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Abstract

End-to-end (E2E) spoken language understand-001
ing (SLU) is constrained by the cost of collect-002
ing speech-semantics pairs, especially when003
label domains change. Hence, we explore zero-004
shot E2E SLU, which learns E2E SLU with-005
out speech-semantics pairs, instead using only006
speech-text and text-semantics pairs. Previ-007
ous work achieved zero-shot by pseudolabeling008
all speech-text transcripts with a natural lan-009
guage understanding (NLU) model learned on010
text-semantics corpora. However, this method011
requires the domains of speech-text and text-012
semantics to match, which often mismatch due013
to separate collections. Furthermore, using the014
entire collected speech-text corpus from any015
domains leads to imbalance and noise issues.016
To address these, we propose cross-modal se-017
lective self-training (CMSST). CMSST tack-018
les imbalance by clustering in a joint space of019
the three modalities (speech, text, and seman-020
tics) and handles label noise with a selection021
network. We also introduce two benchmarks022
for zero-shot E2E SLU, covering matched and023
found speech (mismatched) settings. Exper-024
iments show that CMSST improves perfor-025
mance in both two settings, with significantly026
reduced sample sizes and training time.027

1 Introduction028

End-to-end (E2E) spoken language understand-029

ing (SLU) models train on speech-semantics pairs,030

inferring semantics directly from acoustic fea-031

tures (Serdyuk et al., 2018) and leveraging non-032

lexical information like stress and intonation. In033

contrast, pipelined SLU models (Tur and De Mori,034

2011) operate on speech-transcribed text, omit-035

ting the acoustic information. In all, E2E SLU036

has gained significant research attention. How-037

ever, training E2E SLU models faces a significant038

challenge in collecting numerous speech-semantics039

pairs (Hsu et al., 2021). This challenge is two-fold:040

the scarcity of public speech-semantics pairs due to 041

annotation costs and the need to relabel speeches 042

when the labeling schema evolves, e.g., functional- 043

ity expansion (Goyal et al., 2018). While speech- 044

semantics pairs are scarce and expensive to anno- 045

tate, there is a growing availability of speech-text 046

pairs used in automatic speech recognition (ASR) 047

and text-semantics pairs used in natural language 048

understanding (NLU) (Galvez et al., 2021; FitzGer- 049

ald et al., 2022). Thus, we define zero-shot E2E 050

SLU, which learns an E2E SLU model by speech- 051

text and text-semantics pairs without ground-truth 052

speech-semantics pairs (hence zero-shot). 053

Two works have explored zero-shot E2E SLU. 054

Pasad et al. (2022) trained an NLU model by text- 055

semantics pairs and used it to predict pseudolabels 056

for the text of all speech-text pairs, similar to Fig- 057

ure 1(a). They then trained an E2E SLU model 058

using the speech audio from the speech-text pairs, 059

paired with the predicted pseudolabels. In another 060

way, Mdhaffar et al. (2022) mapped the text of all 061

text-semantics pairs to speech embeddings, creat- 062

ing “pseudospeech”-semantics pairs. 063

However, both works assume matched domains 064

for text-semantics and speech-text pairs, with data 065

collected from the same scenario. In practice, how- 066

ever, these pairs are often separately collected, lead- 067

ing to potential domain mismatches. In such cases, 068

directly using all speech-text and text-semantics 069

pairs for zero-shot E2E SLU leads to two types of 070

issues as below. 071

Noise. Sample noise comes from speech-text pairs 072

whose transcripts (texts) are out-of-domain (OOD) 073

for the NLU task. Passing all transcripts through 074

NLU inference leads to inaccurate pseudolabels on 075

the OOD data, impacting SLU learning. This exac- 076

erbates label noise, which refers to incorrect NLU 077

model predictions that are then (wrongly) treated as 078

pseudolabels; this issue is inherent to self-training 079

and also impacts performance (Du et al., 2020). 080

Imbalance. Since the text-semantics and speech- 081
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Figure 1: (a). Diagram of using all speech-text pairs, detailed in Sec. 1. The legend in (b) is also applicable to (a).
(b). Diagram of the CMSST framework (described in Sec. 4). Speech and text pairs in DA�T are selected by first
using a text-similarity-based selection method and then a Multi-view Clustering-based Sample Selection (MCSS)
algorithm. The SLU model Θ̃A�L is trained on the resulting speech-text pairs D̃A�T , with pseudolabels from an
NLU model ΘT�L,t. This NLU model is trained from target domain text-to-semantics pairs DT�L,t. To deal with
label noise from the NLU model, CMSST uses a Cross-Modal SelectiveNet (CMSN) to train our SLU model Θ̃A�L.

text pairs are separately collected, even after remov-082

ing OOD speech-text pairs, the remaining text in083

speech-text pairs may be heavily imbalanced within084

the NLU domain, e.g., one semantics dominates all085

others. Besides, imbalanced speech, e.g., having086

only female voices, can bias E2E SLU learning.087

Though a model may succeed despite the imbal-088

ance, this can waste training resources that could089

have been used on representative speech-text pairs.090

For these issues, Pasad et al. (2022) and Mdhaf-091

far et al. (2022) ignore sample noise and imbalance092

by selecting speech-text pairs that are matched and093

balanced; however, in practice, it is hard to gain094

such well-matched and well-balanced speech-text095

corpus. Furthermore, neither work is selective with096

pseudodata, which in Pasad et al. (2022) led to097

degradation when more external speech-text was098

added, due to label noise. Instead, with selection099

as a unifying perspective, we make the following100

contributions:101

(i). Zero-shot E2E SLU benchmarks for both102

matched and found speech. For the matched do-103

main setting, we define VoxPopuli2SLUE, combin-104

ing text-semantics pairs of SLUE’s NER-annotated105

subset (Shon et al., 2022) of VoxPopuli (Wang106

et al., 2021) with speech-text pairs from VoxPop-107

uli, similar to Pasad et al. (2022). Then, for108

the found (mismatched) speech setting, we define109

MiniPS2SLURP, combining the home-assistant110

text-semantics pairs of SLURP (Bastianelli et al.,111

2020) with speech-text pairs from the general-112

domain People’s Speech corpus (Galvez et al.,113

2021). Our data and code will be released.114

(ii). Selection via cross-modal clustering and se-115

lective networks to tackle imbalance and noise116

in self-training. To tackle sample noise, we first117

exclude OOD speech-text pairs using text similar- 118

ity. Then, for the imbalance, we propose multi- 119

view clustering-based sample selection (MCSS) to 120

resample speech-text pairs to improve diversity 121

over three views (speech, text and latent seman- 122

tics). For label noise, we propose a cross-modal 123

SelectiveNet (CMSN), which selectively trusts pseu- 124

dolabels based on the ease of learning common rep- 125

resentations between the NLU and SLU encoders. 126

All together, we refer to our proposed framework 127

as cross-modal selective self-training (CMSST), 128

summarized in Figure 1(b). 129

(iii). Comprehensive experiments on zero-shot 130

E2E SLU. We compare the baselines with our 131

CMSST on the new benchmarks. CMSST achieves 132

better results with significantly less data. Abla- 133

tions show that clustering and selective learning 134

both contribute; Entity F1 improves 1.2 points on 135

VoxPopuli2SLUE with MCSS and 1.5 points on 136

MiniPS2SLURP with CMSN. 137

2 Related Work 138

Speech to semantics. Although not fully zero-shot, 139

works in semi-supervised E2E SLU have also con- 140

sidered the mismatch problem. Rao et al. (2020) 141

train NLU and ASR systems independently, saving 142

their task-specific SLU data for a final joint training 143

stage. Others tackle the data sparsity or mismatch 144

issues using text-to-speech (TTS) to synthesize spo- 145

ken counterparts to NLU examples (Lugosch et al., 146

2020; Lu et al., 2023). Pretraining on off-the-shelf 147

(found) speech-only data (Lugosch et al., 2019), 148

text-only data (Huang et al., 2020), or both (Chung 149

et al., 2020; Thomas et al., 2022) have improved 150

SLU systems beyond their core speech-semantics 151

training data, usually via an alignment objective or 152
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joint network. Finally, Rongali et al. (2021) con-153

sidered a different notion of “zero-shot” E2E SLU,154

which we view more aptly as text-only SLU adap-155

tation; their setting involves an initial E2E SLU156

model, trained on speech-semantics pairs, having157

its label set expanded with text-only data.158

Self-training. This method (Scudder, 1965;159

Yarowsky, 1995) further trains a model on unla-160

beled inputs that are labeled by the same model,161

as a form of semi-supervised learning. It has ex-162

perienced a recent revival in both ASR (Kim et al.,163

2023) and NLU (Le et al., 2023), giving improve-164

ments atop strong supervised and self-supervised165

models, for which effective sample filters and la-166

bel confidence models were key. Recently, Pasad167

et al. (2022) performed self-training in the zero-168

shot E2E NER case; however, since they work in169

the matched case they do not address these issues170

of imbalance and noise.171

Multi-view clustering. Multiple views of the data172

can improve clustering by integrating extensive in-173

formation (Kumar and Daumé, 2011; Wang et al.,174

2022; Fang et al., 2023; Huang et al., 2023). We175

propose using the modalities in speech-text pairs176

(speech, text, and latent semantics) as bases to build177

a joint space, where we apply clusters to enable bal-178

anced selection. We apply simple heuristics atop179

the clusters, and leave stronger algorithms, e.g.,180

Trosten et al. (2021) to future work.181

Selective learning. Selective learning aims at de-182

signing models that are robust in the presence of183

mislabeled datasets (Ziyin et al., 2020). It is often184

achieved by a selective function (Geifman and El-185

Yaniv, 2019). Selective learning has been recently186

applied in a variety of applications (Chen et al.,187

2023b; Kühne and Gühmann, 2022; Chen et al.,188

2023a). But less so in NLP applications (Xin et al.,189

2021) and little in cross-modal areas.190

MiniPS2 VoxPopuli2
Data Annotation SLURP SLUE

DA�L,t Speech-to-semantics pairs 22,782 2,250in target domain t

DT�L,t Text-to-semantics pairs 22,783 2,250in target domain t

DA�T,t Speech-to-text pairs 22,782 2,250in target domain t

DA�T,ϵ Speech-to-text pairs 32,255 182,466in external domains o

DA�T Union of DA�T,t

55,037 184,716
and DA�T,ϵ

Test Test speech-to-semantics 13,078 877pairs in target domain t

Table 1: Data annotations and sample sizes in our
datasets. DA�L,t is used for training a target SLU
model ΘA�L,t. DT�L,t and DA�T are used for train-
ing our E2E SLU model Θ̃A�L.

3 Benchmarks for Zero-Shot E2E SLU 191

We define a traditional SLU model as ΘA�L,t, that 192

is trained on data DA�L,t with pairs of speech au- 193

dio A and semantic labels L. These samples are in 194

a target domain t. Besides, we will use superscript 195

T � L to denote text T to semantic labels, and 196

A � T to denote speech audio to text. 197

In our zero-shot setting, instead of having a 198

speech-to-semantics dataset DA�L,t, we have a 199

text-to-semantics pair set DT�L,t in the target do- 200

main, and an external speech-to-text pair set DA�T . 201

Unlike Pasad et al. (2022) or Mdhaffar et al. (2022), 202

the provided speech-to-text data DA�T may be in- 203

dependently collected and have sample pairs from 204

an external domain. We divide DA�T into two 205

disjoint subsets, with samples either in the target 206

domain t or being external domain ϵ: 207

DA�T = DA�T,t ∪DA�T,ϵ. (1) 208

A domain denotes data collection scenarios. The ϵ 209

can be matched or mismatched to the t domain. 210

Given DT�L,t and DA�T , we aim to learn an 211

E2E SLU model Θ̃A�L that performs close to 212

ΘA�L,t. This is zero-shot, as training our Θ̃A�L 213

uses no speech-semantics pairs DA�L,t. We cre- 214

ated the below two datasets to study this problem: 215

Matched Speech: VoxPopuli2SLUE. We use 216

SLUE-VoxPopuli (Shon et al., 2022) as the target 217

domain text-to-semantics data DT�L,t. The ex- 218

ternal speech-to-text data DA�T is from VoxPop- 219

uli (Wang et al., 2021). We denote this dataset as 220

VoxPopuli2SLUE. Its domain is matched, because 221

SLUE-VoxPopuli and VoxPopuli are both from Eu- 222

ropean Parliamentary proceeding scenario. 223

Found Speech: MiniPS2SLURP. We use 224

SLURP (Bastianelli et al., 2020) as the target 225

domain text-to-semantics data DT�L,t. Mini- 226

PS (Galvez et al., 2021) provides the external- 227

domain speech-to-text pairs DA�T,ϵ. SLURP is 228

in the voice command domain for controlling fam- 229

ily robots. But Mini-PS is a subset of People’s 230

Speech corpus, with 32,255 speech-to-text pairs in 231

diverse domains, such as TV, news, and sermons. 232

We then mix DA�T,ϵ from Mini-PS and DA�T,t 233

from SLURP for DA�T . The domain of resulting 234

dataset, MiniPS2SLURP, is found (mismatched). 235

For fair comparison, in the above two datasets, 236

we provide DA�L,t that has the same size and 237

speech as DA�T,t. The DA�L,t is only used to 238

learn ΘA�L,t and not applied to learn our Θ̃A�L. 239
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We use the full SLURP test set as the test set in240

MiniPS2SLURP, and half of the dev set in SLUE-241

VoxPopuli as the test set in VoxPopuli2SLUE. The242

dataset statistics, data annotations, and data usages243

are in Table 1 with sample data in Table 9 and244

domain similarity analysis in Sec. A.1.245

4 Cross-Modal Selective Self-Training246

4.1 Introduction of A Basic SLU Model247

Given a sequence of acoustic features A, the SLU248

models ΘA�L,t and Θ̃A�L extract sentence-level249

semantics (i.e., intents) and token-level semantics250

(i.e., entity tags). To support these multiple types251

of semantic tags, we use a sequence-to-sequence252

architecture (Bastianelli et al., 2020; Ravanelli253

et al., 2021), in which the output is a sequence Y254

that consists of semantic types with their tags. The255

SLU model uses a speech encoder to encode A into256

a sequence of speech representations, and uses an257

attentional sequence decoder to generate the output258

sequence Y. The ΘA�L,t is trained by loss LA�L259

that maximizes the likelihood of generating the260

correct semantic sequence given the observation.261

4.2 Overview of Our Model: CMSST262

The speech-to-text data DA�T could provide more263

resource for SLU training. However, the possi-264

ble domain mismatch across DT�L,t and DA�T,ϵ265

can lead to sample noise and label noise. Be-266

sides, the imbalance of collected DA�T may lead267

to inefficient model training. Thus, we propose268

a Cross-Modal Selective Self-Training (CMSST)269

framework to alleviate the noise and imbalance is-270

sue in using DA�T and DT�L,t to learn our E2E271

SLU model Θ̃A�L. We later show in Table 2272

that CMSST achieves higher performance and effi-273

ciency with fewer training samples.274

Figure 1(b) illustrates CMSST. First, it computes275

text similarity to exclude sample pairs in DA�T276

with large divergence to DT�L,t. Second, it takes277

the distribution of the dataset into consideration,278

and further filters DA�T using our novel MCSS to279

reduce the imbalance within DA�T itself. These280

two steps are described in Sec. 4.3. Lastly, it uses281

our novel cross-modal selective training method,282

described in Sec. 4.4, to reduce the impact of noisy283

labels predicted by an NLU model ΘT�L,t. The284

NLU model ΘT�L,t is pretrained on DT�L,t.285

4.3 Reducing Sample Noise and Imbalance 286

Text similarity based selection. The sample se- 287

lection is firstly performed in a text embedding 288

space. K-means (Xu and Wunsch, 2005) is further 289

employed to cluster in the text embedding space 290

for texts from DT�L,t. For each text in DA�T , a 291

text similarity score is defined as the distance to 292

the closest clustering centroid of DT�L,t. Then a 293

threshold based on the text similarity scores is set 294

to exclude DA�T pairs with text disparity. 295

Multi-view Clustering-based Sample Selection 296

(MCSS). Though the above selection process re- 297

moves speech-text pairs in the mismatched domain, 298

the remaining pairs can still be imbalanced. The 299

imbalanced data distribution introduces bias (i.e., 300

pairs with a certain latent semantic are dominant) 301

into the training and decreases training efficiency. 302

Therefore, it is important to balance the remaining 303

speech-text pairs. Since each speech-text pair con- 304

tains audio, text, and latent semantic information, 305

we propose MCSS to balance these three compo- 306

nents. Figure 2 illustrates MCSS’s workflow. We 307

use superscripts T , A, and L to each denote the 308

text, speech, and semantic modalities, respectively. 309

First, for the text and speech modalities, we use 310

K-Means to cluster texts in DT�L,t and speeches 311

in DA�T . The text embedding is Sentence- 312

BERT (Reimers and Gurevych, 2019) or the av- 313

erage of GloVe word2vec (Pennington et al., 2014). 314

The speech embedding is the average of a low-layer 315

feature map in HuBERT (Hsu et al., 2021). This 316

step respectively outputs KT and KA numbers of 317

clustering centroids of text modality in DT�L,t and 318

speech modality in DA�T . 319

To represent the semantic space, each entity type 320

in DT�L,t is an averaged text embedding on all text 321

spans inside that entity type, which is detailed in 322

Sec. A.3. Therefore, the number of entity centroids 323

KL is the number of entity types. We denote these 324

centroids as {µv
k} for k ∈ Kv and v ∈ {T,A,L} 325

across three modalities. 326

Given a sample Xi in DA�T , its distance to 327

k-th clustering centroids µv
k in modality v is de- 328

noted as dv(Xi, µ
v
k). Then, we compute the sam- 329

ple modality-specific view ev(Xi) ∈ RKv
as the 330

sample distances to all centroids in modality v, 331

ev(Xi) = [· · · , dv(Xi, µ
v
k), · · · ] (2) 332

and k ∈ {1, 2, ...,Kv}. 333

Among three views, eT (Xi) and eL(Xi) con- 334

tain information related to T � L domain, while 335
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Figure 2: MCSS diagram (detailed in Sec. 4.3). We use
superscripts T , A, and L to each denote text, speech,
and semantic modality. Blue boxes depict DT→L,t data,
while blue-pink boxes represent DA→T data.

eA(Xi) is generated from speech representation336

that highly correlates acoustic features in DA�T .337

We use Cosine distance for all three views338

(speech, text, and latent semantics). As they339

are in different scales, we apply zero-score nor-340

malization in each view. In addition, to ad-341

dress the different importance across different342

views, we use adjustable scalar weight for each343

view. The multi-view representation is then cre-344

ated by weighted concatenations as e(Xi) =345

[wTeT (Xi), w
AeA(Xi), w

LeL(Xi)] and e(Xi) ∈346

RK with K = KT +KA +KL. The e(Xi) is in347

a joint space of speech, text, and latent semantics,348

constructed by the K cluster centroids.349

To obtain samples that are balanced in this joint350

space, we then apply the K-Means algorithm on351

these multi-view representations {e(Xi)} by set-352

ting R clusters. Next, we select the equal number353

of samples for each cluster, and these samples are354

nearest to the cluster centroid they belong to. Sup-355

pose we target for N samples out of the algorithm,356

then each cluster selects (⌊NR ⌋) of the nearest sam-357

ples. More details are in Sec. A.3.358

4.4 Reducing Label Noise359

Given the selected speech-to-text pair set D̃A�T360

from MCSS, the pretrained NLU model ΘT�L,t361

predicts pseudolabels. An SLU model is then362

trained on the speech and its pseudolabels. How-363

ever, these pseudolabels are noisy due to prediction364

errors in the imperfect NLU model ΘT�L,t. To365

mitigate label noise, we propose the Cross-Modal366

SelectiveNet (CMSN) for selective learning. To367

our best knowledge, we are the first to propose a368

selective learning method in a cross-modal setting.369

Figure 3 illustrates our CMSN. For a speech-370

to-text pair Xi from D̃A�T , a text encoder in371

ΘT�L,t and a speech encoder in Θ̃A�L extract their372

modality-specific embedding vector fTi and fAi . Be-373

cause these embeddings are from the same speech-374

NLU Encoder NLU Head

SLU Encoder SLU Head

Pseudo
Labels

A common space in CMSN

Small 

Speech
Text Large 

Figure 3: Diagram of workflow for CMSN (described in
Sec. 4.4), where green or purple arrows are a pair of text
and speech. ρ is a selective score described in Eq. (5).

to-text pair in D̃A�T , they share a common seman- 375

tic space. Therefore, we learn modality-specific 376

projections to map the i-th sample embeddings to 377

vectors with the same dimensions as below, 378

pv
i = Pvfvi , q

v
i = Qvfvi (3) 379

where v ∈ {T,A} and q is from the second com- 380

mon space introduced later. We can measure cross- 381

modal loss Lcm1i by the divergence between their 382

common semantic space representations, 383

Lcm1i = ||pT
i − pA

i || (4) 384

To facilitate selective learning, we compute a 385

scalar selective score ρ ∈ (0, 1) through a selection 386

function g(·) as below, 387

ρi = g(pT
i ,p

A
i ) (5) 388

g is a multilayer perceptron with a sigmoid function 389

on top of the last layer. With the selective score, 390

we define the following selective learning loss Lsel 391

to abstain samples with low selection scores, 392

Lsel = α · [max (τ − E[ρi], 0)]
2 (6) 393

+ β · E[ρiLcm1i + ρiLA�L]

E[ρi]
394

where α and β are scalar weights. The first term in 395

Eq. (6) has a hyper-parameter τ ∈ [0, 1], which is 396

defined as the target coverage in Geifman and El- 397

Yaniv (2019). Concretely, the first term encourages 398

the selective network to output selective scores that 399

are approaching τ , especially if the selective scores 400

are small at the beginning of model training. 401

For the Eq. (6) second term, we weigh both 402

Lcm1i and LA�L by ρi. This is because certain 403

text embeddings could be inaccurate, which can 404

make the Lcm1i large, and the pseudolabel derived 405

from the text embedding becomes noisy, indicating 406

its LA�L need to be down-weighted. In this case, if 407

Lcm1i is large, the Eq. (6) second term encourages 408

a smaller ρi from Eq. (5). A reduced ρi mitigates 409

5



the impact of LA�L, thus enpowering CMSN to410

selectively trust LA�L. The final loss is,411

L = LA�L + Lsel + γLcm2 (7)412

where γ is the weight of auxiliary cross-modal loss413

Lcm2 . The Lcm2 encourages the common space414

learning by the expectation (mean) of all sample415

cross-modal differences weighted by respective ρ,416

Lcm2 = E[ρi||qT
i − qA

i ||] (8)417

The use of the Lcm2 via another projection Qv418

is essential to optimize selective network (Geifman419

and El-Yaniv, 2019). With Lcm2, the selective net-420

work can additionally learn the alignment of cross-421

modal features. Therefore, Lcm2 avoids overfitting422

the selective network to the biased subset, before423

accurately learning low-level speech features.424

5 Experiments425

We now compare our proposed framework to base-426

lines on the two datasets introduced in Sec. 3.427

5.1 Performance Metrics428

Following (Bastianelli et al., 2020), we report (1)429

sentence-level classification performance using av-430

erage accuracy (Acc.) on classifying Scenario (Sce-431

nario Acc.), action (Action Acc.) and intent (Intent432

Acc.), and (2) NER performance from the list of en-433

tity type-value pairs. The Entity-F1 is a sentence-434

level NER metric, in which the correctness of en-435

tity type-value pairs and their appearance orders436

are measured. Word-F1 drops the penalty on their437

appearance orders. Char-F1 further relaxes ex-438

act match at word level and allows character-level439

match of entity values. To measure the training440

efficiency, we report numbers of used speech-text441

pairs (sum of ∥DA�T,t∥ and ∥DA�T,ϵ∥) and train-442

ing time. Experiments were run on a single GPU443

3090 with 24G memory.444

5.2 Baselines & Experiment Setups445

We compare our method with two types of meth-446

ods: (1) a strong baseline that uses all of the ASR447

data (Pasad et al., 2022), denoted as Θ̃A�L
Full and448

(2) a model that random samples training data449

to have data size comparable to our method, de-450

noted as Θ̃A�L
RSamp

1. We also report the perfor-451

mance of ΘA�L,t that is trained with target domain452

1We forego comparisons with Mdhaffar et al. (2022), due
to its unreleased code and use of "pseudospeech"-semantics
pairs, in contrast to our use of speech-"pseudosemantics" pairs
like Pasad et al. (2022).

speech-to-semantics data DA�L,t. We compare 453

text-similarity selection by GloVe and Sentence- 454

BERT(Abbr: SentBERT). 455

5.3 Main Results 456

The main results of the proposed model on the 457

two datasets are illustrated in Table 2. Firstly, 458

our proposed method using SentBERT embed- 459

ding can surpass the strong baseline Θ̃A�L
Full that 460

uses all training samples in both GloVe-based 461

and SentBERT-based text-similarity. For exam- 462

ple, on the NER task, our SentBERT-based model 463

achieved an entity-F1 score of 38.0% on the 464

matched speech VoxPopuli2SLUE dataset, surpass- 465

ing the full system, which scored 37.0%. Be- 466

sides, our method shows a significant reduction 467

of training time from 225 hours to 6 hours and 468

number of speech-text pairs from 182k to 5k, as 469

our method uses 2.7% of the full dataset size. On 470

the found speech MiniPS2SLURP, our SentBERT- 471

based model achieves higher performance in both 472

accuracy and F1 scores and higher training effi- 473

ciency. For example, it improves 1.2 points in 474

Entity F1 than Θ̃A�L
Full that uses 1.5 times of training 475

time and data size of ours. 476

Our performance gain is apparent when com- 477

pared to Θ̃A�L
RSamp, using a similar size of randomly 478

sampled training data. In such a case, entity F1 479

scores on two datasets drop by around 1 and 2 per- 480

cents compared to our GloVe-based and SentBERT- 481

based methods, respectively. 482

The proposed method surpasses the performance 483

of the target model ΘA�L,t in the matched speech 484

VoxPopuli2SLUE set. For instance, our SentBERT- 485

based model has word-level entity F1 improved to 486

49.3% from 45.2% of the target model. On the 487

found speech MiniPS2SLURP, the difference to 488

the target model is reduced to 0.6% by our method, 489

compared to 1.1% by Θ̃A�L
Full and 2.5% by Θ̃A�L

RSamp 490

in terms of Acc. 491

The results on SentBERT-based text-similarity 492

marginally perform better than the GloVe-based. 493

Except the 1.2 percents difference on NER F1 on 494

VoxPopuli2SLUE, all the other metrics on both 495

two datasets show less than 1 percent difference. 496

The marginal difference between two methods is 497

similar to other self-training work (Du et al., 2020). 498

Due to the slight difference, our ablation studies 499

use GloVe-based text selection for faster speed. 500
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Models ∥DA�L,t∥ ∥DA�T,t∥ ∥DA�T,ϵ∥ N ↓ Acc. ↑ NER F1 (in %) ↑ Time ↓
(in %) Entity Word Char (in hrs)

MiniPS2SLURP(Found Speech)
Target model ΘA�L,t 22.8k N/A N/A N/A 76.0 40.9 51.7 55.8 16
Θ̃A�L

Full (Pasad et al., 2022) 0 22.8k 32.3k 55.1k 74.9 34.9 48.8 52.0 43
Θ̃A�L

RSamp 0 14.4k 20.6k 35k 73.5 33.9 47.5 50.9 27
Our Θ̃A�L (GloVe) 0 21.6k 13.4k 35k 75.2 34.9 48.8 52.2 27
Our Θ̃A�L (SentBERT) 0 22.1k 12.9k 35k 75.4 35.7 49.3 52.9 27
VoxPopuli2SLUE (Matched Speech)
Target model ΘA�L,t 2,250 N/A N/A N/A N/A 36.0 45.2 47.7 2
Θ̃A�L

Full (Pasad et al., 2022) 0 2,250 182.5k 184.8k N/A 37.0 50.3 53.9 225
Θ̃A�L

RSamp 0 68 5.6k 5.6k N/A 35.7 47.8 50.5 6
Our Θ̃A�L (GloVe) 0 59 5.5k 5.5k N/A 36.8 49.0 52.3 6
Our Θ̃A�L (SentBERT) 0 61 5.5k 5.5k N/A 38.0 49.3 52.4 6

Table 2: Comparison between our proposed CMSST and baselines. The selected speech-text pairs size N is the
sum of ∥DA�T,t∥ and ∥DA�T,ϵ∥. Our model utilizes significantly fewer speech-text pairs and training time
compared with Θ̃A�L

Full (which uses all speech-text pairs), yet achieves comparable or superior accuracy and F1
scores.

6 Analysis501

6.1 Ablation Studies502

Multi-view Clustering-based Sample Selec-503

tion(MCSS). We use different thresholds on the504

text similarity scores and control the selective size505

N to be approximately the same for a fair com-506

parison. Results are shown in Figure 4. On the507

found speech MiniPS2SLURP, we use its subset508

for the ablation study and observe that removing509

MCSS (w/o MCSS) hurts performance. For ex-510

ample, using MCSS, entity F1 score is improved511

from 18.8% to 28.0%, a 49% relative improvement.512

Another observation is that MCSS apparently has513

fewer external-domain samples than without using514

the MCSS algorithm. For instance, w/o MCSS, the515

∥DA�T,ϵ∥ = 10350, which is almost twice as large516

as ∥DA�T,ϵ∥ = 5891 with MCSS in Θ̃A�L.517

Cross Modal SelectiveNet (CMSN). Results in518

Figure 4 show that further removing selective train-519

ing (w/o MCSS, w/o CMSN) results in perfor-520

mance loss. On the MiniPS2SLURP, the entity521

F1 score is improved from 17.3% to 18.8% if using522

CMSN, a relative 8.7% improvement.523

Performance improvements are also observed524

for the matched speech VoxPopuli2SLUE dataset525

in Figure 4. These results show that both reducing526

imbalance by sample selection (MCSS) and reduc-527

ing label noise by selective learning (CMSN) can528

improve performance by the proposed framework.529

6.2 Impacts from NLU Backbone530

In this section, we conduct experiments on Vox-531

Populi2SLUE to study the impact of different NLU532
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Figure 4: Ablation study on the effectiveness of multi-
view sample selection and selective training on Θ̃A�L.
The pseudolabels are from BERT-based ΘT�L,t. Their
∥DA�T,t∥ and ∥DA�T,ϵ∥ size are each listed in square
brackets for each configuration. The selection size N is
12.6k and 5.5k for the two datasets respectively.

backbones in ΘT�L,t. The comparison reveals the 533

effectiveness of the proposed framework in deal- 534

ing with different qualities of pseudolabels. We 535

select LSTM and BERT due to their wide applica- 536

tions. The BERT-based backbone was fine-tuned 537

from pretrained “bert-base-uncased”. We fix its 538

encoder but train prediction heads. The LSTM 539

backbone was trained from scratch. Both back- 540

7



Backbone MCSS+CMSN NER F1 (in %)
Entity Word Char

LSTM 35.1 45.5 48.6
✓ 36.6 46.4 49.1

BERT 35.0 47.3 50.4
✓ 36.8 49.0 52.3

Table 3: Impact comparison of using LSTM and BERT
NLU backbones, on VoxPopuli2SLUE. Both backbones
have ∥DA�T,t∥ = 68 and ∥DA�T,ϵ∥ = 5489 after text
similarity based selection and MCSS.

Sampling ∥DA�T,t∥ ∥DA�T,ϵ∥ Diversity (Entropy)
Method T L A
Equal 59 5,491 3.94 1.34 4.36
Random 61 5,495 3.84 1.24 4.34
Extreme 47 5,509 3.78 1.20 2.55
w/o MCSS 68 5,489 2.75 1.03 4.27

Table 4: Sample diversity from views of the three modal-
ities (text (T), semantic labels (L), and audio (A)). They
are computed as entropy on samples from different se-
lection methods. Results are on VoxPopuli2SLUE.

bones are trained from 2250 samples in DT�L,t.541

We measure their performance on the test set using542

ground truths from their text inputs. The BERT-543

based NLU backbone has higher NER performance544

than the LSTM-based NLU backbone, with 39.3%545

vs. 36.7% entity F1 Score (not listed in tables).546

From Table 3, we observe that (1) labels from547

BERT-based backbone result in comparable or548

higher performance, (2) using the framework (w/549

MCSS+CMSN checked) consistently improves per-550

formances of the learned SLU models.551

6.3 Sample Diversity552

This section provides further analysis of MCSS.553

The observation in Figure 4 shows improved per-554

formance and increased proportions of in-domain555

data. Our hypothesis is that samples are more di-556

verse due to the sample selection method described557

in Sec. 4.3. To quantify this, we measure the en-558

tropy of the selected samples, specifically for each559

view v ∈ {T, L,A}. Entropy in each view v is560

computed as −
∑Kv

k=1
nv
k

N log
nv
k

N , where Kv is the561

number of clusters for view v, nv
k is the number of562

samples in cluster k for view v, and N is the total563

number of samples. Their results are in Table 4.564

For comparison, we also measure the entropy from565

random sampling (Random) and entropy from se-566

lecting samples with as few clusters as possible (Ex-567

treme). We observe that the entropy from the equal568

sampling method is larger than random sampling569

in all three views. The extreme sampling method570

has the lowest entropy, compared to the other two571
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Figure 5: Entity F1 Scores and Acc. on the found
speech MiniPS2SLURP dataset, where all groups have
the same ∥DA�T,t∥ = 21597 and ∥DA�T,ϵ∥ = 13400.

sampling methods. As a larger entropy indicates 572

more diversity, we conclude that our equal sam- 573

pling results in the largest diversity among these 574

methods. We also list the entropy on a similar size 575

of filtered samples without MCSS; their entropies 576

in three views are much lower compared to our 577

equal sampling method. 578

6.4 Parameter Analysis & Other Experiments 579

Figure 5 shows Entity F1 scores and average ac- 580

curacy on MiniPS2SLURP. The pseudolabels are 581

from the BERT-based ΘT�L,t. We observe an opti- 582

mal value of τ = 0.55. Other parameter analysis 583

results in both MCSS and CMSN are in Sec. A.9. 584

The another cluster method and cluster quality are 585

analyzed in Sec. A.2. Our case study is in Table 10. 586

587

7 Conclusion 588

To advance zero-shot E2E SLU research, we 589

create two datasets: VoxPopuli2SLUE and 590

MiniPS2SLURP, catering to matched and found 591

speech, respectively. In addition, our framework 592

CMSST tackles the noise and imbalance issues that 593

have been disregarded in previous works. CMSST 594

incorporates MCSS, a method that selects speech- 595

text pairs to simultaneously enhance the diversity 596

of acoustic, text, and semantics, thus addressing 597

the imbalance. Besides, CMSN is proposed to mit- 598

igate the impact of low-confidence pseudolabels, 599

thereby alleviating the effects of label noise. Ex- 600

tensive experiments on both datasets demonstrated 601

the effectiveness and efficacy of our framework. 602
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8 Ethical Consideration603

This study pioneers the use of text-semantics and604

audio-text pairs to learn a SLU model in a zero-shot605

way. Additionally, we have innovatively addressed606

issues of noise and imbalance through the imple-607

mentation of selective self-training methods.608

Our research exclusively employs datasets that609

are publicly available, ensuring transparency and610

accessibility. The datasets integral to our work are611

utilized in adherence to their respective licenses,612

which is verified in Sec. A.5.613

All of our used datasets do not have personal614

identification information. We recommend that any615

future expansion of this research into areas involv-616

ing personal or sensitive data should be approached617

with stringent ethical guidelines in place.618

9 Limitations619

This paper proposes CMSST for zero-shot end-to-620

end SLU. CMSST has a main limitation. Con-621

cretely, MCSS has the limitation that the samples622

are selected from the nearest cluster centers. Al-623

ternatively, we can improve MCSS by choosing624

samples that maximize the mutual information in625

each cluster, which is our future work.626
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A Appendix854

A.1 Domain Similarity Analysis in855

VoxPopuli2SLUE & MiniPS2SLURP856

Analysis of domain similarity. In discussing do-857

main similarity, it is essential to clarify the “do-858

main,” which refers to data collection scenarios in859

this paper. Each dataset encompasses two domains:860

the target domain and the external domain. For861

MiniPS2SLURP, the external domain is an OOD862

domain, whereas in VoxPopuli2SLUE, the external863

domain aligns with the target domain. To assess do-864

main similarity, we employ the Maximum Mean865

Discrepancy (MMD) (Wang et al., 2020), a statisti-866

cal measure gauging differences between two distri-867

butions. A MMD value approaching zero indicates868

closeness between the two distributions. To delve869

into vocabulary divergence, we measured MMD870

using the TF-IDF feature, termed MMD-TFIDF.871

Similarly, to understand semantic divergence, we872

used the SentenceBERT feature to calculate MMD,873

which is written as MMD-SentBERT. The results874

for both datasets are documented in Table 5. From875

the table, MiniPS2SLURP exhibits a significant876

domain divergence between MiniPS and SLURP,877

with both MMD-TFIDF and MMD-SentBERT val-878

ues surpassing 0.6. Conversely, VoxPopuli2SLUE879

shows minimal divergence, as evidenced by both880

MMD values being around 0.05—attributable to881

its external domain being the same as the target882

domain.883

MMD-TFIDF ↓ MMD-SentBERT ↓
MiniPS2SLURP 0.6381 0.6326
VoxPopuli2SLUE 0.0663 0.0416

Table 5: The domain similarity between the target do-
main and the external domain of the two proposed
datasets.

A.2 Another Cluster Method & Cluster884

Quality Analysis885

Cluster quality metrics. For cluster quality886

metrics, such metrics are typically based on one887

label per ground-truth sample. However, only888

MiniPS2SLURP provides these utterance-level889

labels (e.g., scenarios), while VoxPopuli2SLUE890

offers only entity-level labels. As a result, we mea-891

sured the cluster quality only for MiniPS2SLURP.892

We used two metrics:893

(a) Purity (Marutho et al., 2018): This metric894

assigns the majority sample label within a cluster895

as the cluster’s label. The purity is then calculated896

as the average accuracy across all samples. 897

(b) Normalized Mutual Information 898

(NMI) (Huang et al., 2010): This metric 899

measures the similarity between two sets of 900

clusters, regardless of potential variations in the 901

number of clusters in each set. In our work, we 902

use NMI to measure the similarity between the 903

ground-truth class labels and cluster results, where 904

each cluster uses the majority sample label within 905

the cluster as its label. 906

Analysis of cluster quality of two cluster meth- 907

ods. Due to our dataset constraints, where the audio 908

data comes with transcripts but lacks labels in our 909

zero-shot setting, it is inapplicable to measure its 910

clustering. Thus, we can only detail the quality on 911

texts in DT→L for two clustering methods, which 912

is shown in Table 6. We additionally experimented 913

with hierarchical agglomerative clustering (ab- 914

breviated as Hierarchical) (Müllner, 2011), which 915

recursively merges cluster pairs in the sample data. 916

Table 6 reveals a high purity for the clusters, sug- 917

gesting a dominant presence of samples with con- 918

sistent labels in each cluster. The high NMI scores 919

further underscore that our clustering aligns closely 920

with the ground-truth labels. Therefore, our cho- 921

sen clustering techniques, including Kmeans and 922

hierarchical agglomerative clustering, exhibit high 923

quality. 924

Kmeans Hierarchical
Purity ↑ 0.8498 0.8363
NMI ↑ 0.6307 0.6183

Table 6: The clustering quality of both KMeans and hi-
erarchical agglomerative clustering on MiniPS2SLURP
texts in text-to-semantics pairs.

Analysis of SLU model performance by two 925

cluster methods. For the downstream SLU train- 926

ing performance using hierarchical clustering, re- 927

sults are provided in Table 7. From the table, it is 928

evident that our model, utilizing SentBERT text em- 929

bedding with hierarchical agglomerative clustering, 930

consistently achieves competitive results, outper- 931

forming the random baseline in Table 2. Moreover, 932

in Table 7, our model requires significantly fewer 933

samples to achieve an improvement of 1.0 and 1.3 934

points in average accuracy over the baseline us- 935

ing full samples for MiniPS2SLURP and VoxPop- 936

uli2SLUE in Table 2, respectively. This perfor- 937

mance improvement shows our model’s adaptabil- 938

ity to another clustering method. 939

Analysis of alignments between the target- 940
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Models ∥DA�L,t∥ ∥DA�T,t∥ ∥DA�T,ϵ∥ N ↓ Acc. ↑ NER F1 (in %) ↑ Time ↓
(in %) Entity Word Char (in hrs)

MiniPS2SLURP(Found Speech)
Our Θ̃A�L (SentBERT, KMeans) 0 22.1k 12.9k 35k 75.4 35.7 49.3 52.9 27
Our Θ̃A�L (SentBERT, Hierarchical) 0 22.1k 12.9k 35k 75.9 34.9 48.9 52.5 27

VoxPopuli2SLUE (Matched Speech)
Our Θ̃A�L (SentBERT, KMeans) 0 61 5.5k 5.5k N/A 38.0 49.3 52.4 6
Our Θ̃A�L (SentBERT, Hierarchical) 0 61 5.5k 5.5k N/A 38.3 48.9 51.4 6

Table 7: Comparison between KMeans and hierarchical agglomerative (abbreviated as Hierarchical) clustering on
the datasets.

MMD-TFIDF ↓ MMD-SentBERT ↓
MiniPS2SLURP
Full 0.0590 0.1180
Random 0.0589 0.1432
Ours (Glove) 0.0394 0.0548
Ours(SentBERT) 0.0385 0.0539
VoxPopuli2SLUE
Full 0.0995 0.0405
Random 0.0653 0.0401
Ours (Glove) 0.0336 0.0411
Ours(SentBERT) 0.0403 0.0452

Table 8: Alignment analysis of data selection results
across two datasets. The MMD-TFIDF and MMD-
SentBERT are compared to the respective target domain
in terms of word frequency and SentBERT embedding.
The method organization mirrors that in Table 2 of the
manuscript.

domain samples and our selected samples. In941

evaluating the alignment results from our data selec-942

tion, we employed two metrics: (1) MMD-TFIDF943

and (2) MMD-SentBERT. These statistics are de-944

tailed in Table 8. Notably, in the MiniPS2SLURP945

dataset, our methods produced improved (smaller)946

values for both MMD metrics compared to full947

and random baselines. For the VoxPopuli2SLUE948

dataset, our methods resulted in improved (smaller)949

values for MMD-TFIDF and similar values for950

MMD-SentBERT. This suggests that the texts se-951

lected using our approach are more aligned, ex-952

hibiting less divergence from the target domain in953

both vocabulary and semantics, underscoring our954

method’s efficacy.955

A.3 Model956

Semantic representations. Specifically, the se-957

mantics in DT�L,t has KL types (i.e. “LOC”,958

“DATE”). We build type centroids by using the aver-959

age GloVe word2vec or sentenceBERT features of960

all slot texts from a semantic type. Consequently,961

we obtain KL clustering centroids for semantics.962

For example, suppose we have three entity types:963

“Date”, “Loc”, and “Person”, provided in DT→L,t.964

For the “Date” type, we aggregate its all date la-965

bels and then compute the average of the text em- 966

beddings of these labels. This average serves as 967

the “Date” entity centroid. Following this process, 968

given the three entity types in this example, we 969

would produce three entity centroids correspond- 970

ing to “Date”, “Loc”, and “Person”. 971

Normalization methods. For the normalization, 972

we use the z-score normalization for ev(Xi), where 973

v ∈ {T,A,L}. After the normalization, each 974

single-view representation ev(Xi) obeys a standard 975

Gaussian distribution and becomes comparable due 976

to the same scale. 977

Special cases in selecting ⌊NR ⌋ samples from each 978

cluster. During the process of selecting ⌊NR ⌋ sam- 979

ples from R clusters, we encountered two special 980

cases that need additional designs. We list them 981

below. 982

Case 1: N is no smaller than the size of text- 983

similarity-based selected speech-to-text pairs. We 984

select all text-similarity-based selected speech-to- 985

text pairs and ignore the upper limitation N by skip- 986

ping MCSS. As a result, all text-similarity-based 987

selected speech-to-text pairs are directly input to 988

CMSN. 989

Case 2: N is smaller than the size of text-similarity- 990

based selected speech-to-text pairs, and there exists 991

a cluster with a size smaller than ⌊NR ⌋. We address 992

this case by a greedy-based sample selection algo- 993

rithm. It greedily selects all samples in a cluster if 994

the cluster size is smaller than a minimum require- 995

ment, which is initialized as rmin = ⌊NR ⌋ and rmin 996

is then updated. Finally, the remaining clusters 997

with cluster sizes that are greater than rmin will 998

select rmin samples from each remaining cluster. 999

The algorithm is detailed in Algo. 1. 1000

A.4 Data Splits and Examples 1001

As for the MiniPS2SLURP dataset construction, 1002

we sample 40.5% of SLURP training set for 1003

DA�L,t to train ΘA�L,t. For DA�T,t and DA�T,ϵ 1004

used in training Θ̃A�L, we use the same 40.5% 1005

of the SLURP training set (having totally same 1006
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Dataset Text Example Speech Example Label (Semantics) Example
SLURP event remaining mona Tuesday a speech respective to the text {’scenario’: ’calendar’| ’ac-

tion’: ’set’| ’entities’: [{’type’:
’event_name’| ’filler’: ’mona’}|
{’type’: ’date’| ’filler’: ’tues-
day’}]}

Mini-PS are there any other comments
but you would don’t have a any
opposition to the language itself
it’s fine ok ok any other com-
ments ok should we go

a speech respective to the text N/A

SLUE-VoxPopuli better enforcement of the eu an-
imal welfare legislation is one
of the key priorities for animal
welfare and the commission has
invested substantial resources in
pursuit of this aim.

a speech respective to the text Semantics: {’entities’: [{’type’:
’ CARDINAL ’| ’filler’: ‘one’}|
{’type’: GPE’| ’filler’: ‘eu’}]}

VoxPopuli eu pharmaceutical legislation
contains a number of tools to fa-
cilitate early access to medicines
for patients with unmet medical
needs.

a speech respective to the text N/A

Table 9: Sample examples from each data set used in our experiments.

speeches to DA�L,t, but no semantics) and full1007

Mini-PS (32255 pairs) respectively to simulate a1008

real collected speech-to-text pair set DA�T .1009

As for the VoxPopuli2SLUE dataset construc-1010

tion, we sample 45% of SLUE-VoxPopuli fine-tune1011

set for DA�L,t to train ΘA�L,t. For DA�T,t and1012

DA�T,ϵ used in training Θ̃A�L, we use the same1013

45% of SLUE-VoxPopuli fine-tune set (having to-1014

tally same speeches to DA�L,t, but no semantics)1015

and full VoxPopuli (182466 pairs) respectively to1016

simulate a real collected speech-to-text pair set1017

DA�T .1018

We list data examples in Tab. 9.1019

A.5 License1020

Our datasets are built on the SLUE-1021

VoxPopuli (Shon et al., 2022) (using CC01022

license), VoxPopuli (Wang et al., 2021) (using CC1023

BY 4.0 license), SLURP (Bastianelli et al., 2020)1024

(using CC BY 4.0 license), and Mini-PS (Galvez1025

et al., 2021) (using CC-BY-SA and CC-BY1026

4.0 licenses). Considering these licenses, our1027

usage of these existing datasets is consistent1028

with their licenses. According to these licenses,1029

VoxPopuli2SLUE is CC BY 4.0 license, and1030

MiniPS2SLURP is CC-BY-SA and CC-BY 4.01031

licenses.1032

For the MiniPS dataset, we will release the data1033

once our paper is published, which is allowed by1034

its license.1035

A.6 Implementation Details 1036

Our work is implemented on SpeechBrain (Ra- 1037

vanelli et al., 2021). The NLU model ΘT�L,t is 1038

trained by 80% of DT�L,t and validated by 10% 1039

of DT�L,t. The SLU model training also uses 1040

the same dataset split ratio. We train NLU for 1041

20 epochs and SLU for 35 epochs, and the pa- 1042

rameters performing the best on the validation set 1043

will be kept. We set the K-Means cluster num- 1044

bers as 100 in our both two dataset text embedding 1045

spaces, where these text clusters will be used for the 1046

MCSS as the text modal cluster results of DT�L,t. 1047

For MCSS, we set the numbers of audio clusters, 1048

semantic types, and multi-view cluster numbers 1049

R as 100, 53, 30 in the MiniPS2SLURP setting 1050

and 100, 18, and 30 in the VoxPopuli2SLUE, re- 1051

spectively. Each of the SLU models and NLU 1052

models in our experiments consists of an encoder 1053

and a decoder. Each SLU encoder is the Hu- 1054

BERT encoder (Hsu et al., 2021). Each NLU 1055

encoder is either LSTM (Hochreiter and Schmid- 1056

huber, 1997) or BERT (Devlin et al., 2018) en- 1057

coder. For the SLU and NLU decoders, they are 1058

both attentional RNN decoders (Bahdanau et al., 1059

2014). To reproduce our main results for both 1060

GloVe-based and SentBERT-based in Tab. 2, we 1061

set β = γ = α = 0.1, τ = 0.55, wT = wL = 10, 1062

wA = 1 and N = 35000 on MiniPS2SLURP; 1063

on VoxPopuli2SLUE, we set β = γ = α = 0.1, 1064

τ = 0.75, wT = wL = wA = 1 and N = 5556. 1065
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Algorithm 1 Greedy-Based Sample Selection

Input: R clusters with cluster sizes that are
[l1, l2, ..., lR] respectively, and a pre-set ex-
pected sampling size N that is smaller than
the sum of [l1, l2, ..., lR].

1: Initialize the number of remaining clusters to
be selected, R̂ = R

2: Initialize the number of remaining samples to
be selected: N̂ = N

3: Initialize the minimum size requirement for
each cluster: rmin = ⌊ N̂

R̂
⌋

4: Sort l = [l1, l2, ..., lR] from small to large, and
represent their sorted index list as l̂, where
l[l̂[i]] ≤ l[l̂[i+ 1]]

5: Initialize an empty list p to save the cluster
index with cluster size smaller than rmin

6: Initialize an empty list rsel to save the selected
samples

7: Initialize i = 0
8: while l[l̂[i]] < rmin & i ̸= R do
9: l̂[i] → p

10: all samples in l̂[i]-th cluster→ rsel
11: N̂ = N̂ − l[l̂[i]]
12: R̂ = R̂− 1
13: rmin = ⌊ N̂

R̂
⌋ ▷ Update rmin

14: i = i+ 1
15: end while
16: Initialize j = 0
17: while j ̸= R do
18: if l̂[j] not in p then
19: rmin samples in l̂[i]-th cluster→ rsel
20: j = j + 1
21: end if
22: end while
Output: rsel

A.7 Hyperparameter Search1066

We optimize hyperparameters using beam search.1067

For CMSN, we fix α = β = γ = 0.1 and select a1068

target coverage τ from {0.35, 0.55, 0.75, 0.95} that1069

obtains the best performance. After τ is selected,1070

we fix τ and try (α = 0.1, β = 0.1, and γ =1071

0.1), (α = 1, β = 0.1, and γ = 0.1), (α = 0.1,1072

β = 1, and γ = 0.1), and (α = 0.1, β = 0.1, and1073

γ = 1). We then select α, β and γ leading to the1074

best performance. Finally, we try four groups for1075

MCSS: (wT = wL = wA = 1), (wT = 10 and1076

wL = wA = 1),(wT = 1, wL = 10, and wA = 1),1077

and (wT = 1, wL = 1, and wA = 10). We choose1078

the group that results in the best performance.1079

A.8 Case Study 1080

We also show case studies of our Θ̃A�L on the two 1081

datasets, shown in Table 10. 1082

A.9 Parameter Analysis 1083

The parameter analysis of MCSS and CMSN are 1084

respectively shown in Figure 6 and Figure 7. 1085

For MCSS, from the Figure. 6, which shows the 1086

parameters of the coefficients of MCSS, wT , wL 1087

and wA, we can find below. 1088

1. wT , wL, and wA all impact the performance of 1089

MCSS. The figure shows performance variant to 1090

different weights of wT , wL, and wA. 1091

2. Considering all three views leads to better per- 1092

formance. Concretely, among the cases shown in 1093

the (2) subfigure, we see that wT = wA = wL = 1 1094

leads to better performance than other single-view 1095

cases. This shows the benefit of comprehensively 1096

considering three views. 1097

For CMSN, we change one parameter at once 1098

and keep the rest parameters fixed; we show each 1099

of the four parameters on VoxPopuli2SLUE, from 1100

which, we find that β = γ = α = 0.1 and τ = 1101

0.75 perform the best. 1102
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Figure 6: Parameter analysis of MCSS on VoxPopuli2SLUE, where BERT-based ΘT�L,t is used. All groups have
∥DA�T,t∥ = 59 and ∥DA�T,ϵ∥ = 5461 for fair comparison.
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Figure 7: Parameter analysis of CMSN on VoxPopuli2SLUE, where LSTM-based ΘT�L,t is used. All groups have
∥DA�T,t∥ = 68 and ∥DA�T,ϵ∥ = 5489 for fair comparison.
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Audio (Shown by its
respective text)

Ground-Truth Se-
mantic Label

Θ̃A�L (w/o CMSN,
w/o MCSS) Pre-
dicted Label

Θ̃A�L (w/o MCSS)
Predicted Label

Θ̃A�L Predicted La-
bel

MiniPS2SLURP
how long does it take
to make vegetable
lasagna

’scenario’: ’cooking’,
’action’: ’recipe’,
’entities’: [{’type’:
’food_type’, ’filler’:
’vegetable lasagna’}]

’scenario’: ’news’,
’action’: ’query’,
’entities’: [{’type’:
’news_topic’, ’filler’:
’election’}, {’type’:
’date’, ’filler’: ’mon-
day’}]

’scenario’: ’recom-
mendation’, ’action’:
’locations’, ’entities’:
[{’type’: ’busi-
ness_type’, ’filler’:
’restaurant’}]

scenario’: ’cooking’,
’action’: ’recipe’,
’entities’: [{’type’:
’food_type’, ’filler’:
’cookies’}]

’remind me the meet-
ing with allen on fif-
teenth march’

’scenario’: ’calen-
dar’, ’action’: ’set’,
’entities’: [{’type’:
’event_name’, ’filler’:
’meeting}, {’type’:
’person’, ’filler’:
’allen’}, {’type’:
’time’, ’filler’: ’fif-
teenth march’}]

’scenario’: ’calen-
dar’, ’action’: ’set’,
’entities’: [{’type’:
’event_name’, ’filler’:
’meeting’}, {’type’:
’relation’, ’filler’:
’wife’}, {’type’:
’date’, ’filler’:
’march’}]

’scenario’: ’calen-
dar’, ’action’: ’set’,
’entities’: [{’type’:
’event_name’, ’filler’:
’meeting’}, {’type’:
’date’, ’filler’: ’march
fifth’}]

’scenario’: ’calen-
dar’, ’action’: ’set’,
’entities’: [{’type’:
’event_name’, ’filler’:
’meeting’}, {’type’:
’person’, ’filler’:
’allen’}]

can i please have the
weather for tomorrow
here in costa mesa

’scenario’: ’weather’,
’action’: ’query’,
’entities’: [{’type’:
’date’, ’filler’: ’to-
morrow’}, {’type’:
’place_name’, ’filler’:
’costa mesa’}]

’scenario’: ’calendar’,
’action’: ’query’,
’entities’: [{’type’:
’date’, ’filler’: ’tomor-
row’}, {’type’: ’time’,
’filler’: ’eight am’},
{’type’: ’date’, ’filler’:
’tomorrow’}]

’scenario’: ’weather’,
’action’: ’query’,
’entities’: [{’type’:
’date’, ’filler’: ’tomor-
row’}, {’type’: ’time’,
’filler’: ’nine am’}]

’scenario’: ’weather’,
’action’: ’query’,
’entities’: [{’type’:
’date’, ’filler’: ’tomor-
row’}]

’should i take my rain-
coat with me now’

’scenario’: ’weather’,
’action’: ’query’,
’entities’: [{’type’:
’weather_descriptor’,
’filler’: ’raincoat’}]

’scenario’: ’play’, ’ac-
tion’: ’audiobook’,
’entities’: [{’type’:
’media_type’, ’filler’:
’audiobook’}]

’scenario’: ’weather’,
’action’: ’query’,
’entities’: [{’type’:
’weather_descriptor’,
’filler’: ’rain’},
{’type’: ’date’, ’filler’:
’today’}]

’scenario’: ’weather’,
’action’: ’query’,
’entities’: [{’type’:
’weather_descriptor’,
’filler’: ’raining’}]

VoxPopuli2SLUE
second i do not be-
lieve in the minsk
group but i believe
that the eu in the per-
son of the high rep-
resentative has the ca-
pacity to broker the
negotiations.

’entities’: [{’type’:
’gpe’, ’filler’: ’eu’},
{’type’: ’org’, ’filler’:
’minsk group’},
{’type’: ’ordinal’,
’filler’: ’second’}]

’entities’: [{’type’:
’gpe’, ’filler’: ’eu’},
{’type’: ’ordinal’,
’filler’: ’secondly’},
{’type’: ’ordinal’,
’filler’: ’secondly’}]

’entities’: [{’type’:
’gpe’, ’filler’: ’eu’},
{’type’: ’ordinal’,
’filler’: ’secondly’}]

’entities’: [{’type’:
’gpe’, ’filler’: ’eu’},
{’type’: ’ordinal’,
’filler’: ’second’}]

what can be done to
ensure that the re-
vision process goes
smoothly and is fi-
nalised before one
may two thousand and
fifteen as specified in
article nineteen of the
multiannual financial
framework regulation
so as to avoid losi ng
uncommitted amounts
from?

’entities’: [{’type’:
’law’, ’filler’: ’arti-
cle nineteen of the
multiannual financial
framework’}, {’type’:
’date’, ’filler’: ’one
may two thousand and
fifteen’}]

’entities’: [{’type’:
’date’, ’filler’:
’two thousand
and twenty’},
{’type’: ’date’,
’filler’: ’two thousand
and twenty’}]

’entities’: [{’type’:
’date’, ’filler’: ’two
thousand and fifty’}

’entities’: [{’type’:
’date’, ’filler’: ’two
thousand and fif-
teen’}]

Table 10: Case studies of Θ̃A�L on two datasets are shown, where red fonts highlight incorrectly predicted tokens.
We find that using both MCSS and CMSN (the last column) has the fewest incorrectly predicted tokens. This also
verifies the effectiveness of reducing imbalance and noise by our CMSST framework, which includes both MCSS
and CMSN.
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