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Abstract—We propose an efficient solver for the privacy

funnel (PF) method, leveraging its difference-of-convex (DC)

structure. The proposed DC separation results in a closed-form

update equation, which allows straightforward application to

both known and unknown distribution settings. For known dis-

tribution case, we prove the convergence (local stationary points)

of the proposed non-greedy solver, and empirically show that

it outperforms the state-of-the-art approaches in characterizing

the privacy-utility trade-off. The insights of our DC approach

apply to unknown distribution settings where labeled empirical

samples are available instead. Leveraging the insights, our

alternating minimization solver satisfies the fundamental Markov

relation of PF in contrast to previous variational inference-based

solvers. Empirically, we evaluate the proposed solver with MNIST

and Fashion-MNIST datasets. Our results show that under a

comparable reconstruction quality, an adversary suffers from

higher prediction error from clustering our compressed codes

than that with the compared methods. Most importantly, our

solver is independent to private information in inference phase

contrary to the baselines.

I. INTRODUCTION

The privacy funnel (PF) method attracts increasing attention
recently, driven by the need for enhanced data security as
modern machine learning advances. However, due to the non-
convexity of the involved optimization problem, the strict
Markov constraint, and the requirement of full knowledge of
a probability density, the PF problem is well-known to be
difficult to solve. In the PF method, the goal is to solve the
following optimization problem [1]:

min
P (Z|X)2⌦Z|X

I(Z;Y ),

subject to I(Z;X) � ⌘X , (1)

where ⌘X denotes a control threshold. In the above problem,
the joint distribution P (X,Y ) is assumed to be known and
the random variables satisfy the Markov chain Y ! X ! Z.
Here, Y is the private information; X the public information
and Z is the released (compressed) codes; I(Z;X) denotes the
mutual information between two random variables Z and X .
In (1), the variables to optimize with are the stochastic map-
pings P (Z|X) with ⌦Z|X denotes the associated feasible so-
lution set. The aim of the problem is to characterize the funda-
mental trade-off between the privacy leakage and the utility of
the released information. One of the challenges in solving (1)
is the non-convexity of the problem. It is well-known that the
mutual information I(Z;X) with known marginal P (X) is

a convex function with respect to P (Z|X) [2]; Additionally,
due to the Markov relation, I(Z;Y ) is a convex function of
P (Z|X) as well. Together, (1) minimizes a convex objective
under a non-convex set. Previous solvers for PF address the
non-convexity by restricting the feasible solution set further
for efficient computation. Both [1] and [3] consider discrete
settings and focus on deterministic P (z|x), i.e., a realization of
x 2 X belongs to a single cluster z 2 Z only. They propose
greedy algorithms to solve the reduced problem and differ
in choosing the subset of Z to combine with. However, the
imposed restriction limits the characterization of the privacy-
utility trade-off. In our earlier work [4], we propose a non-
convex alternating direction methods of multipliers (ADMM)
solver for PF which is non-greedy, but it suffers from slow
convergence [5].

Another challenge of PF is knowing the joint distribution
P (X,Y ). Overcoming this is important for practical appli-
cation of the method as P (X,Y ) is prohibitively difficult to
obtain in general. Nonetheless, it is relatively easy to obtain
samples of the joint distribution, which become a training
dataset as an indirect access to P (X,Y ). Recently, inspired
by the empirical success of information theoretic-based ma-
chine learning, several works have attempted to extend the
PF method through the theory of variational inference [6].
In [7], the conditional mutual information form of PF due to
I(Y ;Z) = I(X;Z) � I(X;Z|Y ) is adopted, whose varia-
tional surrogate bound is estimated with empirical samples.
In [8] a similar formulation is adopted, but they restrict the
parameter space and implement a generative deep architecture
for interchangeable use of the empirical and the generated Y

samples for estimation. However, owing to the dependency
of the private information Y in estimating I(X;Z|Y ), these
previous solvers violate the fundamental Markov relation in PF
method. Consequently, samples of X,Y are required for their
solvers which means supervision is required in both model
training and inference phases.

Different from the previous works, we focus on more com-
putationally efficient PF solvers for both known and unknown
(empirical samples available) joint distribution settings based
on the difference-of-convex (DC) structure of (1). In known
joint distribution settings, inspired by the difference-of-convex
algorithm (DCA), we propose a novel PF solver with closed-
form update equation. In our evaluation, the proposed solver
not only covers solutions obtained from the state-of-the-art



solvers but also attains non-trivial solutions that the compared
greedy solvers are infeasible to reach. In unknown P (X,Y )
settings, our DC method complies with the fundamental
Markov relation, therefore requires public information X only
in inference phase in contrast to previous approaches. We
implement our solver with deep neural networks and evaluate
the model on MNIST and Fashion-MNIST datasets. In all
evaluated datasets, our approach outperforms the state-of-the-
art. Specifically, under a comparable reconstruction quality of
the public information X , an adversary’s clustering accuracy
(leakage of the private information Y ) with the released codes
Z of ours is significantly lower than the compared approaches.

Notations: Upper-case letters denote random variables
(RVs) and lower-case letters are their realizations. The cal-
ligraphic letter denotes the sample space, e.g., x 2 X with
cardinality |X |. The vectors and matrices are denoted in
bold-face symbols, e.g., x,X respectively. We denote the
conditional probability mass function as a long vector:

pz|x :=
⇥
P (x1|z1) P (x1|z2) · · · P (x|X ||z|Z|)

⇤T
. (2)

The Kullback-Leibler divergence of two measurable proper
densities µ, ⌫ is denoted as DKL[µ k ⌫] [2].

II. A DIFFERENCE-OF-CONVEX ALGORITHM FOR
PRIVACY FUNNEL

For simplicity, we focus on discrete random variables
settings in this section. We start with a summary of DC
programming and refer to the excellent review [9] for the
development and recent advances. For a DC program, the
canonical form is given by:

w
⇤ = argmin

w2W

f(w)� g(w), (3)

where f, g are functions of w, and W denotes the feasible
solution set of w. (3) relates to the PF method through
rewriting (1) as an unconstrained PF Lagrangian:

LPF := I(Z;Y )� �I(Z;X), (4)

where � > 0 is a multiplier. The above is a DC program
when P (X,Y ) is known for a fixed �. This is because
I(Z;X) is convex w.r.t. P (Z|X) for known P (X), and
�H(Z|Y ) is convex w.r.t. P (Z|X) as the Markov relation
P (Z|Y ) =

P
x2X

P (Z|x)P (x|Y ) for known P (Y ) [2]. The
DC structure of (4) can be leveraged for efficient optimization.
By substituting the concave part with its first order approxi-
mation, we obtain a convex sub-objective. Then we iteratively
minimize the convex surrogate sub-objective until the loss
saturates. The monotonically decreasing loss values is assured
due to the convexity of the sub-objective functions. However,
the optimality of the converged solution is lost due to the non-
convexity of the overall problem. There are well-developed
efficient solvers for DC problems in literature, known as the
Difference-of-Convex Algorithm (DCA). However, one of the
key challenges in solving DC problems with DCA is that there
exist infinitely many combinations of DC pairs [9]. Further-
more, a poorly chosen pair may result in slow convergence

and numerical instability. We address the issues by proposing
the following DC separation:

f(pz|x) : = �H(Z|Y ), (5a)
g(pz|x) : = �H(Z) + �I(Z|X), (5b)

Then we apply (5) to DCA:

pk+1
z|x := argmin

pz|x2⌦z|x

f(pz|x)� hrg(pk
z|x),pz|x � pk

z|xi, (6)

where the superscript k denotes the iteration counter. For
known P (X,Y ) in discrete settings, (6) can be expressed as
a linear equation (see Appendix A of [10]):

By|x log pz|y = log pk
z + � log

pk
z|x

pk
z

, (7)

where By|x := I |Z|⌦Qy|x, with Id denotes the d-dimensional
identity matrix, ⌦ the Kronecker product, and Qy|x the matrix-
form of P (Y |X) whose (i, j)-entry is P (yi|xj). We follow
the assumption in private source coding literature that By|x is
full-row rank [11]–[15]. Then we denote the Moore-Penrose
pseudo-inverse of By|x as B†

y|x := (BT
y|xBy|x)

�1BT
y|x. Note

that due to the Markov relation, we have Ax|ypz|x = pz|y with
Ax|y := IZ ⌦Qx|y defined similarly as By|x. Summarizing
the above, (7) reduces to:

p̃z|y / exp{B†

y|xc
k
z|x}, (8)

where ckz|x := log pk
z + � log

pk
z|x
pk
z

, p̃z|y denotes the un-
normalized probability vector and / represents proportional
to. After normalization, followed by the Markov relation, the
insight from applying DCA to PF gives an update equation:

Ax|ypz|x = �(B†

y|xc
k
z|x) := qk

z|y, (9)

where the z 2 Z element is given by �z = e
z
/
P

z02Z
e
z0

.
In practice, � is implemented as a softmax function. The
above implies that the update of pz|x from step k to step
k + 1 requires solving the linear equation (9). However,
since A†

x|y might not exist (By|x is full-row rank), (9) is an
under-determined linear program over non-negative simplice.
Heuristically, one would prefer a solution with the lowest
complexity, which is often achieved by imposing q-norm (e.g.,
q 2 {0, 1, 2}) constraints as regularization [16]. Based on this
intuition, we therefore solve the following sub-problem:

min
pz|x2⌦z|x

kpz|xkq,

subject toAx|ypz|x = qk
z|y, (10)

where kvkq := (
P

v2V
|v|

q)1/q . Similar to relaxing the “hard”
constraints in classical regression problems for applying more
efficient algorithms, we solve the following relaxed problem
of (10) where a soft constraint is considered instead:

pk+1
z|x := argmin

pz|x2⌦z|x

1

2
kAx|ypz|x � qk

z|yk
2
2 + ↵kpz|xkq, (11)

where ↵ > 0 is a relaxation coefficient. The relaxed problem
tolerates an approximation error of the linear equation instead



of a strict equality constraint. Remarkably, (10) relates to the
classical regression problems such as Ridge regression [17],
LASSO [18], and sparse recovery [19]. But in (10) and (11),
the feasible solution set ⌦z|x is the probability simplice. For
q = 2, since (11) corresponds to a convex optimization
problem, each step can be solved efficiently with off-the-shelf
ridge regression solvers [20]. As for q = 1 (convex surrogate
for q = 0), however, the LASSO solver [18] does not work
well. This is because kpz|xk1 =

P
x2X

|pZ|x| = |X |, sinceP
z2Z

P (z|x) = 1, 8x 2 X always. To address this, we
provide the following alternative for sparse recovery (q = 0)
with details referred to Appendix B of [10]:

l
k+1
z|x := argmin

lz|x2Hz|x

1

2
klsex(lx|y + lz|x)� l

k
�k

2 + ↵klz|xk1, (12)

where lx|y := log px|y , lse(x) := log
P

x2X
exp{x} is

the log-sum-exponential function; Hz|x is the feasible set
for lz|x 2 [�M,�m] for some M > m > 0 such thatP

z2Z
exp{lz|x} = 1, 8x 2 X ; the subscript of lse denotes the

variable for summation, and l
k
� := log�(B†

y|xc
k
z|x). Then after

solving (12), we can project the obtained lz|x to a feasible so-
lution pz|x through a softmax function: pz|x = Softmax(lz|x).

For both implementations, the proposed solver guarantees
convergence to a local stationary point.

Theorem 1: For both implementations (11) (q = 2) and (12),
the sequence {Axpk

z|x}k2N, obtained from (6), converges to a
stationary point Axp⇤

z|x such that rf(p⇤

z|x) = rg(p⇤

z|x) with
f, g defined in (5), and Ax := IZ ⌦Qx.

Proof: See Appendix D of [10].

III. EXTENSION TO UNKNOWN DISTRIBUTIONS

The main difficulty in applying PF is the full knowledge of
the joint distribution P (X,Y ) [1]. In (11), this corresponds
to defining the operators Ax|y and B†

y|x. Without knowing
P (X,Y ), these operators are intractible. To address this, we
leverage the DC structure of the PF problem again, but now
take expectation with respect to P (Z,X) = P (Z|X)P (X) on
the update equation (see Appendix C of [10]):

I(Z;Y ) +DKL[Pz k P
k
z ]� �Ez,x

⇥
logP k(X|Z)

⇤
= 0, (13)

where the superscript k denotes the iteration counter. The
above update equation implies that the step k + 1 solution
P

k+1(Z|X) is obtained from solving (13), given the step k

solution P
k(Z|X).

The expectation form (13) is useful because the com-
putationally prohibitive knowledge of P (X,Y ) can be ap-
proximated efficiently through the theory of the variational
inference, followed by Monte-Carlo sampling [6], [21]. The
derived surrogate bound involves an auxiliary variable, which
corresponds to the released information Z, and is associated
with a variational distribution to be designed. For the mutual
information I(Z;Y ) = H(Y )�H(Y |Z):

H(Y |Z)  Ey,z;�


log

1

Q�(Y |Z)

�
, (14)

where the above surrogate bound is tight when Q�(Y |Z) =
P (Y |Z). As for the other terms in (13), we parameter-
ize P✓(Z) = N (0, diag(�2

✓)) as standard Gaussian and
P�(X|Z) = N (µ�(z), I) as conditional Gaussian distri-
butions. This transforms the intractible problem into stan-
dard parameter estimation. Also, we parameterize the en-
coder P✓(Z|X), corresponding to the expectation operator
in (13), through the evident lower bound technique as adopted
in the variational autoencoders (VAE) [21]. Here, we have
P✓(Z|X) ⇠ N (µ✓(x),⌃✓(x)). Combining the above, we
propose the following alternating solver:

�
⇤ := argmin

�2�
��Ex,z;✓k [logP�(X|Z)]

�Ey,z;✓k [logQ�(Y |Z)] , (15a)

✓
k+1 := argmin

✓2⇥

1

2
kI�⇤;✓(Z;Y ) +DKL[Pz;✓ k Pz;✓k ]

��Ez,x;✓ [logP�⇤(X|Z)]k22
+↵Ex

⇥
DKL[Pz|x;✓ k rZ ]

⇤
, (15b)

where rZ = N (0, I) is a reference probability density func-
tion, regularizing the encoder; and ↵ > 0 is a control threshold.
Essentially, we alternate between fitting the empirical samples
of X,Y (15a) and solving the DCA update sub-problem with
an extra regularization term (15b). The two steps are repeated
until a pre-determined number of iterations is reached.

The optimization of (15) is efficient. Each of the two KL
divergence terms are computed between two Gaussian densi-
ties which has closed-form expression [22]; the parameterized
P�(X|Z) and Q�(Y |Z) (hence I(Z;Y ) ⇡ H(Y )�H�(Y |Z))
can be estimated with mean-squared error (MSE) and a cat-
egorical cross entropy loss respectively. Finally, two remarks
are in order:

• While variational inference is adopted of the proposed
solver, but we apply it on the expectation form of
the proposed DC update equation (13), not on the PF
Lagrangian nor on I(X;Z|Y ) [7], [8].

• The parameterization of (15) can be extended to other
density functions such as Laplace, Bernoulli and expo-
nential distributions [23], [24].

IV. EVALUATION

A. Known Distribution

The joint distribution we consider in this part is given by:

P Y |X =

2

4
0.90 0.08 0.40
0.025 0.82 0.05
0.075 0.10 0.55

3

5 , pX =

2

4
1
3
1
3
1
3

3

5 . (16)

Note that in (16), y0, y1 are easy to infer if observing x0, x1

whereas there is ambiguity in inferring y0, y2 if x2 is observed
instead.

The goal of our evaluation is to characterize the privacy-
utility trade-off by plotting the lowest achieved I(Z;Y ) for an
obtained I(Z;X). The characterized trade-off is displayed on
the information plane [1], [4], which depends on both P (X,Y )
and the algorithm used. We evaluate our DCA solver (5)
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(a) DCA (12) with q = 1 versus Submodular [3]
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(b) DCA (12) with q = 1 versus (11) with q = 2 (ridge)

Fig. 1. Comparing the characterization of the privacy-utility trade-off between the proposed DCA solvers and the state-of-the-art method [3]. The joint
distribution P (X,Y ) is known and is given by (16).

and compare it to the state-of-the-art solvers [1], [3]. These
baselines only consider deterministic P (z|x) = 1{x 2 z},
that is, z categorizes x, 8x 2 X . These greedy algorithms
merge two or more z 2 Z iteratively for lower PF Lagrangian
loss. Contrary to them, our solver is non-greedy with feasible
solutions cover the (smoothed) probability simplice. For these
baselines, it suffices to compare to [3] since [1] is a special
case.

In the proposed solver (5), the range of cardinality |Z| fol-
lows the Carathéodory Theorem, i.e., |Z|  max{|X |, |Y|}+
1 [25]. For each cardinality, we initialize P (Z|X) by randomly
sample a uniformly distributed source in [0, 1], followed by
normalization to obtain a starting point. Then, we fix a trade-
off parameter � 2 [0.1, 10.0] and a regularization coefficient
↵ 2 [0.1, 10.0], where each set consists of 16 geometrically
spaced points. For each pair of hyperparameters, we run
our solver until either the consecutive loss values satisfy
|L

k
� L

k+1
|  10�6 or a maximum number of iterations

K = 104 is reached. This procedure is repeated for 10 times.
We compute the obtained metrics I(Z;X), I(Z;Y ) offline.

In Fig. 1a, our solver (5) characterizes the trade-off better
than the baseline solvers since we not only cover their solu-
tions but achieve more non-trivial points that are infeasible
to them. In Fig. 1b we compare the two proposed DCA
solvers with different implementations, i.e., (11) with q = 2
(ridge) versus (12) with q = 1. While the ridge approach
performs worse than the other solver in characterizing the
trade-off, it obtains a better trade-off point at I(Z;X) ⇡ 1 bit
and I(Z;Y ) ⇡ 0.3 bits. Moreover, the ridge solver benefits
from the optimized off-the-shelf solver [20], hence converges
faster in our empirical evaluation. It is worth noting that both
approaches outperform [3] in characterizing the trade-off under
different regularization criterion, demonstrating the strength of
our DCA approach.

B. Unknown Distribution

For unknown P (X,Y ), we consider cases where empirical
samples of the joint distribution are available (datasets) DN :=
{(x(n)

, y
(n))|(x(n)

, y
(n)) ⇠ P (X,Y )}Nn=1. Our DCA solver

is compared to the state-of-the-art Conditional Privacy Funnel
(CPF) [7] and Deep Variational Privacy Funnel (DVPF) [8]
baselines.

a) Datasets: we evaluate our solver (15) on MNIST [26]
and Fashion MNIST [27] datasets. Both datasets consist of
gray-scale images of 28⇥ 28 pixels. Each pixel is normalized
to the range [0, 1]. There are labeled 60000 training and 10000
testing samples uniformly distributed between 10 classes for
each dataset. Specifically, the MNIST dataset consists of
images of hand-written digits. Here, we let the digits Y be the
private information and the images are treated as the public
information X . As for Fashion MNIST, it has 10 categories
of clothing. We refer to [27] for details. We set the categories
as Y and the gray-scale images as X .

We consider the following scenario: a sender learns (su-
pervised) an encoder-decoder pair with training dataset based
on the PF objective. The decoder is shared to a receiver
through a secure channel before inference phase. Then the
sender encodes X of the testing set as the released codes Z.
A receiver observes the coded Z and reconstruct X̂ with the
decoder P�(X|Z). Meanwhile, an adversary also observes the
codes but does not know P�(X|Z). The adversary therefore
learns Ŷ from clustering Z. Here, we assume the cardinality of
|Y | is known for simplicity (relaxed with cluster identification
algorithms [28]). The legitimate users’ goal is to reconstruct
X̂ from Z whereas the adversary clusters Z as Ŷ that should
reveal Y .

In our evaluation, we measure the reconstruction quality
(utility) by the Peak Signal-to-Noise power Ratio (PSNR),
defined as:PSNR := 10 logXmax/MSE, where Xmax is the
maximum possible pixel value (1 in our case) and MSE :=
1
N

PN
i=1kxi � x̂k22. As for the privacy leakage, the adversary

uses UMAP [29] to project Z to a R2 space, followed by
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Fig. 2. Privacy-utility trade-off in unknown joint distribution settings. The proposed DCA solver is compared to the CPF [7] and DVPF [8] baselines.

KMeans clustering [20]. Note that this two-step approach
achieves the state-of-the-art clustering performance for both
MNIST and Fashion-MNIST datasets [29]. Then we compute
the adversary’s success rate from offline label matching.

b) Network Architecture: The proposed and compared
methods are implemented as deep neural networks. Since
our focus is on comparing the PF objective, the encoders
and decoders are carefully aligned for all compared methods.
We implement the encoder as a neural network with fully
connected (FC) layers as the standard VAE [21] encoder.
We have a separate set of parameters for learning a priori

P✓(Z) = N (0,⌫✓). As for the decoder, we employ another
neural network with FC layers as the reconstruction module.
For the differences, our method has a separate linear classifier
whereas the CPF baseline expands the decoder’s input by
concatenating code samples z with the one-hot representation
of target variables, i.e., ey (ei is the i

th elementary vector).
For the DVPF baseline, extra adversarial generative networks
are implemented according to [8].

We train each model for 100 epochs with a learning rate
at 3 ⇥ 10�4 using a standard ADAM optimizer [30]. The
mini-batch size is 256. For the dimension of Z, we vary
dz 2 {32, 64, 128, 256} for all methods. The range of hy-
perparameters for our method is set to [5 ⇥ 10�4

, 5 ⇥ 10�2]
for both ↵ and � in (15), whereas it is [10�3

, 10] for the
CPF and DVPF baselines. Each hyperparameter pair is trained
for 3 times with a different random seed and we report the
average in the results. The experiment details are included in
Appendix E of [10]. For reproduction, our source codes are
available online1.

c) Results: In Fig. 2, we report the highest adversary suc-
cess rate of an achieved PSNR for each method. Note that the
results include all combinations of the hyperparameters and the
set of dz . Fig. 2a corresponds to the MNIST dataset whereas
the results for Fashion-MNIST dataset is shown in Fig. 2b.
In both figures, our method clearly outperforms the CPF and

1available at: https://github.com/hui811116/dcaPF-torch

DVPF baselines since the adversary has lower success rate in
clustering Z from our approach at a comparable reconstruction
quality of X . This demonstrates that our approach character-
izes the privacy-utility trade-off better than both baselines. In
addition to better robustness, our approach is more efficient
in training phase than the DVPF baseline since we require no
parameters for generative and discriminative modules whose
optimization follows by a complex six-step algorithm. As for
in inference phase, our approach is completely independent to
the private information, in sharp contrast to the CPF baseline.
For extended evaluation and visualization of the compressed
features, we refer to Appendix F and Appendix G of [10] for
details.

V. CONCLUSIONS

We leverage the DC structure of the PF method and de-
velop efficient solvers based on DCA. In known distribution
settings, our solver resembles both ridge regression and sparse
recovery. Empirically, our solver outperforms the state-of-the-
art greedy solvers in characterizing the privacy-utility trade-
off. As for the unknown distribution settings, the insights from
the proposed DC approach complies the fundamental Markov
relation, so our approach applies to scenarios without labeled
private information after training in contrast to compared
methods. The evaluation of the proposed solver in MNIST
and the Fashion-MNIST datasets demonstrates significantly
improved characterization of the privacy-utility trade-off over
the compared methods. For future work, we empirically find
that the compression ratio (|Z|/|X |), significantly affects the
characterization of the privacy-utility trade-off. A fundamental
study in this direction will be the focus of a follow-up work.
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