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Abstract

Temporal-difference learning is a popular algorithm for policy evaluation. In this
paper, we study the convergence of the regularized non-parametric TD(0) algorithm,
in both the independent and Markovian observation settings. In particular, when
TD is performed in a universal reproducing kernel Hilbert space (RKHS), we prove
convergence of the averaged iterates to the optimal value function, even when it
does not belong to the RKHS. We provide explicit convergence rates that depend
on a source condition relating the regularity of the optimal value function to the
RKHS. We illustrate this convergence numerically on a simple continuous-state
Markov reward process.

1 Introduction

One of the main ingredients of reinforcement learning (RL) is the ability to estimate the long-term
effect on future rewards of employing a given policy. This building block, known as policy evaluation,
already contains crucial features of more complex RL algorithms, such as SARSA or Q-learning [64].
Temporal-difference learning (TD), proposed by [62], is among the simplest algorithms for policy
evaluation. The estimation of the performance of the policy is made through a value function. It is
updated online, after each new observation of a couple composed of a state transition and a reward.

Although the formulation of TD is quite natural, its theoretical analysis has proved more challenging,
as it combines two difficulties. The first one is that TD bootstraps, in the sense that it uses its
previous – possibly inaccurate – predictions to correct its next predictions, because it does not
have access to a fixed ground truth. The second difficulty is that the observations are produced
along a trajectory following a fixed policy (on-policy), hence they are correlated, which calls for
more involved stochastic approximation tools compared to independent identically distributed (i.i.d.)
samples. Moreover, using off-policy samples, produced by a different policy than the one being
evaluated, can make the algorithm diverge [16]. Off-policy sampling is out of our scope in this paper.

A third element which is not inherent to TD further complicates the plot: function approximation.
While TD was originally proposed in a tabular setting, its large-scale applicability has been greatly
extended by its combination with parametric function approximation [17]. This enables the use of
any linear or non-linear function approximation method to model the value function, including neural
networks. However, one can exhibit unstable diverging behaviors of TD even with simple non-linear
approximation schemes [66]. This combination of difficulties (even with linear function approxima-
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tion) has been coined the “deadly triad” by [63]. We argue that convergence can be obtained even with
non-linear function approximation, by making use of the non-parametric formalism of reproducing
kernel Hilbert spaces (RKHS), involving linear approximation in infinite-dimension. Studying this
case could bring us closer to understanding what happens with other universal approximators used in
practice, like neural networks.

1.1 Contributions

We study the policy evaluation algorithm TD(0) in the non-parametric case, first when the observations
are sampled i.i.d. from the invariant distribution of the Markov chain resulting from the evaluated
policy, and then when they are collected from a trajectory of the Markov chain with geometric mixing.
In that sense we follow a similar outline as the analysis of [10] which is dedicated to the linear case.

The non-parametric formulation of TD closes the gap between the original tabular formulation and
the parametric formulation which involves semi-gradients. It allows the use of classical tools and
theory from kernel methods [22]. In particular, we highlight the central role of infinite-dimensional
covariance operators [5, 2] which already appear in the analysis of other non-parametric algorithms,
like least-squares regression. We study a regularized variant of TD, a widely used way of dealing
with misspecification in regression. Importantly, when the regularized TD approximation is run on an
infinite-dimensional RKHS which is dense in the space of square-integrable functions, then there is
no approximation error and the algorithm converges to the true value function. More precisely, we
provide a proof of convergence in expectation of TD without approximation error, even when the true
value function does not belong to the RKHS, under a weaker source condition. Furthermore, we give
non-asymptotic convergence rates related to this source condition, which measures the regularity of
the true value function relative to the RKHS, e.g., its smoothness if the RKHS is a Sobolev space [51].

Note that using a universal kernel [48] to obtain convergence of TD to the true value function is also
interesting from a theoretical point of view. Indeed it exempts us from a possibly tedious study of
the approximation (or projection) error on a given basis, and simply removes an error term which in
general scales linearly with the horizon of the Markov reward process [49, 70].

In the rest of this section, we review the related literature. In Sec. 2, we present the algorithm, along
with generic results and notations. In Sec. 3, we analyze a simplified version of the algorithm, namely
population TD in continuous time. This allows to catch the main features of the analysis, while
postponing the technicalities related to stochastic approximation. Sec. 4 is dedicated to the analysis of
non-parametric TD with i.i.d. observations, while Sec. 5 consists in a similar analysis for correlated
observations sampled from a geometrically mixing Markov chain. Finally, in Sec. 6, we present
simple numerical simulations illustrating the convergence results and the role the main parameters.

1.2 Related literature

Temporal-difference learning. The TD algorithm was introduced in its tabular version by [62],
with a first convergence result for linearly independent features, later extended to dependent features
by [27]. Further stochastic approximation results were proposed by [41] for the tabular case, and
by [58] for the linear approximation case. An exact analysis of the behavior of tabular TD was
recently carried out by [40], using the framework of Markov jump linear systems. [66] provided a
thorough asymptotic analysis of TD with linear function approximation, while failure cases were
already known [4]. A non-asymptotic analysis was later proposed by [45] in the i.i.d. sampling case
with constant step size, concurrently to another approach extending to Markov sampling by [10].
Other problem-dependent bounds for linear TD were derived around the same period [26, 60], along
with an analysis of variance-reduced TD [44, 69]. All of the analyses mentioned above focus either
on the tabular or on the linear parametric TD algorithm. A recent work by [33] deals with the batch
counterpart of non-parametric TD, namely the least-squares TD algorithm (LSTD), but they rather
focus on the analysis of the statistical estimation error. Importantly, LSTD only requires offline
computations and is not related to stochastic approximation. Most closely related to our work is
the non-parametric regularized TD setting studied by [43]. However, their analysis is limited to
the case where the optimal value function belongs to the RKHS. This is not sufficient to get rid of
the approximation error term. Also, we will show later that regularization is not necessary in this
case. Furthermore, their analysis is restricted to the i.i.d. setting, for which we will require fewer
regularity assumptions. Finally, let us mention the recent work by [18] concerning TD with function
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approximation using a one-hidden layer neural network with finite-width, called “neural TD”. Since
finite-width neural networks are not universal approximators, there is an approximation error, which
vanishes in the infinite-width limit if the value function belongs to a particular function space.

Kernel methods in RL. To tackle large-dimensional problems, kernel methods have been combined
with various RL algorithms, including approximate dynamic programming [53, 11, 6, 38], policy
evaluation [25], policy iteration [36], LSTD [33], the linear programming formulation of RL [29],
upper confidence bound [32], or fitted Q-iteration [47]. Such kernel methods often come along with
practical ways to reduce the computational complexity that grows with the number of observed
transitions and rewards [7, 43].

Stochastic approximation. The analysis of TD requires tools from stochastic approximation [8],
among which the ODE method [13]. Such tools are primarily designed for finite-dimensional
problems. Stochastic gradient descent (SGD) [15] is a specific instance of stochastic approximation
that has received extensive attention for supervised learning. In particular, the role of regularization
of SGD for least-squares regression has been studied [19, 24], as well as the effect of of sampling
data from a Markov chain [50]. Finally, we use a formalism which is close to the analyses [31, 54, 9]
of non-parametric SGD for least squares regression.

2 Problem formulation and generic results

2.1 The non-parametric TD(0) algorithm

We consider a Markov reward process (MRP), i.e., a Markov chain with a reward associated to
each state. This is what results from keeping the policy fixed in a Markov decision process (MDP)
for policy evaluation. We consider MRPs in discrete-time, not necessarily with a countable state
space X. Specifically, we use the formalism of Markov chains on a measurable state space, also
called Harris chains, which unifies discrete- and continuous-state Markov chains. Formally, let
X ⇢ Rd a measurable set associated with the �-algebra A of Lebesgue measurable sets. Let (xn)n�1

a time-homogeneous Markov chain with Markov kernel . A Markov kernel [56, 42] is a mapping
 : X⇥A ! [0, 1] that has the following two properties:

1. for every x 2 X, (x, ·) is a probability measure on A, and
2. for every A 2 A, (·, A) is A-measurable.

If X is a countable set,  is represented by a transition matrix Q such that Qi,j := P(j|i) = (i, {j}),
for any i, j 2 X.

We define a reward function r : X ! R uniformly bounded by R < 1, and a discount fac-
tor � 2 [0, 1). The aim of policy evaluation is to compute the value function of the MRP:

8x 2 X, V ⇤(x) = E
h +1X

n=0

�nr(xn)
��� x0 = x

i
, (1)

where the (xn)n�1 are drawn from the Markov chain. A probability distribution p : A ! R is a
stationary distribution for  if for all A 2 A, p(A) =

R
X
(x,A)p(dx). The existence and uniqueness

of a stationary distribution p, along with the convergence of the Markov chain to p in total variation,
is ensured by ergodicity conditions. A sufficient condition is that the Markov chain is Harris ergodic,
i.e., it has a regeneration set, and is aperiodic and positively recurrent (see [1] and [35] for a complete
exposition of Harris chains). For discrete-state Markov chains, ergodicity conditions can be expressed
somewhat more simply, and any aperiodic and positive recurrent Markov chain has a unique invariant
distribution. Throughout this paper, we assume that p is the unique invariant distribution of the
Markov chain, and that it has full support on X. Only in Sec. 5, we will in addition assume that the
Markov chain is geometrically mixing.

We define L2(p), the set of squared integrable functions f : X ! R with respect to p, with the
norm kfk2

L2(p) =
R
X
f(x)2p(dx) < +1. We also consider a reproducing kernel Hilbert space H of

A-measurable functions, associated to a positive-definite kernel K : X⇥ X ! R. For all x 2 X, we
use the notation �(x) := K(x, ·) for the mapping of x in H, and h·, ·iH for the inner product in H
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(we sometimes drop the index). We assume that MH := sup
x2X

K(x, x) is finite, which implies
that H ⇢ L2(p). More precisely, the H-norm controls the L2(p)-norm: any sequence converging
in H thus converges in L2(p). Indeed, if f 2 H:

kfk2
L2(p) =

Z
f(x)2dp(x) =

Z
hf,�(x)i2

H
dp(x)  kfk2

H

Z
k�(x)k2

H
dp(x)  MHkfk2

H
. (2)

We also assume that r 2 L2(p). The non-parametric TD(0) algorithm in the RKHS H is defined
as follows [53, 43]. Draw a sequence (xn)n�0 according to the Markov chain with initial distribu-
tion p, and collect the corresponding rewards (r(xn))n�0. Define a sequence of non-negative step
sizes (⇢n)n�1. We build recursively a sequence of approximate value functions (Vn)n�0 in L2(p).
Throughout the paper, we take V0 = 0 for simplicity, but note that all the results can be adapted to
the case V0 2 H. For n � 1:

8y 2 X, Vn(y) = Vn�1(y) + ⇢n
h
r(xn) + �Vn�1(x

0
n
)� Vn�1(xn)

i
K(xn, y), (3)

where x0
n
:= xn+1. The term in brackets is called a temporal-difference. Equivalently, in the RKHS:

Vn = Vn�1 + ⇢n
h
r(xn) + �Vn�1(x

0
n
)� Vn�1(xn)

i
�(xn). (4)

This update has a running time complexity of O(n2), which can be improved to O(n), e.g. using
Nyström approximation or random features [39]. More details on the implementation are given
in App. B.2. This non-parametric formulation is a natural extension of the tabular TD algorithm.
Indeed, if X is a countable set and K(x, y) = 1x=y is a Dirac kernel – a valid positive-definite
kernel – then we exactly recover tabular TD: the update rule (3) becomes, after observing a transition
(i, i0, ri) := (xn, x0

n
, r(xn)):

Vn(i) = Vn�1(i) + ⇢n
h
ri + �Vn�1(i

0)� Vn�1(i)
i
, and 8j 6= i, Vn(j) = Vn�1(j). (5)

This also covers the semi-gradient formulation of TD for linear function approximation [64]. Sup-
pose H has finite dimension d, then Vn can be identified to ⇠n 2 Rd, and we are searching for an
approximation of the form Vn(x) = ⇠>

n
�(x). Then (4) becomes:

⇠n = ⇠n�1 + ⇢n
h
r(xn) + �Vn�1(x

0
n
)� Vn�1(xn)

i
r⇠Vn(xn). (6)

Since V0 2 H, all the iterates Vn are in the RKHS, in particular Vn 2 span{�(xk)}1kn. Conse-
quently, if the sequence (Vn) converges in the topology induced by the L2(p)-norm, it converges in
H, the closure of H with respect to the L2(p)-norm. In particular, for a dense RKHS and because p
has full support on X, H = L2(p), but in general it only holds that H ⇢ L2(p).

To understand the behavior of the algorithm, we will first consider the population version (also called
mean-path in [10]) of the algorithm: set V0 = 0 and for n � 1:

Vn = Vn�1 + ⇢nE(x,x0)⇠q [(r(x) + �Vn�1(x
0)� Vn�1(x))�(x)] , (7)

where the expectation is taken with respect to q(dx, dx0) := p(dx)(x, dx0). Since Vn�1 2 H, the
reproducing property holds: Vn�1(x) = hVn�1,�(x)iH. Hence the update is affine and reads: Vn =
Vn�1 + ⇢n(AVn�1 + b), with A := Eq [��(x)⌦ �(x0)� �(x)⌦ �(x)] and b := Ep [r(x)�(x)],
where ⌦ denotes the outer product in H defined by g ⌦ h : f 7! hf, hiHg.

2.2 Covariance operators

Assume that the expectations ⌃ := Ep[�(x)⌦ �(x)] and ⌃1 := Eq[�(x)⌦ �(x0)] are well-defined.
⌃ and ⌃1 are the uncentered auto-covariance operators of order 0 and 1 of the Markov process
(xn)n�1, under the invariant distribution p. They are operators from H to H, such that, for all
f, g 2 H, using the reproducing property:

Ep[f(x)g(x)] = Ep[hf,�(x)iHhg,�(x)iH] = hf,Ep[hg,�(x)iH�(x)]iH = hf,⌃giH
Eq[f(x)g(x

0)] = Eq[hf,�(x)iHhg,�(x0)iH] = hf,Ep[hg,�(x0)iH�(x)]iH = hf,⌃1giH.
(8)
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In particular, for all y 2 X and f 2 H, (⌃f)(y) = h�(y),⌃fiH = Ep[f(x)K(x, y)] and similarly,
(⌃1f)(y) = Eq[f(x0)K(x, y)]. Following [31], ⌃ and ⌃1 can therefore be extended to operators ⌃e

and ⌃e

1 from L2(p) to L2(p) defined by:

⌃e : f 7!
Z

X

f(x)�(x)p(dx), such that 8y 2 X, (⌃ef)(y) = Ep[f(x)K(x, y)]

⌃e

1 : f 7!
ZZ

X2

f(x0)�(x)q(dx, dx0), such that 8y 2 X, (⌃e

1f)(y) = Eq[f(x
0)K(x, y)].

(9)

These two operators are the building blocks of the TD iteration (7). In particular, A = �⌃1 � ⌃ and
b = ⌃er, the latter being valid for r 2 L2(p). With a slight abuse of notation, we denote simply as ⌃,
⌃1 the extended operators. Furthermore [31], Im(⌃) ⇢ H and ⌃1/2 is an isometry from L2(p) to H:

8f 2 H, kfkL2(p) = k⌃1/2fkH. (10)

The fact that p is a stationary distribution for  implies a particular constraint linking ⌃ and ⌃1:

Lemma 1. There exists a unique bounded linear operator ⌃̃1 : H ! H such that ⌃1 = ⌃1/2⌃̃1⌃1/2

on H, and k⌃̃1kop  1 (k · kop is the H-operator norm).

This results from an application of [5, Thm. 1], valid on H and extended by continuity to H. See
also [37] for an exposition of cross-covariance operators specifically in an RKHS. In finite dimension,
this is retrieved with generic results on positive semi-definite (PSD) matrices. Specifically, if H ⇢ Rm,
the uncentered covariance matrix of the random variable (�(x),�(x0)), when (x, x0) ⇠ q is:

✓
⌃ ⌃1

⌃>
1 ⌃

◆
⌫ 0.

Using a classical condition on block matrices [12, Prop. 1.3.2], this matrix is PSD if and only if there
exists a matrix ⌃̃1 such that k⌃̃1kop  1 and ⌃1 = ⌃1/2⌃̃1⌃1/2 (k · kop is also the spectral norm in
this case). This corresponds to the fact that the Schur complement of a PSD block matrix is also PSD.

Assumptions on ⌃ and V ⇤. We assume that x 7! K(x, x) is uniformly bounded by MH. There-
fore, the eigenvalues of ⌃ are upper-bounded. However, unlike [66] and [10], we do not assume them
to be lower-bounded, i.e., ⌃ ⌫ 0 is not invertible in general. We will formulate our convergence
results for two sets of assumptions. The first one recovers known results from [10] for linear function
approximation. The second one assumes that V ⇤ verifies a source condition [30, Chap. 1]:

(A1) V ⇤ 2 H, H is finite-dimensional and ⌃ has full-rank;
(A2) V ⇤ 2 ⌃✓/2(H) for some ✓ 2 (�1, 1] (and consequently, k⌃�✓/2V ⇤kH < +1), and

H = L2(p) (i.e., K is a universal kernel).

In (A1), H is finite-dimensional because ⌃ cannot be simultaneously compact (x 7! K(x, x)
being uniformly bounded) and invertible in infinite-dimension [21]. Recalling the isometry prop-
erty (10), the case ✓ = �1 always holds in (A2) because V ⇤ 2 L2(p) (which we prove in the
next subsection). The case ✓ = 0 is equivalent to V ⇤ 2 H. For ✓ > 0, it must be interpreted as:
k⌃�✓/2V ⇤k2

H
:= inf{kV k2

H
| V s.t. V ⇤ = ⌃✓/2V }, with k⌃�✓/2V ⇤kH = +1 if V ⇤ /2 ⌃✓/2(H).

Using a universal approximation removes the need for a projection operator on H, as typically used
for finite-dimensional function approximation, and hence there will be no projection error [66].

2.3 Non-expansiveness of the Bellman operator
It is known that the value function V ⇤ of the MRP is a fixed point of the Bellman operator T . We
define two operators P and T : L2(p) ! L2(p) by, for V 2 L2(p), PV (x) = Ex0⇠(x,·)V (x0) and
TV (x) = r(x) + �PV (x). Both operators can be expressed in terms of ⌃ and ⌃1. For V 2 L2(p):

⇢
⌃PV = Ep[�(x)(PV )(x)] = Eq[�(x)V (x0)] = ⌃1V
⌃TV = ⌃r + �⌃1V.

(11)

Lemma 2. For any V 2 L2(p): kPV kL2(p)  kV kL2(p).
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This is a direct reformulation of [66, Lemma 1], the proof of which is given in App. A.1. As stressed
by [66], this strongly relies on the fact that p is a stationary distribution of the Markov chain. It
implies that T is a �-contraction mapping on L2(p) and has as unique fixed point V ⇤. One can
check that if ⌃ is non-singular, Lemma 2 is exactly equivalent to k⌃�1/2⌃1⌃�1/2kop  1, that is,
Lemma 1. Moreover, using Lemma 2, we obtain kV ⇤kL2(p)  krkL2(p)/(1� �) and V ⇤ 2 L2(p).

3 Analysis of a continuous-time version of the population TD algorithm

Before considering regularized TD with stochastic samples, we look at simplified versions of the
algorithm that momentarily remove the difficulties related to stochastic approximation. Specifically,
we consider the population version of TD to capture a “mean” behavior, and a continuous-time
algorithm to avoid choosing step sizes. Instead, we focus on the role of the regularization parameter.

3.1 Existence of a fixed-point for regularized TD
For � � 0, let us consider the regularized population recursion:

Vn = Vn�1 + ⇢n(⌃r + (�⌃1 � ⌃� �I)Vn�1). (12)

If the TD iterations converge, their limit will be a solution of the regularized fixed-point equation:

⌃r + (�⌃1 � ⌃� �I)V = 0. (13)

Proposition 1. If � > 0, �⌃1 � ⌃ � �I is non-singular on H and equation (13) admits a unique
solution V ⇤

�
in L2(p), defined by V ⇤

�
= (�⌃1 � ⌃� �I)�1⌃r. Furthermore, V ⇤

�
2 H and:

kV ⇤
�
kH  k⌃rkH

�


p
MHkrkL2(p)

�
. (14)

The proof is in App. A.2. Hence, for � > 0, the H-norm of V ⇤
�

is always bounded, unlike kV ⇤kH.

3.2 Convergence of the regularized fixed point to the optimal value function

Recalling that V ⇤ 2 L2(p), it satisfies the relation TV ⇤ = V ⇤, implying that ⌃TV ⇤ = ⌃V ⇤, i.e.,
⌃r + (�⌃1 � ⌃)V ⇤ = 0. This unregularized fixed point equation possibly has other solutions, but
if K is a universal kernel, as assumed by (A2), then ⌃ is injective [61] and V ⇤ is the unique solution.
Let us recall that (A2) does not imply that V ⇤ has a bounded H-norm. However, we can control the
L2(p)-norm of V ⇤

�
� V ⇤ when � is small using the source condition (A2).

Proposition 2. Assume that � > 0 and assumption (A2). Then:

kV ⇤
�
� V ⇤k2

L2(p) 
�✓+1

(1� �)2
k⌃�✓/2V ⇤k2

H
. (15)

The proof in App. A.2 is inspired by similar results [19, 24] in the context of ridge regression
(recovered for � = 0). Note that only kV ⇤

�
�V ⇤kL2(p) is controlled, not kV ⇤

�
�V ⇤kH. Consequently,

we obtain the convergence of V ⇤
�

to V ⇤ in L2(p)-norm when � ! 0: the higher ✓ is, the faster the rate
of convergence. For universal Mercer kernels [23], if we drop the source condition (A2), using only
the fact that V ⇤ 2 L2(p) – corresponding to ✓ = �1 in (A2) – we can still prove that V ⇤

�
converges

to V ⇤ in L2(p)-norm when � ! 0, but without an explicit rate (see App. A.2, Cor. 1).

3.3 Convergence of continuous-time population TD

Following the ordinary differential equation (ODE) method [13], we study the continuous-time
counterpart of the population iteration (12). At least formally, this consists in defining eVt=Vn(t) for t
and n(t) satisfying t =

P
n(t)
i=1 ⇢i, and letting ⇢i tend to 0 for any i � 1, where Vn(t) is defined by

recursion using (12). With a slight abuse of notation, we use the notation Vt instead of eVt. We then
obtain the following ODE in H: V0 = 0 and for t � 0:

dVt

dt
= (A� �I)Vt + b. (16)
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We can exhibit a Lyapunov function for this dynamical system, see [59]. This implies that Vt

converges to V ⇤
�

when t tends to infinity, where V ⇤
�

is defined in Prop. 1. More precisely, for
� 2 {�1, 0}, we define W � , the Lyapunov function, by W �(t) := k⌃��/2(Vt � V ⇤

�
)k2

H
(please

note that �’s role in W � is an index, not a power). W 0(t) strictly decreases with t as follows:
Lemma 3 (Descent Lemma). For � > 0, for all t � 0, the following holds:

dW 0(t)

dt
 �2(1� �)W�1(t)� 2�W 0(t), (17)

The proof (see App. A.2) mainly relies on the contraction property of the Bellman operator as
expressed in Lemma 2. We can then deduce the convergence of the ODE (16) to V ⇤

�
.

Proposition 3. Under assumption (A1), the solution Vt of the ODE (16) with � = 0 is such that:

For T > 0, kV T � V ⇤k2
L2(p) 

1

2(1� �)

kV ⇤k2
H

T
, (18)

where V T is the Polyak-Ruppert average [55] of Vt, defined by V T := 1
T

R
T

0 Vtdt.

Under assumption (A2), the solution Vt of the ODE (16) with � > 0 is such that:

For T � 0, kVT � V ⇤
�
k2
H

 kV ⇤
�
k2
H
e�2�T . (19)

Under (A1), we recover the same O(1/T ) convergence rate as [10]. We focus on (A2), where we
get a fast convergence to V ⇤

�
in H-norm (stronger than L2(p)). However, we are rather interested in

convergence to V ⇤. Prop. 2 quantifies how far V ⇤
�

is from V ⇤. Indeed, the error decomposes as:

kVT � V ⇤k2
L2(p)  2MHkVT � V ⇤

�
k2
H

+ 2kV ⇤
�
� V ⇤k2

L2(p). (20)

Combining Propositions 1, 2, 3 shows a trade-off on �: kVT � V ⇤k2
L2(p) = O

�
e�2�T /�2 + �✓+1

�
.

Taking � = (3 + ✓) log T/(2T ) balances the terms up to logarithmic factors: kVT � V ⇤k2
L2(p) =

Õ
�
T�1�✓

�
(where Õ(g(n)) := O(g(n) log(n)`), for some ` 2 R). In particular, for ✓ = 0,

i.e., V ⇤ 2 H, we recover a convergence rate Õ (1/T ): up to logarithmic factors, it is the same as the
unregularized case with averaging, assuming (A1). In this case, regularization brings no benefits.

4 Stochastic TD with i.i.d. sampling

We now consider stochastic TD iterations (4), where the couples (xn, x0
n
)n�1 are sampled i.i.d. from

the distribution q(dx, dx0) = p(dx)(x, dx0). Such i.i.d. samples can be obtained by running the
Markov chain until it has mixed so that xn ⇠ p, collecting a couple (xn, x0

n
), and restarting. With

An := ��(xn)⌦ �(x0
n
)� �(xn)⌦ �(xn) and bn := r(xn)�(xn), we study the recursion:

Vn = Vn�1 + ⇢n((An � �I)Vn�1 + bn). (21)

In particular, Eq[An] = A, Ep[bn] = b, and An and bn are independent of the past (Vk)k<n.
For � 2 {0, 1}, let W �

n
:= k⌃��/2(Vn � V ⇤

�
)k2

H
. Adapting the proof of Lemma 3, we exhibit a

similar decreasing behavior of W 0
n

in expectation, hence showing that E[kVn � V ⇤
�
k2
H
] ! 0 for

well-chosen step sizes ⇢n. Finally, � is chosen to balance E[kVn � V ⇤
�
k2
L2(p)] and kV ⇤

�
� V ⇤k2

L2(p).
We define V (e)

n
and V (t)

n
as the exponentially-weighted and the tail-averaged n-th iterates respectively:

V (e)
n

:=

P
n

k=1(1� ⇢�)n�kVk�1P
n

k=1(1� ⇢�)n�k
and V (t)

n
:=

1

n� bn/2c+ 1

nX

k=bn/2c

Vk�1. (22)

Theorem 1. Let n � 9. Under assumption (A2) with �1 < ✓  1, there exist a positive real
number �

✓
independent of n such that, for �0 � �

✓
,

(a) Using � = �0n
� 1

3+✓ and a constant step size ⇢ = logn

�n
, then:

E[kVn � V ⇤k2
L2(p)] = O((log n)n� 1+✓

3+✓ ).
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(b) Using � = �0n
� 1

2+✓ and a constant step size ⇢ = logn

�n
, then:

E[kV (e)
n

� V ⇤k2
L2(p)] = O((log n)n� 1+✓

2+✓ ).

(c) Using � = �0n
� 1

2+✓ and a constant step size ⇢ = 2 logn

�n
for the first bn/2c � 1 iterates and

then a decreasing step size ⇢k = 1
�k

, then:

E[kV (t)
n

� V ⇤k2
L2(p)] = O((log n)n� 1+✓

2+✓ ).

A similar exponentially-weighted averaging scheme as in (b) has been used to study constant step
size SGD in [28]. When � = 0, the rates can be compared to existing results for SGD. For example,
for ✓ 2 [0, 1], [65] proves almost sure convergence for regularized least-mean-squares without
averaging at rate O(n� 1+✓

2+✓ ). The dependence in ✓ is similar to what we obtain. Moreover, under
assumption (A1), we recover the same O(1/

p
n) convergence rate as [10] (see Prop. 4 stated in

App. A.3). Finally, our bounds have a polynomial dependence in the horizon 1/(1� �) of the MRP.

Remark. Because the Bellman operator is also a contraction mapping in L1-norm, this analysis in
L2-norm might be adapted to the L1-norm, using a modified Lyapunov function to study the ODE,
e.g., following [14]. The stochastic case could be handled using the smoothing technique recently
developed by [20].

5 Stochastic TD with Markovian sampling

We now consider the truly online TD algorithm, where the samples are produced by a Markov
chain. In particular, there is now a correlation between the current samples (xn, x0

n
) and the previous

iterate Vn�1. To control it, we assume that the Markov chain mixes at uniform geometric rate:

(A3) 9m > 0, µ 2 (0, 1) s.t. sup
x2X

dTV (P(xn 2 ·|x0 = x), p)  mµn, (23)

where dTV denotes the total variation distance. This is always verified for irreducible, aperiodic
finite Markov chains [46]. Note that the uniform mixing assumption might be relaxed by a weaker
drift condition using the technique developed by [34] for linear TD, although its extension to the
infinite-dimensional setting is not straightforward, and out of our scope. We give an example of
continuous-state Markov chain with geometric mixing in Sec. 6. Furthermore, following [10], in our
analysis we need to control the magnitude of the iterates almost surely. To do so, we add a projection
step at each TD iteration:

Vn = ⇧B [Vn�1 + ⇢n((An � �I)Vn�1 + bn)], (24)

where ⇧B is the projection on the H ball of radius B > 0. If kV ⇤
�
kH  B, the convergence of

the method is preserved. In the following theorem, we consider two regimes with different rates of
convergence. In the first one, we assume like [10] that we are given an oracle B upper-bounding
kV ⇤

�
kH, with B independent of �. In the second one, we use the bound of Prop. 1, but this will affect

the convergence rate since in this case B = O(1/�).
Theorem 2. Assuming (A2) and that the samples are produced by a Markov chain with uniform
geometric mixing (A3), the projected TD iterations (24) are such that:

(i) Using � = n� 1
2+✓ , a constant step size ⇢ = logn

2�n , and using a projection radius B
independent of � provided by an oracle and such that kV ⇤

�
kH  B, then:

E
h
kV (e)

n
� V ⇤k2

L2(p)

i
 O

⇣ (log n)2n� 1+✓
2+✓

log(1/µ)

⌘
. (25)

(ii) Using � = n� 1
4+✓ , ⇢ = logn

2�n , and the projection radius B =
p
MHkrkL2(p)/�, then:

E
h
kV (e)

n
� V ⇤k2

L2(p)

i
 O

⇣ (log n)2n� 1+✓
4+✓

log(1/µ)

⌘
, (26)

with V (e)
n

=
P

n

k=1(1� 2⇢�)n�kVk�1/
P

n

j=1(1� 2⇢�)n�j .
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When an oracle is given for B (i.e., setting (i)), we recover the same rate as i.i.d. sampling, up to
a multiplicative factor log(n)/ log(1/µ) which represents the mixing time of the Markov chain. If
no oracle is provided (i.e., setting (ii)), the convergence will be slower because the bound B is of
order 1/�. Note that the slight changes in the definitions of ⇢, �, V (e), and the absence of constraint
on �, as compared to Thm. 1, are implied by the boundedness of the iterates. Following a similar
study for SGD [50], we might compare these rates to those of a naive algorithm which we call
“⌧ -Skip-TD”, for some ⌧ � 1, where only one every ⌧ samples from the Markov chain is used to
make TD updates:

Vn = ⇧B [Vn�1 + ⇢n((An⌧ � �I)Vn�1 + bn⌧ )], (27)
For ⌧ large enough, of the order of the mixing time of the Markov chain, the new sample (xn⌧ , x0

n⌧
)

is almost independent from the past ones (xk⌧ , x0
k⌧
)k<n. Of course, since we need to generate ⌧

times more samples to make a step, we must look at the distance of Vn/⌧ to the optimum. Such
convergence rates for ⌧ -Skip-TD are derived in App. A.4, Cor. 2. In setting (i), they are similar to
Theorem 2 up to a log(n) factor. This suggests that making updates at each sample of the Markov
chain is not more efficient than ⌧ -Skip-TD for large ⌧ , at least in our theoretical analysis. In practice,
using all samples seems slightly better, especially for a slowly mixing Markov chain (see App.B.3).
In setting (ii), we obtain a rate for Skip-TD whose leading term does not depend on log(1/µ) – which
only appears in higher order terms – suggesting that the rate and parameters of Thm. 2, setting (ii)
might be suboptimal.

Remark. The analysis of TD with linear function approximation by [60] does not require a projec-
tion step. Hence the necessity of the projection step might only be an artifact of our proof technique
inspired by [10]. In the above experiments, we simply omit the projection step.

6 Experiment on artificial data

Building a value function. We build a toy model for which the main parameters can be computed
in closed form. We consider the dynamics on the circle X = [0, 1] defined by: with probability ",
xn+1 ⇠ U([0, 1]), and with probability 1� ", xn+1 = xn. Because the Markov kernel is symmetric,
the invariant distribution is p = U([0, 1]). In particular, the mixing parameter can be bounded
explicitly with m = 1 and µ = 1 � " (see App. B.1). Also, simple computations show that V ⇤ is
an affine transform of r: V ⇤(x) = ar(x) + b, with a = (1 � �(1 � "))�1 and b = �a

R 1
0 r(u)du.

Hence we can build a V ⇤ with a given regularity by choosing an appropriate reward with the same
regularity. We consider two rewards: rabs(x) := 2|x� 1/2| and rcos(x) := (1 + cos(2⇡x))/2.

Kernels on the torus. We consider the RKHS of splines on the circle [67] of regularity s 2 N⇤,
denoted by Hs

per. It is a Sobolev space equipped with the following norm:

kfk2
Hs

per
=

✓Z 1

0
f(x)dx

◆2

+
1

(2⇡)2s

Z 1

0
|f (s)(x)|2dx. (28)

Its corresponding reproducing kernel Ks is a translation-invariant kernel defined by:

Ks(x, y) = 1 + (�1)s�1 (2⇡)
2s

(2s)!
B2s({x� y}), (29)

where {x} := x� bxc and Bj is the j-th Bernoulli polynomial [52]. Let us recall that the Fourier
series expansion on the torus of a 1-periodic function f 2 L2(p) is: f(x) =

P
!2Z e

2i!⇡xf̂!,
with f̂! :=

R 1
0 f(x)e�2i!⇡xdx, for ! 2 Z. The kernel Ks has an embedding in the space of

Fourier coefficients �(x) = (
p
c!e2i!⇡x)>

m2Z with c! := |!|�2s if ! 6= 0 and c0 := 1. Using
Parseval’s theorem in Eqn. (28), one can compute the norm of f from its Fourier coefficients
kfk2

Hs
per

=
P

!2Z |f̂!|2/c!. The operators ⌃ and ⌃1 can be represented as countably infinite-
dimensional matrices ⌃ = diag(c) and ⌃1 = (1� ")⌃+ "

p
c(
p
c)>. Hence the source condition

states that |f̂0|2+
P

! 6=0 |!|2s(1+✓)|f̂!|2 < 1. In particular, it holds if f 2 Hs
0

per, for any s0 � s(1+✓).
In our example, we consider two Sobolev spaces H1

per and H2
per, and our two example functions have

Fourier coefficients (r̂abs)! = 1�(�1)!

⇡2!2 for ! 6= 0, and (r̂cos)! = 0 for |!| > 1. The largest ✓ 2 [0, 1]
such that the source condition holds are indicated in the first row of Tab. 1.
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Results. We run TD on functions rabs and rcos, with kernels K1 and K2. We use parameters � and ⇢
and exponential averaging as prescribed in Thm. 1 (b). Each experiment is repeated 10 times and
we record the mean ± one standard deviation. The implementation is based on a finite dimensional
representation of the iterates (Vk)kn in Rn (see further details in App. B.2). This implies computing
the kernel matrix in O(n2) operations. To accelerate this computation when the eigenvalues decrease
fast, we approximate it with the incomplete Cholesky decomposition [3]. In Tab. 1, we set " = 0.8,
� = 0.5 and report the observed convergence rates v.s. the ones expected by Thm. 2, which are fairly
consistent. In Fig. 1, we show the respective effects of varying " and �. Larger values of " or � make
the problem more difficult and slow down convergence, presumably in the constants without affecting
the rates, as predicted by Thm. 2. Additional experiments are provided in App. B.3.

Table 1: Predicted and observed convergence rates with different reward functions and kernels.

Sobolev kernel s = 1 Sobolev kernel s = 2

r = rabs r = rcos r = rabs r = rcos

Maximal ✓ 1/2 1 �1/4 1
Predicted rate �0.6 �0.67 �0.43 �0.67
Observed rate �0.72 �0.64 �0.58 �0.64
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Figure 1: Respective effects of varying " (for � = 0.5 fixed) and � (for " = 0.8 fixed).

7 Conclusion

We have provided convergence rates for the regularized non-parametric TD algorithm in the i.i.d. and
Markovian sampling settings. The rates depend on a source condition that quantifies the relative
regularity of the optimal value function to the RKHS. They are compatible with our empirical
observations on a one-dimensional MRP, but we have not proved optimality of such rates. Interesting
directions include the extension to the TD(�) algorithm, which we believe can be achieved with
similar tools, as well as more challenging extensions to control counterparts of TD (Q-learning,
SARSA,...) for which the policy is optimized.
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ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix. B.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
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(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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