions in Deep Ensembles Deep Ensembles uses a similar set of
networks with identical activation functions [22]. In practice, we observe that a diverse set of
activation layers leads to a better performance of Autoinverse. Different activation functions
generate different behaviours, show higher disagreement where the training data is under-represented
and, thus, result in an accurate estimation of the landscape of epistemic uncertainty [36]. For all
experiments in this work, we use a diverse range of activation functions (see Appendix Section
[A). As an ablation, we run UANA on spectral printer using sparse data (same configuration as
Section[4.3)) but with ReLU as the only activation layer. In contrast to Table[2] UANA (with ReLU only
activation) does not completely avoid the sparse domain and delivers 19 =+ 4 solutions that contain
LC with densities > 0.4.

5 Discussion

The Autoinverse cost function is multi-objective. Instead of finding a single solution through a
weighted combination of these objectives (what we have seen so far), we can capture the trade-off
between the accuracy and uncertainty through computing the Pareto front (see Appendix Section



[F| for more details). Autoinverse is an inversion strategy that could be applied to various inverse
methods, especially those that concern imitation of an original process (dubbed as NFP in our work).
We look forward to see Autoinverse adopted for more inverse architectures beyond tandem, and
more direct optimizations beyond first-order NA.

Predicting the uncertainty using Deep Ensembles [22] is not the most efficient solution. This is
because multiple forward networks are trained in two stages (once for the mean, and once jointly
for the mean and variance). It is highly interesting to integrate more efficient uncertainty estimation
methods, such as Monte Carlo dropout [[11}[18]], into Autoinverse.
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