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ABSTRACT

Statistical heterogeneity of data present at client devices in a federated learning
(FL) system renders the training of a global model in such systems difficult. Par-
ticularly challenging are the settings where due to resource constraints only a
small fraction of clients can participate in any given round of FL. Recent ap-
proaches to training a global model in FL systems with non-IID data have focused
on developing client selection methods that aim to sample clients with more infor-
mative updates of the model. However, existing client selection techniques either
introduce significant computation overhead or perform well only in the scenarios
where clients have data with similar heterogeneity profiles. In this paper, we pro-
pose HiCS-FL (Federated Learning via Hierarchical Clustered Sampling), a novel
client selection method in which the server estimates statistical heterogeneity of a
client’s data using the client’s update of the network’s output layer and relies on
this information to cluster and sample the clients. We analyze the ability of the
proposed techniques to compare heterogeneity of different datasets, and charac-
terize convergence of the training process that deploys the introduced client selec-
tion method. Extensive experimental results demonstrate that in non-IID settings
HiCS-FL achieves faster convergence and lower training variance than state-of-
the-art FL client selection schemes. Notably, HiCS-FL drastically reduces com-
putation cost compared to existing selection schemes and is adaptable to different
heterogeneity scenarios.

1 INTRODUCTION

The federated learning (FL) framework enables privacy-preserving collaborative training of machine
learning (ML) models across a number of devices (clients) by avoiding the need to collect private
data stored at those devices. The participating clients typically experience both the system as well
as statistical heterogeneity (Li et al., 2020a). The former describes settings where client devices
have varying degree of computational resources, communication bandwidth and fault tolerance,
while the latter refers to the fact that the data owned by the clients may be drawn from different
distributions. In this paper, we focus on FL under statistical heterogeneity and leave studies of
system heterogeneity to future work.

An early FL method, FedAvg (McMahan et al., 2017), performs well in the settings where the
devices train on independent and identically distributed (IID) data. However, compared to the IID
scenario, training on non-IID data is detrimental to the convergence speed, variance and accuracy of
the learned model. This has motivated numerous studies aiming to reduce the variance and improve
convergence of FL on non-IID data (Karimireddy et al., 2020; Li et al., 2020b). Strategies aiming to
tackle statistical heterogeneity in FL can be organized in four categories: (1) adding regularization
terms to mitigate objective drift in local training (Chen et al., 2023; Li et al., 2020b); (2) aggregation
schemes at the server (Hsu et al., 2019; Wang et al., 2020a); (3) data augmentation by synthesizing
artificial data (Hao et al., 2021; Yoon et al., 2021; Chen & Vikalo, 2023); and (4) personalized
federated learning (Collins et al., 2021; Fallah et al., 2020; Li et al., 2021b; T Dinh et al., 2020),
which allows clients to train customized models rather than a shared global model.

On another note, constraints on communication resources and therefore on the number of clients
that may participate in training additionally complicate implementation of FL schemes. It would be
particularly unrealistic to require regular contributions to training from all the clients in a large-scale
cross-device FL system. Instead, only a fraction of clients participate in any given training round;
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unfortunately, this further aggravates detrimental effects of statistical heterogeneity. Selecting in-
formative clients in non-IID FL settings is an open problem that has received considerable attention
from the research community (Cho et al., 2020; Fraboni et al., 2021; Goetz et al., 2019). Since
privacy concerns typically prohibit clients from sharing their local data label distributions, existing
studies focus on estimating informativeness of a client’s update by analyzing the update itself. This
motivated a family of methods that rely on the norms of local updates to assign probabilities of
sampling the clients (Chen et al., 2020; Ribero & Vikalo, 2020). Aiming to enable efficient use
of the available communication and computation resources, another set of methods groups clients
with similar data distributions into clusters based on the similarity between clients’ model updates
(Balakrishnan et al., 2022; Fraboni et al., 2021). In addition to model updates, local loss (Cho et al.,
2020; Lai et al., 2021; Tang et al., 2022) and test accuracy on public data (Kim et al., 2020; Mo-
hammed et al., 2020) have been used to gauge informativeness of the clients’ updates. Across the
board, the existing methods still struggle to deliver desired performance in an efficient manner: the
loss-based and clustering-based techniques cannot distinguish clients with balanced data from the
clients with imbalanced data, while accuracy-based methods rely on a validation dataset at the server
and need to train a sampling agent using multi-armed bandit (MAB) algorithms.

In this paper, we consider training a neural network model for classification tasks via federated
learning and propose a novel adaptive clustering-based sampling method for identifying and select-
ing informative clients. The method, referred to as Federated Learning via Hierarchical Clustered
Sampling (HiCS-FL), relies on the updates of the (fully connected) output layer in the network to
determine how diverse is the clients’ data and, based on that, decide which clients to sample. In
particular, HiCS-FL enables heterogeneity-guided client selection by utilizing general properties of
the gradients of the output layer to distinguish between clients with balanced from those with im-
balanced data. Unlike the Clustered Sampling strategies (Fraboni et al., 2021) where the clusters
of clients are sampled uniformly, HiCS-FL allocates different probabilities (importance) to the clus-
ters according to their average estimated data heterogeneity. Numerous experiments conducted on
FMNIST (Xiao et al., 2017), CIFAR10 and CIFAR100 demonstrate that HiCS-FL achieves signif-
icantly faster training convergence and lower variance than the competing methods. Finally, we
conduct convergence analysis of HiCS-FL and discuss implications of the results.

In summary, the contributions of the paper include: (1) Analytical characterization of the corre-
lation between local updates of the output layer and the FL clients’ data label distribution, along
with an efficient method for estimating data heterogeneity; (2) a novel clustering-based algorithm
for heterogeneity-guided client selection; (3) extensive simulation results demonstrating HiCS-FL
provides significant improvement in terms of convergence speed and variance over competing ap-
proaches; and (4) theoretical analysis of the proposed schemes.

2 BACKGROUND AND RELATED WORK

Assume the cross-device federated learning setting with N clients, where client k owns private local
dataset Bk with |Bk| samples. The plain vanilla FL considers the objective

min
θ

F (θ) ≜
N∑

k=1

pkFk(θ), (1)

where θ denotes parameters of the global model, Fk(θ) is the loss (empirical risk) of model θ on
Bk, and pk denotes the weight assigned to client k,

∑N
k=1 pk = 1. In FedAvg, the weights are set to

pk = |Bk| /
∑N

i=1 |Bi|. In training round t, the server collects clients’ model updates θtk formed by
training on local data and aggregates them to update global model as θt+1 =

∑N
k=1 pkθ

t
k.

When an FL system operates under resource constraints, typically only K ≪ N clients are selected
to participate in any given round of training; denote the set of clients selected in round t by St. In
departure from FedAvg, FedProx (Li et al., 2020b) proposes an alternative strategy for sampling
clients based on a multinomial distribution where the probability of selecting a client is proportional
to the size of its local dataset; the global model is then formed as the average of the collected local
models θt+1 = 1

K

∑
k∈St θtk. This sampling strategy is unbiased since the the updated global model

is on expectation equal to the one obtained by the framework with full client participation 1.

AFL (Goetz et al., 2019) is the first study to utilize local validation loss as a value function for
computing client sampling probabilities; Power-of-Choice (Cho et al., 2020) takes a step further to
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propose a greedy approach to sampling clients with the largest local loss. Both of these methods
require all clients to compute the local validation loss, which is often unrealistic. To address this
problem, FedCor (Tang et al., 2022) models the local loss by a Gaussian Process (GP), estimates
the GP parameters from experiments, and uses the GP model to predict clients’ local losses with-
out requiring them to perform validation; unfortunately, FedCor is an empirical scheme that does
not come with theoretical convergence analysis/guarantees. In (Chen et al., 2020), Optimal Client
Sampling scheme aiming to minimize the variance of local updates by assigning sampling probabil-
ities proportional to the Euclidean norm of the updates is proposed. The study in (Ribero & Vikalo,
2020) models the progression of model’s weights by an Ornstein-Uhlenbeck process and proposes a
strategy, optimal under that assumption, for selecting clients with significant weight updates.

The clustering-based sampling method proposed in (Fraboni et al., 2021) uses cosine similarity
(Sattler et al., 2020) to group together clients with similar local updates, and proceeds to sample one
client per cluster in attempt to avoid redundant gradient information. DivFL (Balakrishnan et al.,
2022) follows the same principle of identifying representative clients but does so by constructing a
submodular set and greedily selecting diverse clients. Both of these techniques are computationally
expensive due to the high dimension of the gradients that they need to process. Another line of
work (Shi et al., 2023; Yang et al., 2021b; Zhang et al., 2022) relies on public data at the server
or pairwise inner products of clients’ data label distributions to design MAB algorithms that assign
sampling probabilities leading to subsets of clients with low class-imbalance degree.

In general, the overviewed methods either: (1) select diverse clients to reduce redundant informa-
tion; or (2) select clients with a perceived significant contributions to the global model (high loss,
large update or low class-imbalance). Efficient and effective client selection in FL remains an open
challenge, motivating the heterogeneity-guided adaptive client selection method presented next.

3 HICS-FL: FL VIA HIERARCHICAL CLUSTERED SAMPLING

Figure 1: The last two network layers.

Existing client sampling methods including Clustered
Sampling (Fraboni et al., 2021) and DivFL (Balakrishnan
et al., 2022) aim to select clients such that the resulting
model update is an unbiased estimate of the true update
(i.e., the update in the case of full client participation)
while minimizing the variance∥∥∥∥∥ 1

N

N∑
k=1

∇Fk(θ
t)− 1

K

∑
k∈St

∇Fk(θ
t)

∥∥∥∥∥
2

2

. (2)

Clustered Sampling, for instance, groups N clients into K clusters based on representative gradients
(Sattler et al., 2020), and randomly selects one client from each cluster to contribute to the global
model update. Such an approach unfortunately fails to differentiate between model updates formed
on data with balanced and those formed on data with imbalanced label distributions – indeed, in
either case the updates are treated as being equally important. However, a number of studies in
centralized learning has shown that class-imbalanced datasets have significant detrimental effect on
the performance of learning classification tasks (Buda et al., 2018; Chawla et al., 2002; Shen et al.,
2016). This intuition carries over to the FL settings where one expects the updates from clients
training on relatively more balanced local data to have a more beneficial impact on the performance
of the system. The Federated Learning via Hierarchical Clustered Sampling (HiCS-FL) framework
described in this section adapts to the clients’ data heterogeneity in the following way: if the levels
of heterogeneity (as quantified by the entropy of data label distribution) vary from one cluster to
another, HiCS-FL is more likely to sample clusters containing clients with more balanced data; if
the clients grouped in different clusters have similar heterogeneity levels, HiCS-FL is more likely
to select diverse clients (i.e., sample uniformly across clusters, thus reducing to the conventional
clustered sampling strategy).

3.1 CLASS-IMBALANCE CAUSES OBJECTIVE DRIFT

A number of studies explored detrimental effects of non-IID training data on the performance of
a global model learned via FedAvg. An example is SCAFFOLD (Karimireddy et al., 2020) which
demonstrates objective drift in non-IID FL manifested through large differences between local mod-
els θ∗k trained on substantially different data distributions. The drift is due to FedAvg updating the
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global model in the direction of the weighted average of local optimal models, which is not neces-
sarily leading towards the optimal global model θ∗. The optimal model θ∗, in principle obtained
by solving optimization in Eq. 1, achieves minimal empirical error on the data with uniform label
distribution and is intuitively closer to the local optimal models trained on balanced data. Recent
work (Zhang et al., 2022) empirically verified this conjecture through extensive experiments. Let
∇F (θt) denote the gradient of F (θt) given the global model θt at round t; the difference between
∇F (θt) and the local gradient ∇Fk(θ

t) computed on client k’s data is typically assumed to be
bounded (Chen et al., 2020; Fraboni et al., 2021; Wang et al., 2020b). To proceed, we formalize the
assumption about the relationship between gradients and data label distributions.

Assumption 1 (Bounded Dissimilarity.) Gradient ∇Fk(θ
t) of the k-th local model at global round

t is such that∥∥∇Fk(θ
t)−∇F (θt)

∥∥2 ≤ − exp
(
β
[
H(D(k))−H(D0)

])
ρ+ κ = σ2

k, (3)

where D(k) is the data label distribution of client k, D0 denotes uniform distribution, H(·) is Shan-
non’s entropy of a stochastic vector, and β > 0, κ > ρ > 0.

The assumption commonly encountered in literature (Chen et al., 2020; Fraboni et al., 2021; Wang
et al., 2020b) is recovered by setting the right-hand side of (3) to σ2

m = maxk σ
2
k. Intuitively, if the

data label distribution of client k is highly imbalanced (i.e., H(D(k)) is small), the local gradient
∇Fk(θ

t) may significantly differ from the global gradient ∇F (θt) (as reflected by the bound above).
Analytically, connecting the gradients to the local data label distributions allows one to characterize
the effects of client selection on the variance and the rate of convergence. The results of extensive
experiments that empirically verify the above assumption are reported in Appendix A.2.

Algorithm 1 HiCS-FL

Input:
Datasets distributed across N clients, the number
of clients to sample K, total global rounds T .

1: Initialize updates of bias ∆b(k) ← 0 ∀k ∈ [N ],
global model θt ← θ1, S0 = [N ].

2: for t = 1, . . . , T do
3: if t ≤ ⌈N/K⌉ then
4: St ← randomly sample min(K, |S0|)

clients from S0, update S0 ← S0 − St;
5: else
6: estimate Ĥt(D(k)),∀k ∈ [N ] and cluster

N clients into M groups based on Eq. 9;
7: St ← ∅;
8: while |St| < K do

9: sample group Gt
m according to πt;

10: sample client k in Gt
m according to p̃m;

11: St ← St ∪ k;
12: end while
13: end if
14: for k ∈ St do
15: θtk ← LocalUpdate(θt), ∆b(k) ∈ θtk − θt

16: end for
17: θt+1 ← 1

K

∑
k∈St θ

t
k;

18: ∆b(k) ← ∆b(k), ∀k ∈ St;
19: end for
Output:

The global model θT +1

3.2 ESTIMATING CLIENT’S DATA HETEROGENEITY

If the server were given access to clients’ data label distributions, selecting clients would be rela-
tively straightforward (Wolfrath et al., 2022). However, privacy concerns typically discourage clients
from sharing such information. Previous studies have explored the use of multi-arm bandits for in-
ferring clients’ data heterogeneity from local model parameters, or have utilized a validation dataset
at the server to accomplish the same (Shi et al., 2023; Yang et al., 2021b; Zhang et al., 2022). In this
section, we demonstrate how to efficiently and accurately estimate data heterogeneity using local
updates of the output layer of a neural network in a classification task. Figure 1 illustrates the last
two layers in a typical neural network. The prediction q ∈ RC is computed by forming a weighted
average of signals z ∈ RL utilizing the weight matrix W ∈ RC×L and bias b ∈ RC .

3.2.1 LOCAL UPDATES OF THE OUTPUT LAYER

An empirical investigation of the gradients of the output layer’s weights while training with FedAvg
using mini-batch stochastic gradient descent (SGD) as an optimizer is reported in (Wainakh et al.,
2021). There, the focus is on detecting the presence of specific labels in a batch rather than on
exploring the effects of class imbalance on the local update. To pursue the latter, we focus on the
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correlation between local updates of the output layer’s bias and the client’s data label distribution;
we start by analyzing the training via FedAvg that employs SGD and then extend the results to
other FL algorithms that utilize optimizers beyond SGD. We assume that the model is trained by
minimizing the cross-entropy (CE) loss over one-hot labels – a widely used multi-class classification
framework. The gradient is computed by averaging contributions of the samples in mini-batches,
i.e., ∇bLCE = 1

Bl

∑l
j=1

∑B
n=1 ∇bL(j,n)

CE (x(j,n), y(j,n)), where B denotes the batch size, l is the
number of mini-batches, x(j,n) is the n-th point in the j-th mini-batch and y(j,n) ∈ [C] is its label.
The contribution of x(j,n) to the i-th component of the gradient of the output layer’s bias b can be
found as (details provided in Appendix A.3)

∇biL
(j,n)
CE = I{i = y(j,n)}

−
∑

c̸=i exp(q
(j,n)
c )∑C

c=1 exp(q
(j,n)
c )

+ I{i ̸= y(j,n)} exp(q
(j,n)
i )∑C

c=1 exp(q
(j,n)
c )

, (4)

where I{·} is an indicator, q(j,n) = [q
(j,n)
1 , . . . , q

(j,n)
C ]T = W · z(j,n) + b is the output logit for

signals z(j,n) ∈ RL corresponding to training point (x(j,n), y(j,n)) (see Fig. 1), and where C denotes
the number of classes. We make the following observations: (1) the sign of y(j,n)-th component of
∇bL(j,n)

CE is opposite of the sign of other components; and (2) the y(j,n)-th component of ∇bL(j,n)
CE

is equal in magnitude to all the other components combined. Note that the above two observations
are standard for neural networks using CE loss for supervised multi-class classification tasks.

In each global round t of FedAvg, the selected client k starts from the global model θt and pro-
ceeds to compute local update in R local epochs employing an SGD optimizer with learning rate η.
According to Eq. 4, the i-th component of local update ∆b(k) is computed as

∆b
(k)
i = − η

Bl

l∑
j=1

B∑
n=1

R∑
r=1

∇biL
(j,n,r)
CE , (5)

where ∇biL
(j,n,r)
CE denotes the gradient of bias at local epoch r. Note that the local update of client

k, ∆b(k), is dependent on the label distribution of client k’s data, D(k) = [D
(k)
1 , . . . , D

(k)
C ]T and the

label-specific components of q(j,n) which change during training. We proceed by relating expected
local updates to the label distributions; for convenience, we first introduce the following definition.

Definition 1 Let B−i be the subset of local data B that excludes points with label i. Let s−i(x) ∈
[0, 1]C be the softmax output of a trained neural network for a training point (x, y) ∈ B−i. The
i-th component of s−i(x), s−i

i (x), indicates the level of confidence in (erroneously) classifying x as
having label i. For convenience, we define Ei = E(x,y)∼B−i

[
s−i
i (x)

]
,∀i ∈ [C].

In an untrained/initialized neural network where classifier makes random predictions, Ei = 1/C; as
training proceeds, Ei decreases. By taking expectation and simplifying, we obtain (details provided
in Appendix A.4)

E
[
∆b

(k)
i

]
= ηR

(
D

(k)
i

C∑
c=1

Ec − Ei

)
, (6)

where D
(k)
i denotes the true fraction of samples with label i in client k’s data,

∑C
i=1 D

(k)
i = 1.

3.2.2 ESTIMATING LOCAL DATA HETEROGENEITY

We quantify the heterogeneity of clients’ data by an entropy-like measure defined below. Let
D(k) denote the label distribution of client k’s data; its entropy is defined as H(D(k)) ≜

−
∑C

i=1 D
(k)
i lnD

(k)
i ≤ lnC. Recall that more balanced data results in higher entropy, and that

H(D(k)) takes the maximal value when D(k) is uniform. The server does not know D(k) and there-
fore cannot compute H(D(k)) directly. We define

Ĥ(D(k)) ≜ H(softmax(∆b(k), T )), (7)

where softmax(∆b(k), T )i = exp(∆b
(k)
i /T )/

∑C
c=1 exp(∆b

(k)
c /T ), 1 ≤ i ≤ C; here T is a scal-

ing hyper-parameter (so-called temperature). Note that even though we can compute Ĥ(D(k)) to
characterize heterogeneity, D(k)

i and Ei remain unknown to the server (details in Appendix A.5).
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Theorem 1 Consider an FL system in which clients collaboratively train a model for a classification
task over C classes. Let D(u) and D(k) denote data label distributions of an arbitrary pair of clients
u and k, respectively. Moreover, let U denote the uniform distribution, and let η and R be the
learning rate and the number of local epochs, respectively. Then

E
[
Ĥ(D(u))− Ĥ(D(k))

]
≥ 1

2

(
ηR

CT

C∑
c=1

Ec

)2 ∥∥∥D(k) −U
∥∥∥2
2
− ηR

T

∥∥∥D(u) −U
∥∥∥
∞

− Cδ, (8)

where C = ηR(ηR+C2T lnC)
C2T 2 and δ = maxi

∣∣∣∑C
c=1 Ec

C − Ei
∣∣∣.

The proof is provided in Appendix A.6. As an illustration, consider the scenario where client u
has a balanced dataset while the dataset of client k is imbalanced; then ∥D(k) − U∥22 is relatively
large compared to ∥D(u) − U∥∞. The bound in (8) also depends on δ, which is reflective of how
misleading on average can a class be; small δ suggests that no class is universally misleading. As
shown in Appendix A.4, during training δ gradually decreases to 0 as

∑C
i=1 Ei decreases to 0.

3.2.3 GENERALIZING BEYOND FEDAVG AND SGD

The proposed method for estimating clients’ data heterogeneity relies on the properties of the gradi-
ent for the cross-entropy loss objective discussed in Section 3.2.1. However, for FL algorithms other
than FedAvg, such as FedProx (Li et al., 2020b), FedDyn (Acar et al., 2021) and Moon (Li et al.,
2021a), which add regularization to combat overfitting, the aforementioned properties may not hold.
Moreover, optimization algorithms using second-order momentum such as Adam (Kingma & Ba,
2014) deploy update rules different from SGD, making the local updates no longer proportional to
the gradients. Nevertheless, HiCS-FL remains capable of distinguishing between clients with im-
balanced and balanced data. Further discussion of various FL algorithms with optimizers beyond
SGD are in appendix A.8 and A.9.

3.3 HETEROGENEITY-GUIDED CLUSTERING

Clustered Sampling (CS) (Fraboni et al., 2021) uses cosine similarity (Sattler et al., 2020) between
gradients to quantify proximity between clients’ data distributions and subsequently group them
into clusters. However, cosine similarity cannot help distinguish between clients with balanced and
those with imbalanced datasets. Motivated by this observation, we introduce a new distance measure
that incorporates estimates of data heterogeneity Ĥ(D(k)). In particular, the proposed measure of
distance between clients u and k that we use to form clusters is defined as

Distance(u, k) = λarc cos
(

∆b(u) ·∆b(k)

|∆b(u)| · |∆b(k)|

)
+ (1− λ)

∣∣∣Ĥ(D(u))− Ĥ(D(k))
∣∣∣ , (9)

where the first term is akin to the cosine similarity used by CS with the major difference that we
compute it using only the updates of the bias in the output layer, which is much more efficient
than using the weights of the entire network; λ is a pre-defined hyper-parameter (set to 0.1 in all
our experiments). For small λ, the second term dominates when there are clients with different
levels of statistical heterogeneity; this allows emergence of clusters that group together clients with
balanced datasets. The second term is small when clients have data with similar levels of statistical
heterogeneity; in that case, the distance measure reduces to the conventional cosine similarity.

3.4 HIERARCHICAL CLUSTERED SAMPLING

To select K out of N clients in an FL system, we first organize the clients into M ≥ K groups via the
proposed Hierarchical Clustered Sampling (HiCS) technique. In particular, during the first ⌈N/K⌉
training rounds the server randomly (without replacement) selects clients and collects from them
local updates of ∆b(k); the server then estimates Ĥt(D(k)) for each selected client k and clusters the
clients using the distance measure defined in Eq. 9. Let Gt

1, . . . , G
t
M denote the resulting M clusters

at global round t, and let H̄t
m = 1

|Gm|
∑

k∈Gm
Ĥt(D(k)) characterize the average heterogeneity of

clients in cluster m, m ∈ [M ]. Having computed H̄t
m, HiCS selects a cluster according to the

probability vector πt, and then from the selected cluster selects a client according to the probability
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vector p̃t
m. The two probability vectors πt and p̃t

m are defined as

πt =

[
exp(γtH̄t

1)∑M
m=1 exp(γ

tH̄t
m)

, . . . ,
exp(γtH̄t

M )∑M
m=1 exp(γ

tH̄t
m)

]
, p̃t

m =

[
pk1∑

k∈Gm
pk

, . . . ,
pk|Gm|∑
k∈Gm

pk

]
,

(10)
where k1, . . . , k|Gm| are the indices of clients in cluster Gm, γt = γ0(1− t

T ) denotes an annealing
hyper-parameter, and T is the number of global rounds. The annealing parameter is scheduled such
that at first it promotes sampling clients with balanced data, thus accelerating and stabilizing the
convergence of the global model. To avoid overfitting potentially caused by repeatedly selecting a
small subset of clients, the annealing parameter is gradually reduced to γt ≈ 0, when the server
samples the clusters uniformly. The described procedure is formalized as Algorithm 1.

3.5 CONVERGENCE ANALYSIS

Adopting the standard assumptions of smoothness, unbiased gradients and bounded variance (Chen
et al., 2020), the following theorem holds for FedAvg with SGD optimizer.

Theorem 2 Assume Fk(·) is L-smooth for all k ∈ [N ]. Let θt denote parameters of the global
model and let F (·) be defined as in Eq. 1. Furthermore, assume the stochastic gradient estimator
gk(θ

t) is unbiased and the variance is bounded such that E ∥gk(θt)−∇Fk(θ
t)∥2 ≤ σ2. Let η and

R be the learning rate and the number of local epochs, respectively. If the learning rate is such that
η ≤ 1

8LR , R ≥ 2, then

min
t∈[T ]

∥∥∇F (θt)
∥∥2 ≤ 1

T

(
F (θ0)− F (θ∗)

A1
+A2

T −1∑
t=0

N∑
k=1

ωt
kσ

2
k

)
+Φ, (11)

where A1, A2, Φ are positive constants, and ωt
k is the probability of sampling client k at round t.

Note that only the second term in the parenthesis on the right-hand side of the bound in Theorem 2
is related to the sampling method Π. Under Assumption 1,

N∑
k=1

ωt
kσ

2
k ≤ −

N∑
k=1

ωt
k

exp
(
βH(D(k))

)
exp (βH(D0))

ρ+ κ = −HΠ + κ. (12)

If the server samples clients with weights proportional to pk, the statistical heterogeneity of the
entire FL system may be characterized by HM =

∑N
k=1 pk

exp(β(H(D(k)))
exp(β(H(D0))

ρ. If all clients have class-
imbalanced data, HM is small and thus random sampling leads to unsatisfactory convergence rate
(as indicated by Theorem 2). On the other hand, since the clients sharing a cluster have similar data
entropy, the proposed HiCS-FL leads to ωt

k = pk exp(γtĤt(D(k)))∑N
j=1 pj exp(γtĤt(D(j)))

. When training starts, HΠ is

large because the server tends to sample clients with higher pk exp(γtH(D(k))); as γt decreases,
HΠ eventually approaches HM . Further details and the proof of the theorem are in Appendix A.7.

4 EXPERIMENTS

Setup. We evaluate the proposed HiCS-FL algorithm on three benchmark datasets (FMNIST, CI-
FAR10 and CIFAR100) using different CNN architectures. We use four baselines: random sam-
pling, pow-d (Cho et al., 2020), clustered sampling (CS) (Fraboni et al., 2021) and DivFL (Balakr-
ishnan et al., 2022). To generate non-IID data partitions, we follow the strategy in (Yurochkin et al.,
2019), utilizing Dirichlet distribution with different concentration parameters α which controls the
level of heterogeneity (smaller α leads to generating less balanced data). In a departure from previ-
ous works we utilize several different α to generate data partitions for a single experiment, leading to
a realistic scenario of varied data heterogeneity across different clients. To quantify the performance
of the tested methods, we use two metrics: (1) average training loss and variance, and (2) test accu-
racy of the learned global model. For better visualization, data points in the results are smoothened
by a Savitzky–Golay filter with window length 13 and the polynomial order set to 3. Further details
of the experimental setting and a visualization of data partitions are in Appendix A.1 and A.10.
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4.1 AVERAGE TRAINING LOSS AND VARIANCE

FMNIST. We run FedAvg with SGD to train a global model in an FL system with 50 clients, where
10% of clients are selected to participate in each round of training. The data partitions are generated
using one of 3 sets of the concentration parameter α values: (1) {0.001, 0.002, 0.005, 0.01, 0.5}; (2)
{0.001, 0.002, 0.005, 0.01, 0.2}; (3) {0.001}. These are used to generate clients’ data so as to emu-
late the following scenarios: (1) 80% of clients have severely imbalanced data while the remaining
20% have balanced data; (2) 80% clients have severely imbalanced data while the remaining 20%
have mildly imbalanced data; (3) all clients have severely imbalanced data. Note that HM mono-
tonically decreases as we go through settings (1) to (3). For a fair comparison, pow-d and DivFL
are deployed with their ideal settings where the server requires all clients to precompute in each
round a metric that is then used for client selection. Figure 2 shows that HiCS-FL outperforms other
methods across different settings, exhibiting the fastest convergence rates and the least amount of
variance. Particularly significant is the acceleration of convergence in setting (1) where 20% of the
participating clients have balanced data. Figure 4(a) shows that when all clients have severely im-
balanced data, HiCS-FL performs similarly to (Fraboni et al., 2021) (as expected, see Section 3.3),
helping achieve significant reduction of training variations as evident by a smooth loss trajectory.

Figure 2: Test accuracy for the global model on 3 groups of data partitions of FMNIST dataset.

CIFAR10. Here we compare the performance of HiCS-FL to FedProx (Li et al., 2020b) running
Adam optimizer (Kingma & Ba, 2014) on the task of training an FL system with 50 clients, where
20% of clients are selected to participate in each training round. Similar to the experiments on
FMNIST, 3 sets of the concentration parameter α are considered: (1) {0.001, 0.01, 0.1, 0.5, 1};
(2) {0.001, 0.002, 0.005, 0.01, 0.5}; (3) {0.001, 0.002, 0.005, 0.01, 0.1}. The interpretation of the
scenarios emulated by these setting is as same as in the FMNIST experiments. Figure 3 demonstrates
improvement of HiCS-FL over all the other methods. HiCS-FL exhibits particularly significant
improvements in settings (2) and (3), where 80% of the clients with extremely imbalanced data
benefit from 20% of the clients with either balanced or mildly imbalanced data. The advantage of
HiCS-FL in setting (1) where all clients have relatively high data heterogeneity is relatively modest
(see Fig. 3) because the system’s HM is relatively large (see discussion in Section 3.5). It is worth
pointing out that in Figure 4(b) the variance of HiCS-FL increases because HiCS-FL gradually
reduces γt, eventually becoming plain vanilla random sampling.

Figure 3: Test accuracy of the global model on three data partitions of CIFAR10 dataset.

CIFAR100. As in the CIFAR10 experiments, we compare HiCS-FL to FedProx running Adam
optimizer but now consider training of an FL system with 100 clients, where 20% of the clients
are selected to participate in each round of training. We consider two settings of the concentration
parameter α: (1) {0.001, 0.01, 0.1, 0.5, 1} and (2) {0.001, 0.005, 0.01, 0.1, 1}. Setting (1) emu-
lates the scenario where clients have a range of heterogeneity profiles, from extremely imbalanced,
through mildly imbalanced, to balanced, while setting (2) corresponds to the scenario where 80% of

8
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Figure 4: Average training loss and standard deviation of HiCS-FL compared to four baselines for
setting (3) on FMNIST and CIFAR10 datasets. More results provided in Appendix A.12.

the clients have extremely imbalanced data while the remaining 20% have balanced data. The sys-
tem’s H(1)

M for setting (1) is larger than H(2)
M for setting (2), which is reflected in a more significant

improvements achieved by HiCS-FL in the latter setting, as shown in Figure 5.

4.2 ACCELERATING THE TRAINING CONVERGENCE

Figure 5: CIFAR100 acc.

In this section we report the communication costs required to achieve
convergence when using HiCS-FL, and compare those results with
the competing schemes. For brevity, we select one result from each
experiment conducted on the considered three datasets, and display
them in Table 1. As can be seen from the table, HiCS-FL significantly
reduces the number of communication rounds needed to reach target
test accuracy. On FMNIST, HiCS-FL needs 60 rounds to reach test
accuracy 0.75, achieving it 2.5 times faster than the random sampling
scheme. On CIFAR10, HiCS-FL requires only 123 rounds to reach
0.6 test accuracy, which is 7.3 times faster than random sampling.
Acceleration on CIFAR100 is relatively modest but HiCS-FL still
outperforms other methods, and does so up to 1.63 times faster than
random sampling.

Table 1 also shows that HiCS-FL provides the reported improve-
ments without introducing major computational and communication
overhead. The only additional computation is due to estimating data heterogeneity and performing
clustering utilizing bias updates, which scales with the total number of classes but does not increase
with the size of the neural network model |θt|. Remarkably, HiCS-FL outperforms pow-d, Clustered
Sampling and DivFL in terms of convergence speed, variance and test accuracy while requiring
significantly less computations. More details are provided in Appendix A.13.

Table 1: The number of communication rounds needed to reach a certain test accuracy in the ex-
periments on FMNIST, CIFAR10 and CIFAR100. The columns “extra comp.” and “extra comm.”
denote the computation and communication complexity of additional operations in each sampling
scheme compared to random sampling. All results are for the concentration parameter setting (2).

FMNIST CIFAR10 CIFAR100 extra extra
Scheme acc = 0.75 speedup acc = 0.6 speedup acc = 0.3 speedup comp. comm.
Random 149 1.0× 898 1.0× 549 1.0× - -
pow-d 79 1.8× 1037 0.9× 770 0.71× O(

∣∣θt∣∣) O(
∣∣θt∣∣)

CS 114 1.3× 748 1.2× 530 1.03× O(
∣∣θt∣∣) -

DivFL 478 0.3× 1417 0.6× 1345 0.4× O(
∣∣θt∣∣) O(

∣∣θt∣∣)
HiCS-FL 60 2.5× 123 7.3× 336 1.63× O(C) -

5 CONCLUSION

In this paper, we studied federated learning systems where clients that own non-IID data collabo-
ratively train a global model; the system operates under communication constraints and thus only a
fraction of clients participates in any given round of training. We developed HiCS-FL, a hierarchi-
cal clustered sampling method which estimates clients’ data heterogeneity and uses this information
to cluster and select clients to participate in training. We analyzed the performance of the pro-
posed heterogeneity estimation method, and the convergence of training a FL system that deploys
HiCS-FL. Extensive benchmarking experiments on three datasets demonstrated significant benefits
of the proposed method, including improvement in convergence speed, variance and test accuracy,
accomplished with only a minor computational overhead.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N Whatmough,
and Venkatesh Saligrama. Federated learning based on dynamic regularization. arXiv preprint
arXiv:2111.04263, 2021.

Ravikumar Balakrishnan, Tian Li, Tianyi Zhou, Nageen Himayat, Virginia Smith, and Jeff Bilmes.
Diverse client selection for federated learning via submodular maximization. In International
Conference on Learning Representations, 2022.

Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A systematic study of the class imbalance
problem in convolutional neural networks. Neural networks, 106:249–259, 2018.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

Huancheng Chen and Haris Vikalo. Federated learning in non-iid settings aided by differentially
private synthetic data. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5026–5035, 2023.

Huancheng Chen, Chaining Wang, and Haris Vikalo. The best of both worlds: Accurate global and
personalized models through federated learning with data-free hyper-knowledge distillation. In
The Eleventh International Conference on Learning Representations, 2023.

Wenlin Chen, Samuel Horvath, and Peter Richtarik. Optimal client sampling for federated learning.
arXiv preprint arXiv:2010.13723, 2020.

Yae Jee Cho, Jianyu Wang, and Gauri Joshi. Client selection in federated learning: Convergence
analysis and power-of-choice selection strategies. arXiv preprint arXiv:2010.01243, 2020.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared repre-
sentations for personalized federated learning. In International Conference on Machine Learning,
pp. 2089–2099. PMLR, 2021.

Sever S Dragomir, Marcel L Scholz, and Jadranka Sunde. Some upper bounds for relative entropy
and applications. Computers & Mathematics with Applications, 39(9-10):91–100, 2000.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A meta-
learning approach. arXiv preprint arXiv:2002.07948, 2020.

Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco Lorenzi. Clustered sampling: Low-
variance and improved representativity for clients selection in federated learning. In International
Conference on Machine Learning, pp. 3407–3416. PMLR, 2021.

Jack Goetz, Kshitiz Malik, Duc Bui, Seungwhan Moon, Honglei Liu, and Anuj Kumar. Active
federated learning. arXiv preprint arXiv:1909.12641, 2019.

Weituo Hao, Mostafa El-Khamy, Jungwon Lee, Jianyi Zhang, Kevin J Liang, Changyou Chen,
and Lawrence Carin Duke. Towards fair federated learning with zero-shot data augmentation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3310–3319, 2021.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.

Taehyeon Kim, Sangmin Bae, Jin-woo Lee, and Seyoung Yun. Accurate and fast federated learning
via combinatorial multi-armed bandits. arXiv preprint arXiv:2012.03270, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

10



Under review as a conference paper at ICLR 2024

Fan Lai, Xiangfeng Zhu, Harsha V Madhyastha, and Mosharaf Chowdhury. Oort: Efficient federated
learning via guided participant selection. In OSDI, pp. 19–35, 2021.

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10713–10722,
2021a.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE signal processing magazine, 37(3):50–60, 2020a.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Sys-
tems, 2:429–450, 2020b.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
learning through personalization. In International Conference on Machine Learning, pp. 6357–
6368. PMLR, 2021b.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Ihab Mohammed, Shadha Tabatabai, Ala Al-Fuqaha, Faissal El Bouanani, Junaid Qadir, Basheer
Qolomany, and Mohsen Guizani. Budgeted online selection of candidate iot clients to participate
in federated learning. IEEE Internet of Things Journal, 8(7):5938–5952, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Monica Ribero and Haris Vikalo. Communication-efficient federated learning via optimal client
sampling. arXiv preprint arXiv:2007.15197, 2020.

Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. IEEE transactions on neu-
ral networks and learning systems, 32(8):3710–3722, 2020.

Ronald W Schafer. What is a savitzky-golay filter?[lecture notes]. IEEE Signal processing magazine,
28(4):111–117, 2011.

Li Shen, Zhouchen Lin, and Qingming Huang. Relay backpropagation for effective learning of
deep convolutional neural networks. In Computer Vision–ECCV 2016: 14th European Confer-
ence, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part VII 14, pp. 467–482.
Springer, 2016.

Fang Shi, Weiwei Lin, Lisheng Fan, Xiazhi Lai, and Xiumin Wang. Efficient client selection based
on contextual combinatorial multi-arm bandits. IEEE Transactions on Wireless Communications,
2023.

Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau en-
velopes. Advances in Neural Information Processing Systems, 33:21394–21405, 2020.

Minxue Tang, Xuefei Ning, Yitu Wang, Jingwei Sun, Yu Wang, Hai Li, and Yiran Chen. Fedcor:
Correlation-based active client selection strategy for heterogeneous federated learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10102–
10111, 2022.
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A APPENDIX

A.1 DETAILS OF THE EXPERIMENTS

A.1.1 GENERAL SETTINGS

The experimental results were obtained using Pytorch (Paszke et al., 2019). In the experiments
involving FMNIST, each client used a CNN-based classifier with two 5 × 5-convolutional layers
and two 2 × 2-maxpooling layers (with a stride of 2), followed by a fully-connected layer. In the
experiments involving CIFAR10/CIFAR100, each client used a CNN-based classifier with three 3×
3-convolutional layers and two 2× 2-maxpooling layers (with a stride of 2), followed by two fully-
connected layers; dimension of the hidden layer was 64. The optimizers used for model training
in the experiments on FMNIST and CIFAR10/CIFAR100 were the mini-batch stochastic gradient
descent (SGD) and Adam (Kingma & Ba, 2014), respectively. The learning rate was initially set
to 0.001 and then decreased every 10 iterations, with a decay factor 0.5. The number of global
communication rounds was set to 200, 500 and 1000 for the experiments on FMNIST, CIFAR10
and CIFAR100, respectively. In all the experiments, the number of local epochs R was set to 2
and the size of a mini-batch was set to 64. The sampling rate (fraction of the clients participating
in a training round) was set to 0.1 for the experiments on FMNIST, and to 0.2 for the experiments
on CIFAR10/CIFAR100. For the sake of visualization, data points in the presented graphs were
smoothened by a Savitzky–Golay filter (Schafer, 2011) with window length 13 and the polynomial
order set to 3.

A.1.2 HYPER-PARAMETERS

In all experiments, the hyper-parameter µ of the regularization term in FedProx (Li et al., 2020b)
was set to 0.1. In the Power-of-Choice (pow-d) (Cho et al., 2020) selection strategy, d was set to the
total number of clients: 50 in the experiments on FMNIST and CIFAR10, 100 in the experiments
on CIFAR100. When running DivFL (Balakrishnan et al., 2022), we used the ideal setting where 1-
step gradients were requested from all client in each round (regardless of their participation status),
similar to the Power-of-Choice settings. For HiCS-FL (our method), the scaling parameter T (tem-
perature) used in data heterogeneity estimation was set to 0.0025 in the experiments on FMNIST
and to 0.0015 in the experiments on CIFAR10/CIFAR100. In all experiments, parameter λ which
multiplies the difference between clients’ estimated data heterogeneity (used in clustering) was set to
0.1. In all experiments, the number of clusters m was for convenience set to be equal to the number
of selected clients K. The coefficient γ0 was set to 4 in the experiments on FMNIST and CIFAR10
while set to 2 in the experiments on CIFAR100. To group clients, both Clustered Sampling (Fraboni
et al., 2021) and HiCS-FL (our method) utilized an off-the-shelf clustering algorithm performing
hierarchical clustering with Ward’s Method.

A.2 EMPIRICAL VALIDATION OF ASSUMPTION 1

To illustrate and empirically validate Assumption 1, we conducted extensive experiments on FM-
NIST and CIFAR10 with the same model mentioned in Section A.1. In particular, we varied α
over 250 values in the interval [0.01, 50] to generate data partitions allocated to 250 clients; entropy
of the generated label distributions ranged from 0 to ln 10 (maximum). In these experiments, we
allowed all clients to participate in each of 500 training rounds. To facilitate the desired study, in
addition to these 250 clients we also simulated a super-client which owns a data set aggregating
the data from all the clients (the set of labels in the aggregated dataset is uniformly distributed).
In each round, clients start from the initialized global model and compute local gradients on their
datasets; the super-client does the same on the aggregated dataset. The server computes and records
squared Euclidean norm of the difference between the local gradients and the “true” gradient (i.e.,
the super-client’s gradient). In each round, the difference between the local gradient and the true
gradient changes in a pattern similar to what is stated in Assumption 1. As an illustration, we plot
all such gradient differences computed during the entire training process of a client. Specifically,
the server computes the difference between local gradient and the true gradient in each round of
training, obtaining 250× 500 = 12500 data points that correspond to 250 data partitions. For better
visualization, we merged adjacent points.
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The results obtained by following these steps in experiments on FMNIST and CIFAR10 are shown
in Figure 6. For a more informative visualization, the horizontal coordinate of a point in the scatter
plot is H(D(k)), while the vertical coordinate is ∥ηt∇Fk(θ

t)− ηt∇F (θt)∥2. The dashed lines
correspond to the curves y = − exp(β [x−H(D0)])ρ+κ that envelop the majority of the generated
points. In the case of FMNIST, the blue dashed line is parametrized by β = 1.0, ρ = 0.13, and
κ = 0.14 while the green dashed line is parametrized by β = 1.5, ρ = 0.025, and κ = 0.022;
these two lines envelop 95% of the generated points. In the case of CIFAR10, the blue dashed line
is parametrized by β = 2.0, ρ = 0.30, and κ = 0.36 while the green dashed line is parametrized by
β = 1.8, ρ = 0.15, and κ = 0.20; as in the other plot, these two lines envelop 95% of the generated
points. As the plots indicate, the difference between the local gradient and the true gradient increases
as H(D(k)) decreases, implying that the local gradient computed by a client with more balanced data
is closer to the true gradient.

(a) FMNIST (b) CIFAR10

Figure 6: Visualization of the difference between local gradients and the global gradient (evaluated
if all the data is centrally collected).

A.3 GRADIENT OF THE OUTPUT (FULLY CONNECTED) LAYER’S BIAS

Given a batch of samples (x(j,n), y(j,n)), the cross-entropy loss is readily computed as
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where B is the batchsize; l is the number of mini-batches; C is the number of classes; d is the
dimension of the hidden space; z

(j,n)
d denotes the d-th feature in the hidden space given sample

x(j,n) in the j-th batch; wd,c and bc denote the weight of z(j,n)d and the bias for the neuron that
outputs the probability of the class c, respectively; and q
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class c. The gradient of the bias bi given sample x(j,n) can be computed by the chain rule as
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If i = y(j,n),
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By plugging Eq. 18 and 19 in Eq. 15, we obtain
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A.4 EXPECTATION OF THE LOCAL UPDATE ∆b(k)

By combining Eq. 4 and 5 and taking expectation, we obtain
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exp(q

(j,n,r)
c )∑C

c=1 exp(q
(j,n,r)
c )

]

− η

R∑
r=1

(1−D
(k)
i )E(x,y)∼B−i

[
exp(q

(j,n,r)
i )∑C

c=1 exp(q
(j,n,r)
c )

]

= η

R∑
r=1

D
(k)
i

∑
c ̸=i

E(x,y)∼B−c

[
s−c
c (x)

]
− η

R∑
r=1

(1−D
(k)
i )E(x,y)∼B−i

[
s−i
i (x)

]

= ηR

D
(k)
i

∑
c ̸=i

Ec − (1−D
(k)
i )Ei


= ηR

(
D

(k)
i

C∑
c=1

Ec − Ei

)
.

(21)

15



Under review as a conference paper at ICLR 2024

Note that
C∑
i=1

Ei =
C∑
i=1

E(x,y)∼B−i

[
s−i
i (x)

]
= E

 C∑
i=1

1

C − 1

∑
c̸=i

1

BlD
(k)
c

l∑
j=1

B∑
n=1

I{y(j,n) = c} exp(q
(j,n)
i )∑C

c=1 exp(q
(j,n)
c )


=

1

C − 1

C∑
i=1

1

BlD
(k)
i

l∑
j=1

B∑
n=1

P{y(j,n) = i}
∑

c ̸=i exp(q
(j,n)
c )∑C

c=1 exp(q
(j,n)
c )

= − C

C − 1

1

Bl

l∑
j=1

B∑
n=1

exp(q
(j,n)

y(j,n))∑C
c=1 exp(q

(j,n)
c )

+
C

C − 1

(22)

A comparison to LCE in Eq. 13 reveals that as LCE decreases during training, so does
∑C

i=1 Ei.
Given an untrained/initialized neural network model, E0

i = 1/C for ∀i ∈ [C], i.e.,
∑C

i=1 E0
i =

− 1
C−1 + C

C−1 = 1. At global round T , if L∗
CE = 0, then

∑C
i=1 ET

i = − C
C−1 + C

C−1 = 0.

A.5 PRIVACY OF D(k)

According to Eq. 6, the server is able to obtain C linear equations from each client,

E
[
∆b

(k)
i

]
= ηR

(
D

(k)
i

C∑
c=1

Ec − Ei

)
, for ∀i ∈ [C], (23)

C∑
i=1

D
(k)
i = 1, (24)

where C denotes the number of classes. Suppose E[∆b
(k)
i ] are known by the server. Then D

(k)
i , the

variables in the aforementioned equations, cannot be determined uniquely since there are C variables
and C + 1 equations. Therefore, the server is unable to infer clients’ true data label distribution and
the privacy of D(k) is protected.

A.6 PROOF OF THEOREM 1

In Section A.3 we derived an expression for the gradient of the bias in the output layer given a single
sample (x(j,n), y) in the mini-batch. It is worthwhile making the following two observations:

• the sign of the y(j,n)-th component of ∇bL(j,n)
CE (x(j,n), y(j,n)) is opposite of the sign of the

other components; and

• the y(j,n)-th component of ∇bL(j,n)
CE (x(j,n), y(j,n)) is equal in magnitude to all other com-

ponents combined.

Proof: Let ∆b(k) = [∆b
(k)
1 , . . . ,∆b

(k)
C ] denote the local update (made by client k) of the bias in

the output layer of the neural network model, and let D(k) = [D
(k)
1 , . . . , D

(k)
C ] be the (unknown)

true data label distribution,
∑C

i=1 D
(k)
i = 1. Assuming the learning rate η and R local epochs, the

expectation of the local update of ∆b(k) is

E
[
∆b

(k)
i

]
= ηR

(
D

(k)
i

C∑
c=1

Ec − Ei

)
. (25)

Data heterogeneity can be captured via entropy, H(D(k)) = −
∑C

c=1 D
(k)
i lnD

(k)
i , where higher

H(D(k)) indicates that client k has more balanced data. However, since we do not have access to
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the client’s data distribution, we instead define and use as a measure of heterogeneity Ĥ(D(k)) ≜
H(softmax(∆b(k), T )), where

softmax(∆b(k), T )i =
exp(∆b

(k)
i /T )∑C

c=1 exp(∆b
(k)
c /T )

, (26)

and where T denotes the temperature of the softmax operator. Suppose there are two clients,
u and k, with class-balanced and class-imbalanced data; let D(u) and D(k) denote their data
label distributions, respectively, while D̂(u) and D̂(k) are computed by softmax(∆b(u), T ) and
softmax(∆b(k), T ). Without a loss of generality, we can re-parameterize D̂(u) as

D̂(u) = ϵU+

C∑
i=1

ϵiZi, (27)

where U = [ 1C , . . . , 1
C ] denotes uniform distribution; i-th component of Zi is 1 while the remaining

components are 0; ϵ and ϵi are all non-negative such that ϵ +
∑C

i=1 ϵi = 1. We can always set
minj ϵj = 0; otherwise, let ϵ

′
= ϵ + minj ϵj and ϵ

′

i = ϵi − minj ϵj , ∀i ∈ [C]; ϵ quantifies how
close is D̂(u) to U. Due to the concavity of entropy,

H(D̂(u)) ≥ ϵH(U) +

C∑
i=1

ϵiH(Zi) = ϵ lnC. (28)

We will find the following lemma useful.

Lemma 1 For two probability vectors p and q with dimension C, the Kullback–Leibler divergence
between p and q satisfies

KLD(p||q) ≥ 1

2
∥p− q∥21 , (29)

where ∥p− q∥1 =
∑C

i=1 |pi − qi|.

For the proof of the lemma, please see (Dragomir et al., 2000). Applying it, we obtain

KLD(D̂(k)||U) = H(U)−H(D̂(k)) ≥ 1

2

∥∥∥D̂(k) −U
∥∥∥2
1
≥ 1

2

∥∥∥D̂(k) −U
∥∥∥2
2
. (30)

Combining Eq. 28 and Eq. 30, we obtain

H(D̂(u))−H(D̂(k)) ≥ (ϵ− 1) lnC +
1

2

∥∥∥D̂(k) −U
∥∥∥2
2
. (31)

By taking expectations of both sides,

E
[
H(D̂(u))−H(D̂(k))

]
≥ (E[ϵ]− 1) lnC +

1

2
E
[∥∥∥D̂(k) −U

∥∥∥2
2

]
. (32)

Since
∥∥∥D̂(k) −U

∥∥∥2
2

is convex (composition of the Euclidean norm and softmax), according to
Jensen’s inequality

E
[
H(D̂(u))−H(D̂(k))

]
≥ (E[ϵ]− 1) lnC +

1

2

∥∥∥D̂(k)(E[∆b(k)])−U
∥∥∥2
2
, (33)

where

D̂(k)(E[∆b(k)])i =
exp

(
ηR
(
D

(k)
i

∑C
c=1 Ec − Ei

)
/T
)

∑C
j exp

(
ηR
(
D

(k)
j

∑C
c=1 Ec − Ej

)
/T
) . (34)

Selecting T such that ηR
(
D

(k)
i

∑C
c=1 Ec − Ei

)
/T is sufficiently small and applying the first-order

Taylor’s expansion of ex around 0, we obtain
C∑
j

exp

(
ηR

(
D

(k)
j

C∑
c=1

Ec − Ej

)
/T

)
=

C∑
j

1 + ηR

C∑
j

(
D

(k)
j

C∑
c=1

Ec − Ej

)
/T = C, (35)
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where
∑C

j=1 D
(k)
j = 1. This leads to a simplified D̂(k)(E[∆b(k)]),

D̂(k)(E[∆b(k)])i =
1 + ηR

(
D

(k)
i

∑C
c=1 Ec − Ei

)
/T

C
. (36)

Substituting Eq. 36 for the second term on the right-hand side of ineq. 33 leads to∥∥∥D̂(k)(E[∆b(k)])−U
∥∥∥2
2
=

(
ηR

CT

)2 C∑
i=1

(
D

(k)
i

C∑
c=1

Ec − Ei

)2

. (37)

Now, consider

D̂(u) −U = (ϵ− 1)U+

C∑
i=1

ϵiZi. (38)

Taking expectations of both sides,

E

[
(ϵ− 1)U+

C∑
i=1

ϵiZi

]
= E

[
D̂(u) −U

]
≥ D̂(u)(E[∆b(u)])−U. (39)

The above inequality holds component-wise, so for the j-component (ϵj = 0)

E[
1

C
(ϵ− 1) + ϵj ] = E[

1

C
(ϵ− 1)] ≥ D̂(u)(E[∆b(u)])j −Ui =

ηR
(
D

(u)
j

∑C
c=1 Ec − Ej

)
CT

. (40)

Therefore,

E[ϵ]− 1 ≥
ηR
(
D

(u)
j

∑C
c=1 Ec − Ej

)
T

≥ min
i

ηR
(
D

(u)
i

∑C
c=1 Ec − Ei

)
T

. (41)

Taking absolute value of both sides yields

|E[ϵ]−1| ≤ ηR

T
max

i

∣∣∣∣∣D(u)
i

C∑
c=1

Ec − Ei

∣∣∣∣∣ = ηR

T
max

i

∣∣∣∣∣(D(u)
i − 1

C
)

C∑
c=1

Ec − Ei +
1

C

C∑
c=1

Ec

∣∣∣∣∣ . (42)

By applying the triangle inequality we obtain

|E[ϵ]− 1| ≤ ηR

T
max

i

∣∣∣∣D(u)
i − 1

C

∣∣∣∣ C∑
c=1

Ec +
ηR

T
max

i

∣∣∣∣∣ 1C
C∑

c=1

Ec − Ei

∣∣∣∣∣ . (43)

Let δ = maxi

∣∣∣ 1C ∑C
c=1 Ec − Ei

∣∣∣. Since
∑C

c=1 Ec ≤ C 1
C = 1, it holds that

|E[ϵ]− 1| ≤ ηR

T
max

i

∣∣∣∣D(u)
i − 1

C

∣∣∣∣+ ηR

T
δ. (44)

Furthermore, since E[ϵ]− 1 < 0,

E[ϵ]− 1 ≥ −ηR

T
max

i

∣∣∣∣D(u)
i − 1

C

∣∣∣∣− ηR

T
δ. (45)

Note that(
D

(k)
i

C∑
c=1

Ec − Ei

)2

=

(
(D

(k)
i − 1

C
)

C∑
c=1

Ec − Ei +
1

C

C∑
c=1

Ec

)2

=

(
(D

(k)
i − 1

C
)

C∑
c=1

Ec

)2

+

(
1

C

C∑
c=1

Ec − Ei

)2

+ 2

(
C∑

c=1

Ec

)(
D

(k)
i − 1

C

)(
1

C

C∑
c=1

Ec − Ei

)

≥

(
(D

(k)
i − 1

C
)

C∑
c=1

Ec

)2

+ 2

(
C∑

c=1

Ec

)(
D

(k)
i − 1

C

)(
1

C

C∑
c=1

Ec − Ei

)
.

(46)
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Therefore,

C∑
i=1

(
D

(k)
i

C∑
c=1

Ec − Ei

)2

≥

(
C∑

c=1

Ec

)2 C∑
i=1

(
D

(k)
i − 1

C

)2

+ 2

(
C∑

c=1

Ec

)
C∑
i=1

(
D

(k)
i − 1

C

)(
1

C

C∑
c=1

Ec − Ei

)

=

(
C∑

c=1

Ec

)2 C∑
i=1

(
D

(k)
i − 1

C

)2

+ 2

(
C∑

c=1

Ec

)
C∑
i=1

(
D

(k)
i

C

C∑
c=1

Ec −
1

C2

C∑
c=1

Ec +
Ei
C

−D
(k)
i Ei

)

=

(
C∑

c=1

Ec

)2 C∑
i=1

(
D

(k)
i − 1

C

)2

+ 2

(
C∑

c=1

Ec

)(
1

C

C∑
c=1

Ec −
1

C

C∑
c=1

Ec +
1

C

C∑
i=1

Ei −
C∑
i=1

D
(k)
i Ei

)

≥

(
C∑

c=1

Ec

)2 C∑
i=1

(
D

(k)
i − 1

C

)2

+ 2

(
C∑

c=1

Ec

)(
1

C

C∑
c=1

Ec −max
j

Ej

)

≥

(
C∑

c=1

Ec

)2 C∑
i=1

(
D

(k)
i − 1

C

)2

− 2δ.

(47)
Substituting the above expression in Eq. 33, we obtain

E
[
H(D̂(u))−H(D̂(k))

]
≥ −ηR lnC

T
max

j

∣∣∣∣D(u)
j − 1

C

∣∣∣∣− ηR lnC

T
δ (48)

+
1

2

(
ηR

CT

)2
(

C∑
c=1

Ec

)2 C∑
i=1

(
D

(k)
i − 1

C

)2

−
(
ηR

CT

)2

δ, (49)

and, therefore,

E
[
H(D̂(u))−H(D̂(k))

]
≥ 1

2

(
ηR

CT

C∑
c=1

Ec

)2 ∥∥∥D(k) −U
∥∥∥2
2
− ηR lnC

T

∥∥∥D(u) −U
∥∥∥
∞

− Cδ,

(50)

where C = ηR(ηR+C2T lnC)
C2T 2 . ■

A.7 CONVERGENCE ANALYSIS

Here we present the convergence analysis of an FL system deploying FedAvg with SGD wherein
only a small fraction of clients participates in any given round of training. Recall that the objective
function that comes up when training a neural network model is generally non-convex; we make the
standard assumptions of smoothness, unbiased gradient estimate, and bounded variance.

Assumption 2 (Smoothness) Each local objective function Fk(·) is L-smooth,∥∥∇Fk(θ
t+1
k )−∇Fk(θ

t
k)
∥∥
2
≤ L

∥∥θt+1
k − θtk

∥∥
2
. (51)

Assumption 3 (Gradient oracle) The stochastic gradient estimator gk(θ
t,r
k ) = ∇Fk(θ

t,r
k ) + ζt,rk

for each global round t and local epoch r is such that

E[ζt,rk ] = 0 (52)
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and

E
[∥∥ζt,rk

∥∥2 |θt,rk

]
≤ σ2. (53)

With these three assumptions in place, we provide the proof of Theorem 2 stated in the
main paper. The proof relies on the technique previously used in (Chen et al., 2020; Yang
et al., 2021a), where the sampling method is unbiased and thus E

[
1
K

∑
k∈St

∑R
r=1 gk(θ

t,r
k )
]
=∑N

k=1

∑R
r=1 pk∇Fk(θ

t,r
k ). We provide a generalization that holds for any sampling strategy, result-

ing in E
[

1
K

∑
k∈St

∑R
r=1 gk(θ

t,r
k )
]
=
∑N

k=1

∑R
r=1 ω

t
k∇Fk(θ

t,r
k ), where ωt

k denotes the probabil-

ity of sampling client k in round t under sampling strategy Π. Note that
∑N

k=1 ω
t
k = 1. We assume

that all clients deploy the same number of local epochs R and use learning rate η at round t.

A.7.1 KEY LEMMA

Lemma 2 (Lemma 2 in (Yang et al., 2021a)) Instate Assumptions 1, 2 and 3. For any step size η
such that η ≤ 1

8LR , for any client k it holds that

E
[∥∥θt,rk − θt

∥∥2] ≤ 5Rη2(σ2 + 6Rσ2
k) + 30R2η2

∥∥∇F (θt)
∥∥2 . (54)

Proof of Lemma 2: For any client k ∈ [N ] and r ∈ [R],

E
[∥∥θt,rk − θt

∥∥2] = E
[∥∥∥θt,r−1

k − θt − ηgk(θ
t,r−1
k )

∥∥∥2]
= E[∥θt,r−1

k − θt − η(gk(θ
t,r−1
k )−∇Fk(θ

t,r−1
k ) +∇Fk(θ

t,r−1
k )

−∇Fk(θ
t) +∇Fk(θ

t)−∇F (θt) +∇F (θt))∥2]

≤
(
1 +

1

2R− 1

)
E
∥∥∥θt,r−1

k − θt
∥∥∥2 + η2E

∥∥∥gk(θt,r−1
k )−∇Fk(θ

t,r−1
k )

∥∥∥2
+ 6Rη2E

∥∥∥∇Fk(θ
t,r−1
k )−∇Fk(θ

t)
∥∥∥2 + 6Rη2E

∥∥gk(∇Fk(θ
t)−∇F (θt)

∥∥2
+ 6Rη2E

∥∥∇F (θt)
∥∥2

≤
(
1 +

1

2R− 1

)
E
∥∥∥θt,r−1

k − θt
∥∥∥2 + η2σ2 + 6Rη2L2E

∥∥∥θt,r−1
k − θt

∥∥∥2
+ 6Rη2σ2

k + 6Rη2E
∥∥∇F (θt)

∥∥2
=

(
1 +

1

2R− 1
+ 6Rη2L2

)
E
∥∥∥θt,r−1

k − θt
∥∥∥2 + η2σ2 + 6Rη2σ2

k

+ 6Rη2E
∥∥∇F (θt)

∥∥2
≤
(
1 +

1

R− 1

)
E
∥∥∥θt,r−1

k − θt
∥∥∥2 + η2σ2 + 6Rη2σ2

k + 6Rη2E
∥∥∇F (θt)

∥∥2 .
(55)

Unrolling the recursion yields

E
[∥∥θt,rk − θt

∥∥2] ≤ R∑
r=1

(
1 +

1

R− 1

)r−1 (
η2σ2 + 6Rη2σ2

k + 6Rη2E
∥∥∇F (θt)

∥∥2)
≤ (R− 1)

[(
1 +

1

R− 1

)R

− 1

](
η2σ2 + 6Rη2σ2

k + 6Rη2E
∥∥∇F (θt)

∥∥2)
≤ 5Rη2

(
σ2 + 6Rσ2

k

)
+ 30R2η2

∥∥∇F (θt)
∥∥2 .

(56)
■
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A.7.2 PROOF OF THEOREM 2

The model update at global round t is formed as

θt+1 = θt − η
1

K

∑
k∈St

R∑
r=1

gk(θ
t,r
k ), (57)

where θt+1 and θt denote parameters of the global model at rounds t + 1 and t, respectively, and
θt,rk denotes parameters of the local model of client k after r local training epochs. Let

∆t ≜
1

K

∑
k∈St

R∑
r=1

gk(θ
t,r
k ). (58)

Taking the expectations (conditioned on θt) of both sides, we obtain

E
[
F (θt+1)

]
= E

[
F (θt − η∆t)

]
(a)

≤ F (θt)− η
〈
∇F (θt),E

[
∆t
]〉

+
L

2
η2E

[∥∥∆t
∥∥2]

= F (θt) + η
〈
∇F (θt),E

[
R∇F (θt)−R∇F (θt)−∆t

]〉
+

L

2
η2E

[∥∥∆t
∥∥2]

= F (θt)−Rη
∥∥∇F (θt)

∥∥2 + η
〈
∇F (θt),E

[
R∇F (θt)−∆t

]〉︸ ︷︷ ︸
A1

+
L

2
η2 E

[∥∥∆t
∥∥2]︸ ︷︷ ︸

A2

.

(59)
Inequality (a) in the expression above holds due to the smoothness of F (·) (see Assumption 2). Note
that the term A1 can be bounded as

A1 =
〈
∇F (θt),E

[
R∇F (θt)−∆t

]〉
=

〈
∇F (θt),E

[
R∇F (θt)− 1

K

∑
k∈St

R∑
r=1

gk(θ
t,r
k )

]〉

=

〈
∇F (θt),E

[
R∇F (θt)

]
−

N∑
k=1

R∑
r=1

ωt
k∇Fk(θ

t,r
k )

〉

=

N∑
k=1

ωt
k

〈
√
R∇F (θt),− 1√

R
E

[
R∑

r=1

(
∇Fk(θ

t,r
k )−∇F (θt)

)]〉

(a)
=

R

2

∥∥∇F (θt)
∥∥2 + 1

2R

N∑
k=1

ωt
kE

∥∥∥∥∥
R∑

r=1

(
∇Fk(θ

t,r
k )−∇F (θt)

)∥∥∥∥∥
2

− 1

2R

N∑
k=1

ωt
kE

∥∥∥∥∥
R∑

r=1

∇Fk(θ
t,r
k )

∥∥∥∥∥
2

(b)

≤ R

2

∥∥∇F (θt)
∥∥2 + 1

R

N∑
k=1

ωt
kE

∥∥∥∥∥
R∑

r=1

(
∇Fk(θ

t,r
k )−∇Fk(θ

t)
)∥∥∥∥∥

2

+
1

R

N∑
k=1

ωt
kE

∥∥∥∥∥
R∑

r=1

(
∇Fk(θ

t)−∇F (θt)
)∥∥∥∥∥

2

− 1

2R

N∑
k=1

ωt
kE

∥∥∥∥∥
R∑

r=1

∇Fk(θ
t,r
k )

∥∥∥∥∥
2

(c)

≤ R

2

∥∥∇F (θt)
∥∥2 + N∑

k=1

ωt
k

R∑
r=1

E
∥∥∇Fk(θ

t,r
k )−∇Fk(θ

t)
∥∥2

+

N∑
k=1

ωt
k

R∑
r=1

E
∥∥∇Fk(θ

t)−∇F (θt)
∥∥2 − 1

2R

N∑
k=1

ωt
kE

∥∥∥∥∥
R∑

r=1

∇Fk(θ
t,r
k )

∥∥∥∥∥
2

(d)

≤ R

2

∥∥∇F (θt)
∥∥2 + L2

N∑
k=1

ωt
k

R∑
r=1

E
∥∥θt,rk − θt

∥∥2 +R

N∑
k=1

ωt
kσ

2
k − 1

2R

N∑
k=1

ωt
kE

∥∥∥∥∥
R∑

r=1

∇Fk(θ
t,r
k )

∥∥∥∥∥
2

,

(60)
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where equality (a) follows from ⟨x,y⟩ = 1
2 (∥x∥

2
+ ∥y∥2 − ∥x− y∥2), inequality (b) is due to

∥x+ y∥2 ≤ 2 ∥x∥2 + 2 ∥y∥2, inequality (c) holds because ∥
∑n

i=1 zi∥
2 ≤ n

∑n
i=1 ∥zi∥

2, and
inequality (d) follows from Assumptions 1 and 2. By selecting η < 1

8LR and applying Lemma 2 we
obtain

A1 ≤ R

2

∥∥∇F (θt)
∥∥2 + L2

N∑
k=1

ωt
k

R∑
r=1

[
5Rη2(σ2 + 6Rσ2

k) + 30R2η2
∥∥∇F (θt)

∥∥2]

+R

N∑
k=1

ωt
kσ

2
k − 1

2R

N∑
k=1

ωt
kE

∥∥∥∥∥
R∑

r=1

∇Fk(θ
t,r
k )

∥∥∥∥∥
2

=

(
R

2
+ 30L2R3η2

)∥∥∇F (θt)
∥∥2 + 5L2R2η2σ2 + 30L2R3η2

N∑
k=1

ωt
kσ

2
k

+R

N∑
k=1

ωt
kσ

2
k − 1

2R

N∑
k=1

ωt
kE

∥∥∥∥∥
R∑

r=1

∇Fk(θ
t,r
k )

∥∥∥∥∥
2

.

(61)

Furthermore,

A2 = E

∥∥∥∥∥ 1

K

∑
k∈St

R∑
r=1

gk(θ
t,r
k )

∥∥∥∥∥
2


= E

∥∥∥∥∥
N∑

k=1

I{k ∈ St}
K

R∑
r=1

gk(θ
t,r
k )

∥∥∥∥∥
2


= E

∥∥∥∥∥
N∑

k=1

I{k ∈ St}
K

R∑
r=1

gk(θ
t,r
k )−∇Fk(θ

t,r
k ) +∇Fk(θ

t,r
k )

∥∥∥∥∥
2


(a)
= E

∥∥∥∥∥
N∑

k=1

I{k ∈ St}
K

R∑
r=1

gk(θ
t,r
k )−∇Fk(θ

t,r
k )

∥∥∥∥∥
2
+ E

∥∥∥∥∥
N∑

k=1

I{k ∈ St}
K

R∑
r=1

∇Fk(θ
t,r
k )

∥∥∥∥∥
2


(b)

≤ E

[
N∑

k=1

I{k ∈ St}
K

R∑
r=1

∥∥gk(θt,rk )−∇Fk(θ
t,r
k )
∥∥2]+ E

 N∑
k=1

I{k ∈ St}
K

∥∥∥∥∥
R∑

r=1

∇Fk(θ
t,r
k )

∥∥∥∥∥
2


(c)

≤ Rσ2 +

N∑
k=1

ωt
kE

∥∥∥∥∥
R∑

r=1

∇Fk(θ
t,r
k )

∥∥∥∥∥
2

,

(62)
where equation (a) holds because E

[
gk(θ

t,r
k )−∇Fk(θ

t,r
k )
]
= 0, inequality (b) stems from the

Jensen’s inequality, and inequality (c) is due to Assumption 3.

Substituting inequalities (61) and (62) into inequality (59) yields

E
[
F (θt+1)

]
≤ F (θt)−Rη

∥∥∇F (θt)
∥∥2 + η

〈
∇F (θt),E

[
R∇F (θt)−∆t

]〉︸ ︷︷ ︸
A1

+
L

2
η2 E

[∥∥∆t
∥∥2]︸ ︷︷ ︸

A2

≤ F (θt)−Rη

(
1

2
− 30L2R2η2

)∥∥∇F (θt)
∥∥2 + (5L2R2η3 +

LR

2
η2
)
σ2

+
(
30L2R3η3 +Rη

) N∑
k=1

ωt
kσ

2
k +

(
L

2
η2 − η

2R

) N∑
k=1

ωt
kE

∥∥∥∥∥
R∑

r=1

∇Fk(θ
t,r
k )

∥∥∥∥∥
2

.

(63)
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If η < 1
8LR , it must be that 1

2 − 30L2R2η2 > 0 and L
2 η

2 − η
2R < 0, leading to

E
[
F (θt+1)

]
≤ F (θt)−Rη

(
1

2
− 30L2R2η2

)∥∥∇F (θt)
∥∥2

+

(
5L2R2η3 +

LR

2
η2
)
σ2 +

(
30L2R3η3 +Rη

) N∑
k=1

ωt
kσ

2
k.

(64)

By rearranging and summing from t = 0 to t = T − 1 we obtain

E
[
F (θT )

]
− F (θ0) ≤ −Rη

(
1

2
− 30L2R2η2

) T −1∑
t=0

∥∥∇F (θt)
∥∥2

+

(
5L2R2η3 +

LR

2
η2
)
T σ2 +

(
30L2R3η3 +Rη

) T −1∑
t=0

N∑
k=1

ωt
kσ

2
k

≤ −Rη

(
1

2
− 30L2R2η2

)
T min

t∈[T ]

∥∥∇F (θt)
∥∥2

+

(
5L2R2η3 +

LR

2
η2
)
T σ2 +

(
30L2R3η3 +Rη

) T −1∑
t=0

N∑
k=1

ωt
kσ

2
k.

(65)

Let θ∗ denote the optimal model’s parameters, i.e., F (θ∗) ≤ F (θt)∀t ∈ [T ]. Then

min
t∈[T ]

∥∥∇F (θt)
∥∥2 ≤ 1

T

(
F (θ0)− F (θ∗)

A1
+A2

T −1∑
t=0

N∑
k=1

ωt
kσ

2
k

)
+Φ, (66)

where A1 = Rη
(
1
2 − 30L2R2η2

)
, A2 = 60L2R3η3+2Rη

Rη(1−60L2R2η2) and Φ =
(10L2Rη2+Lη)σ2

1−60L2R2η2 .

■

A.8 REGULARIZATION TERMS IN THE OBJECTIVE FUNCTION

The proposed method for estimating clients’ data heterogeneity relies on the properties of gradient
computed for the cross-entropy loss objective. However, the method also applies to the FL algo-
rithms other than FedAvg, in particular those that add a regularization term to combat overfitting,
including FedProx (Li et al., 2020b), FedDyn(Acar et al., 2021) and Moon (Li et al., 2021a). In
the following discussion, we demonstrate that HiCS-FL remains capable of distinguishing between
clients with imbalanced and balanced data when using these other FL algorithms.

A.8.1 FEDPROX

The objective function used by FedProx (Li et al., 2020b) is

Lr
prox = Lr

CE +
µ

2

∥∥θt,rk − θt
∥∥2 , (67)

where θt,rk is the vector of client k’s local model parameters in the r-th local epoch at global round
t. Therefore, contribution of sample (x(j,n), y(j,n)) to the gradient of Lprox in local epoch r is

∂L(j,n,r)
prox

∂bi
=

∂L(j,n,r)
CE
∂bi

+ µ
(
bt,ri − bti

)
, (68)

where bt,r = [bt,r1 , . . . , bt,rC ] denotes parameters of bias in the output layer of the local model, and
bt = [bt1, . . . , b

t
C ] denotes parameters of the global model at round t. We assume the model is

trained by SGD as the optimizer, and hence

bt,ri − bti = bt,r−1
i − ηt

∂L(j,n,r−1)
prox

∂bi
− bti = −ηt

∂L(j,n,r−1)
CE
∂bi

+ (1− ηtµ)(b
t,r−1
i − bti). (69)
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Therefore,

bt,ri − bti = −ηt

r−1∑
s=1

(1− ηtµ)
r−1−s ∂L

(j,n,s)
CE
∂bi

+ (1− ηtµ)
r−1(bti − bti)

= −ηt

r−1∑
s=1

(1− ηtµ)
r−1−s ∂L

(j,n,s)
CE
∂bi

,

(70)

and thus

∂L(j,n,r)
prox

∂bi
=

∂L(j,n,r)
CE
∂bi

− ηtµ

r−1∑
s=1

(1− ηtµ)
r−1−s ∂L

(j,n,s)
CE
∂bi

. (71)

Taking expectation of both sides yields

1

Bl

l∑
j=1

B∑
n=1

R∑
r=1

E

[
∂L(j,n,r)

prox

∂bi

]
=

−E[I{i = y(j,n)}]
∑
c ̸=i

Ec + E[I(i ̸= y(j,n))]Ei


·

R∑
r=1

(
1− ηtµ

r−1∑
s=1

(1− ηtµ)
r−1−s

)

=

R∑
r=1

−D
(k)
i

∑
c̸=i

Ec + (1−D
(k)
i )Ei

(1− ηtµ
1− (1− ηtµ)

r−1

ηtµ

)

=

R∑
r=1

cr

(
−D

(k)
i

C∑
c=1

Ec + Ei

)
,

(72)
where cr = (1 − ηtµ)

r−1 > 0 provided ηt and µ are sufficiently small. Therefore, the expectation
of the local update of bias in the output layer satisfies

E
[
∆b

(k)
i

]
= Cηt

(
D

(k)
i

C∑
c=1

Ec − Ei

)
, (73)

where C =
∑R

r=1 c
r. Eq. (73) is similar to the expression for the expectation of the local updates

of bias when applying FedAvg presented in the main paper; clearly, the analysis of HiCS-FL done
in the context of FedAvg extends to FedProx.

A.8.2 FEDDYN

For FedDyn (Acar et al., 2021), the objective function in local epoch r at global round t is

Lt,r
dyn = Lt,r

CE −
〈
∇Lt−1,R

dyn , θt,rk

〉
+

µ

2

∥∥θt,rk − θt
∥∥2 , (74)

where R denotes the total number of local epochs. The first order condition for local optima implies

∇Lt,r
dyn −∇Lt−1,R

dyn + µ(θt,rk − θt) = 0, (75)
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and, therefore,
∂Lt,r

dyn

∂bi
=

∂Lt−1,R
dyn

∂bi
− µ

(
bt,ri − bti

)
=

∂Lt−2,R
dyn

∂bi
− µ

(
bt−1,R
i − bt−1

i

)
− µ

(
bt,ri − bti

)
= −µ

t−1∑
τ=1

(
bτ,Ri − bτi

)
− µ

(
bt,ri − bti

)
= −µ

t−1∑
τ=1

∆bτi − µ
(
bt,ri − bti

)
= −µ

t−1∑
τ=1

∆bτi − µ

(
−ηt

∂Lt,r−1
dyn

∂bi
+ bt,r−1

i − bti

)

= −µ

t−1∑
τ=1

∆bτi + µηt

(
r−1∑
s=1

∂Lt,s
dyn

∂bi

)
,

(76)

where bt,r = [bt,r1 , . . . , bt,rC ] denotes the bias parameters in the output layer of the local model at
local epoch r, and where ∆bτ = [∆bτ1 , . . . ,∆bτC ] is the local update of the bias at round τ . Since

∂Lt,1
dyn

∂bi
= −µ

t−1∑
τ=1

∆bτi , (77)

it holds that
∂Lt,2

dyn

∂bi
= −µ

t−1∑
τ=1

∆bτi + µηt

(
−µ

t−1∑
τ=1

∆bτi

)
= −µ(1 + µηt)

t−1∑
τ=1

∆bτi (78)

and
∂Lt,3

dyn

∂bi
= −µ

t−1∑
τ=1

∆bτi + µηt

(
−µ

t−1∑
τ=1

∆bτi − (µ+ µ2ηt)

t−1∑
τ=1

∆bτi

)
= −µ(1 + µηt)

2
t−1∑
τ=1

∆bτi .

(79)
By induction,

∂Lt,r
dyn

∂bi
= −µ(1 + µηt)

r−1
t−1∑
τ=1

∆bτi . (80)

Therefore, the expectation of the local update of bias in the output layer at round t can be computed
as

E
[
∆b

(k),t
i

]
=

R∑
r=1

(1 + µηt)
r−1µηt

t−1∑
τ=1

E
[
∆b

(k),τ
i

]
(81)

=
(
(1 + µηt)

R − 1
) t−1∑
τ=1

E
[
∆b

(k),τ
i

]
. (82)

Since the objective function of E
[
∆b

(k),1
i

]
coincides with that of FedAvg,

E
[
∆b

(k),1
i

]
= η1R

(
D

(k)
i

C∑
c=1

Ec − Ei

)
, (83)

where η1 is the learning rate at global round t = 1. Then,

E
[
∆b

(k),2
i

]
= η1R

(
(1 + µη2)

R − 1
)(

D
(k)
i

C∑
c=1

Ec − Ei

)
(84)

= a1a2

(
D

(k)
i

C∑
c=1

Ec − Ei

)
, (85)
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where a1 = η1R and a2 = (1 + µη2)
R − 1. Furthermore,

E
[
∆b

(k),3
i

]
= a1a3(1 + a2)

(
D

(k)
i

C∑
c=1

Ec − Ei

)
, (86)

E
[
∆b

(k),4
i

]
= a1a4(1 + a2 + a3 + a2a3)

(
D

(k)
i

C∑
c=1

Ec − Ei

)
, (87)

and

E
[
∆b

(k),5
i

]
= a1a5(1 + a2 + a3 + a4 + a2a3 + a3a4 + a2a3a4)

(
D

(k)
i

C∑
c=1

Ec − Ei

)
. (88)

By induction,

E
[
∆b

(k),t
i

]
=

(
D

(k)
i

C∑
c=1

Ec − Ei

)
a1at ·

(
1 +

t−3∑
i=0

t−1∑
τ=2

I(τ + i < t)

τ+i∏
i=τ

as

)
(89)

= a

(
D

(k)
i

C∑
c=1

Ec − Ei

)
, (90)

where at = (1 + µηt)
R − 1 and a = a1at

(
1 +

∑t−3
i=0

∑t−1
τ=2 I(τ + i < t)

∏τ+i
i=τ as

)
> 0. After

comparing Eq. (89) with its counterpart in the case of FedAvg, we conclude that the previously
presented analysis of HiCS-FL extends to FedDyn.

A.8.3 MODEL-CONTRASTIVE FEDERATED LEARNING (MOON)

Moon (Li et al., 2021a) relies on the objective function with a contrastive term

Lmoon =
1

Bl

l∑
j=1

B∑
n=1

L(j,n)
CE −µ log

exp(sim(z(j,n), z
(j,n)
glob )/T )

exp(sim(z(j,n), z
(j,n)
glob )/T ) + exp(sim(z(j,n), z

(j,n)
prev )/T )

, (91)

where z(j,n) denotes the output of the feature extractor of the local model θtk, z(j,n)glob is the output

of the feature extractor of the global model θt, and z
(j,n)
prev is the output of the feature extractor of

the local model in the previous round θt−1
k . Since the contrastive term does not depend on the

parameters of bias in the output layer, it holds that

∂L(j,n)
moon

∂bi
=

∂L(j,n)
CE
∂bi

. (92)

Since the expectation of the local updates of bias in the output layer coincides with the one in case
of FedAvg, previously presented analysis of HiCS-FL extends to Moon.

A.9 OPTIMIZATION ALGORITHMS BEYOND SGD

Optimizers beyond SGD utilize different model update rules which in principle may lead to different
properties of the local update of the bias in the output layer. However, for several variants of SGD,
the properties of the local update of the bias remain such that our presented analysis still applies.

A.9.1 SGD WITH MOMENTUM

In each local epoch r, SGD with momentum updates the model according to

mt,r
k = µmt,r−1

k + (1− µ)∇Lt,r
CE, (93)

gt,rk = mt,r
k , (94)

θt,rk = θt,r−1
k − ηtg

t,r
k , (95)
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where mt,r
k denotes the momentum in the r-th local epoch, µ is the weight for the momentum, and

mt,1
k = ∇Lt,1

CE. Then

∆θtk = −ηt

R∑
r=1

gt,rk , (96)

where
mt,1

k = ∇Lt,1
CE, (97)

mt,2
k = µ∇Lt,1

CE + (1− µ)∇Lt,2
CE, (98)

mt,3
k = µ∇Lt,2

CE + (1− µ)∇Lt,3
CE

= µ2∇Lt,1
CE + µ(1− µ)∇Lt,2

CE + (1− µ)∇Lt,3
CE.

(99)

Therefore,

mt,r
k = µr−1∇Lt,1

CE + (1− µ)

r∑
τ=2

µr−τ∇Lt,τ
CE (100)

and thus we have

∆θtk = −ηt

(
R∑

r=2

(
µr−1∇Lt,1

CE + (1− µ)

r∑
τ=2

µr−τ∇Lt,τ
CE

)
+∇Lt,1

CE

)
. (101)

Similar to the discussion in the previous section,

E
[
∆b

(k)
i

]
= ηt

(
R∑

r=2

(
µr−1 + (1− µ)

r∑
τ=2

µr−τ

)
+ 1

)(
D

(k)
i

C∑
c=1

Ec − Ei

)
(102)

= a

(
D

(k)
i

C∑
c=1

Ec − Ei

)
(103)

where a = ηt

(∑R
r=2

(
µr−1 + (1− µ)

∑r
τ=2 µ

r−τ
)
+ 1
)

> 0. Similar result is obtained when
SGD applies Nesterov acceleration as long as the optimizers are not using second-order momentum.

A.9.2 ADAM OPTIMIZER

Recall that the two observations regarding the gradient of LCE still hold when training the model
with an adaptive optimizer such as Adam (Kingma & Ba, 2014). However, Adam updates the model
differently from SGD. In particular, each entry of the gradient has an adaptive learning rate tied to
its magnitude. With an SGD optimizer, the magnitude of the i-th entry of the local update of bias
∆b(k) is approximately proportional to the fraction of the samples with label i, D(k)

i (if Ei is small),

E
[
∆b

(k)
i

]
= ηtR

(
D

(k)
i

C∑
c=1

Ec − Ei

)
. (104)

However, this observation does not hold when using the Adam optimizer for the local update because
each entry has a different learning rate ηt,i and thus

E
[
∆b

(k)
i

]
= ηt,iR

(
D

(k)
i

C∑
c=1

Ec − Ei

)
. (105)

Although the magnitude of E
[
∆b

(k)
i

]
is no longer approximately proportional to D

(k)
i , we can

utilize the sign of E
[
∆b

(k)
i

]
, i.e.,

if D(k)
i ≫ D

(k)
j , then P

(
E
[
∆b

(k)
i

]
> 0
)
≫ P

(
E
[
∆b

(k)
j

]
> 0
)
. (106)

Suppose client k has highly imbalanced data, i.e., H(D(k)) is small. Then the maximal component
maxi D

(k)
i is much larger than the other components; in fact, it is likely to have only one positive
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component in the local update of bias ∆b(k). On the contrary, suppose client u has balanced data
and thus H(D(u)) is large. The maximal component maxi D

(u)
i is then very close to the other

components, and it is likely to observe larger number of positive components in the local update of
∆b(u). While characterizing P(E[∆b

(k)
i ] > 0) appears challenging, we can empirically infer that

client u with more balanced data has a local update of bias ∆b(u) with more positive components.
With

Ĥ(D(u)) ≜ H(softmax(∆b(u), T )), (107)

Ĥ(D(k)) ≜ H(softmax(∆b(k), T )), (108)

Ĥ(D(u)) is more likely to be larger than Ĥ(D(k)). The examples of estimated entropy when utilizing
Adam as the optimizer are provided in Section. A.11.

A.10 VISUALIZATION OF DATA PARTITIONS

To generate non-IID data partitions we follow the strategy in (Yurochkin et al., 2019), utilizing
Dirichlet distribution with different concentration parameters α to control the heterogeneity lev-

els. In particular, the number of samples with label i owned by client k is set to X
(k)
i Ni∑N

j=1 X
(j)
i

,where

X
(1)
i , . . . , X

(N)
i are drawn from Dir(α) and Ni denotes the total number of samples with label i

in the overall dataset. For the setting with multiple α, we divide the overall training set into |α|
equal parts and generate data partitions according to the method above. Figures 7 and 8 illustrate the
class distribution of local clients by displaying the number of samples with different labels; colors
distinguish between magnitudes – the darker the color, the more samples are in the class.

(a) (b) (c)

Figure 7: Results on CIFAR10. Training data is split into 50 partitions according to a Dirichlet distri-
bution (50 clients). The concentration parameter is as follows: (1) α ∈ {0.001, 0.01, 0.1, 0.5, 1.0};
(2) α ∈ {0.001, 0.002, 0.005, 0.01, 0.5}; (3) α ∈ {0.001, 0.002, 0.005, 0.01, 0.1}. The figures (a),
(b) and (c) correspond to settings (1), (2) and (3), respectively.

(a) (b)

Figure 8: Results on CIFAR100. Training data is split into 100 partitions according to Dirich-
let distribution (100 clients). The concentration parameter is varied as follows: (1) α ∈
{0.001, 0.01, 0.1, 0.5, 1.0}; (2) α ∈ {0.001, 0.005, 0.01, 0.1, 1.0}. The figures (a) and (b) corre-
spond to settings (1) and (2), respectively.
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A.11 EXAMPLES OF ESTIMATED ENTROPY

To further illustrate the proposed framework, here we show a comparison between the estimated
entropy of data label distribution and the true entropy. Specifically, Figures 9 and 10 show that
the entropy estimated by the proposed method is close to the true entropy; the experiments were
conducted on FMNIST and CIFAR100, using SGD and Adam as optimizers, respectively. As stated
in Theorem 1, the clients with larger true entropy are likely to have lager estimated entropy. In case
where the model is trained with Adam, estimated entropy of data label distribution is not as accurate
as in the case of using SGD. Figures 11 and 12 compare the performance of estimating entropy with
SGD and Adam optimizers for the same setting of α. Notably, as shown in the figures, the method
is capable of distinguishing clients with extremely imbalanced data from those with balanced data.

A.12 ADDITIONAL EXPERIMENTAL RESULTS

In this section, we report average training loss and standard deviation obtained by running experi-
ments on FMNIST, CIFAR10 and CIFAR100 datasets using the same settings as those described in
Section 4 in the main paper, aiming to characterize convergence of the global model trained with
different methods. Figures 13, 15 and 17 show that the average local training loss follows a simi-
lar pattern as the test accuracy of the global model, and that HiCS-FL (ours) outperforms all other
methods. Figures 14 and 16 shows that HiCS-FL has the lowest standard deviation in almost all
settings. Standard deviation of HiCS-FL increases during training since the sampling policy πt con-
verges to random sampling as described in Section 3.4 in the main paper. However, heterogeneity of
FMNIST dataset does not have a major effect on standard deviation, likely due to relative simplicity
of FMNIST as compared to CIFAR10.

(a) (b)

Figure 9: The estimated entropy of data label distribution in experiments on FMNIST with SGD
as the optimizer. The parameter α for the two figures: (a) α ∈ {0.01, 0.02, 0.05, 0.1, 0.2}; (b)
α ∈ {0.001, 0.002, 0.005, 0.01, 0.5}

(a) (b)

Figure 10: The estimated entropy of data label distribution in experiments on CIFAR100 with Adam
as the optimizer. The parameter α for the two figures: (a) α ∈ {0.001, 0.01, 0.1, 0.5, 1.0}; (b)
α ∈ {0.001, 0.005, 0.01, 0.1, 1.0}.
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(a) (b)

Figure 11: The estimated entropy of data label distribution in experiments on CIFAR10 with α ∈
{0.001, 0.01, 0.1, 0.5, 1.0}. (a) The result of the experiments using SGD as the optimizer. (b) The
result of the experiments using Adam as the optimizer.

(a) (b)

Figure 12: The estimated entropy of data label distribution in experiments on CIFAR with α ∈
{0.001, 0.002, 0.005, 0.01, 0.5}. (a) The result of the experiments using SGD as the optimizer. (b)
The result of the experiments using Adam as the optimizer.

(a) (b) (c)

Figure 13: Average training loss of HiCS-FL and the competing methods on 3 groups of data parti-
tions of FMNIST; the concentration parameter α follows the stated settings (1)-(3).
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(a) (b) (c)

Figure 14: Standard deviation of training loss of HiCS-FL and the competing methods on 3 groups
of data partitions of FMNIST; the concentration parameter α follows the stated settings (1)-(3).

(a) (b) (c)

Figure 15: Average training loss of HiCS-FL and the competing methods on 3 groups of data parti-
tions of CIFAR10; the concentration parameter α follows the stated settings (1)-(3).

(a) (b) (c)

Figure 16: Standard deviation of training loss of HiCS-FL and the competing methods on 3 groups
of data partitions of CIFAR10; the concentration parameter α follows the stated settings (1)-(3).

(a) (b)

Figure 17: Average training loss of HiCS-FL (in red) and the competing methods on 2 groups of
data partitions of CIFAR100; the concentration parameter α follows the stated settings (1)-(2).
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A.13 COMPUTATIONAL AND COMMUNICATION COMPLEXITY

We compare the communication and computational costs of HiCS-FL with those of the competing
methods, including Power of Choice (pow-d) (Cho et al., 2020), Clustered Sampling (Fraboni et al.,
2021) and DivFL (Balakrishnan et al., 2022), and map them against random sampling. In its ideal
setting, pow-d selects K clients with the largest local validation loss among all N clients. To com-
pute the local validation loss at the beginning of a global training round t, the server must send the
global model to all clients. Compared to the random sampling strategy where the global model is
sent to only K clients, pow-d must transmit additional (N −K)|θt| model parameters. Moreover,
pow-d requires all clients to compute validation loss of the global model θt on local datasets, which
incurs additional O(N |θt|) computations. While communication requirements of Clustered Sam-
pling do not exceed those of random sampling, the server must run a clustering algorithm on the
local updates of dimension |θt| (the same as gradients). DivFL relies on maximizing a submodular
function to select the most diverse clients based on all clients’ gradients, leading to a transmission
overhead and additional computation involving |θt|-dimensional gradients. In our experiments, Di-
vFL has consistently required the longest training time and memory usage due to its dependence
on the submodularity maximizer. Our proposed method, HiCS-FL, does not require any additional
transmission of model parameters; furthermore, in HiCS-FL the server clusters clients based on their
local updates of the bias in the output layer, which is low-dimensional and model-agnostic. Overall,
HiCS-FL requires negligible computational overhead to significantly improve the performance of
non-iid Federated Learning.
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